scikit-learn-intelex 2025.0.0__py311-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,168 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose, assert_array_equal
20
+ from sklearn.datasets import load_diabetes
21
+ from sklearn.metrics import mean_squared_error
22
+ from sklearn.model_selection import train_test_split
23
+
24
+ from onedal.linear_model import IncrementalLinearRegression
25
+ from onedal.tests.utils._device_selection import get_queues
26
+
27
+
28
+ @pytest.mark.parametrize("queue", get_queues())
29
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
30
+ def test_diabetes(queue, dtype):
31
+ X, y = load_diabetes(return_X_y=True)
32
+ X, y = X.astype(dtype), y.astype(dtype)
33
+ X_train, X_test, y_train, y_test = train_test_split(
34
+ X, y, train_size=0.8, random_state=777
35
+ )
36
+ X_train_split = np.array_split(X_train, 2)
37
+ y_train_split = np.array_split(y_train, 2)
38
+ model = IncrementalLinearRegression(fit_intercept=True)
39
+ for i in range(2):
40
+ model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
41
+ model.finalize_fit()
42
+ y_pred = model.predict(X_test, queue=queue)
43
+ assert mean_squared_error(y_test, y_pred) < 2396
44
+
45
+
46
+ @pytest.mark.parametrize("queue", get_queues())
47
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
48
+ @pytest.mark.skip(reason="pickling not implemented for oneDAL entities")
49
+ def test_pickle(queue, dtype):
50
+ # TODO Implement pickling for oneDAL entities
51
+ X, y = load_diabetes(return_X_y=True)
52
+ X, y = X.astype(dtype), y.astype(dtype)
53
+ model = IncrementalLinearRegression(fit_intercept=True)
54
+ model.partial_fit(X, y, queue=queue)
55
+ model.finalize_fit()
56
+ expected = model.predict(X, queue=queue)
57
+
58
+ import pickle
59
+
60
+ dump = pickle.dumps(model)
61
+ model2 = pickle.loads(dump)
62
+
63
+ assert isinstance(model2, model.__class__)
64
+ result = model2.predict(X, queue=queue)
65
+
66
+ assert_array_equal(expected, result)
67
+
68
+
69
+ @pytest.mark.parametrize("queue", get_queues())
70
+ @pytest.mark.parametrize("num_blocks", [1, 2, 10])
71
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
72
+ def test_full_results(queue, num_blocks, dtype):
73
+ seed = 42
74
+ num_features, num_targets = 19, 7
75
+ num_samples_train, num_samples_test = 3500, 1999
76
+
77
+ gen = np.random.default_rng(seed)
78
+ intercept = gen.random(size=num_targets, dtype=dtype)
79
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
80
+
81
+ X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
82
+ y = X @ coef + intercept[np.newaxis, :]
83
+ X_split = np.array_split(X, num_blocks)
84
+ y_split = np.array_split(y, num_blocks)
85
+
86
+ model = IncrementalLinearRegression(fit_intercept=True)
87
+ for i in range(num_blocks):
88
+ model.partial_fit(X_split[i], y_split[i], queue=queue)
89
+ model.finalize_fit()
90
+
91
+ if queue and queue.sycl_device.is_gpu:
92
+ tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
93
+ else:
94
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
95
+ assert_allclose(coef, model.coef_.T, rtol=tol)
96
+
97
+ tol = 2e-3 if model.intercept_.dtype == np.float32 else 1e-5
98
+ assert_allclose(intercept, model.intercept_, rtol=tol)
99
+
100
+ Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
101
+ gtr = Xt @ coef + intercept[np.newaxis, :]
102
+
103
+ res = model.predict(Xt, queue=queue)
104
+
105
+ tol = 2e-4 if res.dtype == np.float32 else 1e-7
106
+ assert_allclose(gtr, res, rtol=tol)
107
+
108
+
109
+ @pytest.mark.parametrize("queue", get_queues())
110
+ @pytest.mark.parametrize("num_blocks", [1, 2, 10])
111
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
112
+ def test_no_intercept_results(queue, num_blocks, dtype):
113
+ seed = 42
114
+ num_features, num_targets = 19, 7
115
+ num_samples_train, num_samples_test = 3500, 1999
116
+
117
+ gen = np.random.default_rng(seed)
118
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
119
+
120
+ X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
121
+ y = X @ coef
122
+
123
+ X_split = np.array_split(X, num_blocks)
124
+ y_split = np.array_split(y, num_blocks)
125
+
126
+ model = IncrementalLinearRegression(fit_intercept=False)
127
+ for i in range(num_blocks):
128
+ model.partial_fit(X_split[i], y_split[i], queue=queue)
129
+ model.finalize_fit()
130
+
131
+ # TODO Find out is it necessary to have accuracy so different for float32 and float64
132
+ if queue and queue.sycl_device.is_gpu:
133
+ tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-7
134
+ else:
135
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-7
136
+ assert_allclose(coef, model.coef_.T, rtol=tol)
137
+
138
+ Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
139
+ gtr = Xt @ coef
140
+
141
+ res = model.predict(Xt, queue=queue)
142
+
143
+ tol = 5e-5 if res.dtype == np.float32 else 1e-7
144
+ assert_allclose(gtr, res, rtol=tol)
145
+
146
+
147
+ @pytest.mark.parametrize("queue", get_queues())
148
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
149
+ def test_reconstruct_model(queue, dtype):
150
+ seed = 42
151
+ num_samples = 3500
152
+ num_features, num_targets = 14, 9
153
+
154
+ gen = np.random.default_rng(seed)
155
+ intercept = gen.random(size=num_targets, dtype=dtype)
156
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
157
+
158
+ X = gen.random(size=(num_samples, num_features), dtype=dtype)
159
+ gtr = X @ coef + intercept[np.newaxis, :]
160
+
161
+ model = IncrementalLinearRegression(fit_intercept=True)
162
+ model.coef_ = coef.T
163
+ model.intercept_ = intercept
164
+
165
+ res = model.predict(X, queue=queue)
166
+
167
+ tol = 1e-5 if res.dtype == np.float32 else 1e-7
168
+ assert_allclose(gtr, res, rtol=tol)
@@ -0,0 +1,107 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from daal4py.sklearn._utils import daal_check_version
18
+
19
+ if daal_check_version((2024, "P", 600)):
20
+ import numpy as np
21
+ import pytest
22
+ from numpy.testing import assert_allclose, assert_array_equal
23
+ from sklearn.datasets import load_diabetes
24
+ from sklearn.metrics import mean_squared_error
25
+ from sklearn.model_selection import train_test_split
26
+
27
+ from onedal.linear_model import IncrementalRidge
28
+ from onedal.tests.utils._device_selection import get_queues
29
+
30
+ @pytest.mark.parametrize("queue", get_queues())
31
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
32
+ def test_diabetes(queue, dtype):
33
+ X, y = load_diabetes(return_X_y=True)
34
+ X, y = X.astype(dtype), y.astype(dtype)
35
+ X_train, X_test, y_train, y_test = train_test_split(
36
+ X, y, train_size=0.8, random_state=777
37
+ )
38
+ X_train_split = np.array_split(X_train, 2)
39
+ y_train_split = np.array_split(y_train, 2)
40
+ model = IncrementalRidge(fit_intercept=True, alpha=0.1)
41
+ for i in range(2):
42
+ model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
43
+ model.finalize_fit()
44
+ y_pred = model.predict(X_test, queue=queue)
45
+ assert_allclose(mean_squared_error(y_test, y_pred), 2388.775, rtol=1e-5)
46
+
47
+ @pytest.mark.parametrize("queue", get_queues())
48
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
49
+ @pytest.mark.skip(reason="pickling not implemented for oneDAL entities")
50
+ def test_pickle(queue, dtype):
51
+ # TODO Implement pickling for oneDAL entities
52
+ X, y = load_diabetes(return_X_y=True)
53
+ X, y = X.astype(dtype), y.astype(dtype)
54
+ model = IncrementalRidge(fit_intercept=True, alpha=0.5)
55
+ model.partial_fit(X, y, queue=queue)
56
+ model.finalize_fit()
57
+ expected = model.predict(X, queue=queue)
58
+
59
+ import pickle
60
+
61
+ dump = pickle.dumps(model)
62
+ model2 = pickle.loads(dump)
63
+
64
+ assert isinstance(model2, model.__class__)
65
+ result = model2.predict(X, queue=queue)
66
+
67
+ assert_array_equal(expected, result)
68
+
69
+ @pytest.mark.parametrize("queue", get_queues())
70
+ @pytest.mark.parametrize("num_blocks", [1, 2, 10])
71
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
72
+ def test_no_intercept_results(queue, num_blocks, dtype):
73
+ seed = 42
74
+ n_features, n_targets = 19, 7
75
+ n_train_samples, n_test_samples = 3500, 1999
76
+
77
+ gen = np.random.default_rng(seed)
78
+
79
+ X = gen.random(size=(n_train_samples, n_features), dtype=dtype)
80
+ y = gen.random(size=(n_train_samples, n_targets), dtype=dtype)
81
+ X_split = np.array_split(X, num_blocks)
82
+ y_split = np.array_split(y, num_blocks)
83
+ alpha = 0.5
84
+
85
+ lambda_identity = alpha * np.eye(X.shape[1])
86
+ inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
87
+ xt_y = np.dot(X.T, y)
88
+ coef = np.dot(inverse_term, xt_y)
89
+
90
+ model = IncrementalRidge(fit_intercept=False, alpha=alpha)
91
+ for i in range(num_blocks):
92
+ model.partial_fit(X_split[i], y_split[i], queue=queue)
93
+ model.finalize_fit()
94
+
95
+ if queue and queue.sycl_device.is_gpu:
96
+ tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
97
+ else:
98
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
99
+ assert_allclose(coef, model.coef_.T, rtol=tol)
100
+
101
+ Xt = gen.random(size=(n_test_samples, n_features), dtype=dtype)
102
+ gtr = Xt @ coef
103
+
104
+ res = model.predict(Xt, queue=queue)
105
+
106
+ tol = 2e-4 if res.dtype == np.float32 else 1e-7
107
+ assert_allclose(gtr, res, rtol=tol)
@@ -0,0 +1,149 @@
1
+ # ===============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose, assert_array_equal
20
+ from sklearn.datasets import load_diabetes
21
+ from sklearn.metrics import mean_squared_error
22
+ from sklearn.model_selection import train_test_split
23
+
24
+ from onedal.linear_model import LinearRegression
25
+ from onedal.tests.utils._device_selection import get_queues
26
+
27
+
28
+ @pytest.mark.parametrize("queue", get_queues())
29
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
30
+ def test_diabetes(queue, dtype):
31
+ X, y = load_diabetes(return_X_y=True)
32
+ X, y = X.astype(dtype), y.astype(dtype)
33
+ X_train, X_test, y_train, y_test = train_test_split(
34
+ X, y, train_size=0.8, random_state=777
35
+ )
36
+ model = LinearRegression(fit_intercept=True)
37
+ model.fit(X_train, y_train, queue=queue)
38
+ y_pred = model.predict(X_test, queue=queue)
39
+ assert_allclose(mean_squared_error(y_test, y_pred), 2395.567, rtol=1e-5)
40
+
41
+
42
+ @pytest.mark.parametrize("queue", get_queues())
43
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
44
+ def test_pickle(queue, dtype):
45
+ X, y = load_diabetes(return_X_y=True)
46
+ X, y = X.astype(dtype), y.astype(dtype)
47
+ model = LinearRegression(fit_intercept=True)
48
+ model.fit(X, y, queue=queue)
49
+ expected = model.predict(X, queue=queue)
50
+
51
+ import pickle
52
+
53
+ dump = pickle.dumps(model)
54
+ model2 = pickle.loads(dump)
55
+
56
+ assert isinstance(model2, model.__class__)
57
+ result = model2.predict(X, queue=queue)
58
+
59
+ assert_array_equal(expected, result)
60
+
61
+
62
+ @pytest.mark.parametrize("queue", get_queues())
63
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
64
+ def test_full_results(queue, dtype):
65
+ seed = 42
66
+ f_count, r_count = 19, 7
67
+ s_count, t_count = 3500, 1999
68
+
69
+ gen = np.random.default_rng(seed)
70
+ intp = gen.random(size=r_count, dtype=dtype)
71
+ coef = gen.random(size=(r_count, f_count), dtype=dtype).T
72
+
73
+ X = gen.random(size=(s_count, f_count), dtype=dtype)
74
+ y = X @ coef + intp[np.newaxis, :]
75
+
76
+ model = LinearRegression(fit_intercept=True)
77
+ model.fit(X, y, queue=queue)
78
+
79
+ if queue and queue.sycl_device.is_gpu:
80
+ tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
81
+ else:
82
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
83
+ assert_allclose(coef, model.coef_.T, rtol=tol)
84
+
85
+ tol = 2e-3 if model.intercept_.dtype == np.float32 else 1e-5
86
+ assert_allclose(intp, model.intercept_, rtol=tol)
87
+
88
+ Xt = gen.random(size=(t_count, f_count), dtype=dtype)
89
+ gtr = Xt @ coef + intp[np.newaxis, :]
90
+
91
+ res = model.predict(Xt, queue=queue)
92
+
93
+ tol = 2e-4 if res.dtype == np.float32 else 1e-7
94
+ assert_allclose(gtr, res, rtol=tol)
95
+
96
+
97
+ @pytest.mark.parametrize("queue", get_queues())
98
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
99
+ def test_no_intercept_results(queue, dtype):
100
+ seed = 42
101
+ f_count, r_count = 19, 7
102
+ s_count, t_count = 3500, 1999
103
+
104
+ gen = np.random.default_rng(seed)
105
+ coef = gen.random(size=(r_count, f_count), dtype=dtype).T
106
+
107
+ X = gen.random(size=(s_count, f_count), dtype=dtype)
108
+ y = X @ coef
109
+
110
+ model = LinearRegression(fit_intercept=False)
111
+ model.fit(X, y, queue=queue)
112
+
113
+ if queue and queue.sycl_device.is_gpu:
114
+ tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-7
115
+ else:
116
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-7
117
+ assert_allclose(coef, model.coef_.T, rtol=tol)
118
+
119
+ Xt = gen.random(size=(t_count, f_count), dtype=dtype)
120
+ gtr = Xt @ coef
121
+
122
+ res = model.predict(Xt, queue=queue)
123
+
124
+ tol = 5e-5 if res.dtype == np.float32 else 1e-7
125
+ assert_allclose(gtr, res, rtol=tol)
126
+
127
+
128
+ @pytest.mark.parametrize("queue", get_queues())
129
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
130
+ def test_reconstruct_model(queue, dtype):
131
+ seed = 42
132
+ s_count = 3500
133
+ f_count, r_count = 14, 9
134
+
135
+ gen = np.random.default_rng(seed)
136
+ intp = gen.random(size=r_count, dtype=dtype)
137
+ coef = gen.random(size=(r_count, f_count), dtype=dtype).T
138
+
139
+ X = gen.random(size=(s_count, f_count), dtype=dtype)
140
+ gtr = X @ coef + intp[np.newaxis, :]
141
+
142
+ model = LinearRegression(fit_intercept=True)
143
+ model.coef_ = coef.T
144
+ model.intercept_ = intp
145
+
146
+ res = model.predict(X, queue=queue)
147
+
148
+ tol = 1e-5 if res.dtype == np.float32 else 1e-7
149
+ assert_allclose(gtr, res, rtol=tol)
@@ -0,0 +1,95 @@
1
+ # ===============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from daal4py.sklearn._utils import daal_check_version
18
+
19
+ if daal_check_version((2024, "P", 1)):
20
+ import numpy as np
21
+ import pytest
22
+ from numpy.testing import assert_allclose, assert_array_equal
23
+ from scipy.sparse import csr_matrix
24
+ from sklearn.datasets import load_breast_cancer, make_classification
25
+ from sklearn.metrics import accuracy_score
26
+ from sklearn.model_selection import train_test_split
27
+
28
+ from onedal.linear_model import LogisticRegression
29
+ from onedal.tests.utils._device_selection import get_queues
30
+
31
+ @pytest.mark.parametrize("queue", get_queues("gpu"))
32
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
33
+ def test_breast_cancer(queue, dtype):
34
+ X, y = load_breast_cancer(return_X_y=True)
35
+ X, y = X.astype(dtype), y.astype(dtype)
36
+ X_train, X_test, y_train, y_test = train_test_split(
37
+ X, y, train_size=0.8, random_state=42
38
+ )
39
+ model = LogisticRegression(fit_intercept=True, solver="newton-cg")
40
+ model.fit(X_train, y_train, queue=queue)
41
+ y_pred = model.predict(X_test, queue=queue)
42
+ assert accuracy_score(y_test, y_pred) > 0.95
43
+
44
+ assert hasattr(model, "n_iter_")
45
+ assert hasattr(model, "coef_")
46
+ assert hasattr(model, "intercept_")
47
+ if daal_check_version((2024, "P", 300)):
48
+ assert hasattr(model, "_n_inner_iter")
49
+
50
+ @pytest.mark.parametrize("queue", get_queues("gpu"))
51
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
52
+ def test_pickle(queue, dtype):
53
+ X, y = load_breast_cancer(return_X_y=True)
54
+ X, y = X.astype(dtype), y.astype(dtype)
55
+ model = LogisticRegression(fit_intercept=True, solver="newton-cg")
56
+ model.fit(X, y, queue=queue)
57
+ expected = model.predict(X, queue=queue)
58
+
59
+ import pickle
60
+
61
+ dump = pickle.dumps(model)
62
+ model2 = pickle.loads(dump)
63
+
64
+ assert isinstance(model2, model.__class__)
65
+ result = model2.predict(X, queue=queue)
66
+
67
+ assert_array_equal(expected, result)
68
+
69
+
70
+ if daal_check_version((2024, "P", 700)):
71
+
72
+ @pytest.mark.parametrize("queue", get_queues("gpu"))
73
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
74
+ @pytest.mark.parametrize(
75
+ "dims", [(3007, 17, 0.05), (50000, 100, 0.01), (512, 10, 0.5)]
76
+ )
77
+ def test_csr(queue, dtype, dims):
78
+ n, p, density = dims
79
+ X, y = make_classification(n, p, random_state=42)
80
+ np.random.seed(2007 + n + p)
81
+ mask = np.random.binomial(1, density, (n, p))
82
+ X = X * mask
83
+ X_sp = csr_matrix(X)
84
+ model = LogisticRegression(fit_intercept=True, solver="newton-cg")
85
+ model.fit(X, y, queue=queue)
86
+ pred = model.predict(X, queue=queue)
87
+
88
+ model_sp = LogisticRegression(fit_intercept=True, solver="newton-cg")
89
+ model_sp.fit(X_sp, y, queue=queue)
90
+ pred_sp = model_sp.predict(X_sp, queue=queue)
91
+
92
+ rtol = 2e-4
93
+ assert_allclose(pred, pred_sp, rtol=rtol)
94
+ assert_allclose(model.coef_, model_sp.coef_, rtol=rtol)
95
+ assert_allclose(model.intercept_, model_sp.intercept_, rtol=rtol)
@@ -0,0 +1,95 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from daal4py.sklearn._utils import daal_check_version
18
+
19
+ if daal_check_version((2024, "P", 600)):
20
+ import numpy as np
21
+ import pytest
22
+ from numpy.testing import assert_allclose, assert_array_equal
23
+ from sklearn.datasets import load_diabetes
24
+ from sklearn.metrics import mean_squared_error
25
+ from sklearn.model_selection import train_test_split
26
+
27
+ from onedal.linear_model import Ridge
28
+ from onedal.tests.utils._device_selection import get_queues
29
+
30
+ @pytest.mark.parametrize("queue", get_queues())
31
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
32
+ def test_diabetes(queue, dtype):
33
+ X, y = load_diabetes(return_X_y=True)
34
+ X, y = X.astype(dtype), y.astype(dtype)
35
+ X_train, X_test, y_train, y_test = train_test_split(
36
+ X, y, train_size=0.8, random_state=777
37
+ )
38
+ model = Ridge(fit_intercept=True, alpha=0.1)
39
+ model.fit(X_train, y_train, queue=queue)
40
+ y_pred = model.predict(X_test, queue=queue)
41
+ assert_allclose(mean_squared_error(y_test, y_pred), 2388.775, rtol=1e-5)
42
+
43
+ @pytest.mark.parametrize("queue", get_queues())
44
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
45
+ def test_pickle(queue, dtype):
46
+ X, y = load_diabetes(return_X_y=True)
47
+ X, y = X.astype(dtype), y.astype(dtype)
48
+ model = Ridge(fit_intercept=True, alpha=0.5)
49
+ model.fit(X, y, queue=queue)
50
+ expected = model.predict(X, queue=queue)
51
+
52
+ import pickle
53
+
54
+ dump = pickle.dumps(model)
55
+ model2 = pickle.loads(dump)
56
+
57
+ assert isinstance(model2, model.__class__)
58
+ result = model2.predict(X, queue=queue)
59
+
60
+ assert_array_equal(expected, result)
61
+
62
+ @pytest.mark.parametrize("queue", get_queues())
63
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
64
+ def test_no_intercept_results(queue, dtype):
65
+ seed = 42
66
+ n_features, n_targets = 19, 7
67
+ n_train_samples, n_test_samples = 3500, 1999
68
+
69
+ gen = np.random.default_rng(seed)
70
+
71
+ X = gen.random(size=(n_train_samples, n_features), dtype=dtype)
72
+ y = gen.random(size=(n_train_samples, n_targets), dtype=dtype)
73
+ alpha = 0.5
74
+
75
+ lambda_identity = alpha * np.eye(X.shape[1])
76
+ inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
77
+ xt_y = np.dot(X.T, y)
78
+ coef = np.dot(inverse_term, xt_y)
79
+
80
+ model = Ridge(fit_intercept=False, alpha=alpha)
81
+ model.fit(X, y, queue=queue)
82
+
83
+ if queue and queue.sycl_device.is_gpu:
84
+ tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
85
+ else:
86
+ tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
87
+ assert_allclose(coef, model.coef_.T, rtol=tol)
88
+
89
+ Xt = gen.random(size=(n_test_samples, n_features), dtype=dtype)
90
+ gtr = Xt @ coef
91
+
92
+ res = model.predict(Xt, queue=queue)
93
+
94
+ tol = 2e-4 if res.dtype == np.float32 else 1e-7
95
+ assert_allclose(gtr, res, rtol=tol)
@@ -0,0 +1,19 @@
1
+ # ===============================================================================
2
+ # Copyright 2022 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from .neighbors import KNeighborsClassifier, KNeighborsRegressor, NearestNeighbors
18
+
19
+ __all__ = ["KNeighborsClassifier", "KNeighborsRegressor", "NearestNeighbors"]