scikit-learn-intelex 2025.1.0__py310-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,345 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from sklearn.base import BaseEstimator
19
+ from sklearn.utils import check_array, gen_batches
20
+ from sklearn.utils.validation import _check_sample_weight
21
+
22
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
23
+ from daal4py.sklearn._utils import sklearn_check_version
24
+ from onedal.basic_statistics import (
25
+ IncrementalBasicStatistics as onedal_IncrementalBasicStatistics,
26
+ )
27
+
28
+ from .._device_offload import dispatch
29
+ from .._utils import IntelEstimator, PatchingConditionsChain
30
+
31
+ if sklearn_check_version("1.2"):
32
+ from sklearn.utils._param_validation import Interval, StrOptions
33
+
34
+ import numbers
35
+ import warnings
36
+
37
+ if sklearn_check_version("1.6"):
38
+ from sklearn.utils.validation import validate_data
39
+ else:
40
+ validate_data = BaseEstimator._validate_data
41
+
42
+
43
+ @control_n_jobs(decorated_methods=["partial_fit", "_onedal_finalize_fit"])
44
+ class IncrementalBasicStatistics(IntelEstimator, BaseEstimator):
45
+ """
46
+ Calculates basic statistics on the given data, allows for computation when the data are split into
47
+ batches. The user can use ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide
48
+ the entire dataset.
49
+
50
+ Parameters
51
+ ----------
52
+ result_options: string or list, default='all'
53
+ List of statistics to compute
54
+
55
+ batch_size : int, default=None
56
+ The number of samples to use for each batch. Only used when calling
57
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
58
+ is inferred from the data and set to ``5 * n_features``.
59
+
60
+ Attributes
61
+ ----------
62
+ min_ : ndarray of shape (n_features,)
63
+ Minimum of each feature over all samples.
64
+
65
+ max_ : ndarray of shape (n_features,)
66
+ Maximum of each feature over all samples.
67
+
68
+ sum_ : ndarray of shape (n_features,)
69
+ Sum of each feature over all samples.
70
+
71
+ mean_ : ndarray of shape (n_features,)
72
+ Mean of each feature over all samples.
73
+
74
+ variance_ : ndarray of shape (n_features,)
75
+ Variance of each feature over all samples.
76
+
77
+ variation_ : ndarray of shape (n_features,)
78
+ Variation of each feature over all samples.
79
+
80
+ sum_squares_ : ndarray of shape (n_features,)
81
+ Sum of squares for each feature over all samples.
82
+
83
+ standard_deviation_ : ndarray of shape (n_features,)
84
+ Standard deviation of each feature over all samples.
85
+
86
+ sum_squares_centered_ : ndarray of shape (n_features,)
87
+ Centered sum of squares for each feature over all samples.
88
+
89
+ second_order_raw_moment_ : ndarray of shape (n_features,)
90
+ Second order moment of each feature over all samples.
91
+
92
+ n_samples_seen_ : int
93
+ The number of samples processed by the estimator. Will be reset on
94
+ new calls to ``fit``, but increments across ``partial_fit`` calls.
95
+
96
+ batch_size_ : int
97
+ Inferred batch size from ``batch_size``.
98
+
99
+ n_features_in_ : int
100
+ Number of features seen during ``fit`` or ``partial_fit``.
101
+
102
+ Note
103
+ ----
104
+ Attribute exists only if corresponding result option has been provided.
105
+
106
+ Note
107
+ ----
108
+ Names of attributes without the trailing underscore are
109
+ supported currently but deprecated in 2025.1 and will be removed in 2026.0
110
+
111
+ Examples
112
+ --------
113
+ >>> import numpy as np
114
+ >>> from sklearnex.basic_statistics import IncrementalBasicStatistics
115
+ >>> incbs = IncrementalBasicStatistics(batch_size=1)
116
+ >>> X = np.array([[1, 2], [3, 4]])
117
+ >>> incbs.partial_fit(X[:1])
118
+ >>> incbs.partial_fit(X[1:])
119
+ >>> incbs.sum_
120
+ np.array([4., 6.])
121
+ >>> incbs.min_
122
+ np.array([1., 2.])
123
+ >>> incbs.fit(X)
124
+ >>> incbs.sum_
125
+ np.array([4., 6.])
126
+ >>> incbs.max_
127
+ np.array([3., 4.])
128
+ """
129
+
130
+ _onedal_incremental_basic_statistics = staticmethod(onedal_IncrementalBasicStatistics)
131
+
132
+ if sklearn_check_version("1.2"):
133
+ _parameter_constraints: dict = {
134
+ "result_options": [
135
+ StrOptions(
136
+ {
137
+ "all",
138
+ "min",
139
+ "max",
140
+ "sum",
141
+ "mean",
142
+ "variance",
143
+ "variation",
144
+ "sum_squares",
145
+ "standard_deviation",
146
+ "sum_squares_centered",
147
+ "second_order_raw_moment",
148
+ }
149
+ ),
150
+ list,
151
+ ],
152
+ "batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
153
+ }
154
+
155
+ def __init__(self, result_options="all", batch_size=None):
156
+ if result_options == "all":
157
+ self.result_options = (
158
+ self._onedal_incremental_basic_statistics.get_all_result_options()
159
+ )
160
+ else:
161
+ self.result_options = result_options
162
+ self._need_to_finalize = False
163
+ self.batch_size = batch_size
164
+
165
+ def _onedal_supported(self, method_name, *data):
166
+ patching_status = PatchingConditionsChain(
167
+ f"sklearn.basic_statistics.{self.__class__.__name__}.{method_name}"
168
+ )
169
+ return patching_status
170
+
171
+ _onedal_cpu_supported = _onedal_supported
172
+ _onedal_gpu_supported = _onedal_supported
173
+
174
+ def _get_onedal_result_options(self, options):
175
+ if isinstance(options, list):
176
+ onedal_options = "|".join(self.result_options)
177
+ else:
178
+ onedal_options = options
179
+ assert isinstance(onedal_options, str)
180
+ return options
181
+
182
+ def _onedal_finalize_fit(self, queue=None):
183
+ assert hasattr(self, "_onedal_estimator")
184
+ self._onedal_estimator.finalize_fit(queue=queue)
185
+ self._need_to_finalize = False
186
+
187
+ def _onedal_partial_fit(self, X, sample_weight=None, queue=None, check_input=True):
188
+ first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
189
+
190
+ if check_input:
191
+ if sklearn_check_version("1.0"):
192
+ X = validate_data(
193
+ self,
194
+ X,
195
+ dtype=[np.float64, np.float32],
196
+ reset=first_pass,
197
+ )
198
+ else:
199
+ X = check_array(
200
+ X,
201
+ dtype=[np.float64, np.float32],
202
+ )
203
+
204
+ if sample_weight is not None:
205
+ sample_weight = _check_sample_weight(sample_weight, X)
206
+
207
+ if first_pass:
208
+ self.n_samples_seen_ = X.shape[0]
209
+ self.n_features_in_ = X.shape[1]
210
+ else:
211
+ self.n_samples_seen_ += X.shape[0]
212
+
213
+ onedal_params = {
214
+ "result_options": self._get_onedal_result_options(self.result_options)
215
+ }
216
+ if not hasattr(self, "_onedal_estimator"):
217
+ self._onedal_estimator = self._onedal_incremental_basic_statistics(
218
+ **onedal_params
219
+ )
220
+ self._onedal_estimator.partial_fit(X, weights=sample_weight, queue=queue)
221
+ self._need_to_finalize = True
222
+
223
+ def _onedal_fit(self, X, sample_weight=None, queue=None):
224
+ if sklearn_check_version("1.2"):
225
+ self._validate_params()
226
+
227
+ if sklearn_check_version("1.0"):
228
+ X = validate_data(self, X, dtype=[np.float64, np.float32])
229
+ else:
230
+ X = check_array(X, dtype=[np.float64, np.float32])
231
+
232
+ if sample_weight is not None:
233
+ sample_weight = _check_sample_weight(sample_weight, X)
234
+
235
+ n_samples, n_features = X.shape
236
+ if self.batch_size is None:
237
+ self.batch_size_ = 5 * n_features
238
+ else:
239
+ self.batch_size_ = self.batch_size
240
+
241
+ self.n_samples_seen_ = 0
242
+ if hasattr(self, "_onedal_estimator"):
243
+ self._onedal_estimator._reset()
244
+
245
+ for batch in gen_batches(X.shape[0], self.batch_size_):
246
+ X_batch = X[batch]
247
+ weights_batch = sample_weight[batch] if sample_weight is not None else None
248
+ self._onedal_partial_fit(
249
+ X_batch, weights_batch, queue=queue, check_input=False
250
+ )
251
+
252
+ self.n_features_in_ = X.shape[1]
253
+
254
+ self._onedal_finalize_fit(queue=queue)
255
+
256
+ return self
257
+
258
+ def __getattr__(self, attr):
259
+ result_options = self.__dict__["result_options"]
260
+ sattr = attr.removesuffix("_")
261
+ is_statistic_attr = (
262
+ isinstance(result_options, str) and (sattr == result_options)
263
+ ) or (isinstance(result_options, list) and (sattr in result_options))
264
+ if is_statistic_attr:
265
+ if self._need_to_finalize:
266
+ self._onedal_finalize_fit()
267
+ if sattr == attr:
268
+ warnings.warn(
269
+ "Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0"
270
+ )
271
+ return getattr(self._onedal_estimator, sattr)
272
+ if attr in self.__dict__:
273
+ return self.__dict__[attr]
274
+
275
+ raise AttributeError(
276
+ f"'{self.__class__.__name__}' object has no attribute '{attr}'"
277
+ )
278
+
279
+ def partial_fit(self, X, sample_weight=None, check_input=True):
280
+ """Incremental fit with X. All of X is processed as a single batch.
281
+
282
+ Parameters
283
+ ----------
284
+ X : array-like of shape (n_samples, n_features)
285
+ Data for compute, where ``n_samples`` is the number of samples and
286
+ ``n_features`` is the number of features.
287
+
288
+ y : Ignored
289
+ Not used, present for API consistency by convention.
290
+
291
+ sample_weight : array-like of shape (n_samples,), default=None
292
+ Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
293
+
294
+ check_input : bool, default=True
295
+ Run ``check_array`` on X.
296
+
297
+ Returns
298
+ -------
299
+ self : object
300
+ Returns the instance itself.
301
+ """
302
+ dispatch(
303
+ self,
304
+ "partial_fit",
305
+ {
306
+ "onedal": self.__class__._onedal_partial_fit,
307
+ "sklearn": None,
308
+ },
309
+ X,
310
+ sample_weight,
311
+ check_input=check_input,
312
+ )
313
+ return self
314
+
315
+ def fit(self, X, y=None, sample_weight=None):
316
+ """Calculate statistics of X using minibatches of size batch_size.
317
+
318
+ Parameters
319
+ ----------
320
+ X : array-like of shape (n_samples, n_features)
321
+ Data for compute, where ``n_samples`` is the number of samples and
322
+ ``n_features`` is the number of features.
323
+
324
+ y : Ignored
325
+ Not used, present for API consistency by convention.
326
+
327
+ sample_weight : array-like of shape (n_samples,), default=None
328
+ Weights for compute weighted statistics, where ``n_samples`` is the number of samples.
329
+
330
+ Returns
331
+ -------
332
+ self : object
333
+ Returns the instance itself.
334
+ """
335
+ dispatch(
336
+ self,
337
+ "fit",
338
+ {
339
+ "onedal": self.__class__._onedal_fit,
340
+ "sklearn": None,
341
+ },
342
+ X,
343
+ sample_weight,
344
+ )
345
+ return self
@@ -0,0 +1,270 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.basic_statistics.tests.test_basic_statistics import (
23
+ expected_max,
24
+ expected_mean,
25
+ expected_sum,
26
+ options_and_tests,
27
+ )
28
+ from onedal.tests.utils._dataframes_support import (
29
+ _convert_to_dataframe,
30
+ get_dataframes_and_queues,
31
+ )
32
+ from sklearnex.basic_statistics import BasicStatistics
33
+
34
+
35
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
36
+ def test_sklearnex_import_basic_statistics(dataframe, queue):
37
+ X = np.array([[0, 0], [1, 1]])
38
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
39
+
40
+ weights = np.array([1, 0.5])
41
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
42
+
43
+ result = BasicStatistics().fit(X_df)
44
+
45
+ expected_mean = np.array([0.5, 0.5])
46
+ expected_min = np.array([0, 0])
47
+ expected_max = np.array([1, 1])
48
+
49
+ assert_allclose(expected_mean, result.mean)
50
+ assert_allclose(expected_max, result.max)
51
+ assert_allclose(expected_min, result.min)
52
+
53
+ result = BasicStatistics().fit(X_df, sample_weight=weights_df)
54
+
55
+ expected_weighted_mean = np.array([0.25, 0.25])
56
+ expected_weighted_min = np.array([0, 0])
57
+ expected_weighted_max = np.array([0.5, 0.5])
58
+
59
+ assert_allclose(expected_weighted_mean, result.mean)
60
+ assert_allclose(expected_weighted_min, result.min)
61
+ assert_allclose(expected_weighted_max, result.max)
62
+
63
+
64
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
65
+ @pytest.mark.parametrize("weighted", [True, False])
66
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
67
+ def test_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
68
+ X = np.array([[0, 0], [1, 1]])
69
+ X = X.astype(dtype=dtype)
70
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
71
+ if weighted:
72
+ weights = np.array([1, 0.5])
73
+ weights = weights.astype(dtype=dtype)
74
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
75
+ basicstat = BasicStatistics()
76
+
77
+ if weighted:
78
+ result = basicstat.fit(X_df, sample_weight=weights_df)
79
+ else:
80
+ result = basicstat.fit(X_df)
81
+
82
+ if weighted:
83
+ expected_weighted_mean = np.array([0.25, 0.25])
84
+ expected_weighted_min = np.array([0, 0])
85
+ expected_weighted_max = np.array([0.5, 0.5])
86
+ assert_allclose(expected_weighted_mean, result.mean)
87
+ assert_allclose(expected_weighted_max, result.max)
88
+ assert_allclose(expected_weighted_min, result.min)
89
+ else:
90
+ expected_mean = np.array([0.5, 0.5])
91
+ expected_min = np.array([0, 0])
92
+ expected_max = np.array([1, 1])
93
+ assert_allclose(expected_mean, result.mean)
94
+ assert_allclose(expected_max, result.max)
95
+ assert_allclose(expected_min, result.min)
96
+
97
+
98
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
99
+ @pytest.mark.parametrize("option", options_and_tests)
100
+ @pytest.mark.parametrize("row_count", [100, 1000])
101
+ @pytest.mark.parametrize("column_count", [10, 100])
102
+ @pytest.mark.parametrize("weighted", [True, False])
103
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
104
+ def test_single_option_on_random_data(
105
+ dataframe, queue, option, row_count, column_count, weighted, dtype
106
+ ):
107
+ result_option, function, tols = option
108
+ fp32tol, fp64tol = tols
109
+ seed = 77
110
+ gen = np.random.default_rng(seed)
111
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
112
+ X = X.astype(dtype=dtype)
113
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
114
+ if weighted:
115
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
116
+ weights = weights.astype(dtype=dtype)
117
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
118
+ basicstat = BasicStatistics(result_options=result_option)
119
+
120
+ if weighted:
121
+ result = basicstat.fit(X_df, sample_weight=weights_df)
122
+ else:
123
+ result = basicstat.fit(X_df)
124
+
125
+ res = getattr(result, result_option)
126
+ if weighted:
127
+ weighted_data = np.diag(weights) @ X
128
+ gtr = function(weighted_data)
129
+ else:
130
+ gtr = function(X)
131
+
132
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
133
+ assert_allclose(gtr, res, atol=tol)
134
+
135
+
136
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
137
+ @pytest.mark.parametrize("row_count", [100, 1000])
138
+ @pytest.mark.parametrize("column_count", [10, 100])
139
+ @pytest.mark.parametrize("weighted", [True, False])
140
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
141
+ def test_multiple_options_on_random_data(
142
+ dataframe, queue, row_count, column_count, weighted, dtype
143
+ ):
144
+ seed = 77
145
+ gen = np.random.default_rng(seed)
146
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
147
+ X = X.astype(dtype=dtype)
148
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
149
+ if weighted:
150
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
151
+ weights = weights.astype(dtype=dtype)
152
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
153
+ basicstat = BasicStatistics(result_options=["mean", "max", "sum"])
154
+
155
+ if weighted:
156
+ result = basicstat.fit(X_df, sample_weight=weights_df)
157
+ else:
158
+ result = basicstat.fit(X_df)
159
+
160
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
161
+ if weighted:
162
+ weighted_data = np.diag(weights) @ X
163
+ gtr_mean, gtr_max, gtr_sum = (
164
+ expected_mean(weighted_data),
165
+ expected_max(weighted_data),
166
+ expected_sum(weighted_data),
167
+ )
168
+ else:
169
+ gtr_mean, gtr_max, gtr_sum = (
170
+ expected_mean(X),
171
+ expected_max(X),
172
+ expected_sum(X),
173
+ )
174
+
175
+ tol = 5e-4 if res_mean.dtype == np.float32 else 1e-7
176
+ assert_allclose(gtr_mean, res_mean, atol=tol)
177
+ assert_allclose(gtr_max, res_max, atol=tol)
178
+ assert_allclose(gtr_sum, res_sum, atol=tol)
179
+
180
+
181
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
182
+ @pytest.mark.parametrize("row_count", [100, 1000])
183
+ @pytest.mark.parametrize("column_count", [10, 100])
184
+ @pytest.mark.parametrize("weighted", [True, False])
185
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
186
+ def test_all_option_on_random_data(
187
+ dataframe, queue, row_count, column_count, weighted, dtype
188
+ ):
189
+ seed = 77
190
+ gen = np.random.default_rng(seed)
191
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
192
+ X = X.astype(dtype=dtype)
193
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
194
+ if weighted:
195
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
196
+ weights = weights.astype(dtype=dtype)
197
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
198
+ basicstat = BasicStatistics(result_options="all")
199
+
200
+ if weighted:
201
+ result = basicstat.fit(X_df, sample_weight=weights_df)
202
+ else:
203
+ result = basicstat.fit(X_df)
204
+
205
+ if weighted:
206
+ weighted_data = np.diag(weights) @ X
207
+
208
+ for option in options_and_tests:
209
+ result_option, function, tols = option
210
+ fp32tol, fp64tol = tols
211
+ res = getattr(result, result_option)
212
+ if weighted:
213
+ gtr = function(weighted_data)
214
+ else:
215
+ gtr = function(X)
216
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
217
+ assert_allclose(gtr, res, atol=tol)
218
+
219
+
220
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
221
+ @pytest.mark.parametrize("option", options_and_tests)
222
+ @pytest.mark.parametrize("data_size", [100, 1000])
223
+ @pytest.mark.parametrize("weighted", [True, False])
224
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
225
+ def test_1d_input_on_random_data(dataframe, queue, option, data_size, weighted, dtype):
226
+ result_option, function, tols = option
227
+ fp32tol, fp64tol = tols
228
+ seed = 77
229
+ gen = np.random.default_rng(seed)
230
+ X = gen.uniform(low=-0.3, high=+0.7, size=data_size)
231
+ X = X.astype(dtype=dtype)
232
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
233
+ if weighted:
234
+ weights = gen.uniform(low=-0.5, high=1.0, size=data_size)
235
+ weights = weights.astype(dtype=dtype)
236
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
237
+ basicstat = BasicStatistics(result_options=result_option)
238
+
239
+ if weighted:
240
+ result = basicstat.fit(X_df, sample_weight=weights_df)
241
+ else:
242
+ result = basicstat.fit(X_df)
243
+
244
+ res = getattr(result, result_option)
245
+ if weighted:
246
+ weighted_data = weights * X
247
+ gtr = function(weighted_data)
248
+ else:
249
+ gtr = function(X)
250
+
251
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
252
+ assert_allclose(gtr, res, atol=tol)
253
+
254
+
255
+ def test_warning():
256
+ basicstat = BasicStatistics("all")
257
+ data = np.array([0, 1])
258
+
259
+ basicstat.fit(data)
260
+ for i in basicstat._onedal_estimator.get_all_result_options():
261
+ with pytest.warns(
262
+ UserWarning,
263
+ match="Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0",
264
+ ) as warn_record:
265
+ getattr(basicstat, i)
266
+
267
+ if daal_check_version((2026, "P", 0)):
268
+ assert len(warn_record) == 0, i
269
+ else:
270
+ assert len(warn_record) == 1, i