scikit-learn-intelex 2025.1.0__py310-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,145 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+ from sklearnex.tests.utils.spmd import (
26
+ _generate_regression_data,
27
+ _get_local_tensor,
28
+ _mpi_libs_and_gpu_available,
29
+ _spmd_assert_allclose,
30
+ )
31
+
32
+
33
+ @pytest.mark.skipif(
34
+ not _mpi_libs_and_gpu_available,
35
+ reason="GPU device and MPI libs required for test",
36
+ )
37
+ @pytest.mark.parametrize(
38
+ "dataframe,queue",
39
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
40
+ )
41
+ @pytest.mark.mpi
42
+ def test_linear_spmd_gold(dataframe, queue):
43
+ # Import spmd and batch algo
44
+ from sklearnex.linear_model import LinearRegression as LinearRegression_Batch
45
+ from sklearnex.spmd.linear_model import LinearRegression as LinearRegression_SPMD
46
+
47
+ # Create gold data and convert to dataframe
48
+ X_train = np.array(
49
+ [
50
+ [0.0, 0.0],
51
+ [0.0, 1.0],
52
+ [1.0, 0.0],
53
+ [0.0, 2.0],
54
+ [2.0, 0.0],
55
+ [1.0, 1.0],
56
+ [0.0, -1.0],
57
+ [-1.0, 0.0],
58
+ [-1.0, -1.0],
59
+ ]
60
+ )
61
+ y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
62
+ X_test = np.array(
63
+ [
64
+ [1.0, -1.0],
65
+ [-1.0, 1.0],
66
+ [0.0, 1.0],
67
+ [10.0, -10.0],
68
+ ]
69
+ )
70
+
71
+ local_dpt_X_train = _convert_to_dataframe(
72
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
73
+ )
74
+ local_dpt_y_train = _convert_to_dataframe(
75
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
76
+ )
77
+ local_dpt_X_test = _convert_to_dataframe(
78
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
79
+ )
80
+
81
+ # ensure trained model of batch algo matches spmd
82
+ spmd_model = LinearRegression_SPMD().fit(local_dpt_X_train, local_dpt_y_train)
83
+ batch_model = LinearRegression_Batch().fit(X_train, y_train)
84
+
85
+ assert_allclose(spmd_model.coef_, batch_model.coef_)
86
+ assert_allclose(spmd_model.intercept_, batch_model.intercept_)
87
+
88
+ # ensure predictions of batch algo match spmd
89
+ spmd_result = spmd_model.predict(local_dpt_X_test)
90
+ batch_result = batch_model.predict(X_test)
91
+
92
+ _spmd_assert_allclose(spmd_result, batch_result)
93
+
94
+
95
+ @pytest.mark.skipif(
96
+ not _mpi_libs_and_gpu_available,
97
+ reason="GPU device and MPI libs required for test",
98
+ )
99
+ @pytest.mark.parametrize("n_samples", [100, 10000])
100
+ @pytest.mark.parametrize("n_features", [10, 100])
101
+ @pytest.mark.parametrize(
102
+ "dataframe,queue",
103
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
104
+ )
105
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
106
+ @pytest.mark.mpi
107
+ def test_linear_spmd_synthetic(n_samples, n_features, dataframe, queue, dtype):
108
+ # Import spmd and batch algo
109
+ from sklearnex.linear_model import LinearRegression as LinearRegression_Batch
110
+ from sklearnex.spmd.linear_model import LinearRegression as LinearRegression_SPMD
111
+
112
+ # Generate data and convert to dataframe
113
+ X_train, X_test, y_train, _ = _generate_regression_data(
114
+ n_samples, n_features, dtype=dtype
115
+ )
116
+
117
+ local_dpt_X_train = _convert_to_dataframe(
118
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
119
+ )
120
+ local_dpt_y_train = _convert_to_dataframe(
121
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
122
+ )
123
+ local_dpt_X_test = _convert_to_dataframe(
124
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
125
+ )
126
+
127
+ # TODO: support linear regression on wide datasets and remove this skip
128
+ if local_dpt_X_train.shape[0] < n_features:
129
+ pytest.skip(
130
+ "SPMD Linear Regression does not support cases where n_rows_rank < n_features"
131
+ )
132
+
133
+ # ensure trained model of batch algo matches spmd
134
+ spmd_model = LinearRegression_SPMD().fit(local_dpt_X_train, local_dpt_y_train)
135
+ batch_model = LinearRegression_Batch().fit(X_train, y_train)
136
+
137
+ tol = 1e-3 if dtype == np.float32 else 1e-7
138
+ assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=tol, atol=tol)
139
+ assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=tol, atol=tol)
140
+
141
+ # ensure predictions of batch algo match spmd
142
+ spmd_result = spmd_model.predict(local_dpt_X_test)
143
+ batch_result = batch_model.predict(X_test)
144
+
145
+ _spmd_assert_allclose(spmd_result, batch_result, rtol=tol, atol=tol)
@@ -0,0 +1,162 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _as_numpy,
23
+ _convert_to_dataframe,
24
+ get_dataframes_and_queues,
25
+ )
26
+ from sklearnex.tests.utils.spmd import (
27
+ _generate_classification_data,
28
+ _get_local_tensor,
29
+ _mpi_libs_and_gpu_available,
30
+ _spmd_assert_allclose,
31
+ )
32
+
33
+
34
+ @pytest.mark.skipif(
35
+ not _mpi_libs_and_gpu_available,
36
+ reason="GPU device and MPI libs required for test",
37
+ )
38
+ @pytest.mark.parametrize(
39
+ "dataframe,queue",
40
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
41
+ )
42
+ @pytest.mark.mpi
43
+ def test_logistic_spmd_gold(dataframe, queue):
44
+ # Import spmd and batch algo
45
+ from sklearnex.linear_model import LogisticRegression as LogisticRegression_Batch
46
+ from sklearnex.spmd.linear_model import LogisticRegression as LogisticRegression_SPMD
47
+
48
+ # Create gold data and convert to dataframe
49
+ X_train = np.array(
50
+ [
51
+ [0.0, 0.0],
52
+ [0.0, 1.0],
53
+ [1.0, 0.0],
54
+ [0.0, 2.0],
55
+ [2.0, 0.0],
56
+ [1.0, 1.0],
57
+ [0.0, -1.0],
58
+ [-1.0, 0.0],
59
+ [-1.0, -1.0],
60
+ ]
61
+ )
62
+ y_train = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0])
63
+ X_test = np.array(
64
+ [
65
+ [1.0, -1.0],
66
+ [-1.0, 1.0],
67
+ [0.0, 1.0],
68
+ [10.0, -10.0],
69
+ ]
70
+ )
71
+
72
+ local_dpt_X_train = _convert_to_dataframe(
73
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
74
+ )
75
+ local_dpt_y_train = _convert_to_dataframe(
76
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
77
+ )
78
+ local_dpt_X_test = _convert_to_dataframe(
79
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
80
+ )
81
+ dpt_X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
82
+ dpt_y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
83
+ dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
84
+
85
+ # Ensure trained model of batch algo matches spmd
86
+ spmd_model = LogisticRegression_SPMD(random_state=0, solver="newton-cg").fit(
87
+ local_dpt_X_train, local_dpt_y_train
88
+ )
89
+ batch_model = LogisticRegression_Batch(random_state=0, solver="newton-cg").fit(
90
+ dpt_X_train, dpt_y_train
91
+ )
92
+
93
+ assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=1e-2)
94
+ assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=1e-2)
95
+
96
+ # Ensure predictions of batch algo match spmd
97
+ spmd_result = spmd_model.predict(local_dpt_X_test)
98
+ batch_result = batch_model.predict(dpt_X_test)
99
+
100
+ _spmd_assert_allclose(spmd_result, _as_numpy(batch_result))
101
+
102
+
103
+ # parametrize max_iter, C, tol
104
+ @pytest.mark.skipif(
105
+ not _mpi_libs_and_gpu_available,
106
+ reason="GPU device and MPI libs required for test",
107
+ )
108
+ @pytest.mark.parametrize("n_samples", [100, 10000])
109
+ @pytest.mark.parametrize("n_features", [10, 100])
110
+ @pytest.mark.parametrize("C", [0.5, 1.0, 2.0])
111
+ @pytest.mark.parametrize("tol", [1e-2, 1e-4])
112
+ @pytest.mark.parametrize(
113
+ "dataframe,queue",
114
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
115
+ )
116
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
117
+ @pytest.mark.mpi
118
+ def test_logistic_spmd_synthetic(n_samples, n_features, C, tol, dataframe, queue, dtype):
119
+ # TODO: Resolve numerical issues when n_rows_rank < n_cols
120
+ if n_samples <= n_features:
121
+ pytest.skip("Numerical issues when rank rows < columns")
122
+
123
+ # Import spmd and batch algo
124
+ from sklearnex.linear_model import LogisticRegression as LogisticRegression_Batch
125
+ from sklearnex.spmd.linear_model import LogisticRegression as LogisticRegression_SPMD
126
+
127
+ # Generate data and convert to dataframe
128
+ X_train, X_test, y_train, _ = _generate_classification_data(
129
+ n_samples, n_features, dtype=dtype
130
+ )
131
+
132
+ local_dpt_X_train = _convert_to_dataframe(
133
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
134
+ )
135
+ local_dpt_y_train = _convert_to_dataframe(
136
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
137
+ )
138
+ local_dpt_X_test = _convert_to_dataframe(
139
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
140
+ )
141
+ dpt_X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
142
+ dpt_y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
143
+ dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
144
+
145
+ # Ensure trained model of batch algo matches spmd
146
+ spmd_model = LogisticRegression_SPMD(
147
+ random_state=0, solver="newton-cg", C=C, tol=tol
148
+ ).fit(local_dpt_X_train, local_dpt_y_train)
149
+ batch_model = LogisticRegression_Batch(
150
+ random_state=0, solver="newton-cg", C=C, tol=tol
151
+ ).fit(dpt_X_train, dpt_y_train)
152
+
153
+ # TODO: Logistic Regression coefficients do not align
154
+ tol = 1e-2
155
+ assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=tol, atol=tol)
156
+ assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=tol, atol=tol)
157
+
158
+ # Ensure predictions of batch algo match spmd
159
+ spmd_result = spmd_model.predict(local_dpt_X_test)
160
+ batch_result = batch_model.predict(dpt_X_test)
161
+
162
+ _spmd_assert_allclose(spmd_result, _as_numpy(batch_result))
@@ -0,0 +1,19 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .neighbors import KNeighborsClassifier, KNeighborsRegressor, NearestNeighbors
18
+
19
+ __all__ = ["KNeighborsClassifier", "KNeighborsRegressor", "NearestNeighbors"]
@@ -0,0 +1,25 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.neighbors import (
18
+ KNeighborsClassifier,
19
+ KNeighborsRegressor,
20
+ NearestNeighbors,
21
+ )
22
+
23
+ # TODO:
24
+ # Currently it uses `onedal` module interface.
25
+ # Add sklearnex dispatching.
@@ -0,0 +1,288 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+ from sklearnex.tests.utils.spmd import (
26
+ _assert_unordered_allclose,
27
+ _generate_classification_data,
28
+ _generate_regression_data,
29
+ _get_local_tensor,
30
+ _mpi_libs_and_gpu_available,
31
+ _spmd_assert_allclose,
32
+ )
33
+
34
+
35
+ @pytest.mark.skipif(
36
+ not _mpi_libs_and_gpu_available,
37
+ reason="GPU device and MPI libs required for test",
38
+ )
39
+ @pytest.mark.parametrize(
40
+ "dataframe,queue",
41
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
42
+ )
43
+ @pytest.mark.mpi
44
+ def test_knncls_spmd_gold(dataframe, queue):
45
+ # Import spmd and batch algo
46
+ from sklearnex.neighbors import KNeighborsClassifier as KNeighborsClassifier_Batch
47
+ from sklearnex.spmd.neighbors import KNeighborsClassifier as KNeighborsClassifier_SPMD
48
+
49
+ # Create gold data and convert to dataframe
50
+ X_train = np.array(
51
+ [
52
+ [0.0, 0.0],
53
+ [0.0, 1.0],
54
+ [1.0, 0.0],
55
+ [0.0, 2.0],
56
+ [2.0, 0.0],
57
+ [0.9, 1.0],
58
+ [0.0, -1.0],
59
+ [-1.0, 0.0],
60
+ [-1.0, -1.0],
61
+ ]
62
+ )
63
+ # TODO: handle situations where not all classes are present on all ranks?
64
+ y_train = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0])
65
+ X_test = np.array(
66
+ [
67
+ [1.0, -0.5],
68
+ [-5.0, 1.0],
69
+ [0.0, 1.0],
70
+ [10.0, -10.0],
71
+ ]
72
+ )
73
+
74
+ local_dpt_X_train = _convert_to_dataframe(
75
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
76
+ )
77
+ local_dpt_y_train = _convert_to_dataframe(
78
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
79
+ )
80
+ local_dpt_X_test = _convert_to_dataframe(
81
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
82
+ )
83
+
84
+ # Ensure predictions of batch algo match spmd
85
+ spmd_model = KNeighborsClassifier_SPMD(n_neighbors=1, algorithm="brute").fit(
86
+ local_dpt_X_train, local_dpt_y_train
87
+ )
88
+ batch_model = KNeighborsClassifier_Batch(n_neighbors=1, algorithm="brute").fit(
89
+ X_train, y_train
90
+ )
91
+ spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
92
+ batch_dists, batch_indcs = batch_model.kneighbors(X_test)
93
+ spmd_result = spmd_model.predict(local_dpt_X_test)
94
+ batch_result = batch_model.predict(X_test)
95
+
96
+ _assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
97
+ _assert_unordered_allclose(spmd_dists, batch_dists, localize=True)
98
+ _spmd_assert_allclose(spmd_result, batch_result)
99
+
100
+
101
+ @pytest.mark.skipif(
102
+ not _mpi_libs_and_gpu_available,
103
+ reason="GPU device and MPI libs required for test",
104
+ )
105
+ @pytest.mark.parametrize("n_samples", [200, 10000])
106
+ @pytest.mark.parametrize("n_features_and_classes", [(5, 2), (25, 2), (25, 10)])
107
+ @pytest.mark.parametrize("n_neighbors", [1, 5, 20])
108
+ @pytest.mark.parametrize("weights", ["uniform", "distance"])
109
+ @pytest.mark.parametrize(
110
+ "dataframe,queue",
111
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
112
+ )
113
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
114
+ @pytest.mark.mpi
115
+ def test_knncls_spmd_synthetic(
116
+ n_samples,
117
+ n_features_and_classes,
118
+ n_neighbors,
119
+ weights,
120
+ dataframe,
121
+ queue,
122
+ dtype,
123
+ metric="euclidean",
124
+ ):
125
+ n_features, n_classes = n_features_and_classes
126
+ # Import spmd and batch algo
127
+ from sklearnex.neighbors import KNeighborsClassifier as KNeighborsClassifier_Batch
128
+ from sklearnex.spmd.neighbors import KNeighborsClassifier as KNeighborsClassifier_SPMD
129
+
130
+ # Generate data and convert to dataframe
131
+ X_train, X_test, y_train, _ = _generate_classification_data(
132
+ n_samples, n_features, n_classes, dtype=dtype
133
+ )
134
+
135
+ local_dpt_X_train = _convert_to_dataframe(
136
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
137
+ )
138
+ local_dpt_y_train = _convert_to_dataframe(
139
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
140
+ )
141
+ local_dpt_X_test = _convert_to_dataframe(
142
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
143
+ )
144
+
145
+ # Ensure predictions of batch algo match spmd
146
+ spmd_model = KNeighborsClassifier_SPMD(
147
+ n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
148
+ ).fit(local_dpt_X_train, local_dpt_y_train)
149
+ batch_model = KNeighborsClassifier_Batch(
150
+ n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
151
+ ).fit(X_train, y_train)
152
+ spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
153
+ batch_dists, batch_indcs = batch_model.kneighbors(X_test)
154
+ spmd_result = spmd_model.predict(local_dpt_X_test)
155
+ batch_result = batch_model.predict(X_test)
156
+
157
+ tol = 1e-4
158
+ if dtype == np.float64:
159
+ _assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
160
+ _assert_unordered_allclose(
161
+ spmd_dists, batch_dists, localize=True, rtol=tol, atol=tol
162
+ )
163
+ _spmd_assert_allclose(spmd_result, batch_result)
164
+
165
+
166
+ @pytest.mark.skipif(
167
+ not _mpi_libs_and_gpu_available,
168
+ reason="GPU device and MPI libs required for test",
169
+ )
170
+ @pytest.mark.parametrize(
171
+ "dataframe,queue",
172
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
173
+ )
174
+ @pytest.mark.mpi
175
+ def test_knnreg_spmd_gold(dataframe, queue):
176
+ # Import spmd and batch algo
177
+ from sklearnex.neighbors import KNeighborsRegressor as KNeighborsRegressor_Batch
178
+ from sklearnex.spmd.neighbors import KNeighborsRegressor as KNeighborsRegressor_SPMD
179
+
180
+ # Create gold data and convert to dataframe
181
+ X_train = np.array(
182
+ [
183
+ [0.0, 0.0],
184
+ [0.0, 1.0],
185
+ [1.0, 0.0],
186
+ [0.0, 2.0],
187
+ [2.0, 0.0],
188
+ [1.0, 1.0],
189
+ [0.0, -1.0],
190
+ [-1.0, 0.0],
191
+ [-1.0, -1.0],
192
+ ]
193
+ )
194
+ y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
195
+ X_test = np.array(
196
+ [
197
+ [1.0, -0.5],
198
+ [-5.0, 1.0],
199
+ [0.0, 1.0],
200
+ [10.0, -10.0],
201
+ ]
202
+ )
203
+
204
+ local_dpt_X_train = _convert_to_dataframe(
205
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
206
+ )
207
+ local_dpt_y_train = _convert_to_dataframe(
208
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
209
+ )
210
+ local_dpt_X_test = _convert_to_dataframe(
211
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
212
+ )
213
+
214
+ # Ensure predictions of batch algo match spmd
215
+ spmd_model = KNeighborsRegressor_SPMD(n_neighbors=1, algorithm="brute").fit(
216
+ local_dpt_X_train, local_dpt_y_train
217
+ )
218
+ batch_model = KNeighborsRegressor_Batch(n_neighbors=1, algorithm="brute").fit(
219
+ X_train, y_train
220
+ )
221
+ spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
222
+ batch_dists, batch_indcs = batch_model.kneighbors(X_test)
223
+ spmd_result = spmd_model.predict(local_dpt_X_test)
224
+ batch_result = batch_model.predict(X_test)
225
+
226
+ _assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
227
+ _assert_unordered_allclose(spmd_dists, batch_dists, localize=True)
228
+ _spmd_assert_allclose(spmd_result, batch_result)
229
+
230
+
231
+ @pytest.mark.skipif(
232
+ not _mpi_libs_and_gpu_available,
233
+ reason="GPU device and MPI libs required for test",
234
+ )
235
+ @pytest.mark.parametrize("n_samples", [200, 10000])
236
+ @pytest.mark.parametrize("n_features", [5, 25])
237
+ @pytest.mark.parametrize("n_neighbors", [1, 5, 20])
238
+ @pytest.mark.parametrize("weights", ["uniform", "distance"])
239
+ @pytest.mark.parametrize(
240
+ "metric", ["euclidean", "manhattan", "minkowski", "chebyshev", "cosine"]
241
+ )
242
+ @pytest.mark.parametrize(
243
+ "dataframe,queue",
244
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
245
+ )
246
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
247
+ @pytest.mark.mpi
248
+ def test_knnreg_spmd_synthetic(
249
+ n_samples, n_features, n_neighbors, weights, metric, dataframe, queue, dtype
250
+ ):
251
+ # Import spmd and batch algo
252
+ from sklearnex.neighbors import KNeighborsRegressor as KNeighborsRegressor_Batch
253
+ from sklearnex.spmd.neighbors import KNeighborsRegressor as KNeighborsRegressor_SPMD
254
+
255
+ # Generate data and convert to dataframe
256
+ X_train, X_test, y_train, _ = _generate_regression_data(
257
+ n_samples, n_features, dtype=dtype
258
+ )
259
+
260
+ local_dpt_X_train = _convert_to_dataframe(
261
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
262
+ )
263
+ local_dpt_y_train = _convert_to_dataframe(
264
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
265
+ )
266
+ local_dpt_X_test = _convert_to_dataframe(
267
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
268
+ )
269
+
270
+ # Ensure predictions of batch algo match spmd
271
+ spmd_model = KNeighborsRegressor_SPMD(
272
+ n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
273
+ ).fit(local_dpt_X_train, local_dpt_y_train)
274
+ batch_model = KNeighborsRegressor_Batch(
275
+ n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
276
+ ).fit(X_train, y_train)
277
+ spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
278
+ batch_dists, batch_indcs = batch_model.kneighbors(X_test)
279
+ spmd_result = spmd_model.predict(local_dpt_X_test)
280
+ batch_result = batch_model.predict(X_test)
281
+
282
+ tol = 0.005 if dtype == np.float32 else 1e-4
283
+ if dtype == np.float64:
284
+ _assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
285
+ _assert_unordered_allclose(
286
+ spmd_dists, batch_dists, localize=True, rtol=tol, atol=tol
287
+ )
288
+ _spmd_assert_allclose(spmd_result, batch_result, rtol=tol, atol=tol)
@@ -0,0 +1,29 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .._utils import get_sklearnex_version
18
+
19
+ if get_sklearnex_version((2021, "P", 300)):
20
+ from .nusvc import NuSVC
21
+ from .nusvr import NuSVR
22
+ from .svc import SVC
23
+ from .svr import SVR
24
+
25
+ __all__ = ["SVR", "SVC", "NuSVC", "NuSVR"]
26
+ else:
27
+ from daal4py.sklearn.svm import SVC
28
+
29
+ __all__ = ["SVC"]