scikit-learn-intelex 2025.1.0__py310-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +222 -0
- onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +564 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +154 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +414 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +727 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +250 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +767 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/validation.py +440 -0
- scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
- scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +132 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +230 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +395 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +159 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +398 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +425 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +135 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +482 -0
- sklearnex/linear_model/incremental_ridge.py +425 -0
- sklearnex/linear_model/linear.py +341 -0
- sklearnex/linear_model/logistic_regression.py +413 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +167 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +138 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +233 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +424 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +390 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_memory_usage.py +379 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +321 -0
- sklearnex/tests/utils/__init__.py +44 -0
- sklearnex/tests/utils/base.py +371 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
sklearnex/svm/_common.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import warnings
|
|
18
|
+
from abc import ABC
|
|
19
|
+
from numbers import Number, Real
|
|
20
|
+
|
|
21
|
+
import numpy as np
|
|
22
|
+
from scipy import sparse as sp
|
|
23
|
+
from sklearn.base import BaseEstimator, ClassifierMixin
|
|
24
|
+
from sklearn.calibration import CalibratedClassifierCV
|
|
25
|
+
from sklearn.metrics import r2_score
|
|
26
|
+
from sklearn.preprocessing import LabelEncoder
|
|
27
|
+
|
|
28
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
29
|
+
from onedal.utils import _check_array, _check_X_y, _column_or_1d
|
|
30
|
+
|
|
31
|
+
from .._config import config_context, get_config
|
|
32
|
+
from .._utils import PatchingConditionsChain
|
|
33
|
+
|
|
34
|
+
if sklearn_check_version("1.6"):
|
|
35
|
+
from sklearn.utils.validation import validate_data
|
|
36
|
+
else:
|
|
37
|
+
validate_data = BaseEstimator._validate_data
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class BaseSVM(BaseEstimator, ABC):
|
|
41
|
+
|
|
42
|
+
@property
|
|
43
|
+
def _dual_coef_(self):
|
|
44
|
+
return self._dualcoef_
|
|
45
|
+
|
|
46
|
+
@_dual_coef_.setter
|
|
47
|
+
def _dual_coef_(self, value):
|
|
48
|
+
self._dualcoef_ = value
|
|
49
|
+
if hasattr(self, "_onedal_estimator"):
|
|
50
|
+
self._onedal_estimator.dual_coef_ = value
|
|
51
|
+
if hasattr(self._onedal_estimator, "_onedal_model"):
|
|
52
|
+
del self._onedal_estimator._onedal_model
|
|
53
|
+
|
|
54
|
+
@_dual_coef_.deleter
|
|
55
|
+
def _dual_coef_(self):
|
|
56
|
+
del self._dualcoef_
|
|
57
|
+
|
|
58
|
+
@property
|
|
59
|
+
def intercept_(self):
|
|
60
|
+
return self._icept_
|
|
61
|
+
|
|
62
|
+
@intercept_.setter
|
|
63
|
+
def intercept_(self, value):
|
|
64
|
+
self._icept_ = value
|
|
65
|
+
if hasattr(self, "_onedal_estimator"):
|
|
66
|
+
self._onedal_estimator.intercept_ = value
|
|
67
|
+
if hasattr(self._onedal_estimator, "_onedal_model"):
|
|
68
|
+
del self._onedal_estimator._onedal_model
|
|
69
|
+
|
|
70
|
+
@intercept_.deleter
|
|
71
|
+
def intercept_(self):
|
|
72
|
+
del self._icept_
|
|
73
|
+
|
|
74
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
75
|
+
patching_status = PatchingConditionsChain(f"sklearn.{method_name}")
|
|
76
|
+
patching_status.and_conditions([(False, "GPU offloading is not supported.")])
|
|
77
|
+
return patching_status
|
|
78
|
+
|
|
79
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
80
|
+
class_name = self.__class__.__name__
|
|
81
|
+
patching_status = PatchingConditionsChain(
|
|
82
|
+
f"sklearn.svm.{class_name}.{method_name}"
|
|
83
|
+
)
|
|
84
|
+
if method_name == "fit":
|
|
85
|
+
patching_status.and_conditions(
|
|
86
|
+
[
|
|
87
|
+
(
|
|
88
|
+
self.kernel in ["linear", "rbf", "poly", "sigmoid"],
|
|
89
|
+
f'Kernel is "{self.kernel}" while '
|
|
90
|
+
'"linear", "rbf", "poly" and "sigmoid" are only supported.',
|
|
91
|
+
)
|
|
92
|
+
]
|
|
93
|
+
)
|
|
94
|
+
return patching_status
|
|
95
|
+
inference_methods = (
|
|
96
|
+
["predict", "score"]
|
|
97
|
+
if class_name.endswith("R")
|
|
98
|
+
else ["predict", "predict_proba", "decision_function", "score"]
|
|
99
|
+
)
|
|
100
|
+
if method_name in inference_methods:
|
|
101
|
+
patching_status.and_conditions(
|
|
102
|
+
[(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained.")]
|
|
103
|
+
)
|
|
104
|
+
return patching_status
|
|
105
|
+
raise RuntimeError(f"Unknown method {method_name} in {class_name}")
|
|
106
|
+
|
|
107
|
+
def _compute_gamma_sigma(self, X):
|
|
108
|
+
# only run extended conversion if kernel is not linear
|
|
109
|
+
# set to a value = 1.0, so gamma will always be passed to
|
|
110
|
+
# the onedal estimator as a float type
|
|
111
|
+
if self.kernel == "linear":
|
|
112
|
+
return 1.0
|
|
113
|
+
|
|
114
|
+
if isinstance(self.gamma, str):
|
|
115
|
+
if self.gamma == "scale":
|
|
116
|
+
if sp.issparse(X):
|
|
117
|
+
# var = E[X^2] - E[X]^2
|
|
118
|
+
X_sc = (X.multiply(X)).mean() - (X.mean()) ** 2
|
|
119
|
+
else:
|
|
120
|
+
X_sc = X.var()
|
|
121
|
+
_gamma = 1.0 / (X.shape[1] * X_sc) if X_sc != 0 else 1.0
|
|
122
|
+
elif self.gamma == "auto":
|
|
123
|
+
_gamma = 1.0 / X.shape[1]
|
|
124
|
+
else:
|
|
125
|
+
raise ValueError(
|
|
126
|
+
"When 'gamma' is a string, it should be either 'scale' or "
|
|
127
|
+
"'auto'. Got '{}' instead.".format(self.gamma)
|
|
128
|
+
)
|
|
129
|
+
else:
|
|
130
|
+
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
131
|
+
if isinstance(self.gamma, Real):
|
|
132
|
+
if self.gamma <= 0:
|
|
133
|
+
msg = (
|
|
134
|
+
f"gamma value must be > 0; {self.gamma!r} is invalid. Use"
|
|
135
|
+
" a positive number or use 'auto' to set gamma to a"
|
|
136
|
+
" value of 1 / n_features."
|
|
137
|
+
)
|
|
138
|
+
raise ValueError(msg)
|
|
139
|
+
_gamma = self.gamma
|
|
140
|
+
else:
|
|
141
|
+
msg = (
|
|
142
|
+
"The gamma value should be set to 'scale', 'auto' or a"
|
|
143
|
+
f" positive float value. {self.gamma!r} is not a valid option"
|
|
144
|
+
)
|
|
145
|
+
raise ValueError(msg)
|
|
146
|
+
else:
|
|
147
|
+
_gamma = self.gamma
|
|
148
|
+
return _gamma
|
|
149
|
+
|
|
150
|
+
def _onedal_fit_checks(self, X, y, sample_weight=None):
|
|
151
|
+
if hasattr(self, "decision_function_shape"):
|
|
152
|
+
if self.decision_function_shape not in ("ovr", "ovo", None):
|
|
153
|
+
raise ValueError(
|
|
154
|
+
f"decision_function_shape must be either 'ovr' or 'ovo', "
|
|
155
|
+
f"got {self.decision_function_shape}."
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
if y is None:
|
|
159
|
+
if self._get_tags()["requires_y"]:
|
|
160
|
+
raise ValueError(
|
|
161
|
+
f"This {self.__class__.__name__} estimator "
|
|
162
|
+
f"requires y to be passed, but the target y is None."
|
|
163
|
+
)
|
|
164
|
+
# using onedal _check_X_y to insure X and y are contiguous
|
|
165
|
+
# finite check occurs in onedal estimator
|
|
166
|
+
if sklearn_check_version("1.0"):
|
|
167
|
+
X, y = validate_data(
|
|
168
|
+
self,
|
|
169
|
+
X,
|
|
170
|
+
y,
|
|
171
|
+
dtype=[np.float64, np.float32],
|
|
172
|
+
force_all_finite=False,
|
|
173
|
+
accept_sparse="csr",
|
|
174
|
+
)
|
|
175
|
+
else:
|
|
176
|
+
X, y = _check_X_y(
|
|
177
|
+
X,
|
|
178
|
+
y,
|
|
179
|
+
dtype=[np.float64, np.float32],
|
|
180
|
+
force_all_finite=False,
|
|
181
|
+
accept_sparse="csr",
|
|
182
|
+
)
|
|
183
|
+
y = self._validate_targets(y)
|
|
184
|
+
sample_weight = self._get_sample_weight(X, y, sample_weight)
|
|
185
|
+
return X, y, sample_weight
|
|
186
|
+
|
|
187
|
+
def _get_sample_weight(self, X, y, sample_weight):
|
|
188
|
+
n_samples = X.shape[0]
|
|
189
|
+
dtype = X.dtype
|
|
190
|
+
if n_samples == 1:
|
|
191
|
+
raise ValueError("n_samples=1")
|
|
192
|
+
|
|
193
|
+
sample_weight = np.ascontiguousarray(
|
|
194
|
+
[] if sample_weight is None else sample_weight, dtype=np.float64
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
sample_weight_count = sample_weight.shape[0]
|
|
198
|
+
if sample_weight_count != 0 and sample_weight_count != n_samples:
|
|
199
|
+
raise ValueError(
|
|
200
|
+
"sample_weight and X have incompatible shapes: "
|
|
201
|
+
"%r vs %r\n"
|
|
202
|
+
"Note: Sparse matrices cannot be indexed w/"
|
|
203
|
+
"boolean masks (use `indices=True` in CV)."
|
|
204
|
+
% (len(sample_weight), X.shape)
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
if sample_weight_count == 0:
|
|
208
|
+
if not isinstance(self, ClassifierMixin) or self.class_weight_ is None:
|
|
209
|
+
return None
|
|
210
|
+
sample_weight = np.ones(n_samples, dtype=dtype)
|
|
211
|
+
elif isinstance(sample_weight, Number):
|
|
212
|
+
sample_weight = np.full(n_samples, sample_weight, dtype=dtype)
|
|
213
|
+
else:
|
|
214
|
+
sample_weight = _check_array(
|
|
215
|
+
sample_weight,
|
|
216
|
+
accept_sparse=False,
|
|
217
|
+
ensure_2d=False,
|
|
218
|
+
dtype=dtype,
|
|
219
|
+
order="C",
|
|
220
|
+
)
|
|
221
|
+
if sample_weight.ndim != 1:
|
|
222
|
+
raise ValueError("Sample weights must be 1D array or scalar")
|
|
223
|
+
|
|
224
|
+
if sample_weight.shape != (n_samples,):
|
|
225
|
+
raise ValueError(
|
|
226
|
+
"sample_weight.shape == {}, expected {}!".format(
|
|
227
|
+
sample_weight.shape, (n_samples,)
|
|
228
|
+
)
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
if np.all(sample_weight <= 0):
|
|
232
|
+
if "nusvc" in self.__module__:
|
|
233
|
+
raise ValueError("negative dimensions are not allowed")
|
|
234
|
+
else:
|
|
235
|
+
raise ValueError(
|
|
236
|
+
"Invalid input - all samples have zero or negative weights."
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
return sample_weight
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
class BaseSVC(BaseSVM):
|
|
243
|
+
def _compute_balanced_class_weight(self, y):
|
|
244
|
+
y_ = _column_or_1d(y)
|
|
245
|
+
classes, _ = np.unique(y_, return_inverse=True)
|
|
246
|
+
|
|
247
|
+
le = LabelEncoder()
|
|
248
|
+
y_ind = le.fit_transform(y_)
|
|
249
|
+
if not all(np.in1d(classes, le.classes_)):
|
|
250
|
+
raise ValueError("classes should have valid labels that are in y")
|
|
251
|
+
|
|
252
|
+
recip_freq = len(y_) / (len(le.classes_) * np.bincount(y_ind).astype(np.float64))
|
|
253
|
+
return recip_freq[le.transform(classes)]
|
|
254
|
+
|
|
255
|
+
def _fit_proba(self, X, y, sample_weight=None, queue=None):
|
|
256
|
+
# TODO: rewrite this method when probabilities output is implemented in oneDAL
|
|
257
|
+
|
|
258
|
+
# LibSVM uses the random seed to control cross-validation for probability generation
|
|
259
|
+
# CalibratedClassifierCV with "prefit" does not use an RNG nor a seed. This may
|
|
260
|
+
# impact users without their knowledge, so display a warning.
|
|
261
|
+
if self.random_state is not None:
|
|
262
|
+
warnings.warn(
|
|
263
|
+
"random_state does not influence oneDAL SVM results",
|
|
264
|
+
RuntimeWarning,
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
params = self.get_params()
|
|
268
|
+
params["probability"] = False
|
|
269
|
+
params["decision_function_shape"] = "ovr"
|
|
270
|
+
clf_base = self.__class__(**params)
|
|
271
|
+
|
|
272
|
+
# We use stock metaestimators below, so the only way
|
|
273
|
+
# to pass a queue is using config_context.
|
|
274
|
+
cfg = get_config()
|
|
275
|
+
cfg["target_offload"] = queue
|
|
276
|
+
with config_context(**cfg):
|
|
277
|
+
clf_base.fit(X, y)
|
|
278
|
+
self.clf_prob = CalibratedClassifierCV(
|
|
279
|
+
clf_base,
|
|
280
|
+
ensemble=False,
|
|
281
|
+
cv="prefit",
|
|
282
|
+
method="sigmoid",
|
|
283
|
+
).fit(X, y)
|
|
284
|
+
|
|
285
|
+
def _save_attributes(self):
|
|
286
|
+
self.support_vectors_ = self._onedal_estimator.support_vectors_
|
|
287
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
288
|
+
self.fit_status_ = 0
|
|
289
|
+
self.dual_coef_ = self._onedal_estimator.dual_coef_
|
|
290
|
+
self.shape_fit_ = self._onedal_estimator.class_weight_
|
|
291
|
+
self.classes_ = self._onedal_estimator.classes_
|
|
292
|
+
if isinstance(self, ClassifierMixin) or not sklearn_check_version("1.2"):
|
|
293
|
+
self.class_weight_ = self._onedal_estimator.class_weight_
|
|
294
|
+
self.support_ = self._onedal_estimator.support_
|
|
295
|
+
|
|
296
|
+
self._icept_ = self._onedal_estimator.intercept_
|
|
297
|
+
self._n_support = self._onedal_estimator._n_support
|
|
298
|
+
self._sparse = False
|
|
299
|
+
self._gamma = self._onedal_estimator._gamma
|
|
300
|
+
if self.probability:
|
|
301
|
+
length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
|
|
302
|
+
self._probA = np.zeros(length)
|
|
303
|
+
self._probB = np.zeros(length)
|
|
304
|
+
else:
|
|
305
|
+
self._probA = np.empty(0)
|
|
306
|
+
self._probB = np.empty(0)
|
|
307
|
+
|
|
308
|
+
self._dualcoef_ = self.dual_coef_
|
|
309
|
+
|
|
310
|
+
if sklearn_check_version("1.1"):
|
|
311
|
+
length = int(len(self.classes_) * (len(self.classes_) - 1) / 2)
|
|
312
|
+
self.n_iter_ = np.full((length,), self._onedal_estimator.n_iter_)
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
class BaseSVR(BaseSVM):
|
|
316
|
+
def _save_attributes(self):
|
|
317
|
+
self.support_vectors_ = self._onedal_estimator.support_vectors_
|
|
318
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
319
|
+
self.fit_status_ = 0
|
|
320
|
+
self.dual_coef_ = self._onedal_estimator.dual_coef_
|
|
321
|
+
self.shape_fit_ = self._onedal_estimator.shape_fit_
|
|
322
|
+
self.support_ = self._onedal_estimator.support_
|
|
323
|
+
|
|
324
|
+
self._icept_ = self._onedal_estimator.intercept_
|
|
325
|
+
self._n_support = [self.support_vectors_.shape[0]]
|
|
326
|
+
self._sparse = False
|
|
327
|
+
self._gamma = self._onedal_estimator._gamma
|
|
328
|
+
self._probA = None
|
|
329
|
+
self._probB = None
|
|
330
|
+
|
|
331
|
+
if sklearn_check_version("1.1"):
|
|
332
|
+
self.n_iter_ = self._onedal_estimator.n_iter_
|
|
333
|
+
|
|
334
|
+
self._dualcoef_ = self.dual_coef_
|
|
335
|
+
|
|
336
|
+
def _onedal_score(self, X, y, sample_weight=None, queue=None):
|
|
337
|
+
return r2_score(
|
|
338
|
+
y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
|
|
339
|
+
)
|
sklearnex/svm/nusvc.py
ADDED
|
@@ -0,0 +1,371 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
from sklearn.exceptions import NotFittedError
|
|
19
|
+
from sklearn.metrics import accuracy_score
|
|
20
|
+
from sklearn.svm import NuSVC as _sklearn_NuSVC
|
|
21
|
+
from sklearn.utils.validation import (
|
|
22
|
+
_deprecate_positional_args,
|
|
23
|
+
check_array,
|
|
24
|
+
check_is_fitted,
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
28
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
29
|
+
|
|
30
|
+
from .._device_offload import dispatch, wrap_output_data
|
|
31
|
+
from ..utils._array_api import get_namespace
|
|
32
|
+
from ._common import BaseSVC
|
|
33
|
+
|
|
34
|
+
if sklearn_check_version("1.0"):
|
|
35
|
+
from sklearn.utils.metaestimators import available_if
|
|
36
|
+
|
|
37
|
+
from onedal.svm import NuSVC as onedal_NuSVC
|
|
38
|
+
|
|
39
|
+
if sklearn_check_version("1.6"):
|
|
40
|
+
from sklearn.utils.validation import validate_data
|
|
41
|
+
else:
|
|
42
|
+
validate_data = BaseSVC._validate_data
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@control_n_jobs(
|
|
46
|
+
decorated_methods=["fit", "predict", "_predict_proba", "decision_function", "score"]
|
|
47
|
+
)
|
|
48
|
+
class NuSVC(_sklearn_NuSVC, BaseSVC):
|
|
49
|
+
__doc__ = _sklearn_NuSVC.__doc__
|
|
50
|
+
|
|
51
|
+
if sklearn_check_version("1.2"):
|
|
52
|
+
_parameter_constraints: dict = {**_sklearn_NuSVC._parameter_constraints}
|
|
53
|
+
|
|
54
|
+
@_deprecate_positional_args
|
|
55
|
+
def __init__(
|
|
56
|
+
self,
|
|
57
|
+
*,
|
|
58
|
+
nu=0.5,
|
|
59
|
+
kernel="rbf",
|
|
60
|
+
degree=3,
|
|
61
|
+
gamma="scale",
|
|
62
|
+
coef0=0.0,
|
|
63
|
+
shrinking=True,
|
|
64
|
+
probability=False,
|
|
65
|
+
tol=1e-3,
|
|
66
|
+
cache_size=200,
|
|
67
|
+
class_weight=None,
|
|
68
|
+
verbose=False,
|
|
69
|
+
max_iter=-1,
|
|
70
|
+
decision_function_shape="ovr",
|
|
71
|
+
break_ties=False,
|
|
72
|
+
random_state=None,
|
|
73
|
+
):
|
|
74
|
+
super().__init__(
|
|
75
|
+
nu=nu,
|
|
76
|
+
kernel=kernel,
|
|
77
|
+
degree=degree,
|
|
78
|
+
gamma=gamma,
|
|
79
|
+
coef0=coef0,
|
|
80
|
+
shrinking=shrinking,
|
|
81
|
+
probability=probability,
|
|
82
|
+
tol=tol,
|
|
83
|
+
cache_size=cache_size,
|
|
84
|
+
class_weight=class_weight,
|
|
85
|
+
verbose=verbose,
|
|
86
|
+
max_iter=max_iter,
|
|
87
|
+
decision_function_shape=decision_function_shape,
|
|
88
|
+
break_ties=break_ties,
|
|
89
|
+
random_state=random_state,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
def fit(self, X, y, sample_weight=None):
|
|
93
|
+
if sklearn_check_version("1.2"):
|
|
94
|
+
self._validate_params()
|
|
95
|
+
elif self.nu <= 0 or self.nu > 1:
|
|
96
|
+
# else if added to correct issues with
|
|
97
|
+
# sklearn tests:
|
|
98
|
+
# svm/tests/test_sparse.py::test_error
|
|
99
|
+
# svm/tests/test_svm.py::test_bad_input
|
|
100
|
+
# for sklearn versions < 1.2 (i.e. without
|
|
101
|
+
# validate_params parameter checking)
|
|
102
|
+
# Without this, a segmentation fault with
|
|
103
|
+
# Windows fatal exception: access violation
|
|
104
|
+
# occurs
|
|
105
|
+
raise ValueError("nu <= 0 or nu > 1")
|
|
106
|
+
dispatch(
|
|
107
|
+
self,
|
|
108
|
+
"fit",
|
|
109
|
+
{
|
|
110
|
+
"onedal": self.__class__._onedal_fit,
|
|
111
|
+
"sklearn": _sklearn_NuSVC.fit,
|
|
112
|
+
},
|
|
113
|
+
X,
|
|
114
|
+
y,
|
|
115
|
+
sample_weight=sample_weight,
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
return self
|
|
119
|
+
|
|
120
|
+
@wrap_output_data
|
|
121
|
+
def predict(self, X):
|
|
122
|
+
check_is_fitted(self)
|
|
123
|
+
return dispatch(
|
|
124
|
+
self,
|
|
125
|
+
"predict",
|
|
126
|
+
{
|
|
127
|
+
"onedal": self.__class__._onedal_predict,
|
|
128
|
+
"sklearn": _sklearn_NuSVC.predict,
|
|
129
|
+
},
|
|
130
|
+
X,
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
@wrap_output_data
|
|
134
|
+
def score(self, X, y, sample_weight=None):
|
|
135
|
+
check_is_fitted(self)
|
|
136
|
+
return dispatch(
|
|
137
|
+
self,
|
|
138
|
+
"score",
|
|
139
|
+
{
|
|
140
|
+
"onedal": self.__class__._onedal_score,
|
|
141
|
+
"sklearn": _sklearn_NuSVC.score,
|
|
142
|
+
},
|
|
143
|
+
X,
|
|
144
|
+
y,
|
|
145
|
+
sample_weight=sample_weight,
|
|
146
|
+
)
|
|
147
|
+
|
|
148
|
+
if sklearn_check_version("1.0"):
|
|
149
|
+
|
|
150
|
+
@available_if(_sklearn_NuSVC._check_proba)
|
|
151
|
+
def predict_proba(self, X):
|
|
152
|
+
"""
|
|
153
|
+
Compute probabilities of possible outcomes for samples in X.
|
|
154
|
+
|
|
155
|
+
The model need to have probability information computed at training
|
|
156
|
+
time: fit with attribute `probability` set to True.
|
|
157
|
+
|
|
158
|
+
Parameters
|
|
159
|
+
----------
|
|
160
|
+
X : array-like of shape (n_samples, n_features)
|
|
161
|
+
For kernel="precomputed", the expected shape of X is
|
|
162
|
+
(n_samples_test, n_samples_train).
|
|
163
|
+
|
|
164
|
+
Returns
|
|
165
|
+
-------
|
|
166
|
+
T : ndarray of shape (n_samples, n_classes)
|
|
167
|
+
Returns the probability of the sample for each class in
|
|
168
|
+
the model. The columns correspond to the classes in sorted
|
|
169
|
+
order, as they appear in the attribute :term:`classes_`.
|
|
170
|
+
|
|
171
|
+
Notes
|
|
172
|
+
-----
|
|
173
|
+
The probability model is created using cross validation, so
|
|
174
|
+
the results can be slightly different than those obtained by
|
|
175
|
+
predict. Also, it will produce meaningless results on very small
|
|
176
|
+
datasets.
|
|
177
|
+
"""
|
|
178
|
+
check_is_fitted(self)
|
|
179
|
+
return self._predict_proba(X)
|
|
180
|
+
|
|
181
|
+
@available_if(_sklearn_NuSVC._check_proba)
|
|
182
|
+
def predict_log_proba(self, X):
|
|
183
|
+
"""Compute log probabilities of possible outcomes for samples in X.
|
|
184
|
+
|
|
185
|
+
The model need to have probability information computed at training
|
|
186
|
+
time: fit with attribute `probability` set to True.
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
X : array-like of shape (n_samples, n_features) or \
|
|
191
|
+
(n_samples_test, n_samples_train)
|
|
192
|
+
For kernel="precomputed", the expected shape of X is
|
|
193
|
+
(n_samples_test, n_samples_train).
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
T : ndarray of shape (n_samples, n_classes)
|
|
198
|
+
Returns the log-probabilities of the sample for each class in
|
|
199
|
+
the model. The columns correspond to the classes in sorted
|
|
200
|
+
order, as they appear in the attribute :term:`classes_`.
|
|
201
|
+
|
|
202
|
+
Notes
|
|
203
|
+
-----
|
|
204
|
+
The probability model is created using cross validation, so
|
|
205
|
+
the results can be slightly different than those obtained by
|
|
206
|
+
predict. Also, it will produce meaningless results on very small
|
|
207
|
+
datasets.
|
|
208
|
+
"""
|
|
209
|
+
xp, _ = get_namespace(X)
|
|
210
|
+
|
|
211
|
+
return xp.log(self.predict_proba(X))
|
|
212
|
+
|
|
213
|
+
else:
|
|
214
|
+
|
|
215
|
+
@property
|
|
216
|
+
def predict_proba(self):
|
|
217
|
+
self._check_proba()
|
|
218
|
+
check_is_fitted(self)
|
|
219
|
+
return self._predict_proba
|
|
220
|
+
|
|
221
|
+
def _predict_log_proba(self, X):
|
|
222
|
+
xp, _ = get_namespace(X)
|
|
223
|
+
return xp.log(self.predict_proba(X))
|
|
224
|
+
|
|
225
|
+
predict_proba.__doc__ = _sklearn_NuSVC.predict_proba.__doc__
|
|
226
|
+
|
|
227
|
+
@wrap_output_data
|
|
228
|
+
def _predict_proba(self, X):
|
|
229
|
+
sklearn_pred_proba = (
|
|
230
|
+
_sklearn_NuSVC.predict_proba
|
|
231
|
+
if sklearn_check_version("1.0")
|
|
232
|
+
else _sklearn_NuSVC._predict_proba
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
return dispatch(
|
|
236
|
+
self,
|
|
237
|
+
"predict_proba",
|
|
238
|
+
{
|
|
239
|
+
"onedal": self.__class__._onedal_predict_proba,
|
|
240
|
+
"sklearn": sklearn_pred_proba,
|
|
241
|
+
},
|
|
242
|
+
X,
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
@wrap_output_data
|
|
246
|
+
def decision_function(self, X):
|
|
247
|
+
check_is_fitted(self)
|
|
248
|
+
return dispatch(
|
|
249
|
+
self,
|
|
250
|
+
"decision_function",
|
|
251
|
+
{
|
|
252
|
+
"onedal": self.__class__._onedal_decision_function,
|
|
253
|
+
"sklearn": _sklearn_NuSVC.decision_function,
|
|
254
|
+
},
|
|
255
|
+
X,
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
decision_function.__doc__ = _sklearn_NuSVC.decision_function.__doc__
|
|
259
|
+
|
|
260
|
+
def _get_sample_weight(self, X, y, sample_weight=None):
|
|
261
|
+
sample_weight = super()._get_sample_weight(X, y, sample_weight)
|
|
262
|
+
if sample_weight is None:
|
|
263
|
+
return sample_weight
|
|
264
|
+
|
|
265
|
+
weight_per_class = [
|
|
266
|
+
np.sum(sample_weight[y == class_label]) for class_label in np.unique(y)
|
|
267
|
+
]
|
|
268
|
+
|
|
269
|
+
for i in range(len(weight_per_class)):
|
|
270
|
+
for j in range(i + 1, len(weight_per_class)):
|
|
271
|
+
if self.nu * (weight_per_class[i] + weight_per_class[j]) / 2 > min(
|
|
272
|
+
weight_per_class[i], weight_per_class[j]
|
|
273
|
+
):
|
|
274
|
+
raise ValueError("specified nu is infeasible")
|
|
275
|
+
|
|
276
|
+
return sample_weight
|
|
277
|
+
|
|
278
|
+
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
279
|
+
X, _, weights = self._onedal_fit_checks(X, y, sample_weight)
|
|
280
|
+
onedal_params = {
|
|
281
|
+
"nu": self.nu,
|
|
282
|
+
"kernel": self.kernel,
|
|
283
|
+
"degree": self.degree,
|
|
284
|
+
"gamma": self._compute_gamma_sigma(X),
|
|
285
|
+
"coef0": self.coef0,
|
|
286
|
+
"tol": self.tol,
|
|
287
|
+
"shrinking": self.shrinking,
|
|
288
|
+
"cache_size": self.cache_size,
|
|
289
|
+
"max_iter": self.max_iter,
|
|
290
|
+
"class_weight": self.class_weight,
|
|
291
|
+
"break_ties": self.break_ties,
|
|
292
|
+
"decision_function_shape": self.decision_function_shape,
|
|
293
|
+
}
|
|
294
|
+
|
|
295
|
+
self._onedal_estimator = onedal_NuSVC(**onedal_params)
|
|
296
|
+
self._onedal_estimator.fit(X, y, weights, queue=queue)
|
|
297
|
+
|
|
298
|
+
if self.probability:
|
|
299
|
+
self._fit_proba(
|
|
300
|
+
X,
|
|
301
|
+
y,
|
|
302
|
+
sample_weight=sample_weight,
|
|
303
|
+
queue=queue,
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
self._save_attributes()
|
|
307
|
+
|
|
308
|
+
def _onedal_predict(self, X, queue=None):
|
|
309
|
+
if sklearn_check_version("1.0"):
|
|
310
|
+
validate_data(
|
|
311
|
+
self,
|
|
312
|
+
X,
|
|
313
|
+
dtype=[np.float64, np.float32],
|
|
314
|
+
force_all_finite=False,
|
|
315
|
+
ensure_2d=False,
|
|
316
|
+
accept_sparse="csr",
|
|
317
|
+
reset=False,
|
|
318
|
+
)
|
|
319
|
+
else:
|
|
320
|
+
X = check_array(
|
|
321
|
+
X,
|
|
322
|
+
dtype=[np.float64, np.float32],
|
|
323
|
+
force_all_finite=False,
|
|
324
|
+
accept_sparse="csr",
|
|
325
|
+
)
|
|
326
|
+
|
|
327
|
+
return self._onedal_estimator.predict(X, queue=queue)
|
|
328
|
+
|
|
329
|
+
def _onedal_predict_proba(self, X, queue=None):
|
|
330
|
+
if getattr(self, "clf_prob", None) is None:
|
|
331
|
+
raise NotFittedError(
|
|
332
|
+
"predict_proba is not available when fitted with probability=False"
|
|
333
|
+
)
|
|
334
|
+
from .._config import config_context, get_config
|
|
335
|
+
|
|
336
|
+
# We use stock metaestimators below, so the only way
|
|
337
|
+
# to pass a queue is using config_context.
|
|
338
|
+
cfg = get_config()
|
|
339
|
+
cfg["target_offload"] = queue
|
|
340
|
+
with config_context(**cfg):
|
|
341
|
+
return self.clf_prob.predict_proba(X)
|
|
342
|
+
|
|
343
|
+
def _onedal_decision_function(self, X, queue=None):
|
|
344
|
+
if sklearn_check_version("1.0"):
|
|
345
|
+
validate_data(
|
|
346
|
+
self,
|
|
347
|
+
X,
|
|
348
|
+
dtype=[np.float64, np.float32],
|
|
349
|
+
force_all_finite=False,
|
|
350
|
+
accept_sparse="csr",
|
|
351
|
+
reset=False,
|
|
352
|
+
)
|
|
353
|
+
else:
|
|
354
|
+
X = check_array(
|
|
355
|
+
X,
|
|
356
|
+
dtype=[np.float64, np.float32],
|
|
357
|
+
force_all_finite=False,
|
|
358
|
+
accept_sparse="csr",
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
return self._onedal_estimator.decision_function(X, queue=queue)
|
|
362
|
+
|
|
363
|
+
def _onedal_score(self, X, y, sample_weight=None, queue=None):
|
|
364
|
+
return accuracy_score(
|
|
365
|
+
y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
|
|
366
|
+
)
|
|
367
|
+
|
|
368
|
+
fit.__doc__ = _sklearn_NuSVC.fit.__doc__
|
|
369
|
+
predict.__doc__ = _sklearn_NuSVC.predict.__doc__
|
|
370
|
+
decision_function.__doc__ = _sklearn_NuSVC.decision_function.__doc__
|
|
371
|
+
score.__doc__ = _sklearn_NuSVC.score.__doc__
|