scikit-learn-intelex 2025.10.0__py313-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/gbt_convertors.py +1199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/logistic_regression_builders.py +211 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/tree_based_builders.py +425 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +528 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +333 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1285 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +826 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +290 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +561 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_enet.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +432 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +259 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +493 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +136 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +736 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +772 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/__init__.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_config.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_device_offload.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +582 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +145 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_backend.py +258 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +121 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_dlpack.py +64 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_sycl_usm.py +63 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +131 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +686 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +218 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +291 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/dummy.py +137 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +781 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +201 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +230 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +293 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +690 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +202 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/svm.py +592 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +352 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/test_common.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +179 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +98 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_sycl_queue_manager.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_third_party.py +220 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/validation.py +503 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__init__.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_config.py +163 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +205 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_utils.py +219 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/base.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +338 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +399 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +440 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +307 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +558 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +572 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +629 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/_dummy.py +615 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/tests/test_dummy.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1799 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +196 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +44 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +427 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +363 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +466 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +313 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +170 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +261 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +112 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +406 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +390 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +314 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +26 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +108 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +180 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +120 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +200 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +276 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +146 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +345 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +169 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +433 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +403 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +278 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +306 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +155 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +607 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +418 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +420 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +217 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/class_weight.py +100 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_class_weight.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +212 -0
- scikit_learn_intelex-2025.10.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.10.0.dist-info/METADATA +182 -0
- scikit_learn_intelex-2025.10.0.dist-info/RECORD +267 -0
- scikit_learn_intelex-2025.10.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,455 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
22
|
+
from onedal.basic_statistics.tests.utils import options_and_tests
|
|
23
|
+
from onedal.tests.utils._dataframes_support import (
|
|
24
|
+
_convert_to_dataframe,
|
|
25
|
+
get_dataframes_and_queues,
|
|
26
|
+
)
|
|
27
|
+
from sklearnex.basic_statistics import IncrementalBasicStatistics
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
31
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
32
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
33
|
+
def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
|
|
34
|
+
X = np.array([[0, 0], [1, 1]])
|
|
35
|
+
X = X.astype(dtype=dtype)
|
|
36
|
+
X_split = np.array_split(X, 2)
|
|
37
|
+
if weighted:
|
|
38
|
+
weights = np.array([1, 0.5])
|
|
39
|
+
weights = weights.astype(dtype=dtype)
|
|
40
|
+
weights_split = np.array_split(weights, 2)
|
|
41
|
+
|
|
42
|
+
incbs = IncrementalBasicStatistics()
|
|
43
|
+
for i in range(2):
|
|
44
|
+
X_split_df = _convert_to_dataframe(
|
|
45
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
46
|
+
)
|
|
47
|
+
if weighted:
|
|
48
|
+
weights_split_df = _convert_to_dataframe(
|
|
49
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
50
|
+
)
|
|
51
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
52
|
+
else:
|
|
53
|
+
result = incbs.partial_fit(X_split_df)
|
|
54
|
+
|
|
55
|
+
if weighted:
|
|
56
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
57
|
+
expected_weighted_min = np.array([0, 0])
|
|
58
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
59
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
60
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
61
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
62
|
+
else:
|
|
63
|
+
expected_mean = np.array([0.5, 0.5])
|
|
64
|
+
expected_min = np.array([0, 0])
|
|
65
|
+
expected_max = np.array([1, 1])
|
|
66
|
+
assert_allclose(expected_mean, result.mean)
|
|
67
|
+
assert_allclose(expected_max, result.max)
|
|
68
|
+
assert_allclose(expected_min, result.min)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
72
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
73
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
74
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
75
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
76
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
77
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
78
|
+
def test_partial_fit_single_option_on_random_data(
|
|
79
|
+
dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
|
|
80
|
+
):
|
|
81
|
+
function, tols = options_and_tests[result_option]
|
|
82
|
+
fp32tol, fp64tol = tols
|
|
83
|
+
seed = 77
|
|
84
|
+
gen = np.random.default_rng(seed)
|
|
85
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
86
|
+
X = X.astype(dtype=dtype)
|
|
87
|
+
X_split = np.array_split(X, num_batches)
|
|
88
|
+
if weighted:
|
|
89
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
90
|
+
weights = weights.astype(dtype=dtype)
|
|
91
|
+
weights_split = np.array_split(weights, num_batches)
|
|
92
|
+
incbs = IncrementalBasicStatistics(result_options=result_option)
|
|
93
|
+
|
|
94
|
+
for i in range(num_batches):
|
|
95
|
+
X_split_df = _convert_to_dataframe(
|
|
96
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
97
|
+
)
|
|
98
|
+
if weighted:
|
|
99
|
+
weights_split_df = _convert_to_dataframe(
|
|
100
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
101
|
+
)
|
|
102
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
103
|
+
else:
|
|
104
|
+
result = incbs.partial_fit(X_split_df)
|
|
105
|
+
|
|
106
|
+
res = getattr(result, result_option)
|
|
107
|
+
if weighted:
|
|
108
|
+
weighted_data = np.diag(weights) @ X
|
|
109
|
+
gtr = function(weighted_data)
|
|
110
|
+
else:
|
|
111
|
+
gtr = function(X)
|
|
112
|
+
|
|
113
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
114
|
+
assert_allclose(gtr, res, atol=tol)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
118
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
119
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
120
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
121
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
122
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
123
|
+
def test_partial_fit_multiple_options_on_random_data(
|
|
124
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
125
|
+
):
|
|
126
|
+
seed = 42
|
|
127
|
+
gen = np.random.default_rng(seed)
|
|
128
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
129
|
+
X = X.astype(dtype=dtype)
|
|
130
|
+
X_split = np.array_split(X, num_batches)
|
|
131
|
+
if weighted:
|
|
132
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
133
|
+
weights = weights.astype(dtype=dtype)
|
|
134
|
+
weights_split = np.array_split(weights, num_batches)
|
|
135
|
+
incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
|
|
136
|
+
|
|
137
|
+
for i in range(num_batches):
|
|
138
|
+
X_split_df = _convert_to_dataframe(
|
|
139
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
140
|
+
)
|
|
141
|
+
if weighted:
|
|
142
|
+
weights_split_df = _convert_to_dataframe(
|
|
143
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
144
|
+
)
|
|
145
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
146
|
+
else:
|
|
147
|
+
result = incbs.partial_fit(X_split_df)
|
|
148
|
+
|
|
149
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
150
|
+
if weighted:
|
|
151
|
+
weighted_data = np.diag(weights) @ X
|
|
152
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
153
|
+
options_and_tests["mean"][0](weighted_data),
|
|
154
|
+
options_and_tests["max"][0](weighted_data),
|
|
155
|
+
options_and_tests["sum"][0](weighted_data),
|
|
156
|
+
)
|
|
157
|
+
else:
|
|
158
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
159
|
+
options_and_tests["mean"][0](X),
|
|
160
|
+
options_and_tests["max"][0](X),
|
|
161
|
+
options_and_tests["sum"][0](X),
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
165
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
166
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
167
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
171
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
172
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
173
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
174
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
175
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
176
|
+
def test_partial_fit_all_option_on_random_data(
|
|
177
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
178
|
+
):
|
|
179
|
+
seed = 77
|
|
180
|
+
gen = np.random.default_rng(seed)
|
|
181
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
182
|
+
X = X.astype(dtype=dtype)
|
|
183
|
+
X_split = np.array_split(X, num_batches)
|
|
184
|
+
if weighted:
|
|
185
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
186
|
+
weights = weights.astype(dtype=dtype)
|
|
187
|
+
weights_split = np.array_split(weights, num_batches)
|
|
188
|
+
incbs = IncrementalBasicStatistics(result_options="all")
|
|
189
|
+
|
|
190
|
+
for i in range(num_batches):
|
|
191
|
+
X_split_df = _convert_to_dataframe(
|
|
192
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
193
|
+
)
|
|
194
|
+
if weighted:
|
|
195
|
+
weights_split_df = _convert_to_dataframe(
|
|
196
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
197
|
+
)
|
|
198
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
199
|
+
else:
|
|
200
|
+
result = incbs.partial_fit(X_split_df)
|
|
201
|
+
|
|
202
|
+
if weighted:
|
|
203
|
+
weighted_data = np.diag(weights) @ X
|
|
204
|
+
|
|
205
|
+
for result_option in options_and_tests:
|
|
206
|
+
function, tols = options_and_tests[result_option]
|
|
207
|
+
fp32tol, fp64tol = tols
|
|
208
|
+
res = getattr(result, result_option)
|
|
209
|
+
if weighted:
|
|
210
|
+
gtr = function(weighted_data)
|
|
211
|
+
else:
|
|
212
|
+
gtr = function(X)
|
|
213
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
214
|
+
assert_allclose(gtr, res, atol=tol)
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
218
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
219
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
220
|
+
def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
|
|
221
|
+
X = np.array([[0, 0], [1, 1]])
|
|
222
|
+
X = X.astype(dtype=dtype)
|
|
223
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
224
|
+
if weighted:
|
|
225
|
+
weights = np.array([1, 0.5])
|
|
226
|
+
weights = weights.astype(dtype=dtype)
|
|
227
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
228
|
+
incbs = IncrementalBasicStatistics(batch_size=1)
|
|
229
|
+
|
|
230
|
+
if weighted:
|
|
231
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
232
|
+
else:
|
|
233
|
+
result = incbs.fit(X_df)
|
|
234
|
+
|
|
235
|
+
if weighted:
|
|
236
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
237
|
+
expected_weighted_min = np.array([0, 0])
|
|
238
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
239
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
240
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
241
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
242
|
+
else:
|
|
243
|
+
expected_mean = np.array([0.5, 0.5])
|
|
244
|
+
expected_min = np.array([0, 0])
|
|
245
|
+
expected_max = np.array([1, 1])
|
|
246
|
+
assert_allclose(expected_mean, result.mean)
|
|
247
|
+
assert_allclose(expected_max, result.max)
|
|
248
|
+
assert_allclose(expected_min, result.min)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
252
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
253
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
254
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
255
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
256
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
257
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
258
|
+
def test_fit_single_option_on_random_data(
|
|
259
|
+
dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
|
|
260
|
+
):
|
|
261
|
+
function, tols = options_and_tests[result_option]
|
|
262
|
+
fp32tol, fp64tol = tols
|
|
263
|
+
seed = 77
|
|
264
|
+
gen = np.random.default_rng(seed)
|
|
265
|
+
batch_size = row_count // num_batches
|
|
266
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
267
|
+
X = X.astype(dtype=dtype)
|
|
268
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
269
|
+
if weighted:
|
|
270
|
+
weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
|
|
271
|
+
weights = weights.astype(dtype=dtype)
|
|
272
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
273
|
+
incbs = IncrementalBasicStatistics(
|
|
274
|
+
result_options=result_option, batch_size=batch_size
|
|
275
|
+
)
|
|
276
|
+
|
|
277
|
+
if weighted:
|
|
278
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
279
|
+
else:
|
|
280
|
+
result = incbs.fit(X_df)
|
|
281
|
+
|
|
282
|
+
res = getattr(result, result_option)
|
|
283
|
+
if weighted:
|
|
284
|
+
weighted_data = np.diag(weights) @ X
|
|
285
|
+
gtr = function(weighted_data)
|
|
286
|
+
else:
|
|
287
|
+
gtr = function(X)
|
|
288
|
+
|
|
289
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
290
|
+
assert_allclose(gtr, res, atol=tol)
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
294
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
295
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
296
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
297
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
298
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
299
|
+
def test_fit_multiple_options_on_random_data(
|
|
300
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
301
|
+
):
|
|
302
|
+
seed = 77
|
|
303
|
+
gen = np.random.default_rng(seed)
|
|
304
|
+
batch_size = row_count // num_batches
|
|
305
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
306
|
+
X = X.astype(dtype=dtype)
|
|
307
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
308
|
+
if weighted:
|
|
309
|
+
weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
|
|
310
|
+
weights = weights.astype(dtype=dtype)
|
|
311
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
312
|
+
incbs = IncrementalBasicStatistics(
|
|
313
|
+
result_options=["mean", "max", "sum"], batch_size=batch_size
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
if weighted:
|
|
317
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
318
|
+
else:
|
|
319
|
+
result = incbs.fit(X_df)
|
|
320
|
+
|
|
321
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
322
|
+
if weighted:
|
|
323
|
+
weighted_data = np.diag(weights) @ X
|
|
324
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
325
|
+
options_and_tests["mean"][0](weighted_data),
|
|
326
|
+
options_and_tests["max"][0](weighted_data),
|
|
327
|
+
options_and_tests["sum"][0](weighted_data),
|
|
328
|
+
)
|
|
329
|
+
else:
|
|
330
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
331
|
+
options_and_tests["mean"][0](X),
|
|
332
|
+
options_and_tests["max"][0](X),
|
|
333
|
+
options_and_tests["sum"][0](X),
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
337
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
338
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
339
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
343
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
344
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
345
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
346
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
347
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
348
|
+
def test_fit_all_option_on_random_data(
|
|
349
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
350
|
+
):
|
|
351
|
+
seed = 77
|
|
352
|
+
gen = np.random.default_rng(seed)
|
|
353
|
+
batch_size = row_count // num_batches
|
|
354
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
355
|
+
X = X.astype(dtype=dtype)
|
|
356
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
357
|
+
if weighted:
|
|
358
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
359
|
+
weights = weights.astype(dtype=dtype)
|
|
360
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
361
|
+
incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
|
|
362
|
+
|
|
363
|
+
if weighted:
|
|
364
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
365
|
+
else:
|
|
366
|
+
result = incbs.fit(X_df)
|
|
367
|
+
|
|
368
|
+
if weighted:
|
|
369
|
+
weighted_data = np.diag(weights) @ X
|
|
370
|
+
|
|
371
|
+
for result_option in options_and_tests:
|
|
372
|
+
function, tols = options_and_tests[result_option]
|
|
373
|
+
fp32tol, fp64tol = tols
|
|
374
|
+
res = getattr(result, result_option)
|
|
375
|
+
if weighted:
|
|
376
|
+
gtr = function(weighted_data)
|
|
377
|
+
else:
|
|
378
|
+
gtr = function(X)
|
|
379
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
380
|
+
assert_allclose(gtr, res, atol=tol)
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
def test_warning():
|
|
384
|
+
basicstat = IncrementalBasicStatistics("all")
|
|
385
|
+
# Only 2d inputs supported into IncrementalBasicStatistics
|
|
386
|
+
data = np.array([[0.0], [1.0]])
|
|
387
|
+
|
|
388
|
+
basicstat.fit(data)
|
|
389
|
+
for i in basicstat._onedal_estimator.get_all_result_options():
|
|
390
|
+
with pytest.warns(
|
|
391
|
+
UserWarning,
|
|
392
|
+
match="Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0",
|
|
393
|
+
) as warn_record:
|
|
394
|
+
getattr(basicstat, i)
|
|
395
|
+
|
|
396
|
+
if daal_check_version((2026, "P", 0)):
|
|
397
|
+
assert len(warn_record) == 0, i
|
|
398
|
+
else:
|
|
399
|
+
assert len(warn_record) == 1, i
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
403
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
404
|
+
def test_sklearnex_incremental_estimatior_pickle(dataframe, queue, dtype):
|
|
405
|
+
import pickle
|
|
406
|
+
|
|
407
|
+
from sklearnex.basic_statistics import IncrementalBasicStatistics
|
|
408
|
+
|
|
409
|
+
incbs = IncrementalBasicStatistics()
|
|
410
|
+
|
|
411
|
+
# Check that estimator can be serialized without any data.
|
|
412
|
+
dump = pickle.dumps(incbs)
|
|
413
|
+
incbs_loaded = pickle.loads(dump)
|
|
414
|
+
seed = 77
|
|
415
|
+
gen = np.random.default_rng(seed)
|
|
416
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
|
|
417
|
+
X = X.astype(dtype)
|
|
418
|
+
X_split = np.array_split(X, 2)
|
|
419
|
+
X_split_df = _convert_to_dataframe(X_split[0], sycl_queue=queue, target_df=dataframe)
|
|
420
|
+
incbs.partial_fit(X_split_df)
|
|
421
|
+
incbs_loaded.partial_fit(X_split_df)
|
|
422
|
+
|
|
423
|
+
# Check that estimator can be serialized after partial_fit call.
|
|
424
|
+
dump = pickle.dumps(incbs_loaded)
|
|
425
|
+
incbs_loaded = pickle.loads(dump)
|
|
426
|
+
|
|
427
|
+
X_split_df = _convert_to_dataframe(X_split[1], sycl_queue=queue, target_df=dataframe)
|
|
428
|
+
incbs.partial_fit(X_split_df)
|
|
429
|
+
incbs_loaded.partial_fit(X_split_df)
|
|
430
|
+
dump = pickle.dumps(incbs)
|
|
431
|
+
incbs_loaded = pickle.loads(dump)
|
|
432
|
+
assert incbs.batch_size == incbs_loaded.batch_size
|
|
433
|
+
assert incbs.n_features_in_ == incbs_loaded.n_features_in_
|
|
434
|
+
assert incbs.n_samples_seen_ == incbs_loaded.n_samples_seen_
|
|
435
|
+
if hasattr(incbs, "_parameter_constraints"):
|
|
436
|
+
assert incbs._parameter_constraints == incbs_loaded._parameter_constraints
|
|
437
|
+
assert incbs.n_jobs == incbs_loaded.n_jobs
|
|
438
|
+
for result_option in options_and_tests:
|
|
439
|
+
_, tols = options_and_tests[result_option]
|
|
440
|
+
fp32tol, fp64tol = tols
|
|
441
|
+
res = getattr(incbs, result_option)
|
|
442
|
+
res_loaded = getattr(incbs_loaded, result_option)
|
|
443
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
444
|
+
assert_allclose(res, res_loaded, atol=tol)
|
|
445
|
+
|
|
446
|
+
# Check that finalized estimator can be serialized.
|
|
447
|
+
dump = pickle.dumps(incbs_loaded)
|
|
448
|
+
incbs_loaded = pickle.loads(dump)
|
|
449
|
+
for result_option in options_and_tests:
|
|
450
|
+
_, tols = options_and_tests[result_option]
|
|
451
|
+
fp32tol, fp64tol = tols
|
|
452
|
+
res = getattr(incbs, result_option)
|
|
453
|
+
res_loaded = getattr(incbs_loaded, result_option)
|
|
454
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
455
|
+
assert_allclose(res, res_loaded, atol=tol)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from .dbscan import DBSCAN
|
|
18
|
+
from .k_means import KMeans
|
|
19
|
+
|
|
20
|
+
__all__ = ["DBSCAN", "KMeans"]
|
|
@@ -0,0 +1,199 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from scipy import sparse as sp
|
|
18
|
+
from sklearn.cluster import DBSCAN as _sklearn_DBSCAN
|
|
19
|
+
|
|
20
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
21
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
22
|
+
from onedal.cluster import DBSCAN as onedal_DBSCAN
|
|
23
|
+
from onedal.utils._array_api import _is_numpy_namespace
|
|
24
|
+
|
|
25
|
+
from .._config import get_config
|
|
26
|
+
from .._device_offload import dispatch
|
|
27
|
+
from .._utils import PatchingConditionsChain
|
|
28
|
+
from ..base import oneDALEstimator
|
|
29
|
+
from ..utils._array_api import enable_array_api, get_namespace
|
|
30
|
+
from ..utils.validation import _check_sample_weight, validate_data
|
|
31
|
+
|
|
32
|
+
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
33
|
+
import numbers
|
|
34
|
+
|
|
35
|
+
from sklearn.utils import check_scalar
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
@enable_array_api
|
|
39
|
+
@control_n_jobs(decorated_methods=["fit"])
|
|
40
|
+
class DBSCAN(oneDALEstimator, _sklearn_DBSCAN):
|
|
41
|
+
__doc__ = _sklearn_DBSCAN.__doc__
|
|
42
|
+
|
|
43
|
+
if sklearn_check_version("1.2"):
|
|
44
|
+
_parameter_constraints: dict = {**_sklearn_DBSCAN._parameter_constraints}
|
|
45
|
+
|
|
46
|
+
def __init__(
|
|
47
|
+
self,
|
|
48
|
+
eps=0.5,
|
|
49
|
+
*,
|
|
50
|
+
min_samples=5,
|
|
51
|
+
metric="euclidean",
|
|
52
|
+
metric_params=None,
|
|
53
|
+
algorithm="auto",
|
|
54
|
+
leaf_size=30,
|
|
55
|
+
p=None,
|
|
56
|
+
n_jobs=None,
|
|
57
|
+
):
|
|
58
|
+
super(DBSCAN, self).__init__(
|
|
59
|
+
eps=eps,
|
|
60
|
+
min_samples=min_samples,
|
|
61
|
+
metric=metric,
|
|
62
|
+
metric_params=metric_params,
|
|
63
|
+
algorithm=algorithm,
|
|
64
|
+
leaf_size=leaf_size,
|
|
65
|
+
p=p,
|
|
66
|
+
n_jobs=n_jobs,
|
|
67
|
+
)
|
|
68
|
+
self.eps = eps
|
|
69
|
+
self.min_samples = min_samples
|
|
70
|
+
self.metric = metric
|
|
71
|
+
self.metric_params = metric_params
|
|
72
|
+
self.algorithm = algorithm
|
|
73
|
+
self.leaf_size = leaf_size
|
|
74
|
+
self.p = p
|
|
75
|
+
self.n_jobs = n_jobs
|
|
76
|
+
|
|
77
|
+
_onedal_dbscan = staticmethod(onedal_DBSCAN)
|
|
78
|
+
|
|
79
|
+
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
80
|
+
xp, _ = get_namespace(X, y, sample_weight)
|
|
81
|
+
if not get_config()["use_raw_input"]:
|
|
82
|
+
X = validate_data(
|
|
83
|
+
self, X, accept_sparse="csr", dtype=[xp.float64, xp.float32]
|
|
84
|
+
)
|
|
85
|
+
if sample_weight is not None:
|
|
86
|
+
sample_weight = _check_sample_weight(
|
|
87
|
+
sample_weight, X, dtype=[xp.float64, xp.float32]
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
onedal_params = {
|
|
91
|
+
"eps": self.eps,
|
|
92
|
+
"min_samples": self.min_samples,
|
|
93
|
+
"metric": self.metric,
|
|
94
|
+
"metric_params": self.metric_params,
|
|
95
|
+
"algorithm": self.algorithm,
|
|
96
|
+
"leaf_size": self.leaf_size,
|
|
97
|
+
"p": self.p,
|
|
98
|
+
"n_jobs": self.n_jobs,
|
|
99
|
+
}
|
|
100
|
+
self._onedal_estimator = self._onedal_dbscan(**onedal_params)
|
|
101
|
+
|
|
102
|
+
self._onedal_estimator.fit(X, y=y, sample_weight=sample_weight, queue=queue)
|
|
103
|
+
if self._onedal_estimator.core_sample_indices_ is None:
|
|
104
|
+
kwargs = {"dtype": xp.int32} # always the same
|
|
105
|
+
if not _is_numpy_namespace(xp):
|
|
106
|
+
kwargs["device"] = X.device
|
|
107
|
+
self.core_sample_indices_ = xp.empty((0,), **kwargs)
|
|
108
|
+
else:
|
|
109
|
+
self.core_sample_indices_ = self._onedal_estimator.core_sample_indices_
|
|
110
|
+
|
|
111
|
+
self.components_ = xp.take(X, self.core_sample_indices_, axis=0)
|
|
112
|
+
self.labels_ = self._onedal_estimator.labels_
|
|
113
|
+
self.n_features_in_ = X.shape[1]
|
|
114
|
+
|
|
115
|
+
def _onedal_supported(self, method_name, *data):
|
|
116
|
+
class_name = self.__class__.__name__
|
|
117
|
+
patching_status = PatchingConditionsChain(
|
|
118
|
+
f"sklearn.cluster.{class_name}.{method_name}"
|
|
119
|
+
)
|
|
120
|
+
if method_name == "fit":
|
|
121
|
+
X = data[0]
|
|
122
|
+
patching_status.and_conditions(
|
|
123
|
+
[
|
|
124
|
+
(
|
|
125
|
+
self.algorithm in ["auto", "brute"],
|
|
126
|
+
f"'{self.algorithm}' algorithm is not supported. "
|
|
127
|
+
"Only 'auto' and 'brute' algorithms are supported",
|
|
128
|
+
),
|
|
129
|
+
(
|
|
130
|
+
self.metric == "euclidean"
|
|
131
|
+
or (self.metric == "minkowski" and self.p == 2),
|
|
132
|
+
f"'{self.metric}' (p={self.p}) metric is not supported. "
|
|
133
|
+
"Only 'euclidean' or 'minkowski' with p=2 metrics are supported.",
|
|
134
|
+
),
|
|
135
|
+
(not sp.issparse(X), "X is sparse. Sparse input is not supported."),
|
|
136
|
+
]
|
|
137
|
+
)
|
|
138
|
+
return patching_status
|
|
139
|
+
raise RuntimeError(f"Unknown method {method_name} in {self.__class__.__name__}")
|
|
140
|
+
|
|
141
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
142
|
+
return self._onedal_supported(method_name, *data)
|
|
143
|
+
|
|
144
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
145
|
+
return self._onedal_supported(method_name, *data)
|
|
146
|
+
|
|
147
|
+
def fit(self, X, y=None, sample_weight=None):
|
|
148
|
+
if sklearn_check_version("1.2"):
|
|
149
|
+
self._validate_params()
|
|
150
|
+
elif sklearn_check_version("1.1"):
|
|
151
|
+
check_scalar(
|
|
152
|
+
self.eps,
|
|
153
|
+
"eps",
|
|
154
|
+
target_type=numbers.Real,
|
|
155
|
+
min_val=0.0,
|
|
156
|
+
include_boundaries="neither",
|
|
157
|
+
)
|
|
158
|
+
check_scalar(
|
|
159
|
+
self.min_samples,
|
|
160
|
+
"min_samples",
|
|
161
|
+
target_type=numbers.Integral,
|
|
162
|
+
min_val=1,
|
|
163
|
+
include_boundaries="left",
|
|
164
|
+
)
|
|
165
|
+
check_scalar(
|
|
166
|
+
self.leaf_size,
|
|
167
|
+
"leaf_size",
|
|
168
|
+
target_type=numbers.Integral,
|
|
169
|
+
min_val=1,
|
|
170
|
+
include_boundaries="left",
|
|
171
|
+
)
|
|
172
|
+
if self.p is not None:
|
|
173
|
+
check_scalar(
|
|
174
|
+
self.p,
|
|
175
|
+
"p",
|
|
176
|
+
target_type=numbers.Real,
|
|
177
|
+
min_val=0.0,
|
|
178
|
+
include_boundaries="left",
|
|
179
|
+
)
|
|
180
|
+
if self.n_jobs is not None:
|
|
181
|
+
check_scalar(self.n_jobs, "n_jobs", target_type=numbers.Integral)
|
|
182
|
+
else:
|
|
183
|
+
if self.eps <= 0.0:
|
|
184
|
+
raise ValueError(f"eps == {self.eps}, must be > 0.0.")
|
|
185
|
+
dispatch(
|
|
186
|
+
self,
|
|
187
|
+
"fit",
|
|
188
|
+
{
|
|
189
|
+
"onedal": self.__class__._onedal_fit,
|
|
190
|
+
"sklearn": _sklearn_DBSCAN.fit,
|
|
191
|
+
},
|
|
192
|
+
X,
|
|
193
|
+
y,
|
|
194
|
+
sample_weight,
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
return self
|
|
198
|
+
|
|
199
|
+
fit.__doc__ = _sklearn_DBSCAN.fit.__doc__
|