scikit-learn-intelex 2025.1.0__py310-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +222 -0
- onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +564 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +154 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +414 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +727 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +250 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +767 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/validation.py +440 -0
- scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
- scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +132 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +230 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +395 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +159 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +398 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +425 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +135 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +482 -0
- sklearnex/linear_model/incremental_ridge.py +425 -0
- sklearnex/linear_model/linear.py +341 -0
- sklearnex/linear_model/logistic_regression.py +413 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +167 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +138 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +233 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +424 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +390 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_memory_usage.py +379 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +321 -0
- sklearnex/tests/utils/__init__.py +44 -0
- sklearnex/tests/utils/base.py +371 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
|
@@ -0,0 +1,269 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_as_numpy,
|
|
23
|
+
_convert_to_dataframe,
|
|
24
|
+
get_dataframes_and_queues,
|
|
25
|
+
)
|
|
26
|
+
from sklearnex.tests.utils.spmd import (
|
|
27
|
+
_generate_statistic_data,
|
|
28
|
+
_get_local_tensor,
|
|
29
|
+
_mpi_libs_and_gpu_available,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
attributes_to_compare = [
|
|
33
|
+
"n_components_",
|
|
34
|
+
"components_",
|
|
35
|
+
"singular_values_",
|
|
36
|
+
"mean_",
|
|
37
|
+
"var_",
|
|
38
|
+
"explained_variance_",
|
|
39
|
+
"explained_variance_ratio_",
|
|
40
|
+
]
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@pytest.mark.skipif(
|
|
44
|
+
not _mpi_libs_and_gpu_available,
|
|
45
|
+
reason="GPU device and MPI libs required for test",
|
|
46
|
+
)
|
|
47
|
+
@pytest.mark.parametrize(
|
|
48
|
+
"dataframe,queue",
|
|
49
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
50
|
+
)
|
|
51
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
52
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
53
|
+
@pytest.mark.mpi
|
|
54
|
+
def test_incremental_pca_fit_spmd_gold(dataframe, queue, whiten, dtype):
|
|
55
|
+
# Import spmd and non-SPMD algo
|
|
56
|
+
from sklearnex.preview.decomposition import IncrementalPCA
|
|
57
|
+
from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
|
|
58
|
+
|
|
59
|
+
# Create gold data and process into dpt
|
|
60
|
+
X = np.array(
|
|
61
|
+
[
|
|
62
|
+
[0.0, 0.0],
|
|
63
|
+
[1.0, 2.0],
|
|
64
|
+
[2.0, 4.0],
|
|
65
|
+
[3.0, 8.0],
|
|
66
|
+
[4.0, 16.0],
|
|
67
|
+
[5.0, 32.0],
|
|
68
|
+
[6.0, 64.0],
|
|
69
|
+
[7.0, 128.0],
|
|
70
|
+
],
|
|
71
|
+
dtype=dtype,
|
|
72
|
+
)
|
|
73
|
+
dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
74
|
+
local_X = _get_local_tensor(X)
|
|
75
|
+
local_dpt_X = _convert_to_dataframe(local_X, sycl_queue=queue, target_df=dataframe)
|
|
76
|
+
|
|
77
|
+
incpca_spmd = IncrementalPCA_SPMD(whiten=whiten)
|
|
78
|
+
incpca = IncrementalPCA(whiten=whiten)
|
|
79
|
+
|
|
80
|
+
incpca_spmd.fit(local_dpt_X)
|
|
81
|
+
incpca.fit(dpt_X)
|
|
82
|
+
|
|
83
|
+
for attribute in attributes_to_compare:
|
|
84
|
+
assert_allclose(
|
|
85
|
+
getattr(incpca, attribute),
|
|
86
|
+
getattr(incpca_spmd, attribute),
|
|
87
|
+
err_msg=f"{attribute} is incorrect",
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
@pytest.mark.skipif(
|
|
92
|
+
not _mpi_libs_and_gpu_available,
|
|
93
|
+
reason="GPU device and MPI libs required for test",
|
|
94
|
+
)
|
|
95
|
+
@pytest.mark.parametrize(
|
|
96
|
+
"dataframe,queue",
|
|
97
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
98
|
+
)
|
|
99
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
100
|
+
@pytest.mark.parametrize("num_blocks", [1, 2])
|
|
101
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
102
|
+
@pytest.mark.mpi
|
|
103
|
+
def test_incremental_pca_partial_fit_spmd_gold(
|
|
104
|
+
dataframe, queue, whiten, num_blocks, dtype
|
|
105
|
+
):
|
|
106
|
+
# Import spmd and non-SPMD algo
|
|
107
|
+
from sklearnex.preview.decomposition import IncrementalPCA
|
|
108
|
+
from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
|
|
109
|
+
|
|
110
|
+
# Create gold data and process into dpt
|
|
111
|
+
X = np.array(
|
|
112
|
+
[
|
|
113
|
+
[0.0, 0.0],
|
|
114
|
+
[1.0, 2.0],
|
|
115
|
+
[2.0, 4.0],
|
|
116
|
+
[3.0, 8.0],
|
|
117
|
+
[4.0, 16.0],
|
|
118
|
+
[5.0, 32.0],
|
|
119
|
+
[6.0, 64.0],
|
|
120
|
+
[7.0, 128.0],
|
|
121
|
+
[8.0, 0.0],
|
|
122
|
+
[9.0, 2.0],
|
|
123
|
+
[10.0, 4.0],
|
|
124
|
+
[11.0, 8.0],
|
|
125
|
+
[12.0, 16.0],
|
|
126
|
+
[13.0, 32.0],
|
|
127
|
+
[14.0, 64.0],
|
|
128
|
+
[15.0, 128.0],
|
|
129
|
+
],
|
|
130
|
+
dtype=dtype,
|
|
131
|
+
)
|
|
132
|
+
X_split = np.array_split(X, num_blocks)
|
|
133
|
+
local_X = _get_local_tensor(X)
|
|
134
|
+
split_local_X = np.array_split(local_X, num_blocks)
|
|
135
|
+
|
|
136
|
+
incpca_spmd = IncrementalPCA_SPMD(whiten=whiten)
|
|
137
|
+
incpca = IncrementalPCA(whiten=whiten)
|
|
138
|
+
|
|
139
|
+
for i in range(num_blocks):
|
|
140
|
+
local_dpt_X = _convert_to_dataframe(
|
|
141
|
+
split_local_X[i], sycl_queue=queue, target_df=dataframe
|
|
142
|
+
)
|
|
143
|
+
dpt_X = _convert_to_dataframe(X_split[i], sycl_queue=queue, target_df=dataframe)
|
|
144
|
+
incpca.partial_fit(dpt_X)
|
|
145
|
+
incpca_spmd.partial_fit(local_dpt_X)
|
|
146
|
+
|
|
147
|
+
for attribute in attributes_to_compare:
|
|
148
|
+
assert_allclose(
|
|
149
|
+
getattr(incpca, attribute),
|
|
150
|
+
getattr(incpca_spmd, attribute),
|
|
151
|
+
err_msg=f"{attribute} is incorrect",
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
@pytest.mark.skipif(
|
|
156
|
+
not _mpi_libs_and_gpu_available,
|
|
157
|
+
reason="GPU device and MPI libs required for test",
|
|
158
|
+
)
|
|
159
|
+
@pytest.mark.parametrize(
|
|
160
|
+
"dataframe,queue",
|
|
161
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
162
|
+
)
|
|
163
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
164
|
+
@pytest.mark.parametrize("n_components", [None, 2, 5])
|
|
165
|
+
@pytest.mark.parametrize("num_samples", [100, 200])
|
|
166
|
+
@pytest.mark.parametrize("num_features", [10, 20])
|
|
167
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
168
|
+
@pytest.mark.mpi
|
|
169
|
+
def test_incremental_pca_fit_spmd_random(
|
|
170
|
+
dataframe, queue, whiten, n_components, num_samples, num_features, dtype
|
|
171
|
+
):
|
|
172
|
+
# Import spmd and non-SPMD algo
|
|
173
|
+
from sklearnex.preview.decomposition import IncrementalPCA
|
|
174
|
+
from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
|
|
175
|
+
|
|
176
|
+
# Increased test dataset size requires a higher tol setting in comparison to other tests
|
|
177
|
+
tol = 7e-5 if dtype == np.float32 else 1e-7
|
|
178
|
+
|
|
179
|
+
# Create data and process into dpt
|
|
180
|
+
X = _generate_statistic_data(num_samples, num_features, dtype)
|
|
181
|
+
dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
182
|
+
X_test = _generate_statistic_data(num_samples // 5, num_features, dtype)
|
|
183
|
+
dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
184
|
+
local_X = _get_local_tensor(X)
|
|
185
|
+
local_dpt_X = _convert_to_dataframe(local_X, sycl_queue=queue, target_df=dataframe)
|
|
186
|
+
|
|
187
|
+
incpca_spmd = IncrementalPCA_SPMD(n_components=n_components, whiten=whiten)
|
|
188
|
+
incpca = IncrementalPCA(n_components=n_components, whiten=whiten)
|
|
189
|
+
|
|
190
|
+
incpca_spmd.fit(local_dpt_X)
|
|
191
|
+
incpca.fit(dpt_X)
|
|
192
|
+
|
|
193
|
+
for attribute in attributes_to_compare:
|
|
194
|
+
assert_allclose(
|
|
195
|
+
getattr(incpca, attribute),
|
|
196
|
+
getattr(incpca_spmd, attribute),
|
|
197
|
+
atol=tol,
|
|
198
|
+
err_msg=f"{attribute} is incorrect",
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
y_trans_spmd = incpca_spmd.transform(dpt_X_test)
|
|
202
|
+
y_trans = incpca.transform(dpt_X_test)
|
|
203
|
+
|
|
204
|
+
assert_allclose(_as_numpy(y_trans_spmd), _as_numpy(y_trans), atol=tol)
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
@pytest.mark.skipif(
|
|
208
|
+
not _mpi_libs_and_gpu_available,
|
|
209
|
+
reason="GPU device and MPI libs required for test",
|
|
210
|
+
)
|
|
211
|
+
@pytest.mark.parametrize(
|
|
212
|
+
"dataframe,queue",
|
|
213
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
214
|
+
)
|
|
215
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
216
|
+
@pytest.mark.parametrize("n_components", [None, 2, 5])
|
|
217
|
+
@pytest.mark.parametrize("num_blocks", [1, 2])
|
|
218
|
+
@pytest.mark.parametrize("num_samples", [200, 400])
|
|
219
|
+
@pytest.mark.parametrize("num_features", [10, 20])
|
|
220
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
221
|
+
@pytest.mark.mpi
|
|
222
|
+
def test_incremental_pca_partial_fit_spmd_random(
|
|
223
|
+
dataframe,
|
|
224
|
+
queue,
|
|
225
|
+
whiten,
|
|
226
|
+
n_components,
|
|
227
|
+
num_blocks,
|
|
228
|
+
num_samples,
|
|
229
|
+
num_features,
|
|
230
|
+
dtype,
|
|
231
|
+
):
|
|
232
|
+
# Import spmd and non-SPMD algo
|
|
233
|
+
from sklearnex.preview.decomposition import IncrementalPCA
|
|
234
|
+
from sklearnex.spmd.decomposition import IncrementalPCA as IncrementalPCA_SPMD
|
|
235
|
+
|
|
236
|
+
tol = 3e-4 if dtype == np.float32 else 1e-7
|
|
237
|
+
|
|
238
|
+
# Create data and process into dpt
|
|
239
|
+
X = _generate_statistic_data(num_samples, num_features, dtype)
|
|
240
|
+
dpt_X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
241
|
+
X_test = _generate_statistic_data(num_samples // 5, num_features, dtype)
|
|
242
|
+
dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
243
|
+
local_X = _get_local_tensor(X)
|
|
244
|
+
X_split = np.array_split(X, num_blocks)
|
|
245
|
+
split_local_X = np.array_split(local_X, num_blocks)
|
|
246
|
+
|
|
247
|
+
incpca_spmd = IncrementalPCA_SPMD(n_components=n_components, whiten=whiten)
|
|
248
|
+
incpca = IncrementalPCA(n_components=n_components, whiten=whiten)
|
|
249
|
+
|
|
250
|
+
for i in range(num_blocks):
|
|
251
|
+
local_dpt_X = _convert_to_dataframe(
|
|
252
|
+
split_local_X[i], sycl_queue=queue, target_df=dataframe
|
|
253
|
+
)
|
|
254
|
+
dpt_X = _convert_to_dataframe(X_split[i], sycl_queue=queue, target_df=dataframe)
|
|
255
|
+
incpca_spmd.partial_fit(local_dpt_X)
|
|
256
|
+
incpca.partial_fit(dpt_X)
|
|
257
|
+
|
|
258
|
+
for attribute in attributes_to_compare:
|
|
259
|
+
assert_allclose(
|
|
260
|
+
getattr(incpca, attribute),
|
|
261
|
+
getattr(incpca_spmd, attribute),
|
|
262
|
+
atol=tol,
|
|
263
|
+
err_msg=f"{attribute} is incorrect",
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
y_trans_spmd = incpca_spmd.transform(dpt_X_test)
|
|
267
|
+
y_trans = incpca.transform(dpt_X_test)
|
|
268
|
+
|
|
269
|
+
assert_allclose(_as_numpy(y_trans_spmd), _as_numpy(y_trans), atol=tol)
|
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
from sklearnex.tests.utils.spmd import (
|
|
26
|
+
_generate_statistic_data,
|
|
27
|
+
_get_local_tensor,
|
|
28
|
+
_mpi_libs_and_gpu_available,
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@pytest.mark.skipif(
|
|
33
|
+
not _mpi_libs_and_gpu_available,
|
|
34
|
+
reason="GPU device and MPI libs required for test",
|
|
35
|
+
)
|
|
36
|
+
@pytest.mark.parametrize(
|
|
37
|
+
"dataframe,queue",
|
|
38
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
39
|
+
)
|
|
40
|
+
@pytest.mark.mpi
|
|
41
|
+
def test_pca_spmd_gold(dataframe, queue):
|
|
42
|
+
# Import spmd and batch algo
|
|
43
|
+
from sklearnex.decomposition import PCA as PCA_Batch
|
|
44
|
+
from sklearnex.spmd.decomposition import PCA as PCA_SPMD
|
|
45
|
+
|
|
46
|
+
# Create gold data and convert to dataframe
|
|
47
|
+
data = np.array(
|
|
48
|
+
[
|
|
49
|
+
[0.0, 0.0, 0.0],
|
|
50
|
+
[0.0, 1.0, 2.0],
|
|
51
|
+
[0.0, 2.0, 4.0],
|
|
52
|
+
[0.0, 3.0, 8.0],
|
|
53
|
+
[0.0, 4.0, 16.0],
|
|
54
|
+
[0.0, 5.0, 32.0],
|
|
55
|
+
[0.0, 6.0, 64.0],
|
|
56
|
+
[0.0, 7.0, 128.0],
|
|
57
|
+
]
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
local_dpt_data = _convert_to_dataframe(
|
|
61
|
+
_get_local_tensor(data), sycl_queue=queue, target_df=dataframe
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
# Ensure results of batch algo match spmd
|
|
65
|
+
spmd_result = PCA_SPMD(n_components=2).fit(local_dpt_data)
|
|
66
|
+
batch_result = PCA_Batch(n_components=2).fit(data)
|
|
67
|
+
|
|
68
|
+
assert_allclose(spmd_result.mean_, batch_result.mean_)
|
|
69
|
+
assert_allclose(spmd_result.components_, batch_result.components_)
|
|
70
|
+
assert_allclose(spmd_result.singular_values_, batch_result.singular_values_)
|
|
71
|
+
assert_allclose(
|
|
72
|
+
spmd_result.noise_variance_,
|
|
73
|
+
batch_result.noise_variance_,
|
|
74
|
+
atol=1e-7,
|
|
75
|
+
)
|
|
76
|
+
assert_allclose(
|
|
77
|
+
spmd_result.explained_variance_ratio_, batch_result.explained_variance_ratio_
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@pytest.mark.skipif(
|
|
82
|
+
not _mpi_libs_and_gpu_available,
|
|
83
|
+
reason="GPU device and MPI libs required for test",
|
|
84
|
+
)
|
|
85
|
+
@pytest.mark.parametrize("n_samples", [100, 10000])
|
|
86
|
+
@pytest.mark.parametrize("n_features", [10, 100])
|
|
87
|
+
@pytest.mark.parametrize("n_components", [0.5, 3, "mle", None])
|
|
88
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
89
|
+
@pytest.mark.parametrize(
|
|
90
|
+
"dataframe,queue",
|
|
91
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
92
|
+
)
|
|
93
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
94
|
+
@pytest.mark.mpi
|
|
95
|
+
def test_pca_spmd_synthetic(
|
|
96
|
+
n_samples, n_features, n_components, whiten, dataframe, queue, dtype
|
|
97
|
+
):
|
|
98
|
+
# TODO: Resolve issues with batch fallback and lack of support for n_rows_rank < n_cols
|
|
99
|
+
if n_components == "mle" or n_components == 3:
|
|
100
|
+
pytest.skip("Avoid error in case of batch fallback to sklearn")
|
|
101
|
+
if n_samples <= n_features:
|
|
102
|
+
pytest.skip("Avoid n_samples < n_features error from spmd data split")
|
|
103
|
+
|
|
104
|
+
# Import spmd and batch algo
|
|
105
|
+
from sklearnex.decomposition import PCA as PCA_Batch
|
|
106
|
+
from sklearnex.spmd.decomposition import PCA as PCA_SPMD
|
|
107
|
+
|
|
108
|
+
# Generate data and convert to dataframe
|
|
109
|
+
data = _generate_statistic_data(n_samples, n_features, dtype=dtype)
|
|
110
|
+
|
|
111
|
+
local_dpt_data = _convert_to_dataframe(
|
|
112
|
+
_get_local_tensor(data), sycl_queue=queue, target_df=dataframe
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
# Ensure results of batch algo match spmd
|
|
116
|
+
spmd_result = PCA_SPMD(n_components=n_components, whiten=whiten).fit(local_dpt_data)
|
|
117
|
+
batch_result = PCA_Batch(n_components=n_components, whiten=whiten).fit(data)
|
|
118
|
+
|
|
119
|
+
tol = 1e-3 if dtype == np.float32 else 1e-7
|
|
120
|
+
assert_allclose(spmd_result.mean_, batch_result.mean_, atol=tol)
|
|
121
|
+
assert_allclose(spmd_result.components_, batch_result.components_, atol=tol, rtol=tol)
|
|
122
|
+
assert_allclose(spmd_result.singular_values_, batch_result.singular_values_, atol=tol)
|
|
123
|
+
assert_allclose(spmd_result.noise_variance_, batch_result.noise_variance_, atol=tol)
|
|
124
|
+
assert_allclose(
|
|
125
|
+
spmd_result.explained_variance_ratio_,
|
|
126
|
+
batch_result.explained_variance_ratio_,
|
|
127
|
+
atol=tol,
|
|
128
|
+
)
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from .forest import RandomForestClassifier, RandomForestRegressor
|
|
18
|
+
|
|
19
|
+
__all__ = ["RandomForestClassifier", "RandomForestRegressor"]
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from onedal.spmd.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
|
|
18
|
+
from onedal.spmd.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
|
|
19
|
+
|
|
20
|
+
from ...ensemble import RandomForestClassifier as RandomForestClassifier_Batch
|
|
21
|
+
from ...ensemble import RandomForestRegressor as RandomForestRegressor_Batch
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class RandomForestClassifier(RandomForestClassifier_Batch):
|
|
25
|
+
__doc__ = RandomForestClassifier_Batch.__doc__
|
|
26
|
+
_onedal_factory = onedal_RandomForestClassifier
|
|
27
|
+
|
|
28
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
29
|
+
# TODO:
|
|
30
|
+
# check which methods supported SPMD interface on CPU.
|
|
31
|
+
ready = super()._onedal_cpu_supported(method_name, *data)
|
|
32
|
+
if not ready:
|
|
33
|
+
raise RuntimeError(
|
|
34
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
35
|
+
"is not supported with given inputs."
|
|
36
|
+
)
|
|
37
|
+
return ready
|
|
38
|
+
|
|
39
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
40
|
+
ready = super()._onedal_gpu_supported(method_name, *data)
|
|
41
|
+
if not ready:
|
|
42
|
+
raise RuntimeError(
|
|
43
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
44
|
+
"is not supported with given inputs."
|
|
45
|
+
)
|
|
46
|
+
return ready
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class RandomForestRegressor(RandomForestRegressor_Batch):
|
|
50
|
+
__doc__ = RandomForestRegressor_Batch.__doc__
|
|
51
|
+
_onedal_factory = onedal_RandomForestRegressor
|
|
52
|
+
|
|
53
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
54
|
+
# TODO:
|
|
55
|
+
# check which methods supported SPMD interface on CPU.
|
|
56
|
+
ready = super()._onedal_cpu_supported(method_name, *data)
|
|
57
|
+
if not ready:
|
|
58
|
+
raise RuntimeError(
|
|
59
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
60
|
+
"is not supported with given inputs."
|
|
61
|
+
)
|
|
62
|
+
return ready
|
|
63
|
+
|
|
64
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
65
|
+
ready = super()._onedal_gpu_supported(method_name, *data)
|
|
66
|
+
if not ready:
|
|
67
|
+
raise RuntimeError(
|
|
68
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
69
|
+
"is not supported with given inputs."
|
|
70
|
+
)
|
|
71
|
+
return ready
|