scikit-learn-intelex 2025.1.0__py310-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +222 -0
- onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +564 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +154 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +414 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +727 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +250 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +767 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/validation.py +440 -0
- scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
- scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +132 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +230 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +395 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +159 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +398 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +425 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +135 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +482 -0
- sklearnex/linear_model/incremental_ridge.py +425 -0
- sklearnex/linear_model/linear.py +341 -0
- sklearnex/linear_model/logistic_regression.py +413 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +167 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +138 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +233 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +424 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +390 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_memory_usage.py +379 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +321 -0
- sklearnex/tests/utils/__init__.py +44 -0
- sklearnex/tests/utils/base.py +371 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
|
@@ -0,0 +1,231 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: scikit-learn-intelex
|
|
3
|
+
Version: 2025.1.0
|
|
4
|
+
Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
|
|
5
|
+
Home-page: https://github.com/intel/scikit-learn-intelex
|
|
6
|
+
Author: Intel Corporation
|
|
7
|
+
Author-email: onedal.maintainers@intel.com
|
|
8
|
+
Maintainer-email: onedal.maintainers@intel.com
|
|
9
|
+
License: Apache v2.0
|
|
10
|
+
Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
|
|
11
|
+
Project-URL: Documentation, https://intel.github.io/scikit-learn-intelex/
|
|
12
|
+
Project-URL: Source Code, https://github.com/intel/scikit-learn-intelex
|
|
13
|
+
Keywords: machine learning,scikit-learn,data science,data analytics
|
|
14
|
+
Platform: UNKNOWN
|
|
15
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
16
|
+
Classifier: Environment :: Console
|
|
17
|
+
Classifier: Intended Audience :: Developers
|
|
18
|
+
Classifier: Intended Audience :: Other Audience
|
|
19
|
+
Classifier: Intended Audience :: Science/Research
|
|
20
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
21
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
22
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
23
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
24
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
25
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
26
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
27
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
28
|
+
Classifier: Topic :: Scientific/Engineering
|
|
29
|
+
Classifier: Topic :: System
|
|
30
|
+
Classifier: Topic :: Software Development
|
|
31
|
+
Requires-Python: >=3.7
|
|
32
|
+
Description-Content-Type: text/markdown
|
|
33
|
+
License-File: LICENSE.txt
|
|
34
|
+
Requires-Dist: daal (==2025.1.0)
|
|
35
|
+
Requires-Dist: numpy (>=1.19)
|
|
36
|
+
Requires-Dist: scikit-learn (>=0.22)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
# Intel(R) Extension for Scikit-learn*
|
|
40
|
+
|
|
41
|
+
[](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
|
|
42
|
+
[](https://scan.coverity.com/projects/daal4py)
|
|
43
|
+
[](https://github.com/intel/scikit-learn-intelex/discussions)
|
|
44
|
+
[](https://pypi.org/project/scikit-learn-intelex/)
|
|
45
|
+
[](https://anaconda.org/conda-forge/scikit-learn-intelex)
|
|
46
|
+
|
|
47
|
+
With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
|
|
48
|
+
|
|
49
|
+
The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
|
|
50
|
+
|
|
51
|
+
⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
|
|
52
|
+
You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
|
|
53
|
+
|
|
54
|
+
## 👀 Follow us on Medium
|
|
55
|
+
|
|
56
|
+
We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
|
|
57
|
+
|
|
58
|
+
- [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)
|
|
59
|
+
- [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)
|
|
60
|
+
- [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)
|
|
61
|
+
- [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)
|
|
62
|
+
- [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)
|
|
63
|
+
- [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
|
|
64
|
+
- [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)
|
|
65
|
+
- [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
|
|
66
|
+
- [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)
|
|
67
|
+
- [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
|
|
68
|
+
|
|
69
|
+
## 🔗 Important links
|
|
70
|
+
- [Notebook examples](https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks)
|
|
71
|
+
- [Documentation](https://intel.github.io/scikit-learn-intelex/)
|
|
72
|
+
- [scikit-learn API and patching](https://intel.github.io/scikit-learn-intelex/)
|
|
73
|
+
- [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
|
|
74
|
+
- [Building from Sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md)
|
|
75
|
+
- [About Intel(R) oneAPI Data Analytics Library](https://github.com/oneapi-src/oneDAL)
|
|
76
|
+
- [About Intel(R) daal4py](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py)
|
|
77
|
+
|
|
78
|
+
## 💬 Support
|
|
79
|
+
|
|
80
|
+
Report issues, ask questions, and provide suggestions using:
|
|
81
|
+
|
|
82
|
+
- [GitHub Issues](https://github.com/intel/scikit-learn-intelex/issues)
|
|
83
|
+
- [GitHub Discussions](https://github.com/intel/scikit-learn-intelex/discussions)
|
|
84
|
+
- [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
|
|
85
|
+
|
|
86
|
+
You may reach out to project maintainers privately at onedal.maintainers@intel.com
|
|
87
|
+
|
|
88
|
+
# 🛠 Installation
|
|
89
|
+
Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
|
|
90
|
+
on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://anaconda.org/intel/scikit-learn-intelex).
|
|
91
|
+
Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
|
|
92
|
+
|
|
93
|
+
- PyPi (recommended by default)
|
|
94
|
+
|
|
95
|
+
```bash
|
|
96
|
+
pip install scikit-learn-intelex
|
|
97
|
+
```
|
|
98
|
+
|
|
99
|
+
- Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
|
|
100
|
+
|
|
101
|
+
```bash
|
|
102
|
+
conda config --add channels conda-forge
|
|
103
|
+
conda config --set channel_priority strict
|
|
104
|
+
conda install scikit-learn-intelex
|
|
105
|
+
```
|
|
106
|
+
|
|
107
|
+
- Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
|
|
108
|
+
|
|
109
|
+
```bash
|
|
110
|
+
conda config --add channels intel
|
|
111
|
+
conda config --set channel_priority strict
|
|
112
|
+
conda install scikit-learn-intelex
|
|
113
|
+
```
|
|
114
|
+
|
|
115
|
+
<details><summary>[Click to expand] ℹ️ Supported configurations </summary>
|
|
116
|
+
|
|
117
|
+
#### 📦 PyPi channel
|
|
118
|
+
|
|
119
|
+
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
|
|
120
|
+
| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
|
|
121
|
+
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
122
|
+
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
123
|
+
|
|
124
|
+
#### 📦 Anaconda Cloud: Conda-Forge channel
|
|
125
|
+
|
|
126
|
+
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
|
|
127
|
+
| :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
|
|
128
|
+
| **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
|
|
129
|
+
| **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
|
|
130
|
+
|
|
131
|
+
#### 📦 Anaconda Cloud: Intel channel
|
|
132
|
+
|
|
133
|
+
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
|
|
134
|
+
| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
|
|
135
|
+
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
136
|
+
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
137
|
+
|
|
138
|
+
</details>
|
|
139
|
+
|
|
140
|
+
⚠️ Note: *GPU support is an optional dependency. Required dependencies for GPU support
|
|
141
|
+
will not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*
|
|
142
|
+
|
|
143
|
+
<details><summary>[Click to expand] ℹ️ How to install dpcpp_cpp_rt package </summary>
|
|
144
|
+
|
|
145
|
+
- PyPi
|
|
146
|
+
|
|
147
|
+
```bash
|
|
148
|
+
pip install --upgrade dpcpp_cpp_rt
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
- Anaconda Cloud
|
|
152
|
+
|
|
153
|
+
```bash
|
|
154
|
+
conda install dpcpp_cpp_rt -c intel
|
|
155
|
+
```
|
|
156
|
+
|
|
157
|
+
</details>
|
|
158
|
+
|
|
159
|
+
You can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.
|
|
160
|
+
|
|
161
|
+
# ⚡️ Get Started
|
|
162
|
+
|
|
163
|
+
Intel CPU optimizations patching
|
|
164
|
+
```py
|
|
165
|
+
import numpy as np
|
|
166
|
+
from sklearnex import patch_sklearn
|
|
167
|
+
patch_sklearn()
|
|
168
|
+
|
|
169
|
+
from sklearn.cluster import DBSCAN
|
|
170
|
+
|
|
171
|
+
X = np.array([[1., 2.], [2., 2.], [2., 3.],
|
|
172
|
+
[8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
|
|
173
|
+
clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
Intel GPU optimizations patching
|
|
177
|
+
```py
|
|
178
|
+
import numpy as np
|
|
179
|
+
import dpctl
|
|
180
|
+
from sklearnex import patch_sklearn, config_context
|
|
181
|
+
patch_sklearn()
|
|
182
|
+
|
|
183
|
+
from sklearn.cluster import DBSCAN
|
|
184
|
+
|
|
185
|
+
X = np.array([[1., 2.], [2., 2.], [2., 3.],
|
|
186
|
+
[8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
|
|
187
|
+
with config_context(target_offload="gpu:0"):
|
|
188
|
+
clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
|
189
|
+
```
|
|
190
|
+
|
|
191
|
+
# 🚀 Scikit-learn patching
|
|
192
|
+
|
|
193
|
+

|
|
194
|
+
Configurations:
|
|
195
|
+
- HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
|
|
196
|
+
- SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8
|
|
197
|
+
|
|
198
|
+
[Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
|
|
199
|
+
|
|
200
|
+
<details><summary>[Click to expand] ℹ️ Reproduce results </summary>
|
|
201
|
+
|
|
202
|
+
- With Intel® Extension for Scikit-learn enabled:
|
|
203
|
+
|
|
204
|
+
```bash
|
|
205
|
+
python runner.py --configs configs/blogs/skl_conda_config.json -–report
|
|
206
|
+
```
|
|
207
|
+
|
|
208
|
+
- With the original Scikit-learn:
|
|
209
|
+
|
|
210
|
+
```bash
|
|
211
|
+
python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
|
|
212
|
+
```
|
|
213
|
+
</details>
|
|
214
|
+
|
|
215
|
+
Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
|
|
216
|
+
|
|
217
|
+
⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
|
|
218
|
+
|
|
219
|
+
## 📜 Intel(R) Extension for Scikit-learn verbose
|
|
220
|
+
|
|
221
|
+
To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
|
|
222
|
+
- On Linux: `export SKLEARNEX_VERBOSE=INFO`
|
|
223
|
+
- On Windows: `set SKLEARNEX_VERBOSE=INFO`
|
|
224
|
+
|
|
225
|
+
For example, for DBSCAN you get one of these print statements depending on which implementation is used:
|
|
226
|
+
- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
|
|
227
|
+
- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
|
|
228
|
+
|
|
229
|
+
[Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
|
|
230
|
+
|
|
231
|
+
|
|
@@ -0,0 +1,280 @@
|
|
|
1
|
+
daal4py/__init__.py,sha256=Z9m4-_WGRMvvv4BRTlQy9tDh6dDXyKMuvJbFdCkKm7U,2605
|
|
2
|
+
daal4py/__main__.py,sha256=XkcEBDY30krQy7F6b5GRIBs1Ef3mNjv8IZE3TdcUCAs,1956
|
|
3
|
+
daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so,sha256=0ZVz0KUy67Ey-JodfYyx22a3YrTsSNLbprz0SHAqcWI,10799144
|
|
4
|
+
daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so,sha256=coO2qT6As_J7pGUeuOgfhqTqj0_Wd11cFZTHP2T2XGg,22904
|
|
5
|
+
daal4py/doc/third-party-programs.txt,sha256=3tB2wzQ26wLa0aa574AxPit02Cse01Sqk0MJJboyQd0,21754
|
|
6
|
+
daal4py/mb/__init__.py,sha256=Gw3YCjY4oRlB-Y-io1hD9wnRs20WK-5M8ADaMh-orLE,853
|
|
7
|
+
daal4py/mb/model_builders.py,sha256=kyyv7V8XG2MWiCIPjGoyozz2W9iV2zg3sg1xwZ_GCmw,15453
|
|
8
|
+
daal4py/sklearn/__init__.py,sha256=ljO7C5-OtnGwwtlFCDWGHzmc4pDH0M9QtlJbs--TeiQ,1410
|
|
9
|
+
daal4py/sklearn/_n_jobs_support.py,sha256=EltNq0g0YxqIyO7nxBpskXjKg9GqCOPogKpSOxD9wlk,9756
|
|
10
|
+
daal4py/sklearn/_utils.py,sha256=gEkrpJmWJZ3vH0saploNyeTc11JqobT-If666oA7orA,7619
|
|
11
|
+
daal4py/sklearn/cluster/__init__.py,sha256=qb3jlWeIF5XSxofmlnvtAWYINhsnnWBq_PJg_jp0F44,831
|
|
12
|
+
daal4py/sklearn/cluster/dbscan.py,sha256=3op03kXlvKYul28sl64K3xY4G6q7XBGXyShukBBLPjA,5726
|
|
13
|
+
daal4py/sklearn/cluster/k_means.py,sha256=LLlap2zDbHrp6wPILOQZ-GzG6WhVmUpNZLsJSLA-cyk,20218
|
|
14
|
+
daal4py/sklearn/cluster/tests/test_dbscan.py,sha256=j8PeJIt3zqpWFMDltt2-nYc2gWPujeZYYdwQfUHyEe0,3868
|
|
15
|
+
daal4py/sklearn/decomposition/__init__.py,sha256=L7T0brhrvz-9lrJjnou9U84u5y0C9bscg1y18KfA--Y,785
|
|
16
|
+
daal4py/sklearn/decomposition/_pca.py,sha256=nG-4L4N90QmmIlRJJgGXi5FoXeyNyOfUrkTMrYxn9Ag,18970
|
|
17
|
+
daal4py/sklearn/ensemble/AdaBoostClassifier.py,sha256=QdQwxoyLkVdhj9FpETNwq4FboAEbuaHQhAoV0YMh7nw,6773
|
|
18
|
+
daal4py/sklearn/ensemble/GBTDAAL.py,sha256=0scbxzKTf8ItjeF6afME9l1AvnbQz0MIs63yRcW5qFw,11482
|
|
19
|
+
daal4py/sklearn/ensemble/__init__.py,sha256=NE1py-RLgY6ubN6LIi4QlbXqMkLaygTK5uwQyjC3-d4,1068
|
|
20
|
+
daal4py/sklearn/ensemble/_forest.py,sha256=cG3pf7fAyAzvOt22fXPZeMB-2eq8Moq29OmonsTid88,53253
|
|
21
|
+
daal4py/sklearn/ensemble/tests/test_decision_forest.py,sha256=r0u7UkQrAntATP99EyCIpvvt3a1BgHMQEiqwqDeLGsk,6956
|
|
22
|
+
daal4py/sklearn/linear_model/__init__.py,sha256=qBjmXJW0bKX7FZZC9j559ZREUw7Ddb0vobKjDKkrXaw,1069
|
|
23
|
+
daal4py/sklearn/linear_model/_coordinate_descent.py,sha256=PE_6ZnoVygVPtgFgfm3jvoT6SyufIQ0UpNL8QhCfXvA,28380
|
|
24
|
+
daal4py/sklearn/linear_model/_linear.py,sha256=3EBj8q1TUDvYDaxw2dfOkAiWjWxFXeZ6LbeVrdOdYY8,8753
|
|
25
|
+
daal4py/sklearn/linear_model/_ridge.py,sha256=u_X0jRxUqR0u_WLfW7Ls1hYeXYnedBVxJdsF99I0JkM,10533
|
|
26
|
+
daal4py/sklearn/linear_model/coordinate_descent.py,sha256=upbKtmIQ3sVxr2H4z6GA1qWqXgT2hgP5OHZK7ASidis,779
|
|
27
|
+
daal4py/sklearn/linear_model/linear.py,sha256=na9FknpQlw2Up-jgIV7xYqSpHZKN1s9O5LWgP0oxMmk,767
|
|
28
|
+
daal4py/sklearn/linear_model/logistic_loss.py,sha256=PFX7HInSCjUsjWxEqz2AcWpNGkne1X_f2WgsVkvFkXk,5698
|
|
29
|
+
daal4py/sklearn/linear_model/logistic_path.py,sha256=D8HTC7r4obokccmoTjktGrKdbuF71yc3_4DQVYgorfs,37387
|
|
30
|
+
daal4py/sklearn/linear_model/ridge.py,sha256=87SL9602MtRaahCWkwqwzUOUW1tk-nOQah9BklU7a7c,766
|
|
31
|
+
daal4py/sklearn/linear_model/tests/test_linear.py,sha256=_k-O0BlaeeVDdS4HmpLGg4XirPV-2eJrkTj9AnEGWwE,6763
|
|
32
|
+
daal4py/sklearn/linear_model/tests/test_ridge.py,sha256=UNxSclFuq4V5pqzcYTaFQBGRWxKlgNwfnYSqUkio8mQ,2451
|
|
33
|
+
daal4py/sklearn/manifold/__init__.py,sha256=wwA6Xjd62lNdPIFu2gowmpZfcm_B2WUk8BYUM_Y3vAo,789
|
|
34
|
+
daal4py/sklearn/manifold/_t_sne.py,sha256=Vlh8--DoNA7JSAVRx0WfZLg45qfz8kbj2sZjOKNuKKc,15947
|
|
35
|
+
daal4py/sklearn/metrics/__init__.py,sha256=tvEWaSO3dAPaCuUClXFhVpO7XfNEnYDoq1ZFf66KD3M,873
|
|
36
|
+
daal4py/sklearn/metrics/_pairwise.py,sha256=4TACjG8vU0KSOc9JkeCmWq8c-HpPBEXVmGM90ESsu7E,8239
|
|
37
|
+
daal4py/sklearn/metrics/_ranking.py,sha256=YBJznAOjgQ-GPaIu-aNP6AMV39_SEwjr99Z_9Ub13XI,7238
|
|
38
|
+
daal4py/sklearn/model_selection/__init__.py,sha256=AkKzl_Q4hN9myaeXmTMRQSwXcKh9UTzKH85ySH29AHo,834
|
|
39
|
+
daal4py/sklearn/model_selection/_split.py,sha256=fvPJQEz3mceWeLeknrKuchqKxT1eyLoCehg7OBCCbvw,11389
|
|
40
|
+
daal4py/sklearn/model_selection/tests/test_split.py,sha256=MUBiCKh63UctC71aUzzlk4KNXCRblEjzAL0qbaB8xUQ,2065
|
|
41
|
+
daal4py/sklearn/monkeypatch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
42
|
+
daal4py/sklearn/monkeypatch/dispatcher.py,sha256=GGtLj7wUOjNO8l22sGXep4MP93Q2e_vYei4e3p5kuoE,9016
|
|
43
|
+
daal4py/sklearn/monkeypatch/tests/_models_info.py,sha256=mD80wbWCNDr5XiPVNBPbeQ96j9vsWkAdJit5437nmNY,4632
|
|
44
|
+
daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py,sha256=SBy6hDFMymxeaXCliLcmjtF_Q2BaJ__hjC4DCJQVgn8,2447
|
|
45
|
+
daal4py/sklearn/monkeypatch/tests/test_patching.py,sha256=8-PNkS1IzGkPTUKH-8BTeBAKzjWoxVr3gxXnIEcDMjI,2708
|
|
46
|
+
daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py,sha256=QsshyTu_xbEfRyDqIdwYXhn72YMDRsNsdxoxMVyzv7E,3698
|
|
47
|
+
daal4py/sklearn/neighbors/__init__.py,sha256=HKrqR7H6UIU4G02S4KASadaYcwGHHBXKLoQmPaDT_WY,962
|
|
48
|
+
daal4py/sklearn/neighbors/_base.py,sha256=jXRYB6UMmS10OREN_K2vROyjMb_c1W6nXdUUSK6DJw4,17297
|
|
49
|
+
daal4py/sklearn/neighbors/_classification.py,sha256=FV8MlAJ5HRgHk6CxnlZv4N102vgs41pMZ_dWdy8OHeI,4823
|
|
50
|
+
daal4py/sklearn/neighbors/_regression.py,sha256=fw8RotX9x_1taqhOmW_MFLGOQsbjGTzrFvvA4IJRddE,2434
|
|
51
|
+
daal4py/sklearn/neighbors/_unsupervised.py,sha256=IpIKiZYmdbKtNatbi6BE6QIF7i7VXXcnh9tACY8kLB8,1790
|
|
52
|
+
daal4py/sklearn/neighbors/tests/test_kneighbors.py,sha256=ifHe4Uz4wvEjf-u71eGN2O3FfPXUY20-BbqhLAAjyIs,4394
|
|
53
|
+
daal4py/sklearn/svm/__init__.py,sha256=zSfWPgCxTUGF92Ul5psjCyssvDYnaOfKvyuz3pAQk4A,784
|
|
54
|
+
daal4py/sklearn/svm/svm.py,sha256=VKmImNCRRK1MCCFpROAQCs7U79TrgPRBqtoyolfODTk,24126
|
|
55
|
+
daal4py/sklearn/utils/__init__.py,sha256=4Lehb4O7jih_S0n_y4aNun6vWT5SfISDPDzPP0WnPhA,828
|
|
56
|
+
daal4py/sklearn/utils/base.py,sha256=usdRsETKbIsEZfohFBWZqfD4cQfZ3B-3svoLTAhIXiI,3032
|
|
57
|
+
daal4py/sklearn/utils/validation.py,sha256=bxhcgaLoqBM_ZZDbX-y7ZziVtFE2g7VFeYFrlLOFb7Y,25857
|
|
58
|
+
daal4py/sklearn/utils/tests/test_utils.py,sha256=n3bO5WJCb5Q9Dlk_S8SxNhhvQJGT3dVkaFfzi7WU2xo,1963
|
|
59
|
+
onedal/__init__.py,sha256=t9aTOZfzqSLNLlDITKiZD2Y-Q6uGD5Ust0DuzkhoUNI,2595
|
|
60
|
+
onedal/_config.py,sha256=Y6u69lFxA5FV-2fgzis1f5QxMbWfbT6rUN_dPV_OmCU,1828
|
|
61
|
+
onedal/_device_offload.py,sha256=I435t8EqmKKqMDMhPVrBKOShSG-D06C1E_h5WeOulCM,7910
|
|
62
|
+
onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so,sha256=ZlN9TmWSajznfPNWUwxOmpdYB79OJiAWqnEFwMVh_3o,2752048
|
|
63
|
+
onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so,sha256=anK8R4bUPShHtMcqM-I6U362N7Fr0ddjIrsGZuvB_QI,1572152
|
|
64
|
+
onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so,sha256=Bc0WXLwZ7z_ZyryaegVzDPIgvKqfmE_KgdgzFy-GgKI,1039920
|
|
65
|
+
onedal/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
66
|
+
onedal/basic_statistics/basic_statistics.py,sha256=RXehnZh5JHqaKNXEWvz7pVt_3C9DTefu1OUVX-kZ1kg,3710
|
|
67
|
+
onedal/basic_statistics/incremental_basic_statistics.py,sha256=xTflikq9CAecI3vqwj9bcMawzCKcLkjW56fXnu1Yj_U,5346
|
|
68
|
+
onedal/basic_statistics/tests/test_basic_statistics.py,sha256=5_GjDKbb2qN57UeIwXEnZSKENbWNUPUey2HjLZ7UtqU,9503
|
|
69
|
+
onedal/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=hiB7kTebX4fhgbTclAQ6R4gkXG7CIEPMUTPJGHXFgOY,7399
|
|
70
|
+
onedal/cluster/__init__.py,sha256=_xWLZWG4nmnvcntClA-KAG0SOQOVUeq3hQdlRXt4ZlE,1054
|
|
71
|
+
onedal/cluster/dbscan.py,sha256=LDAF2z2Uv7Th7Q-o7uwwpMprFAKUVHqSV2OqynmjJzY,3688
|
|
72
|
+
onedal/cluster/kmeans.py,sha256=JD3_TWm5SOwfBOC7GLSkZdqAPt2jQ6SQlI3CCkRyjhI,19350
|
|
73
|
+
onedal/cluster/kmeans_init.py,sha256=osex8tdVuKNXqRXuuVvdeBwzjUNECUZCGfiDM-1LNGE,4011
|
|
74
|
+
onedal/cluster/tests/test_dbscan.py,sha256=EFbPR7872nnwg9pjGK358EpdfIDvep2ML1ml1ewC1Jw,4232
|
|
75
|
+
onedal/cluster/tests/test_kmeans.py,sha256=8-CaqVDa1WBy8NFEJ7aEogxNeRF9FuryRUtP0M4oLnM,3683
|
|
76
|
+
onedal/cluster/tests/test_kmeans_init.py,sha256=DmMWYhTyX4ju9zdPTuAQnfH4mvd3vDUol0qgv9wVejI,4031
|
|
77
|
+
onedal/common/_base.py,sha256=_ywcmPy5qbF8igz50FKnFp8obpuqcOFdFEePnN-mKiA,1374
|
|
78
|
+
onedal/common/_estimator_checks.py,sha256=IJre7S_H4_cBSyOhHKzUN6BkmbXYPxWUJkLyjTtuyEM,1848
|
|
79
|
+
onedal/common/_mixin.py,sha256=ucnJvRl5m6RS4r_9jAZWVPlE2AZ-shd0bbHu_kFAH8U,1995
|
|
80
|
+
onedal/common/_policy.py,sha256=iDbhCPJrmv3Q36piExZqdG3OTHhPrIcma-88HXI3ZgQ,2079
|
|
81
|
+
onedal/common/_spmd_policy.py,sha256=428GN-Evrq_DDmSQbVyhPuiRpEhUDYw66pZiFZ_-HwU,1170
|
|
82
|
+
onedal/common/hyperparameters.py,sha256=tlrxFB3tWVEeZEjAKziTGVoq9sus6aRBWIpv0JgzxcA,4907
|
|
83
|
+
onedal/common/tests/test_policy.py,sha256=V7oEax87QvUBAxPUp7dp9QiAYJE8Rto4a53Xqy2aC6o,2669
|
|
84
|
+
onedal/covariance/__init__.py,sha256=M_LutElm3cDgR5EPd38HTJhHfkAibSv_n01RrZSpnVs,926
|
|
85
|
+
onedal/covariance/covariance.py,sha256=JgFnslZny2gmrYDrvlSnjQBaPd8PfD1q-bo6WogVOBI,4313
|
|
86
|
+
onedal/covariance/incremental_covariance.py,sha256=SQe5Aj9uZm2DfV232kEGzlAdqDazDpjARfH4RgCtmdA,4722
|
|
87
|
+
onedal/covariance/tests/test_covariance.py,sha256=ABf7RbNCts3Fxxpmpda7oicY22kS1alFb0MQDzU4ohc,1931
|
|
88
|
+
onedal/covariance/tests/test_incremental_covariance.py,sha256=OV9cDNgSA2g-zrAClpSz_oOvj6b4calPOOE5vKhTwdA,4275
|
|
89
|
+
onedal/datatypes/__init__.py,sha256=r8Jzt7mSbxbii6aBTif6JHkt9uTHOSsweOCd2p2gVxE,881
|
|
90
|
+
onedal/datatypes/_data_conversion.py,sha256=QMg5h44KbQdMvtL2gPUwQQyZ-p1BeUXQr1oDqWu4muA,5477
|
|
91
|
+
onedal/datatypes/tests/common.py,sha256=nHAvZ_B-5t93j0beXACkPN1nzVGaBNxvVI3HKOu22OE,6078
|
|
92
|
+
onedal/datatypes/tests/test_data.py,sha256=HG7tRI3fu5fcYrdPahqgAfygn3fQNG1iXnw-gOpk-yM,15146
|
|
93
|
+
onedal/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
|
|
94
|
+
onedal/decomposition/incremental_pca.py,sha256=Hn2nOy5veAhFIE8od_XULTrzIM2V_6jiBRyQFzEBtnA,7232
|
|
95
|
+
onedal/decomposition/pca.py,sha256=FYthk_AEaTUbM6WigXzHwVE9PXykwLnq0zFVfIv0HRY,7329
|
|
96
|
+
onedal/decomposition/tests/test_incremental_pca.py,sha256=QFsXHtu1guIruLPl-Slv196bga3r5oeGfp0gcGyVdXs,7929
|
|
97
|
+
onedal/ensemble/__init__.py,sha256=zPG_906z717pMYeSxVJR8aZhUqHin45K5gOuvh3ZEsQ,1003
|
|
98
|
+
onedal/ensemble/forest.py,sha256=m0Al3bFAQMSy4GO_lllBbCFDlbqy50ceSRj3M3woEns,26368
|
|
99
|
+
onedal/ensemble/tests/test_random_forest.py,sha256=S0mNfDUSZ8tazitB3bb-ZiNdcbslpHO8wKyJJT7Cgio,3910
|
|
100
|
+
onedal/linear_model/__init__.py,sha256=VgNBLO71sBhXqvQUwN9h9pEadCg5trDzuN7Z6UDp4ck,1096
|
|
101
|
+
onedal/linear_model/incremental_linear_model.py,sha256=naLVv4xqTD_eE8J0IyNg0C-2oVji6z6BWZYXEsWFxeQ,8920
|
|
102
|
+
onedal/linear_model/linear_model.py,sha256=kMg9KKzhGz-VjtRtdsYS0L-cmxNJbHLFGN73U_CV-n8,10461
|
|
103
|
+
onedal/linear_model/logistic_regression.py,sha256=8hY--YCGaPYVSzLrGW9XwueTwZV3RT_1JkkWtRe5_RA,7974
|
|
104
|
+
onedal/linear_model/tests/test_incremental_linear_regression.py,sha256=LDhkcAhM-AUz5siaIHT8ojDYAPriGV55CL3E19wSCJM,6146
|
|
105
|
+
onedal/linear_model/tests/test_incremental_ridge_regression.py,sha256=t9WPJteAAqj7ae6p_nd3xSbWoxUkfjvj0a_2jsf_J7w,4368
|
|
106
|
+
onedal/linear_model/tests/test_linear_regression.py,sha256=Mr_i-NMD8PIsoPtI53vvVrENAiUppgbUKBRAE775Ets,8658
|
|
107
|
+
onedal/linear_model/tests/test_logistic_regression.py,sha256=AkkFycXvXSWPg9jgRGzGXjpq0GExLHbO0n9wddxpqzk,3860
|
|
108
|
+
onedal/linear_model/tests/test_ridge.py,sha256=6OaiavZisFAXyvQrz9haEYLvtrok1Gv1_3zkCK6C39I,3712
|
|
109
|
+
onedal/neighbors/__init__.py,sha256=0uhV1DilaCFEGJOhoQhcr6hduHQDVyuKMeP6broamKk,927
|
|
110
|
+
onedal/neighbors/neighbors.py,sha256=pN9PVVifZeulsYjCYSAUIuurxqweG9_YnEQ2_RGtd-4,28148
|
|
111
|
+
onedal/neighbors/tests/test_knn_classification.py,sha256=wjzIQgwIIEspA8fct0iVv0UvBuDLVIdl1IPN_GAGDJk,1881
|
|
112
|
+
onedal/primitives/__init__.py,sha256=JZjEiUEtXMnZ40Sv59Uydl5qeaSwEhDS8ktRVyQQat0,1037
|
|
113
|
+
onedal/primitives/get_tree.py,sha256=SDB1RG5Zr6sAGpYjxxRFCGqJdAS0ATgMP3TVU9u5MhM,1038
|
|
114
|
+
onedal/primitives/kernel_functions.py,sha256=oTSAa6e_eAaGx0Bk3a0CkjSJadNaRJc6bhF2xlkoOn8,4559
|
|
115
|
+
onedal/primitives/tests/test_kernel_functions.py,sha256=fAdAIGwNvBWAkjdvocqS3X8JjZCYClvvJkANrdxXz0o,6101
|
|
116
|
+
onedal/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
117
|
+
onedal/spmd/_base.py,sha256=b_E2sdBgnlYArAmBDTzX1tVQolv8efkZ6WZFLm0AqQ8,1172
|
|
118
|
+
onedal/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
119
|
+
onedal/spmd/basic_statistics/basic_statistics.py,sha256=CSb1IGj-RSxXucoaI_AUt76vOn3u_eSiyYuFd1SFIGc,1290
|
|
120
|
+
onedal/spmd/basic_statistics/incremental_basic_statistics.py,sha256=rwBG-jv4giEJTcJo7OZMuuUakxGBkRmK5lZKZDIuHsU,2588
|
|
121
|
+
onedal/spmd/cluster/__init__.py,sha256=oDnWnrClkTH9dVx8tAw_hdVZBDROOSMD1__3AZwp42g,981
|
|
122
|
+
onedal/spmd/cluster/dbscan.py,sha256=Gi28SjQ-Kqhs2u4ZXJx7TyvS3mLrKwKiahrr3E_Daqk,891
|
|
123
|
+
onedal/spmd/cluster/kmeans.py,sha256=_eYOojTS_twoBdq4AhPjeYi7foUADzRavIDpBHl6VAo,1966
|
|
124
|
+
onedal/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
|
|
125
|
+
onedal/spmd/covariance/covariance.py,sha256=WOIiZGePCsaA0Wg9sViro2PFr-EE73ip0LQcFzPq7_0,1102
|
|
126
|
+
onedal/spmd/covariance/incremental_covariance.py,sha256=kqKbJ4I0ZWSDSN2TnDn9dKPCariEMGRUPMbvn-6fFaE,2736
|
|
127
|
+
onedal/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
|
|
128
|
+
onedal/spmd/decomposition/incremental_pca.py,sha256=oCEAdh3Qt_8Epw3yrQPOAxwW_WkyFMvUFB3E_obfdgs,4171
|
|
129
|
+
onedal/spmd/decomposition/pca.py,sha256=igamsO8J5b9rpsngaQ2fHXCLJ2vew6fU3sbKUqBEEVw,1043
|
|
130
|
+
onedal/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
131
|
+
onedal/spmd/ensemble/forest.py,sha256=r8plwKIyQaE8pF7pYwTRFZyCTU6Cdc1-5FqRI7IMKz0,1125
|
|
132
|
+
onedal/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
|
|
133
|
+
onedal/spmd/linear_model/incremental_linear_model.py,sha256=Z92yj7Yw1qhY9fbhOwxU6OuSGmyyrrJy_imiSOck6WU,3571
|
|
134
|
+
onedal/spmd/linear_model/linear_model.py,sha256=wCVXzju4orFSyw65Urdzc7BDuVNc4jBV_6BEpOXt66k,1204
|
|
135
|
+
onedal/spmd/linear_model/logistic_regression.py,sha256=EE2tlaQR7BmyMcghkR7vXgDtEjZ_Z-hI1wpqxpKgges,1472
|
|
136
|
+
onedal/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
137
|
+
onedal/spmd/neighbors/neighbors.py,sha256=-YQTGAyre4aVK_urKfr0LuCYIS_AH8YWm9lEWG1xgO0,2960
|
|
138
|
+
onedal/svm/__init__.py,sha256=xxEw0IY_UHIfcDW86SfBShD_x78OZxRqSUM0EUxzP-w,848
|
|
139
|
+
onedal/svm/svm.py,sha256=7leaeYHpcpF8ZYnLL9jfZzMHTknkK1spCTEIahJ6OI0,17520
|
|
140
|
+
onedal/svm/tests/test_csr_svm.py,sha256=VoKhuFUZ-2bHFOG3jUBnceuXzpk5ix_79frVxLJf5Qk,8924
|
|
141
|
+
onedal/svm/tests/test_nusvc.py,sha256=WxATmJ6GWHMzPJw6qF4HSEU1bVTaQ-qlWKeqphF5roY,7538
|
|
142
|
+
onedal/svm/tests/test_nusvr.py,sha256=oQ8yZiPVz4VXDFKnDuW03rnQco3dDrHAFa7eSXlAQPA,7703
|
|
143
|
+
onedal/svm/tests/test_svc.py,sha256=BmPzRVcHxrECpQjRCG5U2i_0APPmsyIMdZZOADn92Vk,6523
|
|
144
|
+
onedal/svm/tests/test_svr.py,sha256=EakCy0mvvpZ8DJtlmcx0FXa6rJ-zJ4Glt_btLdvx9EI,8934
|
|
145
|
+
onedal/tests/test_common.py,sha256=iX6fA1bIgChvMBIyekXEiPfA1_tYL40IwgF9Gq5cVHU,1990
|
|
146
|
+
onedal/tests/utils/_dataframes_support.py,sha256=hqbWymmv40wUnuJagEdmBkx9eU9boOgSZ3oXAtienZM,5449
|
|
147
|
+
onedal/tests/utils/_device_selection.py,sha256=28OSRokAizriXD8R3gmb5UIwHqv7VIeOI-JbpSsj1F0,2968
|
|
148
|
+
onedal/utils/__init__.py,sha256=10xcH75SnCfeRROvzzzbcK7S_My41GwKJIo3e1MV1TA,1411
|
|
149
|
+
onedal/utils/_array_api.py,sha256=mo3rnvKaW7-eOwddGvYJY949K6jxRDnYYGZZDt83Lts,2953
|
|
150
|
+
onedal/utils/_dpep_helpers.py,sha256=b-GslMlDRfv7qapJNTjF6hxRZa7j7MP5yMNTLCpgeNU,1889
|
|
151
|
+
onedal/utils/validation.py,sha256=w7sz-iOc2b9Dsp3LjLYdhvPMLZ2M8cWvU3yjEhwlW88,14612
|
|
152
|
+
sklearnex/__init__.py,sha256=JmyKzBQs3ug2RxHN8RQ1bspzfBrYkGAFRW4DYrY4cww,1798
|
|
153
|
+
sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
154
|
+
sklearnex/_config.py,sha256=gNLOR945IboVS-aBdfgQM4s7th0B0FYdbmxUf4WAgRo,4276
|
|
155
|
+
sklearnex/_device_offload.py,sha256=lPvcy8kBagniN0updIygzWad7cOxjfZgUtUdPQzAecQ,5487
|
|
156
|
+
sklearnex/_utils.py,sha256=T0UoTT3SPKvYbTdLmUSs6HR5mfPOFPXNDz-oBk1hYpg,4829
|
|
157
|
+
sklearnex/conftest.py,sha256=Y_-4MPhPv2eNYWD7cPA94CymFG6tsXfTTYfjPLjDq_0,2619
|
|
158
|
+
sklearnex/dispatcher.py,sha256=AWsrUNRZukLscR-sBzjMLdin-9rziPuSaBfWgj2Kx9Y,18993
|
|
159
|
+
sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
160
|
+
sklearnex/basic_statistics/basic_statistics.py,sha256=6Ll5ZDMAXnKigimEYVF9BWUMHYe1Kw1pl6SN8JoTtpA,8331
|
|
161
|
+
sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=QRgTv_h_7EHnD025sYzuznFFTMW8NjAMaLqXKkxyL2g,11951
|
|
162
|
+
sklearnex/basic_statistics/tests/test_basic_statistics.py,sha256=ZlmALlEZiPZPfbi6LjCvVxlW2XNK98oqgZAz9OLcUlk,10163
|
|
163
|
+
sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=-GCaBMSRK-jRhrf_Lj_zP6ALeJq3FTdx9IXwvKxCffM,15626
|
|
164
|
+
sklearnex/cluster/__init__.py,sha256=r0CKwy-PSca0jbZc4jU2CkU__qC643751-GuX1aaY40,853
|
|
165
|
+
sklearnex/cluster/dbscan.py,sha256=5-ILeDD6foeMR1i45GnTUfMCYjsTrsUJ92jXdbgDQKc,6981
|
|
166
|
+
sklearnex/cluster/k_means.py,sha256=_UR9lOxcqE5BIdjkds5khXL3MkcQSe4JrT0ttKXMDog,14032
|
|
167
|
+
sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
|
|
168
|
+
sklearnex/cluster/tests/test_kmeans.py,sha256=VRqGWOzPKKlA9gXx22lx423w1NR2oXoEW_bUKgnvOPI,6240
|
|
169
|
+
sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
170
|
+
sklearnex/covariance/incremental_covariance.py,sha256=kwzJN_D_dwMw_OpQfHg10AyY0bvBtHZ45DvxPJaLw8s,14059
|
|
171
|
+
sklearnex/covariance/tests/test_incremental_covariance.py,sha256=XJQtJc0d3-C9hRI3-NladjKAFEXKO7c1gaziMC-dxlw,8927
|
|
172
|
+
sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
173
|
+
sklearnex/decomposition/pca.py,sha256=7wbz9__4amaq7PsV3n39oL8NuUPqFTFwPvbVQR9vfdY,16932
|
|
174
|
+
sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
|
|
175
|
+
sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
176
|
+
sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
177
|
+
sklearnex/ensemble/_forest.py,sha256=HJ64v04Bv0O93fdGp6Jp634qR1XvNali1txVR1nN9EI,72815
|
|
178
|
+
sklearnex/ensemble/tests/test_forest.py,sha256=ViroyFNoJrnGDxkdoTzQdJkKUrIdqKQ_9Mnctt6ZN-o,5401
|
|
179
|
+
sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
180
|
+
sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
|
|
181
|
+
sklearnex/linear_model/__init__.py,sha256=5ZHAppxcqKlq5MOZTfigFU9MuN1L5Use_F_cZqo_-p4,1218
|
|
182
|
+
sklearnex/linear_model/coordinate_descent.py,sha256=SKNVTYYX8ysZ8M9h32qIaof3Fc2OKcBRXaCOySUBOiE,1554
|
|
183
|
+
sklearnex/linear_model/incremental_linear.py,sha256=i0VvdE2nw1ibr-Jw0fFpPL0H5Ft8hRgpN9aN12ZdlC4,16422
|
|
184
|
+
sklearnex/linear_model/incremental_ridge.py,sha256=YSXZFabn5w4V-Kdcy4Jr_uijbfGOapJlLzeRyMC9DfE,14577
|
|
185
|
+
sklearnex/linear_model/linear.py,sha256=_oCRbDi4Id4rHKfsCKReXhtNFyIMxHTEfZBD7SLtY0s,12332
|
|
186
|
+
sklearnex/linear_model/logistic_regression.py,sha256=CSFLuvJz1lhyMBVGFoAE_P4I-qPYofnCfRtGakocbRI,15167
|
|
187
|
+
sklearnex/linear_model/ridge.py,sha256=jGehrlT0SPNnABvPXZIZhOC5zDLt0s6X_KK8IP6_Krc,1187
|
|
188
|
+
sklearnex/linear_model/tests/test_incremental_linear.py,sha256=R0mS7Fty3auq3VjiwhP2TCSxUyaF2KX0-f2pAUItVEI,7514
|
|
189
|
+
sklearnex/linear_model/tests/test_incremental_ridge.py,sha256=8Zbp-wZFtM8WLb3KHjmXZtxh9AHKKy6x6IFXZ16gkfI,6442
|
|
190
|
+
sklearnex/linear_model/tests/test_linear.py,sha256=hFkzDZ0xqbOuOE6FfwZW9AE8fW8_LmGHvqlLXxfof9g,6581
|
|
191
|
+
sklearnex/linear_model/tests/test_logreg.py,sha256=8kTIMl1Hcuu0NSPcEle0oAdRerqMtUAWrRlLjS-n4EI,4924
|
|
192
|
+
sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
193
|
+
sklearnex/manifold/t_sne.py,sha256=JXVeq9aMtqzeK_Q_0OW47YhpHu1IzqKeufQbrJkohZc,1008
|
|
194
|
+
sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
|
|
195
|
+
sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
|
|
196
|
+
sklearnex/metrics/pairwise.py,sha256=HeBOE8sRBZMiF9pup8HBypDGfizQ-UCrQdX2C6YGvbg,982
|
|
197
|
+
sklearnex/metrics/ranking.py,sha256=6rrOcmQBVwDWiuh6uMg3eLUWEdOGCBr3HieKaP3Hvxk,959
|
|
198
|
+
sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
|
|
199
|
+
sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
|
|
200
|
+
sklearnex/model_selection/split.py,sha256=yvYnmNaKJs-Tr8tGBB-2R9CuhjESYih-CN6Wb3I3z3I,984
|
|
201
|
+
sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
202
|
+
sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
203
|
+
sklearnex/neighbors/_lof.py,sha256=aiarmfDU5ndpp_JN06NUW2Ny0APjJr3zY9Kuq5nYFWM,9312
|
|
204
|
+
sklearnex/neighbors/common.py,sha256=43djavVzXy_W-nYSd_buHpQK_tk20ZUTF7J9e61mBg8,12542
|
|
205
|
+
sklearnex/neighbors/knn_classification.py,sha256=wxsyPFMlAim60LtK39salu7Cpgwiq0hkduv7IuItwEg,8015
|
|
206
|
+
sklearnex/neighbors/knn_regression.py,sha256=TIh6kf1bX07uFw02IuDsG9DKCiiKG1Fsp7jiMXk81jo,6870
|
|
207
|
+
sklearnex/neighbors/knn_unsupervised.py,sha256=L8oBoVnp-H52ns2k2MNr-KMgAK5zu6crYgwMZt4roQM,6316
|
|
208
|
+
sklearnex/neighbors/tests/test_neighbors.py,sha256=gUmnRiY-xH3oGclv6VPxSIHWchgbygGt6p-vcflvYZ0,3540
|
|
209
|
+
sklearnex/preview/__init__.py,sha256=Q-msZszWwTpj9XfPQssKjGpEV183cUbPsmAm3IFBWX0,802
|
|
210
|
+
sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
211
|
+
sklearnex/preview/covariance/covariance.py,sha256=ElUHMWNuMpBdBW9nqp4S5zgPgBdIzJvk2tsKHrzX-08,5301
|
|
212
|
+
sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
|
|
213
|
+
sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
|
|
214
|
+
sklearnex/preview/decomposition/incremental_pca.py,sha256=Ko9jrkUGQJz21bD7xgUcr55S7lPL_7uOPsIq19npnuc,8017
|
|
215
|
+
sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=ivI5JXygdh9Uml-ncouDcdl6XFSmOlSuACBEE62gods,10742
|
|
216
|
+
sklearnex/preview/linear_model/__init__.py,sha256=azZix9bU9zjwl12g0gB_K5RiVPJvkrinHHCwqVTLQLY,792
|
|
217
|
+
sklearnex/preview/linear_model/ridge.py,sha256=YJmxvj2nvIjON-9aWPzXyWaFRFx_hx_I6byvr1qNuJw,15518
|
|
218
|
+
sklearnex/preview/linear_model/tests/test_ridge.py,sha256=Ru6D9fY2o6bXyxSeUo6O7sHF8jKHX30J545yBk0LRSo,4056
|
|
219
|
+
sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
220
|
+
sklearnex/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
221
|
+
sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
222
|
+
sklearnex/spmd/basic_statistics/incremental_basic_statistics.py,sha256=KrTeV84fnwKzh0dlvTOfJYW9gmid_99dqqE5VQ-BKIo,1145
|
|
223
|
+
sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py,sha256=1r8x3pjljr4NZ5CrrVxbHMW_y1b-FNS4KTCsqujBiHQ,3786
|
|
224
|
+
sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py,sha256=fQjfs1_HPyYaenzF04ZkkapfGBqWZrTvdwv81QKyIjQ,11194
|
|
225
|
+
sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
226
|
+
sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
227
|
+
sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
228
|
+
sklearnex/spmd/cluster/tests/test_dbscan_spmd.py,sha256=q9Kbs9kaTMhG-6OvOAg6mNj3DZw-He0qFpR1nTZ_UXQ,3493
|
|
229
|
+
sklearnex/spmd/cluster/tests/test_kmeans_spmd.py,sha256=0HcTUTqtUCczcyGZeQhqq49yubuT5AIm6YyE7UJq_Fg,5856
|
|
230
|
+
sklearnex/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
|
|
231
|
+
sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
|
|
232
|
+
sklearnex/spmd/covariance/incremental_covariance.py,sha256=Sr8T5Fgvs4KDnRckwlyHskWe0ILeVNd4cgeOHy7omxE,1441
|
|
233
|
+
sklearnex/spmd/covariance/tests/test_covariance_spmd.py,sha256=-EZBzziL0pU3sVahqkc9q_1xH0LTIjVyYOV6Iy61d90,3917
|
|
234
|
+
sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py,sha256=gRhsq1oKO79JnXoMk4UaFTJ_QKwYjSjGZLyHVjBmPqE,6379
|
|
235
|
+
sklearnex/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
|
|
236
|
+
sklearnex/spmd/decomposition/incremental_pca.py,sha256=HT2MLxUy3zSEnTI5aECYtfqWO88YztPRROPjMJnGtS4,1258
|
|
237
|
+
sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
238
|
+
sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py,sha256=N8ZeanfNyosDkjyW2HwY3pH4OzHBVoknPcGJMDV41fY,9178
|
|
239
|
+
sklearnex/spmd/decomposition/tests/test_pca_spmd.py,sha256=4AX9fWFJ-9BDPd6fgKU8qzztPtUFgUB4iGz2ymC8xJI,4708
|
|
240
|
+
sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
241
|
+
sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
|
|
242
|
+
sklearnex/spmd/ensemble/tests/test_forest_spmd.py,sha256=H0Ykl_lCl758Z3E70dQgEWU7d5F-mSOGBcYRxc9meco,9244
|
|
243
|
+
sklearnex/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
|
|
244
|
+
sklearnex/spmd/linear_model/incremental_linear_model.py,sha256=K1GuXhn9ccrxQBLExBBh2d4v08W3lK_CPbke9cass38,1368
|
|
245
|
+
sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
246
|
+
sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
|
|
247
|
+
sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py,sha256=5X8_4QgTctga_AytQX8cFe7zlv_IJaSC75BSN0Q2PKI,11914
|
|
248
|
+
sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py,sha256=SFGM_f1e7yr7iQxJPLcE1lMUC2wcYFNJwG1X08AhxhA,5201
|
|
249
|
+
sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py,sha256=Y9Zhs6s10C0EKJaVf7pEv-m5XESa4A0aVw7HB2dWRE0,6097
|
|
250
|
+
sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
251
|
+
sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
252
|
+
sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py,sha256=RLddVdNbKHIND4khAzSSpM_yi9j2VMuHmI9TZUtdS3Y,10487
|
|
253
|
+
sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
254
|
+
sklearnex/svm/_common.py,sha256=bF-5V_Vcqql_EkUIOfQR3JSM4prO8LE2_ewrsxozu2I,13006
|
|
255
|
+
sklearnex/svm/nusvc.py,sha256=yBOYo8BSJcMjvmCsuR9xMaJmZcs9Olvabw8VmUjZLBc,12143
|
|
256
|
+
sklearnex/svm/nusvr.py,sha256=IUOt0576uvNy1rAt-uslpo4CrYDClNIS8FZb8PJ-HnY,5245
|
|
257
|
+
sklearnex/svm/svc.py,sha256=bYO9a9DFx8AhyUgW_Zg_kTbT2Vsj8eQKI6yfrwPheh8,13452
|
|
258
|
+
sklearnex/svm/svr.py,sha256=vYIDnTswrhqYYTQ2tpIgRvafylAWJaAGp-5Zrvnacck,5184
|
|
259
|
+
sklearnex/svm/tests/test_svm.py,sha256=KnjWVfmHzU0sJqlhDdfLdhFJA_BV_tULPqNlOLXShXg,4194
|
|
260
|
+
sklearnex/tests/test_common.py,sha256=C-vsqVi_2A2E1zBKq6kDGYCkA0RqcXAx5o_3CEH6Od8,17104
|
|
261
|
+
sklearnex/tests/test_config.py,sha256=SCdTMzM9ui-M3UyS7C0nw-wr3sM06k5I9L5XSAp6NW4,4885
|
|
262
|
+
sklearnex/tests/test_memory_usage.py,sha256=v1HyfAi7hHkdXEMAbuTywvZpSBHsweX3jiE9KxIIUAo,14092
|
|
263
|
+
sklearnex/tests/test_monkeypatch.py,sha256=Qeq0Z84UMKLEAVoQP7WEScouf6gNPbp21fjQ2erxMQo,9962
|
|
264
|
+
sklearnex/tests/test_n_jobs_support.py,sha256=HUVu013fQSqADa5oC_S2gmyNUs-SEXDlT_gcICR6ajY,4264
|
|
265
|
+
sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
|
|
266
|
+
sklearnex/tests/test_patching.py,sha256=9kURrwRd6TW8MzJ4bzsBoI8i1P0byWFK8fNBLZ3CM0o,14931
|
|
267
|
+
sklearnex/tests/test_run_to_run_stability.py,sha256=6wnCcupUTC8B3MTOyfmzfx9HyA9klhC0TWQh16vMlRM,11969
|
|
268
|
+
sklearnex/tests/utils/__init__.py,sha256=BpvlW-o0s7YVMXh94KW3wh__DYOvBA-oXK0VD1W_-Zo,1287
|
|
269
|
+
sklearnex/tests/utils/base.py,sha256=gWar_2cqoW0wFD6Prfm_b9CA7Ffjo7awnaCIzs9oInM,11816
|
|
270
|
+
sklearnex/tests/utils/spmd.py,sha256=MS-Jz_tiTC_3OI64TciaAofeTqUN2JOVWxIUAHESVdM,7150
|
|
271
|
+
sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
|
|
272
|
+
sklearnex/utils/_array_api.py,sha256=c5AFRaxYn3pjInTXeFzcXZB8SrRxQ-4UQARQv1HchFI,2694
|
|
273
|
+
sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
274
|
+
sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
|
|
275
|
+
sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
|
|
276
|
+
scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
|
|
277
|
+
scikit_learn_intelex-2025.1.0.dist-info/METADATA,sha256=hs5fN8Em8Llx4rK7pdzuKNLqsfOw8cGMtvinNEQLGNw,12476
|
|
278
|
+
scikit_learn_intelex-2025.1.0.dist-info/WHEEL,sha256=AbDXtI07YbmAOyulr4lTLqgtukIt8PjPDO5guTSVq0s,112
|
|
279
|
+
scikit_learn_intelex-2025.1.0.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
|
|
280
|
+
scikit_learn_intelex-2025.1.0.dist-info/RECORD,,
|
sklearnex/__init__.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
# Copyright 2024 Fujitsu Limited
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ==============================================================================
|
|
17
|
+
|
|
18
|
+
import os
|
|
19
|
+
|
|
20
|
+
from . import utils
|
|
21
|
+
from ._config import config_context, get_config, set_config
|
|
22
|
+
from .dispatcher import (
|
|
23
|
+
get_patch_map,
|
|
24
|
+
get_patch_names,
|
|
25
|
+
is_patched_instance,
|
|
26
|
+
patch_sklearn,
|
|
27
|
+
sklearn_is_patched,
|
|
28
|
+
unpatch_sklearn,
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
__all__ = [
|
|
32
|
+
"basic_statistics",
|
|
33
|
+
"cluster",
|
|
34
|
+
"config_context",
|
|
35
|
+
"covariance",
|
|
36
|
+
"decomposition",
|
|
37
|
+
"ensemble",
|
|
38
|
+
"get_config",
|
|
39
|
+
"get_hyperparameters",
|
|
40
|
+
"get_patch_map",
|
|
41
|
+
"get_patch_names",
|
|
42
|
+
"is_patched_instance",
|
|
43
|
+
"linear_model",
|
|
44
|
+
"manifold",
|
|
45
|
+
"metrics",
|
|
46
|
+
"model_selection",
|
|
47
|
+
"neighbors",
|
|
48
|
+
"patch_sklearn",
|
|
49
|
+
"set_config",
|
|
50
|
+
"sklearn_is_patched",
|
|
51
|
+
"svm",
|
|
52
|
+
"unpatch_sklearn",
|
|
53
|
+
"utils",
|
|
54
|
+
]
|
|
55
|
+
onedal_iface_flag = os.environ.get("OFF_ONEDAL_IFACE", "0")
|
|
56
|
+
if onedal_iface_flag == "0":
|
|
57
|
+
from onedal import _is_spmd_backend
|
|
58
|
+
from onedal.common.hyperparameters import get_hyperparameters
|
|
59
|
+
|
|
60
|
+
if _is_spmd_backend:
|
|
61
|
+
__all__.append("spmd")
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
from ._utils import set_sklearn_ex_verbose
|
|
65
|
+
|
|
66
|
+
set_sklearn_ex_verbose()
|