scikit-learn-intelex 2025.0.0__py311-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,328 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from functools import partial
18
+ from inspect import getattr_static, isclass, signature
19
+
20
+ import numpy as np
21
+ from scipy import sparse as sp
22
+ from sklearn import clone
23
+ from sklearn.base import (
24
+ BaseEstimator,
25
+ ClassifierMixin,
26
+ ClusterMixin,
27
+ OutlierMixin,
28
+ RegressorMixin,
29
+ TransformerMixin,
30
+ )
31
+ from sklearn.datasets import load_diabetes, load_iris
32
+ from sklearn.neighbors._base import KNeighborsMixin
33
+
34
+ from onedal.tests.utils._dataframes_support import _convert_to_dataframe
35
+ from sklearnex import get_patch_map, patch_sklearn, sklearn_is_patched, unpatch_sklearn
36
+ from sklearnex.linear_model import LogisticRegression
37
+ from sklearnex.neighbors import (
38
+ KNeighborsClassifier,
39
+ KNeighborsRegressor,
40
+ LocalOutlierFactor,
41
+ NearestNeighbors,
42
+ )
43
+ from sklearnex.svm import SVC, NuSVC
44
+
45
+
46
+ def _load_all_models(with_sklearnex=True, estimator=True):
47
+ """Convert sklearnex patch_map into a dictionary of estimators or functions
48
+
49
+ Parameters
50
+ ----------
51
+ with_sklearnex: bool (default=True)
52
+ Discover estimators and methods with sklearnex patching enabled (True)
53
+ or disabled (False) from the sklearnex patch_map
54
+
55
+ estimator: bool (default=True)
56
+ yield estimators (True) or functions (False)
57
+
58
+ Returns
59
+ -------
60
+ dict: {name:estimator}
61
+ estimator is a class or function from sklearn or sklearnex
62
+ """
63
+ # insure that patch state is correct as dictated by patch_sklearn boolean
64
+ # and return it to the previous state no matter what occurs.
65
+ already_patched_map = sklearn_is_patched(return_map=True)
66
+ already_patched = any(already_patched_map.values())
67
+ try:
68
+ if with_sklearnex:
69
+ patch_sklearn()
70
+ elif already_patched:
71
+ unpatch_sklearn()
72
+
73
+ models = {}
74
+ for patch_infos in get_patch_map().values():
75
+ candidate = getattr(patch_infos[0][0][0], patch_infos[0][0][1], None)
76
+ if candidate is not None and isclass(candidate) == estimator:
77
+ if not estimator or issubclass(candidate, BaseEstimator):
78
+ models[patch_infos[0][0][1]] = candidate
79
+ finally:
80
+ if with_sklearnex:
81
+ unpatch_sklearn()
82
+ # both branches are now in an unpatched state, repatch as necessary
83
+ if already_patched:
84
+ patch_sklearn(name=[i for i in already_patched_map if already_patched_map[i]])
85
+
86
+ return models
87
+
88
+
89
+ PATCHED_MODELS = _load_all_models(with_sklearnex=True)
90
+ UNPATCHED_MODELS = _load_all_models(with_sklearnex=False)
91
+
92
+ PATCHED_FUNCTIONS = _load_all_models(with_sklearnex=True, estimator=False)
93
+ UNPATCHED_FUNCTIONS = _load_all_models(with_sklearnex=False, estimator=False)
94
+
95
+ mixin_map = [
96
+ [
97
+ ClassifierMixin,
98
+ ["decision_function", "predict", "predict_proba", "predict_log_proba", "score"],
99
+ "classification",
100
+ ],
101
+ [RegressorMixin, ["predict", "score"], "regression"],
102
+ [ClusterMixin, ["fit_predict"], "classification"],
103
+ [TransformerMixin, ["fit_transform", "transform", "score"], "classification"],
104
+ [OutlierMixin, ["fit_predict", "predict"], "classification"],
105
+ [KNeighborsMixin, ["kneighbors"], None],
106
+ ]
107
+
108
+
109
+ class _sklearn_clone_dict(dict):
110
+ """Special dict type for returning state-free sklearn/sklearnex estimators
111
+ with the same parameters"""
112
+
113
+ def __getitem__(self, key):
114
+ return clone(super().__getitem__(key))
115
+
116
+
117
+ # Special dictionary of sklearnex estimators which must be specifically tested, this
118
+ # could be because of supported non-default parameters, blocked support via sklearn's
119
+ # 'available_if' decorator, or not being a native sklearn estimator (i.e. those not in
120
+ # the default PATCHED_MODELS dictionary)
121
+ SPECIAL_INSTANCES = _sklearn_clone_dict(
122
+ {
123
+ str(i): i
124
+ for i in [
125
+ LocalOutlierFactor(novelty=True),
126
+ SVC(probability=True),
127
+ NuSVC(probability=True),
128
+ KNeighborsClassifier(algorithm="brute"),
129
+ KNeighborsRegressor(algorithm="brute"),
130
+ NearestNeighbors(algorithm="brute"),
131
+ LogisticRegression(solver="newton-cg"),
132
+ ]
133
+ }
134
+ )
135
+
136
+
137
+ def gen_models_info(algorithms, required_inputs=["X", "y"]):
138
+ """Generate estimator-attribute pairs for pytest test collection.
139
+
140
+ Parameters
141
+ ----------
142
+ algorithms : iterable (list, tuple, 1D array-like object)
143
+ Iterable of valid sklearnex estimators or keys from PATCHED_MODELS
144
+
145
+ required_inputs : list, tuple of strings or None
146
+ list of required args/kwargs for callable attribute (only non-private,
147
+ non-BaseEstimator attributes). Only one must be present, None
148
+ signifies taking all non-private attribues, callable or not.
149
+
150
+ Returns
151
+ -------
152
+ list of 2-element tuples: (estimator, string)
153
+ Returns a list of valid methods or attributes without "fit"
154
+ """
155
+ output = []
156
+ for estimator in algorithms:
157
+
158
+ if estimator in PATCHED_MODELS:
159
+ est = PATCHED_MODELS[estimator]
160
+ elif isinstance(algorithms[estimator], BaseEstimator):
161
+ est = algorithms[estimator].__class__
162
+ else:
163
+ raise KeyError(f"Unrecognized sklearnex estimator: {estimator}")
164
+
165
+ # remove BaseEstimator methods (get_params, set_params)
166
+ candidates = set(dir(est)) - set(dir(BaseEstimator))
167
+ # remove private methods
168
+ candidates = set([attr for attr in candidates if not attr.startswith("_")])
169
+ # required to enable other methods
170
+ candidates = candidates - {"fit"}
171
+
172
+ # allow only callable methods with any of the required inputs
173
+ if required_inputs:
174
+ methods = []
175
+ for attr in candidates:
176
+ attribute = getattr_static(est, attr)
177
+ if callable(attribute):
178
+ params = signature(attribute).parameters
179
+ if any([inp in params for inp in required_inputs]):
180
+ methods += [attr]
181
+ else:
182
+ methods = candidates
183
+
184
+ output += (
185
+ [(estimator, method) for method in methods]
186
+ if methods
187
+ else [(estimator, None)]
188
+ )
189
+
190
+ # In the case that no methods are available, set method to None.
191
+ # This will allow estimators without mixins to still test the fit
192
+ # method in various tests.
193
+ return output
194
+
195
+
196
+ def call_method(estimator, method, X, y, **kwargs):
197
+ """Generalized interface to call most sklearn estimator methods
198
+
199
+ Parameters
200
+ ----------
201
+ estimator : sklearn or sklearnex estimator instance
202
+
203
+ method: string
204
+ Valid callable method to estimator
205
+
206
+ X: array-like
207
+ data
208
+
209
+ y: array-like (for 'score', 'partial-fit', and 'path')
210
+ X-dependent data
211
+
212
+ **kwargs: keyword dict
213
+ keyword arguments to estimator.method
214
+
215
+ Returns
216
+ -------
217
+ return value from estimator.method
218
+ """
219
+ # useful for repository wide testing
220
+ if method == "inverse_transform":
221
+ # PCA's inverse_transform takes (n_samples, n_components)
222
+ data = (
223
+ (X[:, : estimator.n_components_],)
224
+ if X.shape[1] != estimator.n_components_
225
+ else (X,)
226
+ )
227
+ elif method not in ["score", "partial_fit", "path"]:
228
+ data = (X,)
229
+ else:
230
+ data = (X, y)
231
+ return getattr(estimator, method)(*data, **kwargs)
232
+
233
+
234
+ def _gen_dataset_type(est):
235
+ # est should be an estimator or estimator class
236
+ # dataset initialized to classification, but will be swapped
237
+ # for other types as necessary. Private method.
238
+ dataset = "classification"
239
+ estimator = est.__class__ if isinstance(est, BaseEstimator) else est
240
+
241
+ for mixin, _, data in mixin_map:
242
+ if issubclass(estimator, mixin) and data is not None:
243
+ dataset = data
244
+ return dataset
245
+
246
+
247
+ _dataset_dict = {
248
+ "classification": [partial(load_iris, return_X_y=True)],
249
+ "regression": [partial(load_diabetes, return_X_y=True)],
250
+ }
251
+
252
+
253
+ def gen_dataset(
254
+ est,
255
+ datasets=_dataset_dict,
256
+ sparse=False,
257
+ queue=None,
258
+ target_df=None,
259
+ dtype=None,
260
+ ):
261
+ """Generate dataset for pytest testing.
262
+
263
+ Parameters
264
+ ----------
265
+ est : sklearn or sklearnex estimator class
266
+ Must inherit an sklearn Mixin or sklearn's BaseEstimator
267
+
268
+ dataset: dataset dict
269
+ Dictionary with keys "classification" and/or "regression"
270
+ Value must be a list of object which yield X, y array
271
+ objects when called, ideally using a lambda or
272
+ functools.partial.
273
+
274
+ sparse: bool (default False)
275
+ Convert X data to a scipy.sparse csr_matrix format.
276
+
277
+ queue: SYCL queue or None
278
+ Queue necessary for device offloading following the
279
+ SYCL 2020 standard, usually generated by dpctl.
280
+
281
+ target_df: string or None
282
+ dataframe type for returned dataset, as dictated by
283
+ onedal's _convert_to_dataframe.
284
+
285
+ dtype: numpy dtype or None
286
+ target datatype for returned datasets (see DTYPES).
287
+
288
+ Returns
289
+ -------
290
+ list of 2-element list X,y: (array-like, array-like)
291
+ list of datasets for analysis
292
+ """
293
+ dataset_type = _gen_dataset_type(est)
294
+ output = []
295
+ # load data
296
+ flag = dtype is None
297
+
298
+ for func in datasets[dataset_type]:
299
+ X, y = func()
300
+ if flag:
301
+ dtype = X.dtype if hasattr(X, "dtype") else np.float64
302
+
303
+ if sparse:
304
+ X = sp.csr_matrix(X)
305
+ else:
306
+ X = _convert_to_dataframe(
307
+ X, sycl_queue=queue, target_df=target_df, dtype=dtype
308
+ )
309
+ y = _convert_to_dataframe(
310
+ y, sycl_queue=queue, target_df=target_df, dtype=dtype
311
+ )
312
+ output += [[X, y]]
313
+ return output
314
+
315
+
316
+ DTYPES = [
317
+ np.int8,
318
+ np.int16,
319
+ np.int32,
320
+ np.int64,
321
+ np.float16,
322
+ np.float32,
323
+ np.float64,
324
+ np.uint8,
325
+ np.uint16,
326
+ np.uint32,
327
+ np.uint64,
328
+ ]
@@ -0,0 +1,198 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from numpy.testing import assert_allclose
19
+ from sklearn.datasets import make_blobs, make_classification, make_regression
20
+ from sklearn.model_selection import train_test_split
21
+
22
+ from onedal.tests.utils._dataframes_support import _as_numpy
23
+
24
+ try:
25
+ import dpctl
26
+ from dpctl import SyclQueue
27
+ from mpi4py import MPI
28
+
29
+ mpi_libs_available = True
30
+ gpu_is_available = dpctl.has_gpu_devices()
31
+ except (ImportError, ModuleNotFoundError):
32
+ mpi_libs_available = False
33
+
34
+ _mpi_libs_and_gpu_available = mpi_libs_available and gpu_is_available
35
+
36
+
37
+ def _get_local_tensor(full_data):
38
+ """Splits data across ranks.
39
+
40
+ Called on each rank to extract the subset of data assigned to that rank.
41
+
42
+ Args:
43
+ full_data (numpy or dpctl array): The entire set of data
44
+
45
+ Returns:
46
+ local_data (numpy or dpctl array): The subset of data used by the rank
47
+ """
48
+
49
+ # create sycl queue and gather communicator details
50
+ q = SyclQueue("gpu")
51
+ comm = MPI.COMM_WORLD
52
+ rank = comm.Get_rank()
53
+ size = comm.Get_size()
54
+
55
+ # divide data across ranks and move to dpt tensor
56
+ data_rows = full_data.shape[0]
57
+ local_start = rank * data_rows // size
58
+ local_end = (1 + rank) * data_rows // size
59
+ local_data = full_data[local_start:local_end]
60
+
61
+ return local_data
62
+
63
+
64
+ def _generate_regression_data(n_samples, n_features, dtype=np.float64, random_state=42):
65
+ # Generates regression data and divides between train and test
66
+ X, y = make_regression(
67
+ n_samples=n_samples, n_features=n_features, random_state=random_state
68
+ )
69
+ X = X.astype(dtype)
70
+ y = y.astype(dtype)
71
+ X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state)
72
+ return X_train, X_test, y_train, y_test
73
+
74
+
75
+ def _generate_classification_data(
76
+ n_samples, n_features, n_classes=2, dtype=np.float64, random_state=42
77
+ ):
78
+ # Generates classification data and divides between train and test
79
+ X, y = make_classification(
80
+ n_samples=n_samples,
81
+ n_features=n_features,
82
+ n_classes=n_classes,
83
+ n_informative=int(0.5 * n_classes + 1),
84
+ random_state=random_state,
85
+ )
86
+ X = X.astype(dtype)
87
+ y = y.astype(dtype)
88
+ X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state)
89
+ return X_train, X_test, y_train, y_test
90
+
91
+
92
+ def _generate_statistic_data(
93
+ n_samples, n_features=None, dtype=np.float64, random_state=42
94
+ ):
95
+ # Generates statistical data
96
+ gen = np.random.default_rng(random_state)
97
+ data = gen.uniform(
98
+ low=-0.3,
99
+ high=+0.7,
100
+ size=(n_samples, n_features) if n_features is not None else (n_samples,),
101
+ ).astype(dtype)
102
+ return data
103
+
104
+
105
+ def _generate_clustering_data(
106
+ n_samples, n_features, centers=None, dtype=np.float64, random_state=42
107
+ ):
108
+ # Generates clustering data and divides between train and test
109
+ X, _ = make_blobs(
110
+ n_samples=n_samples,
111
+ centers=centers,
112
+ n_features=n_features,
113
+ random_state=random_state,
114
+ )
115
+ X = X.astype(dtype)
116
+ X_train, X_test = train_test_split(X, random_state=random_state)
117
+ return X_train, X_test
118
+
119
+
120
+ def _spmd_assert_allclose(spmd_result, batch_result, **kwargs):
121
+ """Calls assert_allclose on spmd and batch results.
122
+
123
+ Called on each rank to compare the spmd result specific to that rank and
124
+ subset of batch result that corresponds to that rank.
125
+
126
+ Args:
127
+ spmd_result (numpy or dpctl array): The result for the subset of data on the rank the function is called from, computed by the spmd estimator
128
+ batch_result (numpy array): The result for all data, computed by the batch estimator
129
+
130
+ Raises:
131
+ AssertionError: If all results are not adequately close.
132
+ """
133
+
134
+ # extract chunk from batch result to match with local spmd result
135
+ local_batch_result = _get_local_tensor(batch_result)
136
+
137
+ assert_allclose(_as_numpy(spmd_result), _as_numpy(local_batch_result), **kwargs)
138
+
139
+
140
+ def _assert_unordered_allclose(spmd_result, batch_result, localize=False, **kwargs):
141
+ """Checks if rows in spmd and batch results are aligned, even if not in the same order.
142
+
143
+ Called to verify correct unordered results are present. Useful to check KMeans centers
144
+ or KNN neighbors, where order does not matter. Sorts inputs to handle unordering. Also
145
+ capable of handling localization.
146
+
147
+ Args:
148
+ spmd_result (numpy or dpctl array): Result computed by the spmd estimator
149
+ batch_result (numpy array): Result computed by batch estimator
150
+ localize (bool): Whether of not spmd result is specific to the rank, in which case batch result needs to be localized
151
+
152
+ Raises:
153
+ AssertionError: If results do not match.
154
+ """
155
+ np_spmd_result = _as_numpy(spmd_result)
156
+
157
+ sorted_spmd_result = np_spmd_result[
158
+ np.argsort(np.linalg.norm(np_spmd_result, axis=1))
159
+ ]
160
+ if localize:
161
+ local_batch_result = _get_local_tensor(batch_result)
162
+ sorted_batch_result = local_batch_result[
163
+ np.argsort(np.linalg.norm(local_batch_result, axis=1))
164
+ ]
165
+ else:
166
+ sorted_batch_result = batch_result[
167
+ np.argsort(np.linalg.norm(batch_result, axis=1))
168
+ ]
169
+
170
+ assert_allclose(sorted_spmd_result, sorted_batch_result, **kwargs)
171
+
172
+
173
+ def _assert_kmeans_labels_allclose(
174
+ spmd_labels, batch_labels, spmd_centers, batch_centers, **kwargs
175
+ ):
176
+ """Checks if labels for spmd and batch results are aligned, even cluster indices don't match.
177
+
178
+ Called to verify labels are assigned the same way on spmd and batch. Uses raw labels (which
179
+ may not match) to identify cluster center and ensure results match.
180
+
181
+ Args:
182
+ spmd_labels (numpy or dpctl array): The labels for the subset of data on the rank the function is called from, computed by the spmd estimator
183
+ batch_labels (numpy array): The labels for all data, computed by the batch estimator
184
+ spmd_centers (numpy or dpctl array): Centers computed by the spmd estimator
185
+ batch_centers (numpy array): Centers computed by batch estimator
186
+
187
+ Raises:
188
+ AssertionError: If clusters are not correctly assigned.
189
+ """
190
+
191
+ np_spmd_labels = _as_numpy(spmd_labels)
192
+ np_spmd_centers = _as_numpy(spmd_centers)
193
+ local_batch_labels = _get_local_tensor(batch_labels)
194
+ assert_allclose(
195
+ np_spmd_centers[np_spmd_labels],
196
+ batch_centers[local_batch_labels],
197
+ **kwargs,
198
+ )
@@ -0,0 +1,54 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import os
18
+ from glob import glob
19
+
20
+ import pytest
21
+
22
+ ALLOWED_LOCATIONS = [
23
+ "_config.py",
24
+ "_device_offload.py",
25
+ "test",
26
+ "svc.py",
27
+ "svm" + os.sep + "_common.py",
28
+ ]
29
+
30
+
31
+ def test_target_offload_ban():
32
+ """This test blocks the use of target_offload in
33
+ in sklearnex files. Offloading computation to devices
34
+ via target_offload should only occur externally, and not
35
+ within the architecture of the sklearnex classes. This
36
+ is for clarity, traceability and maintainability.
37
+ """
38
+ from sklearnex import __file__ as loc
39
+
40
+ path = loc.replace("__init__.py", "")
41
+ files = [y for x in os.walk(path) for y in glob(os.path.join(x[0], "*.py"))]
42
+
43
+ output = []
44
+
45
+ for f in files:
46
+ if open(f, "r").read().find("target_offload") != -1:
47
+ output += [f.replace(path, "sklearnex" + os.sep)]
48
+
49
+ # remove this file from the list
50
+ for allowed in ALLOWED_LOCATIONS:
51
+ output = [i for i in output if allowed not in i]
52
+
53
+ output = "\n".join(output)
54
+ assert output == "", f"sklearn versioning is occuring in: \n{output}"
@@ -0,0 +1,43 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import sklearn
18
+
19
+ import onedal
20
+ import sklearnex
21
+
22
+
23
+ def test_get_config_contains_sklearn_params():
24
+ skex_config = sklearnex.get_config()
25
+ sk_config = sklearn.get_config()
26
+
27
+ assert all(value in skex_config.keys() for value in sk_config.keys())
28
+
29
+
30
+ def test_set_config_works():
31
+ default_config = sklearnex.get_config()
32
+ sklearnex.set_config(
33
+ assume_finite=True, target_offload="cpu:0", allow_fallback_to_host=True
34
+ )
35
+
36
+ config = sklearnex.get_config()
37
+ onedal_config = onedal._config._get_config()
38
+ assert config["target_offload"] == "cpu:0"
39
+ assert config["allow_fallback_to_host"]
40
+ assert config["assume_finite"]
41
+ assert onedal_config["target_offload"] == "cpu:0"
42
+ assert onedal_config["allow_fallback_to_host"]
43
+ sklearnex.set_config(**default_config)