scikit-learn-intelex 2025.10.0__py313-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/gbt_convertors.py +1199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/logistic_regression_builders.py +211 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/tree_based_builders.py +425 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +528 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +333 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1285 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +826 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +290 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +561 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_enet.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +432 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +259 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +493 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +136 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +736 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +772 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/__init__.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_config.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_device_offload.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +582 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +145 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_backend.py +258 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +121 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_dlpack.py +64 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_sycl_usm.py +63 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +131 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +686 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +218 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +291 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/dummy.py +137 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +781 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +201 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +230 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +293 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +690 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +202 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/svm.py +592 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +352 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/test_common.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +179 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +98 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_sycl_queue_manager.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_third_party.py +220 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/validation.py +503 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__init__.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_config.py +163 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +205 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_utils.py +219 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/base.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +338 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +399 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +440 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +307 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +558 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +572 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +629 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/_dummy.py +615 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/tests/test_dummy.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1799 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +196 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +44 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +427 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +363 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +466 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +313 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +170 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +261 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +112 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +406 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +390 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +314 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +26 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +108 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +180 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +120 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +200 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +276 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +146 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +345 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +169 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +433 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +403 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +278 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +306 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +155 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +607 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +418 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +420 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +217 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/class_weight.py +100 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_class_weight.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +212 -0
- scikit_learn_intelex-2025.10.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.10.0.dist-info/METADATA +182 -0
- scikit_learn_intelex-2025.10.0.dist-info/RECORD +267 -0
- scikit_learn_intelex-2025.10.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,565 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2014 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numbers
|
|
18
|
+
import warnings
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
from scipy import sparse as sp
|
|
22
|
+
from sklearn.cluster import KMeans as KMeans_original
|
|
23
|
+
from sklearn.cluster._kmeans import _labels_inertia
|
|
24
|
+
from sklearn.exceptions import ConvergenceWarning
|
|
25
|
+
from sklearn.utils import check_array, check_random_state
|
|
26
|
+
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
|
|
27
|
+
from sklearn.utils.extmath import row_norms
|
|
28
|
+
from sklearn.utils.sparsefuncs import mean_variance_axis
|
|
29
|
+
from sklearn.utils.validation import (
|
|
30
|
+
_deprecate_positional_args,
|
|
31
|
+
_num_samples,
|
|
32
|
+
check_is_fitted,
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
import daal4py
|
|
36
|
+
|
|
37
|
+
from .._n_jobs_support import control_n_jobs
|
|
38
|
+
from .._utils import PatchingConditionsChain, getFPType, sklearn_check_version
|
|
39
|
+
from ..utils.validation import check_feature_names, validate_data
|
|
40
|
+
|
|
41
|
+
if sklearn_check_version("1.1"):
|
|
42
|
+
from sklearn.utils.validation import _check_sample_weight, _is_arraylike_not_scalar
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def _validate_center_shape(X, n_centers, centers):
|
|
46
|
+
"""Check if centers is compatible with X and n_centers"""
|
|
47
|
+
if centers.shape[0] != n_centers:
|
|
48
|
+
raise ValueError(
|
|
49
|
+
f"The shape of the initial centers {centers.shape} does not "
|
|
50
|
+
f"match the number of clusters {n_centers}."
|
|
51
|
+
)
|
|
52
|
+
if centers.shape[1] != X.shape[1]:
|
|
53
|
+
raise ValueError(
|
|
54
|
+
f"The shape of the initial centers {centers.shape} does not "
|
|
55
|
+
f"match the number of features of the data {X.shape[1]}."
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def _tolerance(X, rtol):
|
|
60
|
+
"""Compute absolute tolerance from the relative tolerance"""
|
|
61
|
+
if rtol == 0.0:
|
|
62
|
+
return rtol
|
|
63
|
+
if sp.issparse(X):
|
|
64
|
+
variances = mean_variance_axis(X, axis=0)[1]
|
|
65
|
+
mean_var = np.mean(variances)
|
|
66
|
+
else:
|
|
67
|
+
mean_var = np.var(X, axis=0).mean()
|
|
68
|
+
return mean_var * rtol
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def _daal4py_compute_starting_centroids(
|
|
72
|
+
X, X_fptype, nClusters, cluster_centers_0, verbose, random_state
|
|
73
|
+
):
|
|
74
|
+
def is_string(s, target_str):
|
|
75
|
+
return isinstance(s, str) and s == target_str
|
|
76
|
+
|
|
77
|
+
is_sparse = sp.issparse(X)
|
|
78
|
+
|
|
79
|
+
deterministic = False
|
|
80
|
+
if is_string(cluster_centers_0, "k-means++"):
|
|
81
|
+
_seed = random_state.randint(np.iinfo("i").max)
|
|
82
|
+
plus_plus_method = "plusPlusCSR" if is_sparse else "plusPlusDense"
|
|
83
|
+
daal_engine = daal4py.engines_mt19937(
|
|
84
|
+
fptype=X_fptype, method="defaultDense", seed=_seed
|
|
85
|
+
)
|
|
86
|
+
_n_local_trials = 2 + int(np.log(nClusters))
|
|
87
|
+
kmeans_init = daal4py.kmeans_init(
|
|
88
|
+
nClusters,
|
|
89
|
+
fptype=X_fptype,
|
|
90
|
+
nTrials=_n_local_trials,
|
|
91
|
+
method=plus_plus_method,
|
|
92
|
+
engine=daal_engine,
|
|
93
|
+
)
|
|
94
|
+
kmeans_init_res = kmeans_init.compute(X)
|
|
95
|
+
centroids_ = kmeans_init_res.centroids
|
|
96
|
+
elif is_string(cluster_centers_0, "random"):
|
|
97
|
+
_seed = random_state.randint(np.iinfo("i").max)
|
|
98
|
+
random_method = "randomCSR" if is_sparse else "randomDense"
|
|
99
|
+
daal_engine = daal4py.engines_mt19937(
|
|
100
|
+
seed=_seed, fptype=X_fptype, method="defaultDense"
|
|
101
|
+
)
|
|
102
|
+
kmeans_init = daal4py.kmeans_init(
|
|
103
|
+
nClusters,
|
|
104
|
+
fptype=X_fptype,
|
|
105
|
+
method=random_method,
|
|
106
|
+
engine=daal_engine,
|
|
107
|
+
)
|
|
108
|
+
kmeans_init_res = kmeans_init.compute(X)
|
|
109
|
+
centroids_ = kmeans_init_res.centroids
|
|
110
|
+
elif hasattr(cluster_centers_0, "__array__"):
|
|
111
|
+
deterministic = True
|
|
112
|
+
cc_arr = np.ascontiguousarray(cluster_centers_0, dtype=X.dtype)
|
|
113
|
+
_validate_center_shape(X, nClusters, cc_arr)
|
|
114
|
+
centroids_ = cc_arr
|
|
115
|
+
elif callable(cluster_centers_0):
|
|
116
|
+
cc_arr = cluster_centers_0(X, nClusters, random_state)
|
|
117
|
+
cc_arr = np.ascontiguousarray(cc_arr, dtype=X.dtype)
|
|
118
|
+
_validate_center_shape(X, nClusters, cc_arr)
|
|
119
|
+
centroids_ = cc_arr
|
|
120
|
+
elif is_string(cluster_centers_0, "deterministic"):
|
|
121
|
+
deterministic = True
|
|
122
|
+
default_method = "lloydCSR" if is_sparse else "defaultDense"
|
|
123
|
+
kmeans_init = daal4py.kmeans_init(
|
|
124
|
+
nClusters, fptype=X_fptype, method=default_method
|
|
125
|
+
)
|
|
126
|
+
kmeans_init_res = kmeans_init.compute(X)
|
|
127
|
+
centroids_ = kmeans_init_res.centroids
|
|
128
|
+
else:
|
|
129
|
+
raise ValueError(
|
|
130
|
+
f"init should be either 'k-means++', 'random', a ndarray or a "
|
|
131
|
+
f"callable, got '{cluster_centers_0}' instead."
|
|
132
|
+
)
|
|
133
|
+
if verbose:
|
|
134
|
+
print("Initialization complete")
|
|
135
|
+
return deterministic, centroids_
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def _daal4py_kmeans_compatibility(
|
|
139
|
+
nClusters,
|
|
140
|
+
maxIterations,
|
|
141
|
+
fptype="double",
|
|
142
|
+
method="lloydDense",
|
|
143
|
+
accuracyThreshold=0.0,
|
|
144
|
+
resultsToEvaluate="computeCentroids",
|
|
145
|
+
gamma=1.0,
|
|
146
|
+
):
|
|
147
|
+
kmeans_algo = daal4py.kmeans(
|
|
148
|
+
nClusters=nClusters,
|
|
149
|
+
maxIterations=maxIterations,
|
|
150
|
+
fptype=fptype,
|
|
151
|
+
resultsToEvaluate=resultsToEvaluate,
|
|
152
|
+
accuracyThreshold=accuracyThreshold,
|
|
153
|
+
method=method,
|
|
154
|
+
gamma=gamma,
|
|
155
|
+
)
|
|
156
|
+
return kmeans_algo
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
def _daal4py_k_means_predict(
|
|
160
|
+
X, nClusters, centroids, resultsToEvaluate="computeAssignments"
|
|
161
|
+
):
|
|
162
|
+
X_fptype = getFPType(X)
|
|
163
|
+
is_sparse = sp.issparse(X)
|
|
164
|
+
method = "lloydCSR" if is_sparse else "defaultDense"
|
|
165
|
+
kmeans_algo = _daal4py_kmeans_compatibility(
|
|
166
|
+
nClusters=nClusters,
|
|
167
|
+
maxIterations=0,
|
|
168
|
+
fptype=X_fptype,
|
|
169
|
+
resultsToEvaluate=resultsToEvaluate,
|
|
170
|
+
method=method,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
res = kmeans_algo.compute(X, centroids)
|
|
174
|
+
|
|
175
|
+
return res.assignments[:, 0], res.objectiveFunction[0, 0]
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def _daal4py_k_means_fit(
|
|
179
|
+
X, nClusters, numIterations, tol, cluster_centers_0, n_init, verbose, random_state
|
|
180
|
+
):
|
|
181
|
+
if numIterations < 0:
|
|
182
|
+
raise ValueError("Wrong iterations number")
|
|
183
|
+
|
|
184
|
+
def is_string(s, target_str):
|
|
185
|
+
return isinstance(s, str) and s == target_str
|
|
186
|
+
|
|
187
|
+
default_n_init = 10
|
|
188
|
+
if n_init in ["auto", "warn"]:
|
|
189
|
+
if n_init == "warn" and sklearn_check_version("1.2"):
|
|
190
|
+
warnings.warn(
|
|
191
|
+
"The default value of `n_init` will change from "
|
|
192
|
+
f"{default_n_init} to 'auto' in 1.4. Set the value of `n_init`"
|
|
193
|
+
" explicitly to suppress the warning",
|
|
194
|
+
FutureWarning,
|
|
195
|
+
)
|
|
196
|
+
if is_string(cluster_centers_0, "k-means++"):
|
|
197
|
+
n_init = 1
|
|
198
|
+
else:
|
|
199
|
+
n_init = default_n_init
|
|
200
|
+
X_fptype = getFPType(X)
|
|
201
|
+
abs_tol = _tolerance(X, tol) # tol is relative tolerance
|
|
202
|
+
is_sparse = sp.issparse(X)
|
|
203
|
+
method = "lloydCSR" if is_sparse else "defaultDense"
|
|
204
|
+
best_inertia, best_cluster_centers = None, None
|
|
205
|
+
best_n_iter = -1
|
|
206
|
+
kmeans_algo = _daal4py_kmeans_compatibility(
|
|
207
|
+
nClusters=nClusters,
|
|
208
|
+
maxIterations=numIterations,
|
|
209
|
+
accuracyThreshold=abs_tol,
|
|
210
|
+
fptype=X_fptype,
|
|
211
|
+
resultsToEvaluate="computeCentroids",
|
|
212
|
+
method=method,
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
for k in range(n_init):
|
|
216
|
+
deterministic, starting_centroids_ = _daal4py_compute_starting_centroids(
|
|
217
|
+
X, X_fptype, nClusters, cluster_centers_0, verbose, random_state
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
res = kmeans_algo.compute(X, starting_centroids_)
|
|
221
|
+
|
|
222
|
+
inertia = res.objectiveFunction[0, 0]
|
|
223
|
+
if verbose:
|
|
224
|
+
print(f"Iteration {k}, inertia {inertia}.")
|
|
225
|
+
|
|
226
|
+
if best_inertia is None or inertia < best_inertia:
|
|
227
|
+
best_cluster_centers = res.centroids
|
|
228
|
+
if n_init > 1:
|
|
229
|
+
best_cluster_centers = best_cluster_centers.copy()
|
|
230
|
+
best_inertia = inertia
|
|
231
|
+
best_n_iter = int(res.nIterations[0, 0])
|
|
232
|
+
if deterministic and n_init != 1:
|
|
233
|
+
warnings.warn(
|
|
234
|
+
"Explicit initial center position passed: "
|
|
235
|
+
"performing only one init in k-means instead of n_init=%d" % n_init,
|
|
236
|
+
RuntimeWarning,
|
|
237
|
+
stacklevel=2,
|
|
238
|
+
)
|
|
239
|
+
break
|
|
240
|
+
|
|
241
|
+
flag_compute = "computeAssignments|computeExactObjectiveFunction"
|
|
242
|
+
best_labels, best_inertia = _daal4py_k_means_predict(
|
|
243
|
+
X, nClusters, best_cluster_centers, flag_compute
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
distinct_clusters = np.unique(best_labels).size
|
|
247
|
+
if distinct_clusters < nClusters:
|
|
248
|
+
warnings.warn(
|
|
249
|
+
"Number of distinct clusters ({}) found smaller than "
|
|
250
|
+
"n_clusters ({}). Possibly due to duplicate points "
|
|
251
|
+
"in X.".format(distinct_clusters, nClusters),
|
|
252
|
+
ConvergenceWarning,
|
|
253
|
+
stacklevel=2,
|
|
254
|
+
)
|
|
255
|
+
# for passing test case "test_kmeans_warns_less_centers_than_unique_points"
|
|
256
|
+
|
|
257
|
+
return best_cluster_centers, best_labels, best_inertia, best_n_iter
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
def _fit(self, X, y=None, sample_weight=None):
|
|
261
|
+
init = self.init
|
|
262
|
+
if sklearn_check_version("1.1"):
|
|
263
|
+
if sklearn_check_version("1.2"):
|
|
264
|
+
self._validate_params()
|
|
265
|
+
|
|
266
|
+
X = validate_data(
|
|
267
|
+
self,
|
|
268
|
+
X,
|
|
269
|
+
accept_sparse="csr",
|
|
270
|
+
dtype=[np.float64, np.float32],
|
|
271
|
+
order="C",
|
|
272
|
+
copy=self.copy_x,
|
|
273
|
+
accept_large_sparse=False,
|
|
274
|
+
)
|
|
275
|
+
|
|
276
|
+
if sklearn_check_version("1.2"):
|
|
277
|
+
self._check_params_vs_input(X)
|
|
278
|
+
else:
|
|
279
|
+
self._check_params(X)
|
|
280
|
+
|
|
281
|
+
random_state = check_random_state(self.random_state)
|
|
282
|
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
|
283
|
+
self._n_threads = _openmp_effective_n_threads()
|
|
284
|
+
|
|
285
|
+
# Validate init array
|
|
286
|
+
init_is_array_like = _is_arraylike_not_scalar(init)
|
|
287
|
+
if init_is_array_like:
|
|
288
|
+
init = check_array(init, dtype=X.dtype, copy=True, order="C")
|
|
289
|
+
self._validate_center_shape(X, init)
|
|
290
|
+
else:
|
|
291
|
+
if hasattr(self, "precompute_distances"):
|
|
292
|
+
if self.precompute_distances != "deprecated":
|
|
293
|
+
warnings.warn(
|
|
294
|
+
"'precompute_distances' was deprecated in version "
|
|
295
|
+
"0.23 and will be removed in 1.0 (renaming of 0.25)."
|
|
296
|
+
" It has no effect",
|
|
297
|
+
FutureWarning,
|
|
298
|
+
)
|
|
299
|
+
|
|
300
|
+
self._n_threads = None
|
|
301
|
+
if hasattr(self, "n_jobs"):
|
|
302
|
+
if self.n_jobs != "deprecated":
|
|
303
|
+
warnings.warn(
|
|
304
|
+
"'n_jobs' was deprecated in version 0.23 and will be"
|
|
305
|
+
" removed in 1.0 (renaming of 0.25).",
|
|
306
|
+
FutureWarning,
|
|
307
|
+
)
|
|
308
|
+
self._n_threads = self.n_jobs
|
|
309
|
+
self._n_threads = _openmp_effective_n_threads(self._n_threads)
|
|
310
|
+
|
|
311
|
+
if self.n_init <= 0:
|
|
312
|
+
raise ValueError(f"n_init should be > 0, got {self.n_init} instead.")
|
|
313
|
+
|
|
314
|
+
random_state = check_random_state(self.random_state)
|
|
315
|
+
check_feature_names(self, X, reset=True)
|
|
316
|
+
|
|
317
|
+
if self.max_iter <= 0:
|
|
318
|
+
raise ValueError(f"max_iter should be > 0, got {self.max_iter} instead.")
|
|
319
|
+
|
|
320
|
+
algorithm = self.algorithm
|
|
321
|
+
if sklearn_check_version("1.2"):
|
|
322
|
+
if algorithm == "elkan" and self.n_clusters == 1:
|
|
323
|
+
warnings.warn(
|
|
324
|
+
"algorithm='elkan' doesn't make sense for a single "
|
|
325
|
+
"cluster. Using 'full' instead.",
|
|
326
|
+
RuntimeWarning,
|
|
327
|
+
)
|
|
328
|
+
algorithm = "lloyd"
|
|
329
|
+
|
|
330
|
+
if algorithm == "auto" or algorithm == "full":
|
|
331
|
+
warnings.warn(
|
|
332
|
+
"algorithm= {'auto','full'} is deprecated" "Using 'lloyd' instead.",
|
|
333
|
+
RuntimeWarning,
|
|
334
|
+
)
|
|
335
|
+
algorithm = "lloyd" if self.n_clusters == 1 else "elkan"
|
|
336
|
+
|
|
337
|
+
if algorithm not in ["lloyd", "full", "elkan"]:
|
|
338
|
+
raise ValueError(
|
|
339
|
+
"Algorithm must be 'auto','lloyd', 'full' or 'elkan',"
|
|
340
|
+
"got {}".format(str(algorithm))
|
|
341
|
+
)
|
|
342
|
+
else:
|
|
343
|
+
if algorithm == "elkan" and self.n_clusters == 1:
|
|
344
|
+
warnings.warn(
|
|
345
|
+
"algorithm='elkan' doesn't make sense for a single "
|
|
346
|
+
"cluster. Using 'full' instead.",
|
|
347
|
+
RuntimeWarning,
|
|
348
|
+
)
|
|
349
|
+
algorithm = "full"
|
|
350
|
+
|
|
351
|
+
if algorithm == "auto":
|
|
352
|
+
algorithm = "full" if self.n_clusters == 1 else "elkan"
|
|
353
|
+
|
|
354
|
+
if algorithm not in ["full", "elkan"]:
|
|
355
|
+
raise ValueError(
|
|
356
|
+
"Algorithm must be 'auto', 'full' or 'elkan', got"
|
|
357
|
+
" {}".format(str(algorithm))
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
X_len = _num_samples(X)
|
|
361
|
+
|
|
362
|
+
_patching_status = PatchingConditionsChain("sklearn.cluster.KMeans.fit")
|
|
363
|
+
_dal_ready = _patching_status.and_conditions(
|
|
364
|
+
[
|
|
365
|
+
(
|
|
366
|
+
self.n_clusters <= X_len,
|
|
367
|
+
"The number of clusters is larger than the number of samples in X.",
|
|
368
|
+
)
|
|
369
|
+
]
|
|
370
|
+
)
|
|
371
|
+
|
|
372
|
+
if _dal_ready and sample_weight is not None:
|
|
373
|
+
if isinstance(sample_weight, numbers.Number):
|
|
374
|
+
sample_weight = np.full(X_len, sample_weight, dtype=np.float64)
|
|
375
|
+
else:
|
|
376
|
+
sample_weight = np.asarray(sample_weight)
|
|
377
|
+
_dal_ready = _patching_status.and_conditions(
|
|
378
|
+
[
|
|
379
|
+
(
|
|
380
|
+
sample_weight.shape == (X_len,),
|
|
381
|
+
"Sample weights do not have the same length as X.",
|
|
382
|
+
),
|
|
383
|
+
(
|
|
384
|
+
np.allclose(sample_weight, np.ones_like(sample_weight)),
|
|
385
|
+
"Sample weights are not ones.",
|
|
386
|
+
),
|
|
387
|
+
]
|
|
388
|
+
)
|
|
389
|
+
|
|
390
|
+
_patching_status.write_log()
|
|
391
|
+
if _dal_ready:
|
|
392
|
+
X = check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
|
393
|
+
self.n_features_in_ = X.shape[1]
|
|
394
|
+
(
|
|
395
|
+
self.cluster_centers_,
|
|
396
|
+
self.labels_,
|
|
397
|
+
self.inertia_,
|
|
398
|
+
self.n_iter_,
|
|
399
|
+
) = _daal4py_k_means_fit(
|
|
400
|
+
X,
|
|
401
|
+
self.n_clusters,
|
|
402
|
+
self.max_iter,
|
|
403
|
+
self.tol,
|
|
404
|
+
init,
|
|
405
|
+
self.n_init,
|
|
406
|
+
self.verbose,
|
|
407
|
+
random_state,
|
|
408
|
+
)
|
|
409
|
+
if sklearn_check_version("1.1"):
|
|
410
|
+
self._n_features_out = self.cluster_centers_.shape[0]
|
|
411
|
+
else:
|
|
412
|
+
super(KMeans, self).fit(X, y=y, sample_weight=sample_weight)
|
|
413
|
+
return self
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
def _daal4py_check_test_data(self, X):
|
|
417
|
+
check_feature_names(self, X, reset=False)
|
|
418
|
+
X = check_array(
|
|
419
|
+
X, accept_sparse="csr", dtype=[np.float64, np.float32], accept_large_sparse=False
|
|
420
|
+
)
|
|
421
|
+
if self.n_features_in_ != X.shape[1]:
|
|
422
|
+
raise ValueError(
|
|
423
|
+
(
|
|
424
|
+
f"X has {X.shape[1]} features, "
|
|
425
|
+
f"but Kmeans is expecting {self.n_features_in_} features as input"
|
|
426
|
+
)
|
|
427
|
+
)
|
|
428
|
+
return X
|
|
429
|
+
|
|
430
|
+
|
|
431
|
+
def _predict(self, X, sample_weight=None):
|
|
432
|
+
check_is_fitted(self)
|
|
433
|
+
|
|
434
|
+
X = _daal4py_check_test_data(self, X)
|
|
435
|
+
|
|
436
|
+
if (
|
|
437
|
+
sklearn_check_version("1.3")
|
|
438
|
+
and isinstance(sample_weight, str)
|
|
439
|
+
and sample_weight == "deprecated"
|
|
440
|
+
):
|
|
441
|
+
sample_weight = None
|
|
442
|
+
|
|
443
|
+
_patching_status = PatchingConditionsChain("sklearn.cluster.KMeans.predict")
|
|
444
|
+
_patching_status.and_conditions(
|
|
445
|
+
[
|
|
446
|
+
(sample_weight is None, "Sample weights are not supported."),
|
|
447
|
+
(hasattr(X, "__array__"), "X does not have '__array__' attribute."),
|
|
448
|
+
]
|
|
449
|
+
)
|
|
450
|
+
|
|
451
|
+
# CSR array is introduced in scipy 1.11, this requires an initial attribute check
|
|
452
|
+
if hasattr(sp, "csr_array"):
|
|
453
|
+
_dal_ready = _patching_status.or_conditions(
|
|
454
|
+
[
|
|
455
|
+
(
|
|
456
|
+
sp.isspmatrix_csr(X) or isinstance(X, sp.csr_array),
|
|
457
|
+
"X is not csr sparse.",
|
|
458
|
+
)
|
|
459
|
+
]
|
|
460
|
+
)
|
|
461
|
+
else:
|
|
462
|
+
_dal_ready = _patching_status.or_conditions(
|
|
463
|
+
[(sp.isspmatrix_csr(X), "X is not csr sparse.")]
|
|
464
|
+
)
|
|
465
|
+
|
|
466
|
+
_patching_status.write_log()
|
|
467
|
+
if _dal_ready:
|
|
468
|
+
return _daal4py_k_means_predict(X, self.n_clusters, self.cluster_centers_)[0]
|
|
469
|
+
if sklearn_check_version("1.2"):
|
|
470
|
+
if sklearn_check_version("1.3") and sample_weight is not None:
|
|
471
|
+
warnings.warn(
|
|
472
|
+
"'sample_weight' was deprecated in version 1.3 and "
|
|
473
|
+
"will be removed in 1.5.",
|
|
474
|
+
FutureWarning,
|
|
475
|
+
)
|
|
476
|
+
return _labels_inertia(X, sample_weight, self.cluster_centers_)[0]
|
|
477
|
+
else:
|
|
478
|
+
x_squared_norms = row_norms(X, squared=True)
|
|
479
|
+
return _labels_inertia(X, sample_weight, x_squared_norms, self.cluster_centers_)[
|
|
480
|
+
0
|
|
481
|
+
]
|
|
482
|
+
|
|
483
|
+
|
|
484
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
485
|
+
class KMeans(KMeans_original):
|
|
486
|
+
__doc__ = KMeans_original.__doc__
|
|
487
|
+
|
|
488
|
+
if sklearn_check_version("1.2"):
|
|
489
|
+
_parameter_constraints: dict = {**KMeans_original._parameter_constraints}
|
|
490
|
+
|
|
491
|
+
@_deprecate_positional_args
|
|
492
|
+
def __init__(
|
|
493
|
+
self,
|
|
494
|
+
n_clusters=8,
|
|
495
|
+
*,
|
|
496
|
+
init="k-means++",
|
|
497
|
+
n_init="auto" if sklearn_check_version("1.4") else "warn",
|
|
498
|
+
max_iter=300,
|
|
499
|
+
tol=1e-4,
|
|
500
|
+
verbose=0,
|
|
501
|
+
random_state=None,
|
|
502
|
+
copy_x=True,
|
|
503
|
+
algorithm="lloyd",
|
|
504
|
+
):
|
|
505
|
+
super(KMeans, self).__init__(
|
|
506
|
+
n_clusters=n_clusters,
|
|
507
|
+
init=init,
|
|
508
|
+
max_iter=max_iter,
|
|
509
|
+
tol=tol,
|
|
510
|
+
n_init=n_init,
|
|
511
|
+
verbose=verbose,
|
|
512
|
+
random_state=random_state,
|
|
513
|
+
copy_x=copy_x,
|
|
514
|
+
algorithm=algorithm,
|
|
515
|
+
)
|
|
516
|
+
|
|
517
|
+
else:
|
|
518
|
+
|
|
519
|
+
@_deprecate_positional_args
|
|
520
|
+
def __init__(
|
|
521
|
+
self,
|
|
522
|
+
n_clusters=8,
|
|
523
|
+
*,
|
|
524
|
+
init="k-means++",
|
|
525
|
+
n_init=10,
|
|
526
|
+
max_iter=300,
|
|
527
|
+
tol=1e-4,
|
|
528
|
+
verbose=0,
|
|
529
|
+
random_state=None,
|
|
530
|
+
copy_x=True,
|
|
531
|
+
algorithm="lloyd" if sklearn_check_version("1.1") else "auto",
|
|
532
|
+
):
|
|
533
|
+
super(KMeans, self).__init__(
|
|
534
|
+
n_clusters=n_clusters,
|
|
535
|
+
init=init,
|
|
536
|
+
max_iter=max_iter,
|
|
537
|
+
tol=tol,
|
|
538
|
+
n_init=n_init,
|
|
539
|
+
verbose=verbose,
|
|
540
|
+
random_state=random_state,
|
|
541
|
+
copy_x=copy_x,
|
|
542
|
+
algorithm=algorithm,
|
|
543
|
+
)
|
|
544
|
+
|
|
545
|
+
def fit(self, X, y=None, sample_weight=None):
|
|
546
|
+
return _fit(self, X, y=y, sample_weight=sample_weight)
|
|
547
|
+
|
|
548
|
+
if sklearn_check_version("1.5"):
|
|
549
|
+
|
|
550
|
+
def predict(self, X):
|
|
551
|
+
return _predict(self, X)
|
|
552
|
+
|
|
553
|
+
else:
|
|
554
|
+
|
|
555
|
+
def predict(
|
|
556
|
+
self, X, sample_weight="deprecated" if sklearn_check_version("1.3") else None
|
|
557
|
+
):
|
|
558
|
+
return _predict(self, X, sample_weight=sample_weight)
|
|
559
|
+
|
|
560
|
+
def fit_predict(self, X, y=None, sample_weight=None):
|
|
561
|
+
return super().fit_predict(X, y, sample_weight)
|
|
562
|
+
|
|
563
|
+
fit.__doc__ = KMeans_original.fit.__doc__
|
|
564
|
+
predict.__doc__ = KMeans_original.predict.__doc__
|
|
565
|
+
fit_predict.__doc__ = KMeans_original.fit_predict.__doc__
|
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2020 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from sklearn.cluster import DBSCAN as DBSCAN_SKLEARN
|
|
20
|
+
|
|
21
|
+
from daal4py.sklearn.cluster import DBSCAN as DBSCAN_DAAL
|
|
22
|
+
|
|
23
|
+
METRIC = ("euclidean",)
|
|
24
|
+
USE_WEIGHTS = (True, False)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def generate_data(
|
|
28
|
+
low: int, high: int, samples_number: int, sample_dimension: tuple
|
|
29
|
+
) -> tuple:
|
|
30
|
+
generator = np.random.RandomState()
|
|
31
|
+
table_size = (samples_number, sample_dimension)
|
|
32
|
+
return generator.uniform(low=low, high=high, size=table_size), generator.uniform(
|
|
33
|
+
size=samples_number
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def check_labels_equals(left_labels: np.ndarray, right_labels: np.ndarray) -> bool:
|
|
38
|
+
if left_labels.shape != right_labels.shape:
|
|
39
|
+
raise Exception("Shapes not equals")
|
|
40
|
+
if len(left_labels.shape) != 1:
|
|
41
|
+
raise Exception("Shapes size not equals 1")
|
|
42
|
+
if len(set(left_labels)) != len(set(right_labels)):
|
|
43
|
+
raise Exception("Clusters count not equals")
|
|
44
|
+
dict_checker = {}
|
|
45
|
+
for index_sample in range(left_labels.shape[0]):
|
|
46
|
+
if left_labels[index_sample] not in dict_checker:
|
|
47
|
+
dict_checker[left_labels[index_sample]] = right_labels[index_sample]
|
|
48
|
+
elif dict_checker[left_labels[index_sample]] != right_labels[index_sample]:
|
|
49
|
+
raise Exception("Wrong clustering")
|
|
50
|
+
return True
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _test_dbscan_big_data_numpy_gen(
|
|
54
|
+
eps: float,
|
|
55
|
+
min_samples: int,
|
|
56
|
+
metric: str,
|
|
57
|
+
use_weights: bool,
|
|
58
|
+
low=-100.0,
|
|
59
|
+
high=100.0,
|
|
60
|
+
samples_number=1000,
|
|
61
|
+
sample_dimension=4,
|
|
62
|
+
):
|
|
63
|
+
data, weights = generate_data(
|
|
64
|
+
low=low,
|
|
65
|
+
high=high,
|
|
66
|
+
samples_number=samples_number,
|
|
67
|
+
sample_dimension=sample_dimension,
|
|
68
|
+
)
|
|
69
|
+
if use_weights is False:
|
|
70
|
+
weights = None
|
|
71
|
+
initialized_daal_dbscan = DBSCAN_DAAL(
|
|
72
|
+
eps=eps, min_samples=min_samples, metric=metric
|
|
73
|
+
).fit(X=data, sample_weight=weights)
|
|
74
|
+
initialized_sklearn_dbscan = DBSCAN_SKLEARN(
|
|
75
|
+
metric=metric, eps=eps, min_samples=min_samples
|
|
76
|
+
).fit(X=data, sample_weight=weights)
|
|
77
|
+
check_labels_equals(
|
|
78
|
+
initialized_daal_dbscan.labels_, initialized_sklearn_dbscan.labels_
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@pytest.mark.parametrize("metric", METRIC)
|
|
83
|
+
@pytest.mark.parametrize("use_weights", USE_WEIGHTS)
|
|
84
|
+
def test_dbscan_big_data_numpy_gen(metric, use_weights: bool):
|
|
85
|
+
eps = 35.0
|
|
86
|
+
min_samples = 6
|
|
87
|
+
_test_dbscan_big_data_numpy_gen(
|
|
88
|
+
eps=eps, min_samples=min_samples, metric=metric, use_weights=use_weights
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def _test_across_grid_parameter_numpy_gen(metric, use_weights: bool):
|
|
93
|
+
eps_begin = 0.05
|
|
94
|
+
eps_end = 0.5
|
|
95
|
+
eps_step = 0.05
|
|
96
|
+
min_samples_begin = 5
|
|
97
|
+
min_samples_end = 15
|
|
98
|
+
min_samples_step = 1
|
|
99
|
+
for eps in np.arange(eps_begin, eps_end, eps_step):
|
|
100
|
+
for min_samples in range(min_samples_begin, min_samples_end, min_samples_step):
|
|
101
|
+
_test_dbscan_big_data_numpy_gen(
|
|
102
|
+
eps=eps, min_samples=min_samples, metric=metric, use_weights=use_weights
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
@pytest.mark.parametrize("metric", METRIC)
|
|
107
|
+
@pytest.mark.parametrize("use_weights", USE_WEIGHTS)
|
|
108
|
+
def test_across_grid_parameter_numpy_gen(metric, use_weights: bool):
|
|
109
|
+
_test_across_grid_parameter_numpy_gen(metric=metric, use_weights=use_weights)
|
scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2014 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from ._pca import PCA
|
|
18
|
+
|
|
19
|
+
__all__ = ["PCA"]
|