scikit-learn-intelex 2025.0.0__py311-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +242 -0
- daal4py/sklearn/_utils.py +241 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +155 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +53 -0
- onedal/_device_offload.py +229 -0
- onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +560 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +116 -0
- onedal/common/tests/test_policy.py +75 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +95 -0
- onedal/datatypes/tests/test_data.py +235 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +720 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +149 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +778 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +168 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +41 -0
- onedal/tests/utils/_dataframes_support.py +168 -0
- onedal/tests/utils/_device_selection.py +107 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +91 -0
- onedal/utils/validation.py +432 -0
- scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
- scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +65 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +98 -0
- sklearnex/_device_offload.py +121 -0
- sklearnex/_utils.py +109 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +140 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +192 -0
- sklearnex/cluster/k_means.py +383 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +153 -0
- sklearnex/conftest.py +73 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +368 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +414 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2016 -0
- sklearnex/ensemble/tests/test_forest.py +120 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +463 -0
- sklearnex/linear_model/incremental_ridge.py +418 -0
- sklearnex/linear_model/linear.py +302 -0
- sklearnex/linear_model/logistic_path.py +17 -0
- sklearnex/linear_model/logistic_regression.py +403 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +142 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +231 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +226 -0
- sklearnex/neighbors/knn_regression.py +203 -0
- sklearnex/neighbors/knn_unsupervised.py +170 -0
- sklearnex/neighbors/tests/test_neighbors.py +80 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +133 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +228 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +419 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +328 -0
- sklearnex/svm/nusvc.py +332 -0
- sklearnex/svm/nusvr.py +148 -0
- sklearnex/svm/svc.py +360 -0
- sklearnex/svm/svr.py +149 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/_utils.py +328 -0
- sklearnex/tests/_utils_spmd.py +198 -0
- sklearnex/tests/test_common.py +54 -0
- sklearnex/tests/test_config.py +43 -0
- sklearnex/tests/test_memory_usage.py +291 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +103 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +296 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
|
@@ -0,0 +1,296 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2020 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import random
|
|
18
|
+
from collections.abc import Iterable
|
|
19
|
+
from functools import partial
|
|
20
|
+
from numbers import Number
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import pytest
|
|
24
|
+
from _utils import (
|
|
25
|
+
PATCHED_MODELS,
|
|
26
|
+
SPECIAL_INSTANCES,
|
|
27
|
+
_sklearn_clone_dict,
|
|
28
|
+
call_method,
|
|
29
|
+
gen_dataset,
|
|
30
|
+
gen_models_info,
|
|
31
|
+
)
|
|
32
|
+
from numpy.testing import assert_allclose
|
|
33
|
+
from scipy import sparse
|
|
34
|
+
from sklearn.datasets import (
|
|
35
|
+
load_breast_cancer,
|
|
36
|
+
load_diabetes,
|
|
37
|
+
load_iris,
|
|
38
|
+
make_classification,
|
|
39
|
+
make_regression,
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
import daal4py as d4p
|
|
43
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
44
|
+
from onedal.tests.utils._dataframes_support import _as_numpy, get_dataframes_and_queues
|
|
45
|
+
from sklearnex.cluster import DBSCAN, KMeans
|
|
46
|
+
from sklearnex.decomposition import PCA
|
|
47
|
+
from sklearnex.metrics import pairwise_distances, roc_auc_score
|
|
48
|
+
from sklearnex.model_selection import train_test_split
|
|
49
|
+
from sklearnex.neighbors import (
|
|
50
|
+
KNeighborsClassifier,
|
|
51
|
+
KNeighborsRegressor,
|
|
52
|
+
NearestNeighbors,
|
|
53
|
+
)
|
|
54
|
+
from sklearnex.svm import SVC
|
|
55
|
+
|
|
56
|
+
# to reproduce errors even in CI
|
|
57
|
+
d4p.daalinit(nthreads=100)
|
|
58
|
+
|
|
59
|
+
_dataset_dict = {
|
|
60
|
+
"classification": [
|
|
61
|
+
partial(load_iris, return_X_y=True),
|
|
62
|
+
partial(load_breast_cancer, return_X_y=True),
|
|
63
|
+
],
|
|
64
|
+
"regression": [
|
|
65
|
+
partial(load_diabetes, return_X_y=True),
|
|
66
|
+
partial(
|
|
67
|
+
make_regression, n_samples=500, n_features=10, noise=64.0, random_state=42
|
|
68
|
+
),
|
|
69
|
+
],
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def eval_method(X, y, est, method):
|
|
74
|
+
res = []
|
|
75
|
+
est.fit(X, y)
|
|
76
|
+
|
|
77
|
+
if method:
|
|
78
|
+
res = call_method(est, method, X, y)
|
|
79
|
+
|
|
80
|
+
if not isinstance(res, Iterable):
|
|
81
|
+
results = [_as_numpy(res)] if res is not est else []
|
|
82
|
+
else:
|
|
83
|
+
results = [_as_numpy(i) for i in res]
|
|
84
|
+
|
|
85
|
+
attributes = [method] * len(results)
|
|
86
|
+
|
|
87
|
+
# if estimator follows sklearn design rules, then set attributes should have a
|
|
88
|
+
# trailing underscore
|
|
89
|
+
attributes += [
|
|
90
|
+
i
|
|
91
|
+
for i in dir(est)
|
|
92
|
+
if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
|
|
93
|
+
]
|
|
94
|
+
results += [getattr(est, i) for i in attributes if i != method]
|
|
95
|
+
return results, attributes
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def _run_test(estimator, method, datasets):
|
|
99
|
+
|
|
100
|
+
for X, y in datasets:
|
|
101
|
+
baseline, attributes = eval_method(X, y, estimator, method)
|
|
102
|
+
|
|
103
|
+
for i in range(10):
|
|
104
|
+
res, _ = eval_method(X, y, estimator, method)
|
|
105
|
+
|
|
106
|
+
for r, b, n in zip(res, baseline, attributes):
|
|
107
|
+
if (
|
|
108
|
+
isinstance(b, Number)
|
|
109
|
+
or hasattr(b, "__array__")
|
|
110
|
+
or hasattr(b, "__array_namespace__")
|
|
111
|
+
or hasattr(b, "__sycl_usm_ndarray__")
|
|
112
|
+
):
|
|
113
|
+
assert_allclose(
|
|
114
|
+
r, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
_sparse_instances = [SVC()]
|
|
119
|
+
if daal_check_version((2024, "P", 700)): # Test for > 2024.7.0
|
|
120
|
+
_sparse_instances.extend(
|
|
121
|
+
[
|
|
122
|
+
KMeans(),
|
|
123
|
+
KMeans(init="random"),
|
|
124
|
+
KMeans(init="k-means++"),
|
|
125
|
+
]
|
|
126
|
+
)
|
|
127
|
+
SPARSE_INSTANCES = _sklearn_clone_dict({str(i): i for i in _sparse_instances})
|
|
128
|
+
|
|
129
|
+
STABILITY_INSTANCES = _sklearn_clone_dict(
|
|
130
|
+
{
|
|
131
|
+
str(i): i
|
|
132
|
+
for i in [
|
|
133
|
+
KNeighborsClassifier(algorithm="brute", weights="distance"),
|
|
134
|
+
KNeighborsClassifier(algorithm="kd_tree", weights="distance"),
|
|
135
|
+
KNeighborsClassifier(algorithm="kd_tree"),
|
|
136
|
+
KNeighborsRegressor(algorithm="brute", weights="distance"),
|
|
137
|
+
KNeighborsRegressor(algorithm="kd_tree", weights="distance"),
|
|
138
|
+
KNeighborsRegressor(algorithm="kd_tree"),
|
|
139
|
+
NearestNeighbors(algorithm="kd_tree"),
|
|
140
|
+
DBSCAN(algorithm="brute"),
|
|
141
|
+
PCA(n_components=0.5, svd_solver="covariance_eigh"),
|
|
142
|
+
KMeans(init="random"),
|
|
143
|
+
]
|
|
144
|
+
}
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
|
|
149
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
|
|
150
|
+
def test_standard_estimator_stability(estimator, method, dataframe, queue):
|
|
151
|
+
if estimator in ["LogisticRegression", "TSNE"]:
|
|
152
|
+
pytest.skip(f"stability not guaranteed for {estimator}")
|
|
153
|
+
if estimator in ["KMeans", "PCA"] and "score" in method and queue == None:
|
|
154
|
+
pytest.skip(f"variation observed in {estimator}.score")
|
|
155
|
+
if estimator in ["IncrementalEmpiricalCovariance"] and method == "mahalanobis":
|
|
156
|
+
pytest.skip("allowed fallback to sklearn occurs")
|
|
157
|
+
|
|
158
|
+
if "NearestNeighbors" in estimator and "radius" in method:
|
|
159
|
+
pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
|
|
160
|
+
|
|
161
|
+
est = PATCHED_MODELS[estimator]()
|
|
162
|
+
|
|
163
|
+
if method and not hasattr(est, method):
|
|
164
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
165
|
+
|
|
166
|
+
params = est.get_params().copy()
|
|
167
|
+
if "random_state" in params:
|
|
168
|
+
params["random_state"] = 0
|
|
169
|
+
est.set_params(**params)
|
|
170
|
+
|
|
171
|
+
datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
|
|
172
|
+
_run_test(est, method, datasets)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
@pytest.mark.allow_sklearn_fallback
|
|
176
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
|
|
177
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
|
|
178
|
+
def test_special_estimator_stability(estimator, method, dataframe, queue):
|
|
179
|
+
if queue is None and estimator in ["LogisticRegression(solver='newton-cg')"]:
|
|
180
|
+
pytest.skip(f"stability not guaranteed for {estimator}")
|
|
181
|
+
if "KMeans" in estimator and method == "score" and queue == None:
|
|
182
|
+
pytest.skip(f"variation observed in KMeans.score")
|
|
183
|
+
if "NearestNeighbors" in estimator and "radius" in method:
|
|
184
|
+
pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
|
|
185
|
+
|
|
186
|
+
est = SPECIAL_INSTANCES[estimator]
|
|
187
|
+
|
|
188
|
+
if method and not hasattr(est, method):
|
|
189
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
190
|
+
|
|
191
|
+
params = est.get_params().copy()
|
|
192
|
+
if "random_state" in params:
|
|
193
|
+
params["random_state"] = 0
|
|
194
|
+
est.set_params(**params)
|
|
195
|
+
|
|
196
|
+
datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
|
|
197
|
+
_run_test(est, method, datasets)
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
|
|
201
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(SPARSE_INSTANCES))
|
|
202
|
+
def test_sparse_estimator_stability(estimator, method, dataframe, queue):
|
|
203
|
+
if "KMeans" in estimator and method == "score" and queue == None:
|
|
204
|
+
pytest.skip(f"variation observed in KMeans.score")
|
|
205
|
+
|
|
206
|
+
if "NearestNeighbors" in estimator and "radius" in method:
|
|
207
|
+
pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
|
|
208
|
+
est = SPARSE_INSTANCES[estimator]
|
|
209
|
+
|
|
210
|
+
if method and not hasattr(est, method):
|
|
211
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
212
|
+
|
|
213
|
+
params = est.get_params().copy()
|
|
214
|
+
if "random_state" in params:
|
|
215
|
+
params["random_state"] = 0
|
|
216
|
+
est.set_params(**params)
|
|
217
|
+
|
|
218
|
+
datasets = gen_dataset(
|
|
219
|
+
est, sparse=True, datasets=_dataset_dict, queue=queue, target_df=dataframe
|
|
220
|
+
)
|
|
221
|
+
_run_test(est, method, datasets)
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
@pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
|
|
225
|
+
@pytest.mark.parametrize("estimator, method", gen_models_info(STABILITY_INSTANCES))
|
|
226
|
+
def test_other_estimator_stability(estimator, method, dataframe, queue):
|
|
227
|
+
if "KMeans" in estimator and method == "score" and queue == None:
|
|
228
|
+
pytest.skip(f"variation observed in KMeans.score")
|
|
229
|
+
if "NearestNeighbors" in estimator and "radius" in method:
|
|
230
|
+
pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
|
|
231
|
+
|
|
232
|
+
est = STABILITY_INSTANCES[estimator]
|
|
233
|
+
|
|
234
|
+
if method and not hasattr(est, method):
|
|
235
|
+
pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
|
|
236
|
+
|
|
237
|
+
params = est.get_params().copy()
|
|
238
|
+
if "random_state" in params:
|
|
239
|
+
params["random_state"] = 0
|
|
240
|
+
est.set_params(**params)
|
|
241
|
+
|
|
242
|
+
datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
|
|
243
|
+
_run_test(est, method, datasets)
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
@pytest.mark.parametrize("features", range(5, 10))
|
|
247
|
+
def test_train_test_split(features):
|
|
248
|
+
X, y = make_classification(
|
|
249
|
+
n_samples=4000,
|
|
250
|
+
n_features=features,
|
|
251
|
+
n_informative=features,
|
|
252
|
+
n_redundant=0,
|
|
253
|
+
n_clusters_per_class=8,
|
|
254
|
+
random_state=0,
|
|
255
|
+
)
|
|
256
|
+
(
|
|
257
|
+
baseline_X_train,
|
|
258
|
+
baseline_X_test,
|
|
259
|
+
baseline_y_train,
|
|
260
|
+
baseline_y_test,
|
|
261
|
+
) = train_test_split(X, y, test_size=0.33, random_state=0)
|
|
262
|
+
baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
|
|
263
|
+
for _ in range(10):
|
|
264
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
265
|
+
X, y, test_size=0.33, random_state=0
|
|
266
|
+
)
|
|
267
|
+
res = [X_train, X_test, y_train, y_test]
|
|
268
|
+
for a, b in zip(res, baseline):
|
|
269
|
+
np.testing.assert_allclose(
|
|
270
|
+
a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
|
|
271
|
+
)
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
@pytest.mark.parametrize("metric", ["cosine", "correlation"])
|
|
275
|
+
def test_pairwise_distances(metric):
|
|
276
|
+
X = np.random.rand(1000)
|
|
277
|
+
X = np.array(X, dtype=np.float64)
|
|
278
|
+
baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
279
|
+
for _ in range(5):
|
|
280
|
+
res = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
281
|
+
for a, b in zip(res, baseline):
|
|
282
|
+
np.testing.assert_allclose(
|
|
283
|
+
a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
@pytest.mark.parametrize("array_size", [100, 1000, 10000])
|
|
288
|
+
def test_roc_auc(array_size):
|
|
289
|
+
a = [random.randint(0, 1) for i in range(array_size)]
|
|
290
|
+
b = [random.randint(0, 1) for i in range(array_size)]
|
|
291
|
+
baseline = roc_auc_score(a, b)
|
|
292
|
+
for _ in range(5):
|
|
293
|
+
res = roc_auc_score(a, b)
|
|
294
|
+
np.testing.assert_allclose(
|
|
295
|
+
baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
|
|
296
|
+
)
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2022 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from .validation import _assert_all_finite
|
|
18
|
+
|
|
19
|
+
__all__ = ["_assert_all_finite"]
|
|
@@ -0,0 +1,82 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
"""Tools to support array_api."""
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
|
|
21
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
22
|
+
from onedal.utils._array_api import _get_sycl_namespace
|
|
23
|
+
|
|
24
|
+
if sklearn_check_version("1.2"):
|
|
25
|
+
from sklearn.utils._array_api import get_namespace as sklearn_get_namespace
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def get_namespace(*arrays):
|
|
29
|
+
"""Get namespace of arrays.
|
|
30
|
+
|
|
31
|
+
Introspect `arrays` arguments and return their common Array API
|
|
32
|
+
compatible namespace object, if any. NumPy 1.22 and later can
|
|
33
|
+
construct such containers using the `numpy.array_api` namespace
|
|
34
|
+
for instance.
|
|
35
|
+
|
|
36
|
+
This function will return the namespace of SYCL-related arrays
|
|
37
|
+
which define the __sycl_usm_array_interface__ attribute
|
|
38
|
+
regardless of array_api support, the configuration of
|
|
39
|
+
array_api_dispatch, or scikit-learn version.
|
|
40
|
+
|
|
41
|
+
See: https://numpy.org/neps/nep-0047-array-api-standard.html
|
|
42
|
+
|
|
43
|
+
If `arrays` are regular numpy arrays, an instance of the
|
|
44
|
+
`_NumPyApiWrapper` compatibility wrapper is returned instead.
|
|
45
|
+
|
|
46
|
+
Namespace support is not enabled by default. To enabled it
|
|
47
|
+
call:
|
|
48
|
+
|
|
49
|
+
sklearn.set_config(array_api_dispatch=True)
|
|
50
|
+
|
|
51
|
+
or:
|
|
52
|
+
|
|
53
|
+
with sklearn.config_context(array_api_dispatch=True):
|
|
54
|
+
# your code here
|
|
55
|
+
|
|
56
|
+
Otherwise an instance of the `_NumPyApiWrapper`
|
|
57
|
+
compatibility wrapper is always returned irrespective of
|
|
58
|
+
the fact that arrays implement the `__array_namespace__`
|
|
59
|
+
protocol or not.
|
|
60
|
+
|
|
61
|
+
Parameters
|
|
62
|
+
----------
|
|
63
|
+
*arrays : array objects
|
|
64
|
+
Array objects.
|
|
65
|
+
|
|
66
|
+
Returns
|
|
67
|
+
-------
|
|
68
|
+
namespace : module
|
|
69
|
+
Namespace shared by array objects.
|
|
70
|
+
|
|
71
|
+
is_array_api : bool
|
|
72
|
+
True of the arrays are containers that implement the Array API spec.
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
sycl_type, xp, is_array_api_compliant = _get_sycl_namespace(*arrays)
|
|
76
|
+
|
|
77
|
+
if sycl_type:
|
|
78
|
+
return xp, is_array_api_compliant
|
|
79
|
+
elif sklearn_check_version("1.2"):
|
|
80
|
+
return sklearn_get_namespace(*arrays)
|
|
81
|
+
else:
|
|
82
|
+
return np, False
|
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import warnings
|
|
18
|
+
from functools import update_wrapper
|
|
19
|
+
|
|
20
|
+
from .._config import config_context, get_config
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class _FuncWrapper:
|
|
24
|
+
"""Load the global configuration before calling the function."""
|
|
25
|
+
|
|
26
|
+
def __init__(self, function):
|
|
27
|
+
self.function = function
|
|
28
|
+
update_wrapper(self, self.function)
|
|
29
|
+
|
|
30
|
+
def with_config(self, config):
|
|
31
|
+
self.config = config
|
|
32
|
+
return self
|
|
33
|
+
|
|
34
|
+
def __call__(self, *args, **kwargs):
|
|
35
|
+
config = getattr(self, "config", None)
|
|
36
|
+
if config is None:
|
|
37
|
+
warnings.warn(
|
|
38
|
+
"`sklearn.utils.parallel.delayed` should be used with "
|
|
39
|
+
"`sklearn.utils.parallel.Parallel` to make it possible to propagate "
|
|
40
|
+
"the scikit-learn configuration of the current thread to the "
|
|
41
|
+
"joblib workers.",
|
|
42
|
+
UserWarning,
|
|
43
|
+
)
|
|
44
|
+
config = {}
|
|
45
|
+
with config_context(**config):
|
|
46
|
+
return self.function(*args, **kwargs)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class _FuncWrapperOld:
|
|
50
|
+
"""Load the global configuration before calling the function."""
|
|
51
|
+
|
|
52
|
+
def __init__(self, function):
|
|
53
|
+
self.function = function
|
|
54
|
+
self.config = get_config()
|
|
55
|
+
update_wrapper(self, self.function)
|
|
56
|
+
|
|
57
|
+
def __call__(self, *args, **kwargs):
|
|
58
|
+
with config_context(**self.config):
|
|
59
|
+
return self.function(*args, **kwargs)
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import time
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
import numpy.random as rand
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_raises
|
|
23
|
+
|
|
24
|
+
from sklearnex.utils import _assert_all_finite
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
28
|
+
@pytest.mark.parametrize(
|
|
29
|
+
"shape",
|
|
30
|
+
[
|
|
31
|
+
[16, 2048],
|
|
32
|
+
[
|
|
33
|
+
2**16 + 3,
|
|
34
|
+
],
|
|
35
|
+
[1000, 1000],
|
|
36
|
+
],
|
|
37
|
+
)
|
|
38
|
+
@pytest.mark.parametrize("allow_nan", [False, True])
|
|
39
|
+
def test_sum_infinite_actually_finite(dtype, shape, allow_nan):
|
|
40
|
+
X = np.array(shape, dtype=dtype)
|
|
41
|
+
X.fill(np.finfo(dtype).max)
|
|
42
|
+
_assert_all_finite(X, allow_nan=allow_nan)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
46
|
+
@pytest.mark.parametrize(
|
|
47
|
+
"shape",
|
|
48
|
+
[
|
|
49
|
+
[16, 2048],
|
|
50
|
+
[
|
|
51
|
+
2**16 + 3,
|
|
52
|
+
],
|
|
53
|
+
[1000, 1000],
|
|
54
|
+
],
|
|
55
|
+
)
|
|
56
|
+
@pytest.mark.parametrize("allow_nan", [False, True])
|
|
57
|
+
@pytest.mark.parametrize("check", ["inf", "NaN", None])
|
|
58
|
+
@pytest.mark.parametrize("seed", [0, int(time.time())])
|
|
59
|
+
def test_assert_finite_random_location(dtype, shape, allow_nan, check, seed):
|
|
60
|
+
rand.seed(seed)
|
|
61
|
+
X = rand.uniform(high=np.finfo(dtype).max, size=shape).astype(dtype)
|
|
62
|
+
|
|
63
|
+
if check:
|
|
64
|
+
loc = rand.randint(0, X.size - 1)
|
|
65
|
+
X.reshape((-1,))[loc] = float(check)
|
|
66
|
+
|
|
67
|
+
if check is None or (allow_nan and check == "NaN"):
|
|
68
|
+
_assert_all_finite(X, allow_nan=allow_nan)
|
|
69
|
+
else:
|
|
70
|
+
assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
74
|
+
@pytest.mark.parametrize("allow_nan", [False, True])
|
|
75
|
+
@pytest.mark.parametrize("check", ["inf", "NaN", None])
|
|
76
|
+
@pytest.mark.parametrize("seed", [0, int(time.time())])
|
|
77
|
+
def test_assert_finite_random_shape_and_location(dtype, allow_nan, check, seed):
|
|
78
|
+
lb, ub = 32768, 1048576 # lb is a patching condition, ub 2^20
|
|
79
|
+
rand.seed(seed)
|
|
80
|
+
X = rand.uniform(high=np.finfo(dtype).max, size=rand.randint(lb, ub)).astype(dtype)
|
|
81
|
+
|
|
82
|
+
if check:
|
|
83
|
+
loc = rand.randint(0, X.size - 1)
|
|
84
|
+
X[loc] = float(check)
|
|
85
|
+
|
|
86
|
+
if check is None or (allow_nan and check == "NaN"):
|
|
87
|
+
_assert_all_finite(X, allow_nan=allow_nan)
|
|
88
|
+
else:
|
|
89
|
+
assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2022 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn.utils.validation import _assert_all_finite
|