scikit-learn-intelex 2025.10.0__py313-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/gbt_convertors.py +1199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/logistic_regression_builders.py +211 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/tree_based_builders.py +425 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +528 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +333 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1285 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +826 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +290 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +561 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_enet.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +432 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +259 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +493 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +136 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +736 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +772 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/__init__.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_config.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_device_offload.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +582 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +145 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_backend.py +258 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +121 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_dlpack.py +64 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_sycl_usm.py +63 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +131 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +686 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +218 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +291 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/dummy.py +137 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +781 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +201 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +230 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +293 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +690 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +202 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/svm.py +592 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +352 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/test_common.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +179 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +98 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_sycl_queue_manager.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_third_party.py +220 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/validation.py +503 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__init__.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_config.py +163 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +205 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_utils.py +219 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/base.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +338 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +399 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +440 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +307 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +558 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +572 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +629 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/_dummy.py +615 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/tests/test_dummy.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1799 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +196 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +44 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +427 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +363 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +466 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +313 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +170 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +261 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +112 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +406 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +390 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +314 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +26 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +108 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +180 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +120 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +200 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +276 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +146 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +345 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +169 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +433 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +403 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +278 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +306 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +155 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +607 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +418 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +420 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +217 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/class_weight.py +100 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_class_weight.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +212 -0
- scikit_learn_intelex-2025.10.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.10.0.dist-info/METADATA +182 -0
- scikit_learn_intelex-2025.10.0.dist-info/RECORD +267 -0
- scikit_learn_intelex-2025.10.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,781 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numbers
|
|
18
|
+
import warnings
|
|
19
|
+
from abc import ABCMeta, abstractmethod
|
|
20
|
+
from math import ceil
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
from sklearn.ensemble import BaseEnsemble
|
|
24
|
+
from sklearn.utils import check_random_state
|
|
25
|
+
|
|
26
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
27
|
+
from onedal._device_offload import supports_queue
|
|
28
|
+
from onedal.common._backend import bind_default_backend
|
|
29
|
+
from onedal.utils import _sycl_queue_manager as QM
|
|
30
|
+
from sklearnex import get_hyperparameters
|
|
31
|
+
|
|
32
|
+
from .._config import _get_config
|
|
33
|
+
from ..common._estimator_checks import _check_is_fitted
|
|
34
|
+
from ..common._mixin import ClassifierMixin, RegressorMixin
|
|
35
|
+
from ..datatypes import from_table, to_table
|
|
36
|
+
from ..utils._array_api import _get_sycl_namespace
|
|
37
|
+
from ..utils.validation import (
|
|
38
|
+
_check_array,
|
|
39
|
+
_check_n_features,
|
|
40
|
+
_check_X_y,
|
|
41
|
+
_column_or_1d,
|
|
42
|
+
_validate_targets,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class BaseForest(BaseEnsemble, metaclass=ABCMeta):
|
|
47
|
+
@abstractmethod
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
n_estimators,
|
|
51
|
+
criterion,
|
|
52
|
+
max_depth,
|
|
53
|
+
min_samples_split,
|
|
54
|
+
min_samples_leaf,
|
|
55
|
+
min_weight_fraction_leaf,
|
|
56
|
+
max_features,
|
|
57
|
+
max_leaf_nodes,
|
|
58
|
+
min_impurity_decrease,
|
|
59
|
+
min_impurity_split,
|
|
60
|
+
bootstrap,
|
|
61
|
+
oob_score,
|
|
62
|
+
random_state,
|
|
63
|
+
warm_start,
|
|
64
|
+
class_weight,
|
|
65
|
+
ccp_alpha,
|
|
66
|
+
max_samples,
|
|
67
|
+
max_bins,
|
|
68
|
+
min_bin_size,
|
|
69
|
+
infer_mode,
|
|
70
|
+
splitter_mode,
|
|
71
|
+
voting_mode,
|
|
72
|
+
error_metric_mode,
|
|
73
|
+
variable_importance_mode,
|
|
74
|
+
algorithm,
|
|
75
|
+
**kwargs,
|
|
76
|
+
):
|
|
77
|
+
self.n_estimators = n_estimators
|
|
78
|
+
self.bootstrap = bootstrap
|
|
79
|
+
self.oob_score = oob_score
|
|
80
|
+
self.random_state = random_state
|
|
81
|
+
self.warm_start = warm_start
|
|
82
|
+
self.class_weight = class_weight
|
|
83
|
+
self.max_samples = max_samples
|
|
84
|
+
self.criterion = criterion
|
|
85
|
+
self.max_depth = max_depth
|
|
86
|
+
self.min_samples_split = min_samples_split
|
|
87
|
+
self.min_samples_leaf = min_samples_leaf
|
|
88
|
+
self.min_weight_fraction_leaf = min_weight_fraction_leaf
|
|
89
|
+
self.max_features = max_features
|
|
90
|
+
self.max_leaf_nodes = max_leaf_nodes
|
|
91
|
+
self.min_impurity_decrease = min_impurity_decrease
|
|
92
|
+
self.min_impurity_split = min_impurity_split
|
|
93
|
+
self.ccp_alpha = ccp_alpha
|
|
94
|
+
self.max_bins = max_bins
|
|
95
|
+
self.min_bin_size = min_bin_size
|
|
96
|
+
self.infer_mode = infer_mode
|
|
97
|
+
self.splitter_mode = splitter_mode
|
|
98
|
+
self.voting_mode = voting_mode
|
|
99
|
+
self.error_metric_mode = error_metric_mode
|
|
100
|
+
self.variable_importance_mode = variable_importance_mode
|
|
101
|
+
self.algorithm = algorithm
|
|
102
|
+
|
|
103
|
+
@abstractmethod
|
|
104
|
+
def train(self, *args, **kwargs): ...
|
|
105
|
+
|
|
106
|
+
@abstractmethod
|
|
107
|
+
def infer(self, *args, **kwargs): ...
|
|
108
|
+
|
|
109
|
+
def _to_absolute_max_features(self, n_features):
|
|
110
|
+
if self.max_features is None:
|
|
111
|
+
return n_features
|
|
112
|
+
elif isinstance(self.max_features, str):
|
|
113
|
+
return max(1, int(getattr(np, self.max_features)(n_features)))
|
|
114
|
+
elif isinstance(self.max_features, (numbers.Integral, np.integer)):
|
|
115
|
+
return self.max_features
|
|
116
|
+
elif self.max_features > 0.0:
|
|
117
|
+
return max(1, int(self.max_features * n_features))
|
|
118
|
+
return 0
|
|
119
|
+
|
|
120
|
+
def _get_observations_per_tree_fraction(self, n_samples, max_samples):
|
|
121
|
+
if max_samples is None:
|
|
122
|
+
return 1.0
|
|
123
|
+
|
|
124
|
+
if isinstance(max_samples, numbers.Integral):
|
|
125
|
+
if not (1 <= max_samples <= n_samples):
|
|
126
|
+
msg = "`max_samples` must be in range 1 to {} but got value {}"
|
|
127
|
+
raise ValueError(msg.format(n_samples, max_samples))
|
|
128
|
+
return max(float(max_samples / n_samples), 1 / n_samples)
|
|
129
|
+
|
|
130
|
+
if isinstance(max_samples, numbers.Real):
|
|
131
|
+
return max(float(max_samples), 1 / n_samples)
|
|
132
|
+
|
|
133
|
+
msg = "`max_samples` should be int or float, but got type '{}'"
|
|
134
|
+
raise TypeError(msg.format(type(max_samples)))
|
|
135
|
+
|
|
136
|
+
def _get_onedal_params(self, data):
|
|
137
|
+
n_samples, n_features = data.shape
|
|
138
|
+
|
|
139
|
+
self.observations_per_tree_fraction = self._get_observations_per_tree_fraction(
|
|
140
|
+
n_samples=n_samples, max_samples=self.max_samples
|
|
141
|
+
)
|
|
142
|
+
self.observations_per_tree_fraction = (
|
|
143
|
+
self.observations_per_tree_fraction if bool(self.bootstrap) else 1.0
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
if not self.bootstrap and self.max_samples is not None:
|
|
147
|
+
raise ValueError(
|
|
148
|
+
"`max_sample` cannot be set if `bootstrap=False`. "
|
|
149
|
+
"Either switch to `bootstrap=True` or set "
|
|
150
|
+
"`max_sample=None`."
|
|
151
|
+
)
|
|
152
|
+
if not self.bootstrap and self.oob_score:
|
|
153
|
+
raise ValueError("Out of bag estimation only available" " if bootstrap=True")
|
|
154
|
+
|
|
155
|
+
min_observations_in_leaf_node = (
|
|
156
|
+
self.min_samples_leaf
|
|
157
|
+
if isinstance(self.min_samples_leaf, numbers.Integral)
|
|
158
|
+
else int(ceil(self.min_samples_leaf * n_samples))
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
min_observations_in_split_node = (
|
|
162
|
+
self.min_samples_split
|
|
163
|
+
if isinstance(self.min_samples_split, numbers.Integral)
|
|
164
|
+
else int(ceil(self.min_samples_split * n_samples))
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
rs = check_random_state(self.random_state)
|
|
168
|
+
seed = rs.randint(0, np.iinfo("i").max)
|
|
169
|
+
|
|
170
|
+
onedal_params = {
|
|
171
|
+
"fptype": data.dtype,
|
|
172
|
+
"method": self.algorithm,
|
|
173
|
+
"infer_mode": self.infer_mode,
|
|
174
|
+
"voting_mode": self.voting_mode,
|
|
175
|
+
"observations_per_tree_fraction": self.observations_per_tree_fraction,
|
|
176
|
+
"impurity_threshold": float(
|
|
177
|
+
0.0 if self.min_impurity_split is None else self.min_impurity_split
|
|
178
|
+
),
|
|
179
|
+
"min_weight_fraction_in_leaf_node": self.min_weight_fraction_leaf,
|
|
180
|
+
"min_impurity_decrease_in_split_node": self.min_impurity_decrease,
|
|
181
|
+
"tree_count": int(self.n_estimators),
|
|
182
|
+
"features_per_node": self._to_absolute_max_features(n_features),
|
|
183
|
+
"max_tree_depth": int(0 if self.max_depth is None else self.max_depth),
|
|
184
|
+
"min_observations_in_leaf_node": min_observations_in_leaf_node,
|
|
185
|
+
"min_observations_in_split_node": min_observations_in_split_node,
|
|
186
|
+
"max_leaf_nodes": (0 if self.max_leaf_nodes is None else self.max_leaf_nodes),
|
|
187
|
+
"max_bins": self.max_bins,
|
|
188
|
+
"min_bin_size": self.min_bin_size,
|
|
189
|
+
"seed": seed,
|
|
190
|
+
"memory_saving_mode": False,
|
|
191
|
+
"bootstrap": bool(self.bootstrap),
|
|
192
|
+
"error_metric_mode": self.error_metric_mode,
|
|
193
|
+
"variable_importance_mode": self.variable_importance_mode,
|
|
194
|
+
}
|
|
195
|
+
if isinstance(self, ClassifierMixin):
|
|
196
|
+
onedal_params["class_count"] = (
|
|
197
|
+
0 if self.classes_ is None else len(self.classes_)
|
|
198
|
+
)
|
|
199
|
+
if daal_check_version((2023, "P", 101)):
|
|
200
|
+
onedal_params["splitter_mode"] = self.splitter_mode
|
|
201
|
+
return onedal_params
|
|
202
|
+
|
|
203
|
+
def _check_parameters(self):
|
|
204
|
+
if isinstance(self.min_samples_leaf, numbers.Integral):
|
|
205
|
+
if not 1 <= self.min_samples_leaf:
|
|
206
|
+
raise ValueError(
|
|
207
|
+
"min_samples_leaf must be at least 1 "
|
|
208
|
+
"or in (0, 0.5], got %s" % self.min_samples_leaf
|
|
209
|
+
)
|
|
210
|
+
else: # float
|
|
211
|
+
if not 0.0 < self.min_samples_leaf <= 0.5:
|
|
212
|
+
raise ValueError(
|
|
213
|
+
"min_samples_leaf must be at least 1 "
|
|
214
|
+
"or in (0, 0.5], got %s" % self.min_samples_leaf
|
|
215
|
+
)
|
|
216
|
+
if isinstance(self.min_samples_split, numbers.Integral):
|
|
217
|
+
if not 2 <= self.min_samples_split:
|
|
218
|
+
raise ValueError(
|
|
219
|
+
"min_samples_split must be an integer "
|
|
220
|
+
"greater than 1 or a float in (0.0, 1.0]; "
|
|
221
|
+
"got the integer %s" % self.min_samples_split
|
|
222
|
+
)
|
|
223
|
+
else: # float
|
|
224
|
+
if not 0.0 < self.min_samples_split <= 1.0:
|
|
225
|
+
raise ValueError(
|
|
226
|
+
"min_samples_split must be an integer "
|
|
227
|
+
"greater than 1 or a float in (0.0, 1.0]; "
|
|
228
|
+
"got the float %s" % self.min_samples_split
|
|
229
|
+
)
|
|
230
|
+
if not 0 <= self.min_weight_fraction_leaf <= 0.5:
|
|
231
|
+
raise ValueError("min_weight_fraction_leaf must in [0, 0.5]")
|
|
232
|
+
if self.min_impurity_split is not None:
|
|
233
|
+
warnings.warn(
|
|
234
|
+
"The min_impurity_split parameter is deprecated. "
|
|
235
|
+
"Its default value has changed from 1e-7 to 0 in "
|
|
236
|
+
"version 0.23, and it will be removed in 0.25. "
|
|
237
|
+
"Use the min_impurity_decrease parameter instead.",
|
|
238
|
+
FutureWarning,
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
if self.min_impurity_split < 0.0:
|
|
242
|
+
raise ValueError(
|
|
243
|
+
"min_impurity_split must be greater than " "or equal to 0"
|
|
244
|
+
)
|
|
245
|
+
if self.min_impurity_decrease < 0.0:
|
|
246
|
+
raise ValueError(
|
|
247
|
+
"min_impurity_decrease must be greater than " "or equal to 0"
|
|
248
|
+
)
|
|
249
|
+
if self.max_leaf_nodes is not None:
|
|
250
|
+
if not isinstance(self.max_leaf_nodes, numbers.Integral):
|
|
251
|
+
raise ValueError(
|
|
252
|
+
"max_leaf_nodes must be integral number but was "
|
|
253
|
+
"%r" % self.max_leaf_nodes
|
|
254
|
+
)
|
|
255
|
+
if self.max_leaf_nodes < 2:
|
|
256
|
+
raise ValueError(
|
|
257
|
+
("max_leaf_nodes {0} must be either None " "or larger than 1").format(
|
|
258
|
+
self.max_leaf_nodes
|
|
259
|
+
)
|
|
260
|
+
)
|
|
261
|
+
if isinstance(self.max_bins, numbers.Integral):
|
|
262
|
+
if not 2 <= self.max_bins:
|
|
263
|
+
raise ValueError("max_bins must be at least 2, got %s" % self.max_bins)
|
|
264
|
+
else:
|
|
265
|
+
raise ValueError(
|
|
266
|
+
"max_bins must be integral number but was " "%r" % self.max_bins
|
|
267
|
+
)
|
|
268
|
+
if isinstance(self.min_bin_size, numbers.Integral):
|
|
269
|
+
if not 1 <= self.min_bin_size:
|
|
270
|
+
raise ValueError(
|
|
271
|
+
"min_bin_size must be at least 1, got %s" % self.min_bin_size
|
|
272
|
+
)
|
|
273
|
+
else:
|
|
274
|
+
raise ValueError(
|
|
275
|
+
"min_bin_size must be integral number but was " "%r" % self.min_bin_size
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
def _validate_targets(self, y, dtype):
|
|
279
|
+
self.class_weight_ = None
|
|
280
|
+
self.classes_ = None
|
|
281
|
+
return _column_or_1d(y, warn=True).astype(dtype, copy=False)
|
|
282
|
+
|
|
283
|
+
def _get_sample_weight(self, sample_weight, X):
|
|
284
|
+
sample_weight = np.asarray(sample_weight, dtype=X.dtype).ravel()
|
|
285
|
+
|
|
286
|
+
sample_weight = _check_array(
|
|
287
|
+
sample_weight, accept_sparse=False, ensure_2d=False, dtype=X.dtype, order="C"
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
if sample_weight.size != X.shape[0]:
|
|
291
|
+
raise ValueError(
|
|
292
|
+
"sample_weight and X have incompatible shapes: "
|
|
293
|
+
"%r vs %r\n"
|
|
294
|
+
"Note: Sparse matrices cannot be indexed w/"
|
|
295
|
+
"boolean masks (use `indices=True` in CV)."
|
|
296
|
+
% (sample_weight.shape, X.shape)
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
return sample_weight
|
|
300
|
+
|
|
301
|
+
def _fit(self, X, y, sample_weight):
|
|
302
|
+
use_raw_input = _get_config().get("use_raw_input", False) is True
|
|
303
|
+
sua_iface, xp, _ = _get_sycl_namespace(X)
|
|
304
|
+
|
|
305
|
+
if not use_raw_input:
|
|
306
|
+
X, y = _check_X_y(
|
|
307
|
+
X,
|
|
308
|
+
y,
|
|
309
|
+
dtype=[np.float64, np.float32],
|
|
310
|
+
force_all_finite=True,
|
|
311
|
+
accept_sparse="csr",
|
|
312
|
+
)
|
|
313
|
+
y = self._validate_targets(y, X.dtype)
|
|
314
|
+
else:
|
|
315
|
+
if sua_iface is not None:
|
|
316
|
+
queue = X.sycl_queue
|
|
317
|
+
# try catch needed for raw_inputs + array_api data where unlike
|
|
318
|
+
# numpy the way to yield unique values is via `unique_values`
|
|
319
|
+
# This should be removed when refactored for gpu zero-copy
|
|
320
|
+
try:
|
|
321
|
+
self.classes_ = xp.unique(y)
|
|
322
|
+
except AttributeError:
|
|
323
|
+
self.classes_ = xp.unique_values(y)
|
|
324
|
+
|
|
325
|
+
self.n_features_in_ = X.shape[1]
|
|
326
|
+
|
|
327
|
+
if sample_weight is not None and len(sample_weight) > 0:
|
|
328
|
+
if not use_raw_input:
|
|
329
|
+
sample_weight = self._get_sample_weight(sample_weight, X)
|
|
330
|
+
data = (X, y, sample_weight)
|
|
331
|
+
else:
|
|
332
|
+
data = (X, y)
|
|
333
|
+
data = to_table(*data, queue=QM.get_global_queue())
|
|
334
|
+
params = self._get_onedal_params(data[0])
|
|
335
|
+
train_result = self.train(params, *data)
|
|
336
|
+
|
|
337
|
+
self._onedal_model = train_result.model
|
|
338
|
+
|
|
339
|
+
if self.oob_score:
|
|
340
|
+
if isinstance(self, ClassifierMixin):
|
|
341
|
+
self.oob_score_ = from_table(train_result.oob_err_accuracy).item()
|
|
342
|
+
self.oob_decision_function_ = from_table(
|
|
343
|
+
train_result.oob_err_decision_function
|
|
344
|
+
)
|
|
345
|
+
if xp.any(self.oob_decision_function_ == 0):
|
|
346
|
+
warnings.warn(
|
|
347
|
+
"Some inputs do not have OOB scores. This probably means "
|
|
348
|
+
"too few trees were used to compute any reliable OOB "
|
|
349
|
+
"estimates.",
|
|
350
|
+
UserWarning,
|
|
351
|
+
)
|
|
352
|
+
else:
|
|
353
|
+
self.oob_score_ = from_table(train_result.oob_err_r2).item()
|
|
354
|
+
self.oob_prediction_ = from_table(
|
|
355
|
+
train_result.oob_err_prediction
|
|
356
|
+
).reshape(-1)
|
|
357
|
+
if np.any(self.oob_prediction_ == 0):
|
|
358
|
+
warnings.warn(
|
|
359
|
+
"Some inputs do not have OOB scores. This probably means "
|
|
360
|
+
"too few trees were used to compute any reliable OOB "
|
|
361
|
+
"estimates.",
|
|
362
|
+
UserWarning,
|
|
363
|
+
)
|
|
364
|
+
|
|
365
|
+
return self
|
|
366
|
+
|
|
367
|
+
def _create_model(self, module):
|
|
368
|
+
# TODO:
|
|
369
|
+
# update error msg.
|
|
370
|
+
raise NotImplementedError("Creating model is not supported.")
|
|
371
|
+
|
|
372
|
+
def _predict(self, X, hparams=None):
|
|
373
|
+
_check_is_fitted(self)
|
|
374
|
+
|
|
375
|
+
use_raw_input = _get_config().get("use_raw_input", False) is True
|
|
376
|
+
sua_iface, xp, _ = _get_sycl_namespace(X)
|
|
377
|
+
|
|
378
|
+
# All data should use the same sycl queue
|
|
379
|
+
if use_raw_input and sua_iface is not None:
|
|
380
|
+
queue = X.sycl_queue
|
|
381
|
+
|
|
382
|
+
if not use_raw_input:
|
|
383
|
+
X = _check_array(
|
|
384
|
+
X,
|
|
385
|
+
dtype=[np.float64, np.float32],
|
|
386
|
+
force_all_finite=True,
|
|
387
|
+
accept_sparse=False,
|
|
388
|
+
)
|
|
389
|
+
_check_n_features(self, X, False)
|
|
390
|
+
|
|
391
|
+
model = self._onedal_model
|
|
392
|
+
queue = QM.get_global_queue()
|
|
393
|
+
X_table = to_table(X, queue=queue)
|
|
394
|
+
params = self._get_onedal_params(X_table)
|
|
395
|
+
if hparams is not None and not hparams.is_default:
|
|
396
|
+
result = self.infer(params, hparams.backend, model, X_table)
|
|
397
|
+
else:
|
|
398
|
+
result = self.infer(params, model, X_table)
|
|
399
|
+
|
|
400
|
+
y = from_table(result.responses, like=X)
|
|
401
|
+
return y
|
|
402
|
+
|
|
403
|
+
def _predict_proba(self, X, hparams=None):
|
|
404
|
+
_check_is_fitted(self)
|
|
405
|
+
use_raw_input = _get_config().get("use_raw_input", False) is True
|
|
406
|
+
sua_iface, xp, _ = _get_sycl_namespace(X)
|
|
407
|
+
|
|
408
|
+
# All data should use the same sycl queue
|
|
409
|
+
if use_raw_input and sua_iface is not None:
|
|
410
|
+
queue = X.sycl_queue
|
|
411
|
+
else:
|
|
412
|
+
queue = QM.get_global_queue()
|
|
413
|
+
|
|
414
|
+
if not use_raw_input:
|
|
415
|
+
X = _check_array(
|
|
416
|
+
X,
|
|
417
|
+
dtype=[np.float64, np.float32],
|
|
418
|
+
force_all_finite=True,
|
|
419
|
+
accept_sparse=False,
|
|
420
|
+
)
|
|
421
|
+
_check_n_features(self, X, False)
|
|
422
|
+
X = to_table(X, queue=queue)
|
|
423
|
+
params = self._get_onedal_params(X)
|
|
424
|
+
params["infer_mode"] = "class_probabilities"
|
|
425
|
+
|
|
426
|
+
model = self._onedal_model
|
|
427
|
+
if hparams is not None and not hparams.is_default:
|
|
428
|
+
result = self.infer(params, hparams.backend, model, X)
|
|
429
|
+
else:
|
|
430
|
+
result = self.infer(params, model, X)
|
|
431
|
+
|
|
432
|
+
# TODO: fix probabilities out of [0, 1] interval on oneDAL side
|
|
433
|
+
pred = from_table(result.probabilities)
|
|
434
|
+
return pred.clip(0.0, 1.0)
|
|
435
|
+
|
|
436
|
+
|
|
437
|
+
class RandomForestClassifier(ClassifierMixin, BaseForest, metaclass=ABCMeta):
|
|
438
|
+
def __init__(
|
|
439
|
+
self,
|
|
440
|
+
n_estimators=100,
|
|
441
|
+
criterion="gini",
|
|
442
|
+
max_depth=None,
|
|
443
|
+
min_samples_split=2,
|
|
444
|
+
min_samples_leaf=1,
|
|
445
|
+
min_weight_fraction_leaf=0.0,
|
|
446
|
+
max_features="sqrt",
|
|
447
|
+
max_leaf_nodes=None,
|
|
448
|
+
min_impurity_decrease=0.0,
|
|
449
|
+
min_impurity_split=None,
|
|
450
|
+
bootstrap=True,
|
|
451
|
+
oob_score=False,
|
|
452
|
+
random_state=None,
|
|
453
|
+
warm_start=False,
|
|
454
|
+
class_weight=None,
|
|
455
|
+
ccp_alpha=0.0,
|
|
456
|
+
max_samples=None,
|
|
457
|
+
max_bins=256,
|
|
458
|
+
min_bin_size=1,
|
|
459
|
+
infer_mode="class_responses",
|
|
460
|
+
splitter_mode="best",
|
|
461
|
+
voting_mode="weighted",
|
|
462
|
+
error_metric_mode="none",
|
|
463
|
+
variable_importance_mode="none",
|
|
464
|
+
algorithm="hist",
|
|
465
|
+
**kwargs,
|
|
466
|
+
):
|
|
467
|
+
super().__init__(
|
|
468
|
+
n_estimators=n_estimators,
|
|
469
|
+
criterion=criterion,
|
|
470
|
+
max_depth=max_depth,
|
|
471
|
+
min_samples_split=min_samples_split,
|
|
472
|
+
min_samples_leaf=min_samples_leaf,
|
|
473
|
+
min_weight_fraction_leaf=min_weight_fraction_leaf,
|
|
474
|
+
max_features=max_features,
|
|
475
|
+
max_leaf_nodes=max_leaf_nodes,
|
|
476
|
+
min_impurity_decrease=min_impurity_decrease,
|
|
477
|
+
min_impurity_split=min_impurity_split,
|
|
478
|
+
bootstrap=bootstrap,
|
|
479
|
+
oob_score=oob_score,
|
|
480
|
+
random_state=random_state,
|
|
481
|
+
warm_start=warm_start,
|
|
482
|
+
class_weight=class_weight,
|
|
483
|
+
ccp_alpha=ccp_alpha,
|
|
484
|
+
max_samples=max_samples,
|
|
485
|
+
max_bins=max_bins,
|
|
486
|
+
min_bin_size=min_bin_size,
|
|
487
|
+
infer_mode=infer_mode,
|
|
488
|
+
splitter_mode=splitter_mode,
|
|
489
|
+
voting_mode=voting_mode,
|
|
490
|
+
error_metric_mode=error_metric_mode,
|
|
491
|
+
variable_importance_mode=variable_importance_mode,
|
|
492
|
+
algorithm=algorithm,
|
|
493
|
+
)
|
|
494
|
+
|
|
495
|
+
@bind_default_backend("decision_forest.classification")
|
|
496
|
+
def train(self, *args, **kwargs): ...
|
|
497
|
+
|
|
498
|
+
@bind_default_backend("decision_forest.classification")
|
|
499
|
+
def infer(self, *args, **kwargs): ...
|
|
500
|
+
|
|
501
|
+
def _validate_targets(self, y, dtype):
|
|
502
|
+
y, self.class_weight_, self.classes_ = _validate_targets(
|
|
503
|
+
y, self.class_weight, dtype
|
|
504
|
+
)
|
|
505
|
+
|
|
506
|
+
# Decapsulate classes_ attributes
|
|
507
|
+
# TODO:
|
|
508
|
+
# align with `n_classes_` and `classes_` attr with daal4py implementations.
|
|
509
|
+
# if hasattr(self, "classes_"):
|
|
510
|
+
# self.n_classes_ = self.classes_
|
|
511
|
+
return y
|
|
512
|
+
|
|
513
|
+
@supports_queue
|
|
514
|
+
def fit(self, X, y, sample_weight=None, queue=None):
|
|
515
|
+
return self._fit(X, y, sample_weight)
|
|
516
|
+
|
|
517
|
+
@supports_queue
|
|
518
|
+
def predict(self, X, queue=None):
|
|
519
|
+
_, xp, _ = _get_sycl_namespace(X)
|
|
520
|
+
hparams = get_hyperparameters("decision_forest", "infer")
|
|
521
|
+
pred = xp.reshape(self._predict(X, hparams), -1)
|
|
522
|
+
|
|
523
|
+
try:
|
|
524
|
+
return xp.take(
|
|
525
|
+
xp.asarray(self.classes_, device=pred.sycl_queue),
|
|
526
|
+
xp.astype(xp.reshape(pred, (-1,)), xp.int64),
|
|
527
|
+
)
|
|
528
|
+
except AttributeError:
|
|
529
|
+
return np.take(self.classes_, pred.ravel().astype(np.int64, casting="unsafe"))
|
|
530
|
+
|
|
531
|
+
@supports_queue
|
|
532
|
+
def predict_proba(self, X, queue=None):
|
|
533
|
+
hparams = get_hyperparameters("decision_forest", "infer")
|
|
534
|
+
|
|
535
|
+
return super()._predict_proba(X, hparams)
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
class RandomForestRegressor(RegressorMixin, BaseForest, metaclass=ABCMeta):
|
|
539
|
+
def __init__(
|
|
540
|
+
self,
|
|
541
|
+
n_estimators=100,
|
|
542
|
+
criterion="squared_error",
|
|
543
|
+
max_depth=None,
|
|
544
|
+
min_samples_split=2,
|
|
545
|
+
min_samples_leaf=1,
|
|
546
|
+
min_weight_fraction_leaf=0.0,
|
|
547
|
+
max_features=1.0,
|
|
548
|
+
max_leaf_nodes=None,
|
|
549
|
+
min_impurity_decrease=0.0,
|
|
550
|
+
min_impurity_split=None,
|
|
551
|
+
bootstrap=True,
|
|
552
|
+
oob_score=False,
|
|
553
|
+
random_state=None,
|
|
554
|
+
warm_start=False,
|
|
555
|
+
class_weight=None,
|
|
556
|
+
ccp_alpha=0.0,
|
|
557
|
+
max_samples=None,
|
|
558
|
+
max_bins=256,
|
|
559
|
+
min_bin_size=1,
|
|
560
|
+
infer_mode="class_responses",
|
|
561
|
+
splitter_mode="best",
|
|
562
|
+
voting_mode="weighted",
|
|
563
|
+
error_metric_mode="none",
|
|
564
|
+
variable_importance_mode="none",
|
|
565
|
+
algorithm="hist",
|
|
566
|
+
**kwargs,
|
|
567
|
+
):
|
|
568
|
+
super().__init__(
|
|
569
|
+
n_estimators=n_estimators,
|
|
570
|
+
criterion=criterion,
|
|
571
|
+
max_depth=max_depth,
|
|
572
|
+
min_samples_split=min_samples_split,
|
|
573
|
+
min_samples_leaf=min_samples_leaf,
|
|
574
|
+
min_weight_fraction_leaf=min_weight_fraction_leaf,
|
|
575
|
+
max_features=max_features,
|
|
576
|
+
max_leaf_nodes=max_leaf_nodes,
|
|
577
|
+
min_impurity_decrease=min_impurity_decrease,
|
|
578
|
+
min_impurity_split=min_impurity_split,
|
|
579
|
+
bootstrap=bootstrap,
|
|
580
|
+
oob_score=oob_score,
|
|
581
|
+
random_state=random_state,
|
|
582
|
+
warm_start=warm_start,
|
|
583
|
+
class_weight=class_weight,
|
|
584
|
+
ccp_alpha=ccp_alpha,
|
|
585
|
+
max_samples=max_samples,
|
|
586
|
+
max_bins=max_bins,
|
|
587
|
+
min_bin_size=min_bin_size,
|
|
588
|
+
infer_mode=infer_mode,
|
|
589
|
+
splitter_mode=splitter_mode,
|
|
590
|
+
voting_mode=voting_mode,
|
|
591
|
+
error_metric_mode=error_metric_mode,
|
|
592
|
+
variable_importance_mode=variable_importance_mode,
|
|
593
|
+
algorithm=algorithm,
|
|
594
|
+
)
|
|
595
|
+
|
|
596
|
+
@bind_default_backend("decision_forest.regression")
|
|
597
|
+
def train(self, *args, **kwargs): ...
|
|
598
|
+
|
|
599
|
+
@bind_default_backend("decision_forest.regression")
|
|
600
|
+
def infer(self, *args, **kwargs): ...
|
|
601
|
+
|
|
602
|
+
@supports_queue
|
|
603
|
+
def fit(self, X, y, sample_weight=None, queue=None):
|
|
604
|
+
if sample_weight is not None:
|
|
605
|
+
if hasattr(sample_weight, "__array__"):
|
|
606
|
+
sample_weight[sample_weight == 0.0] = 1.0
|
|
607
|
+
sample_weight = [sample_weight]
|
|
608
|
+
return self._fit(X, y, sample_weight)
|
|
609
|
+
|
|
610
|
+
@supports_queue
|
|
611
|
+
def predict(self, X, queue=None):
|
|
612
|
+
_, xp, _ = _get_sycl_namespace(X)
|
|
613
|
+
return xp.reshape(self._predict(X), -1)
|
|
614
|
+
|
|
615
|
+
|
|
616
|
+
class ExtraTreesClassifier(ClassifierMixin, BaseForest, metaclass=ABCMeta):
|
|
617
|
+
def __init__(
|
|
618
|
+
self,
|
|
619
|
+
n_estimators=100,
|
|
620
|
+
criterion="gini",
|
|
621
|
+
max_depth=None,
|
|
622
|
+
min_samples_split=2,
|
|
623
|
+
min_samples_leaf=1,
|
|
624
|
+
min_weight_fraction_leaf=0.0,
|
|
625
|
+
max_features="sqrt",
|
|
626
|
+
max_leaf_nodes=None,
|
|
627
|
+
min_impurity_decrease=0.0,
|
|
628
|
+
min_impurity_split=None,
|
|
629
|
+
bootstrap=False,
|
|
630
|
+
oob_score=False,
|
|
631
|
+
random_state=None,
|
|
632
|
+
warm_start=False,
|
|
633
|
+
class_weight=None,
|
|
634
|
+
ccp_alpha=0.0,
|
|
635
|
+
max_samples=None,
|
|
636
|
+
max_bins=256,
|
|
637
|
+
min_bin_size=1,
|
|
638
|
+
infer_mode="class_responses",
|
|
639
|
+
splitter_mode="random",
|
|
640
|
+
voting_mode="weighted",
|
|
641
|
+
error_metric_mode="none",
|
|
642
|
+
variable_importance_mode="none",
|
|
643
|
+
algorithm="hist",
|
|
644
|
+
**kwargs,
|
|
645
|
+
):
|
|
646
|
+
super().__init__(
|
|
647
|
+
n_estimators=n_estimators,
|
|
648
|
+
criterion=criterion,
|
|
649
|
+
max_depth=max_depth,
|
|
650
|
+
min_samples_split=min_samples_split,
|
|
651
|
+
min_samples_leaf=min_samples_leaf,
|
|
652
|
+
min_weight_fraction_leaf=min_weight_fraction_leaf,
|
|
653
|
+
max_features=max_features,
|
|
654
|
+
max_leaf_nodes=max_leaf_nodes,
|
|
655
|
+
min_impurity_decrease=min_impurity_decrease,
|
|
656
|
+
min_impurity_split=min_impurity_split,
|
|
657
|
+
bootstrap=bootstrap,
|
|
658
|
+
oob_score=oob_score,
|
|
659
|
+
random_state=random_state,
|
|
660
|
+
warm_start=warm_start,
|
|
661
|
+
class_weight=class_weight,
|
|
662
|
+
ccp_alpha=ccp_alpha,
|
|
663
|
+
max_samples=max_samples,
|
|
664
|
+
max_bins=max_bins,
|
|
665
|
+
min_bin_size=min_bin_size,
|
|
666
|
+
infer_mode=infer_mode,
|
|
667
|
+
splitter_mode=splitter_mode,
|
|
668
|
+
voting_mode=voting_mode,
|
|
669
|
+
error_metric_mode=error_metric_mode,
|
|
670
|
+
variable_importance_mode=variable_importance_mode,
|
|
671
|
+
algorithm=algorithm,
|
|
672
|
+
)
|
|
673
|
+
|
|
674
|
+
@bind_default_backend("decision_forest.classification")
|
|
675
|
+
def train(self, *args, **kwargs): ...
|
|
676
|
+
|
|
677
|
+
@bind_default_backend("decision_forest.classification")
|
|
678
|
+
def infer(self, *args, **kwargs): ...
|
|
679
|
+
|
|
680
|
+
def _validate_targets(self, y, dtype):
|
|
681
|
+
y, self.class_weight_, self.classes_ = _validate_targets(
|
|
682
|
+
y, self.class_weight, dtype
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
# Decapsulate classes_ attributes
|
|
686
|
+
# TODO:
|
|
687
|
+
# align with `n_classes_` and `classes_` attr with daal4py implementations.
|
|
688
|
+
# if hasattr(self, "classes_"):
|
|
689
|
+
# self.n_classes_ = self.classes_
|
|
690
|
+
return y
|
|
691
|
+
|
|
692
|
+
@supports_queue
|
|
693
|
+
def fit(self, X, y, sample_weight=None, queue=None):
|
|
694
|
+
return self._fit(X, y, sample_weight)
|
|
695
|
+
|
|
696
|
+
@supports_queue
|
|
697
|
+
def predict(self, X, queue=None):
|
|
698
|
+
pred = self._predict(X)
|
|
699
|
+
|
|
700
|
+
return np.take(self.classes_, pred.ravel().astype(np.int64, casting="unsafe"))
|
|
701
|
+
|
|
702
|
+
@supports_queue
|
|
703
|
+
def predict_proba(self, X, queue=None):
|
|
704
|
+
return super()._predict_proba(X)
|
|
705
|
+
|
|
706
|
+
|
|
707
|
+
class ExtraTreesRegressor(RegressorMixin, BaseForest, metaclass=ABCMeta):
|
|
708
|
+
def __init__(
|
|
709
|
+
self,
|
|
710
|
+
n_estimators=100,
|
|
711
|
+
criterion="squared_error",
|
|
712
|
+
max_depth=None,
|
|
713
|
+
min_samples_split=2,
|
|
714
|
+
min_samples_leaf=1,
|
|
715
|
+
min_weight_fraction_leaf=0.0,
|
|
716
|
+
max_features=1.0,
|
|
717
|
+
max_leaf_nodes=None,
|
|
718
|
+
min_impurity_decrease=0.0,
|
|
719
|
+
min_impurity_split=None,
|
|
720
|
+
bootstrap=False,
|
|
721
|
+
oob_score=False,
|
|
722
|
+
random_state=None,
|
|
723
|
+
warm_start=False,
|
|
724
|
+
class_weight=None,
|
|
725
|
+
ccp_alpha=0.0,
|
|
726
|
+
max_samples=None,
|
|
727
|
+
max_bins=256,
|
|
728
|
+
min_bin_size=1,
|
|
729
|
+
infer_mode="class_responses",
|
|
730
|
+
splitter_mode="random",
|
|
731
|
+
voting_mode="weighted",
|
|
732
|
+
error_metric_mode="none",
|
|
733
|
+
variable_importance_mode="none",
|
|
734
|
+
algorithm="hist",
|
|
735
|
+
**kwargs,
|
|
736
|
+
):
|
|
737
|
+
super().__init__(
|
|
738
|
+
n_estimators=n_estimators,
|
|
739
|
+
criterion=criterion,
|
|
740
|
+
max_depth=max_depth,
|
|
741
|
+
min_samples_split=min_samples_split,
|
|
742
|
+
min_samples_leaf=min_samples_leaf,
|
|
743
|
+
min_weight_fraction_leaf=min_weight_fraction_leaf,
|
|
744
|
+
max_features=max_features,
|
|
745
|
+
max_leaf_nodes=max_leaf_nodes,
|
|
746
|
+
min_impurity_decrease=min_impurity_decrease,
|
|
747
|
+
min_impurity_split=min_impurity_split,
|
|
748
|
+
bootstrap=bootstrap,
|
|
749
|
+
oob_score=oob_score,
|
|
750
|
+
random_state=random_state,
|
|
751
|
+
warm_start=warm_start,
|
|
752
|
+
class_weight=class_weight,
|
|
753
|
+
ccp_alpha=ccp_alpha,
|
|
754
|
+
max_samples=max_samples,
|
|
755
|
+
max_bins=max_bins,
|
|
756
|
+
min_bin_size=min_bin_size,
|
|
757
|
+
infer_mode=infer_mode,
|
|
758
|
+
splitter_mode=splitter_mode,
|
|
759
|
+
voting_mode=voting_mode,
|
|
760
|
+
error_metric_mode=error_metric_mode,
|
|
761
|
+
variable_importance_mode=variable_importance_mode,
|
|
762
|
+
algorithm=algorithm,
|
|
763
|
+
)
|
|
764
|
+
|
|
765
|
+
@bind_default_backend("decision_forest.regression")
|
|
766
|
+
def train(self, *args, **kwargs): ...
|
|
767
|
+
|
|
768
|
+
@bind_default_backend("decision_forest.regression")
|
|
769
|
+
def infer(self, *args, **kwargs): ...
|
|
770
|
+
|
|
771
|
+
@supports_queue
|
|
772
|
+
def fit(self, X, y, sample_weight=None, queue=None):
|
|
773
|
+
if sample_weight is not None:
|
|
774
|
+
if hasattr(sample_weight, "__array__"):
|
|
775
|
+
sample_weight[sample_weight == 0.0] = 1.0
|
|
776
|
+
sample_weight = [sample_weight]
|
|
777
|
+
return self._fit(X, y, sample_weight)
|
|
778
|
+
|
|
779
|
+
@supports_queue
|
|
780
|
+
def predict(self, X, queue=None):
|
|
781
|
+
return self._predict(X).ravel()
|