scikit-learn-intelex 2025.0.0__py311-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,288 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from sklearn.base import BaseEstimator
19
+ from sklearn.utils import check_array, gen_batches
20
+ from sklearn.utils.validation import _check_sample_weight
21
+
22
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
23
+ from daal4py.sklearn._utils import sklearn_check_version
24
+ from onedal.basic_statistics import (
25
+ IncrementalBasicStatistics as onedal_IncrementalBasicStatistics,
26
+ )
27
+
28
+ from .._device_offload import dispatch
29
+ from .._utils import PatchingConditionsChain
30
+
31
+ if sklearn_check_version("1.2"):
32
+ from sklearn.utils._param_validation import Interval, StrOptions
33
+
34
+ import numbers
35
+
36
+
37
+ @control_n_jobs(decorated_methods=["partial_fit", "_onedal_finalize_fit"])
38
+ class IncrementalBasicStatistics(BaseEstimator):
39
+ """
40
+ Incremental estimator for basic statistics.
41
+ Allows to compute basic statistics if data are splitted into batches.
42
+ Parameters
43
+ ----------
44
+ result_options: string or list, default='all'
45
+ List of statistics to compute
46
+
47
+ batch_size : int, default=None
48
+ The number of samples to use for each batch. Only used when calling
49
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
50
+ is inferred from the data and set to ``5 * n_features``, to provide a
51
+ balance between approximation accuracy and memory consumption.
52
+
53
+ Attributes (are existing only if corresponding result option exists)
54
+ ----------
55
+ min : ndarray of shape (n_features,)
56
+ Minimum of each feature over all samples.
57
+
58
+ max : ndarray of shape (n_features,)
59
+ Maximum of each feature over all samples.
60
+
61
+ sum : ndarray of shape (n_features,)
62
+ Sum of each feature over all samples.
63
+
64
+ mean : ndarray of shape (n_features,)
65
+ Mean of each feature over all samples.
66
+
67
+ variance : ndarray of shape (n_features,)
68
+ Variance of each feature over all samples.
69
+
70
+ variation : ndarray of shape (n_features,)
71
+ Variation of each feature over all samples.
72
+
73
+ sum_squares : ndarray of shape (n_features,)
74
+ Sum of squares for each feature over all samples.
75
+
76
+ standard_deviation : ndarray of shape (n_features,)
77
+ Standard deviation of each feature over all samples.
78
+
79
+ sum_squares_centered : ndarray of shape (n_features,)
80
+ Centered sum of squares for each feature over all samples.
81
+
82
+ second_order_raw_moment : ndarray of shape (n_features,)
83
+ Second order moment of each feature over all samples.
84
+ """
85
+
86
+ _onedal_incremental_basic_statistics = staticmethod(onedal_IncrementalBasicStatistics)
87
+
88
+ if sklearn_check_version("1.2"):
89
+ _parameter_constraints: dict = {
90
+ "result_options": [
91
+ StrOptions(
92
+ {
93
+ "all",
94
+ "min",
95
+ "max",
96
+ "sum",
97
+ "mean",
98
+ "variance",
99
+ "variation",
100
+ "sum_squares",
101
+ "standard_deviation",
102
+ "sum_squares_centered",
103
+ "second_order_raw_moment",
104
+ }
105
+ ),
106
+ list,
107
+ ],
108
+ "batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
109
+ }
110
+
111
+ def __init__(self, result_options="all", batch_size=None):
112
+ if result_options == "all":
113
+ self.result_options = (
114
+ self._onedal_incremental_basic_statistics.get_all_result_options()
115
+ )
116
+ else:
117
+ self.result_options = result_options
118
+ self._need_to_finalize = False
119
+ self.batch_size = batch_size
120
+
121
+ def _onedal_supported(self, method_name, *data):
122
+ patching_status = PatchingConditionsChain(
123
+ f"sklearn.basic_statistics.{self.__class__.__name__}.{method_name}"
124
+ )
125
+ return patching_status
126
+
127
+ _onedal_cpu_supported = _onedal_supported
128
+ _onedal_gpu_supported = _onedal_supported
129
+
130
+ def _get_onedal_result_options(self, options):
131
+ if isinstance(options, list):
132
+ onedal_options = "|".join(self.result_options)
133
+ else:
134
+ onedal_options = options
135
+ assert isinstance(onedal_options, str)
136
+ return options
137
+
138
+ def _onedal_finalize_fit(self, queue=None):
139
+ assert hasattr(self, "_onedal_estimator")
140
+ self._onedal_estimator.finalize_fit(queue=queue)
141
+ self._need_to_finalize = False
142
+
143
+ def _onedal_partial_fit(self, X, sample_weight=None, queue=None):
144
+ first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
145
+
146
+ if sklearn_check_version("1.0"):
147
+ X = self._validate_data(
148
+ X,
149
+ dtype=[np.float64, np.float32],
150
+ reset=first_pass,
151
+ )
152
+ else:
153
+ X = check_array(
154
+ X,
155
+ dtype=[np.float64, np.float32],
156
+ )
157
+
158
+ if sample_weight is not None:
159
+ sample_weight = _check_sample_weight(sample_weight, X)
160
+
161
+ if first_pass:
162
+ self.n_samples_seen_ = X.shape[0]
163
+ self.n_features_in_ = X.shape[1]
164
+ else:
165
+ self.n_samples_seen_ += X.shape[0]
166
+
167
+ onedal_params = {
168
+ "result_options": self._get_onedal_result_options(self.result_options)
169
+ }
170
+ if not hasattr(self, "_onedal_estimator"):
171
+ self._onedal_estimator = self._onedal_incremental_basic_statistics(
172
+ **onedal_params
173
+ )
174
+ self._onedal_estimator.partial_fit(X, weights=sample_weight, queue=queue)
175
+ self._need_to_finalize = True
176
+
177
+ def _onedal_fit(self, X, sample_weight=None, queue=None):
178
+ if sklearn_check_version("1.0"):
179
+ X = self._validate_data(X, dtype=[np.float64, np.float32])
180
+ else:
181
+ X = check_array(X, dtype=[np.float64, np.float32])
182
+
183
+ if sample_weight is not None:
184
+ sample_weight = _check_sample_weight(sample_weight, X)
185
+
186
+ n_samples, n_features = X.shape
187
+ if self.batch_size is None:
188
+ self.batch_size_ = 5 * n_features
189
+ else:
190
+ self.batch_size_ = self.batch_size
191
+
192
+ self.n_samples_seen_ = 0
193
+ if hasattr(self, "_onedal_estimator"):
194
+ self._onedal_estimator._reset()
195
+
196
+ for batch in gen_batches(X.shape[0], self.batch_size_):
197
+ X_batch = X[batch]
198
+ weights_batch = sample_weight[batch] if sample_weight is not None else None
199
+ self._onedal_partial_fit(X_batch, weights_batch, queue=queue)
200
+
201
+ if sklearn_check_version("1.2"):
202
+ self._validate_params()
203
+
204
+ self.n_features_in_ = X.shape[1]
205
+
206
+ self._onedal_finalize_fit(queue=queue)
207
+
208
+ return self
209
+
210
+ def __getattr__(self, attr):
211
+ result_options = self.__dict__["result_options"]
212
+ is_statistic_attr = (
213
+ isinstance(result_options, str) and (attr == result_options)
214
+ ) or (isinstance(result_options, list) and (attr in result_options))
215
+ if is_statistic_attr:
216
+ if self._need_to_finalize:
217
+ self._onedal_finalize_fit()
218
+ return getattr(self._onedal_estimator, attr)
219
+ if attr in self.__dict__:
220
+ return self.__dict__[attr]
221
+
222
+ raise AttributeError(
223
+ f"'{self.__class__.__name__}' object has no attribute '{attr}'"
224
+ )
225
+
226
+ def partial_fit(self, X, sample_weight=None):
227
+ """Incremental fit with X. All of X is processed as a single batch.
228
+
229
+ Parameters
230
+ ----------
231
+ X : array-like of shape (n_samples, n_features)
232
+ Data for compute, where `n_samples` is the number of samples and
233
+ `n_features` is the number of features.
234
+
235
+ y : Ignored
236
+ Not used, present for API consistency by convention.
237
+
238
+ sample_weight : array-like of shape (n_samples,), default=None
239
+ Weights for compute weighted statistics, where `n_samples` is the number of samples.
240
+
241
+ Returns
242
+ -------
243
+ self : object
244
+ Returns the instance itself.
245
+ """
246
+ dispatch(
247
+ self,
248
+ "partial_fit",
249
+ {
250
+ "onedal": self.__class__._onedal_partial_fit,
251
+ "sklearn": None,
252
+ },
253
+ X,
254
+ sample_weight,
255
+ )
256
+ return self
257
+
258
+ def fit(self, X, y=None, sample_weight=None):
259
+ """Compute statistics with X, using minibatches of size batch_size.
260
+
261
+ Parameters
262
+ ----------
263
+ X : array-like of shape (n_samples, n_features)
264
+ Data for compute, where `n_samples` is the number of samples and
265
+ `n_features` is the number of features.
266
+
267
+ y : Ignored
268
+ Not used, present for API consistency by convention.
269
+
270
+ sample_weight : array-like of shape (n_samples,), default=None
271
+ Weights for compute weighted statistics, where `n_samples` is the number of samples.
272
+
273
+ Returns
274
+ -------
275
+ self : object
276
+ Returns the instance itself.
277
+ """
278
+ dispatch(
279
+ self,
280
+ "fit",
281
+ {
282
+ "onedal": self.__class__._onedal_fit,
283
+ "sklearn": None,
284
+ },
285
+ X,
286
+ sample_weight,
287
+ )
288
+ return self
@@ -0,0 +1,251 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.basic_statistics.tests.test_basic_statistics import (
22
+ expected_max,
23
+ expected_mean,
24
+ expected_sum,
25
+ options_and_tests,
26
+ )
27
+ from onedal.tests.utils._dataframes_support import (
28
+ _convert_to_dataframe,
29
+ get_dataframes_and_queues,
30
+ )
31
+ from sklearnex.basic_statistics import BasicStatistics
32
+
33
+
34
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
35
+ def test_sklearnex_import_basic_statistics(dataframe, queue):
36
+ X = np.array([[0, 0], [1, 1]])
37
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
38
+
39
+ weights = np.array([1, 0.5])
40
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
41
+
42
+ result = BasicStatistics().fit(X_df)
43
+
44
+ expected_mean = np.array([0.5, 0.5])
45
+ expected_min = np.array([0, 0])
46
+ expected_max = np.array([1, 1])
47
+
48
+ assert_allclose(expected_mean, result.mean)
49
+ assert_allclose(expected_max, result.max)
50
+ assert_allclose(expected_min, result.min)
51
+
52
+ result = BasicStatistics().fit(X_df, sample_weight=weights_df)
53
+
54
+ expected_weighted_mean = np.array([0.25, 0.25])
55
+ expected_weighted_min = np.array([0, 0])
56
+ expected_weighted_max = np.array([0.5, 0.5])
57
+
58
+ assert_allclose(expected_weighted_mean, result.mean)
59
+ assert_allclose(expected_weighted_min, result.min)
60
+ assert_allclose(expected_weighted_max, result.max)
61
+
62
+
63
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
64
+ @pytest.mark.parametrize("weighted", [True, False])
65
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
66
+ def test_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
67
+ X = np.array([[0, 0], [1, 1]])
68
+ X = X.astype(dtype=dtype)
69
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
70
+ if weighted:
71
+ weights = np.array([1, 0.5])
72
+ weights = weights.astype(dtype=dtype)
73
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
74
+ basicstat = BasicStatistics()
75
+
76
+ if weighted:
77
+ result = basicstat.fit(X_df, sample_weight=weights_df)
78
+ else:
79
+ result = basicstat.fit(X_df)
80
+
81
+ if weighted:
82
+ expected_weighted_mean = np.array([0.25, 0.25])
83
+ expected_weighted_min = np.array([0, 0])
84
+ expected_weighted_max = np.array([0.5, 0.5])
85
+ assert_allclose(expected_weighted_mean, result.mean)
86
+ assert_allclose(expected_weighted_max, result.max)
87
+ assert_allclose(expected_weighted_min, result.min)
88
+ else:
89
+ expected_mean = np.array([0.5, 0.5])
90
+ expected_min = np.array([0, 0])
91
+ expected_max = np.array([1, 1])
92
+ assert_allclose(expected_mean, result.mean)
93
+ assert_allclose(expected_max, result.max)
94
+ assert_allclose(expected_min, result.min)
95
+
96
+
97
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
98
+ @pytest.mark.parametrize("option", options_and_tests)
99
+ @pytest.mark.parametrize("row_count", [100, 1000])
100
+ @pytest.mark.parametrize("column_count", [10, 100])
101
+ @pytest.mark.parametrize("weighted", [True, False])
102
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
103
+ def test_single_option_on_random_data(
104
+ dataframe, queue, option, row_count, column_count, weighted, dtype
105
+ ):
106
+ result_option, function, tols = option
107
+ fp32tol, fp64tol = tols
108
+ seed = 77
109
+ gen = np.random.default_rng(seed)
110
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
111
+ X = X.astype(dtype=dtype)
112
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
113
+ if weighted:
114
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
115
+ weights = weights.astype(dtype=dtype)
116
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
117
+ basicstat = BasicStatistics(result_options=result_option)
118
+
119
+ if weighted:
120
+ result = basicstat.fit(X_df, sample_weight=weights_df)
121
+ else:
122
+ result = basicstat.fit(X_df)
123
+
124
+ res = getattr(result, result_option)
125
+ if weighted:
126
+ weighted_data = np.diag(weights) @ X
127
+ gtr = function(weighted_data)
128
+ else:
129
+ gtr = function(X)
130
+
131
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
132
+ assert_allclose(gtr, res, atol=tol)
133
+
134
+
135
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
136
+ @pytest.mark.parametrize("row_count", [100, 1000])
137
+ @pytest.mark.parametrize("column_count", [10, 100])
138
+ @pytest.mark.parametrize("weighted", [True, False])
139
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
140
+ def test_multiple_options_on_random_data(
141
+ dataframe, queue, row_count, column_count, weighted, dtype
142
+ ):
143
+ seed = 77
144
+ gen = np.random.default_rng(seed)
145
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
146
+ X = X.astype(dtype=dtype)
147
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
148
+ if weighted:
149
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
150
+ weights = weights.astype(dtype=dtype)
151
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
152
+ basicstat = BasicStatistics(result_options=["mean", "max", "sum"])
153
+
154
+ if weighted:
155
+ result = basicstat.fit(X_df, sample_weight=weights_df)
156
+ else:
157
+ result = basicstat.fit(X_df)
158
+
159
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
160
+ if weighted:
161
+ weighted_data = np.diag(weights) @ X
162
+ gtr_mean, gtr_max, gtr_sum = (
163
+ expected_mean(weighted_data),
164
+ expected_max(weighted_data),
165
+ expected_sum(weighted_data),
166
+ )
167
+ else:
168
+ gtr_mean, gtr_max, gtr_sum = (
169
+ expected_mean(X),
170
+ expected_max(X),
171
+ expected_sum(X),
172
+ )
173
+
174
+ tol = 5e-4 if res_mean.dtype == np.float32 else 1e-7
175
+ assert_allclose(gtr_mean, res_mean, atol=tol)
176
+ assert_allclose(gtr_max, res_max, atol=tol)
177
+ assert_allclose(gtr_sum, res_sum, atol=tol)
178
+
179
+
180
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
181
+ @pytest.mark.parametrize("row_count", [100, 1000])
182
+ @pytest.mark.parametrize("column_count", [10, 100])
183
+ @pytest.mark.parametrize("weighted", [True, False])
184
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
185
+ def test_all_option_on_random_data(
186
+ dataframe, queue, row_count, column_count, weighted, dtype
187
+ ):
188
+ seed = 77
189
+ gen = np.random.default_rng(seed)
190
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
191
+ X = X.astype(dtype=dtype)
192
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
193
+ if weighted:
194
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
195
+ weights = weights.astype(dtype=dtype)
196
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
197
+ basicstat = BasicStatistics(result_options="all")
198
+
199
+ if weighted:
200
+ result = basicstat.fit(X_df, sample_weight=weights_df)
201
+ else:
202
+ result = basicstat.fit(X_df)
203
+
204
+ if weighted:
205
+ weighted_data = np.diag(weights) @ X
206
+
207
+ for option in options_and_tests:
208
+ result_option, function, tols = option
209
+ fp32tol, fp64tol = tols
210
+ res = getattr(result, result_option)
211
+ if weighted:
212
+ gtr = function(weighted_data)
213
+ else:
214
+ gtr = function(X)
215
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
216
+ assert_allclose(gtr, res, atol=tol)
217
+
218
+
219
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
220
+ @pytest.mark.parametrize("option", options_and_tests)
221
+ @pytest.mark.parametrize("data_size", [100, 1000])
222
+ @pytest.mark.parametrize("weighted", [True, False])
223
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
224
+ def test_1d_input_on_random_data(dataframe, queue, option, data_size, weighted, dtype):
225
+ result_option, function, tols = option
226
+ fp32tol, fp64tol = tols
227
+ seed = 77
228
+ gen = np.random.default_rng(seed)
229
+ X = gen.uniform(low=-0.3, high=+0.7, size=data_size)
230
+ X = X.astype(dtype=dtype)
231
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
232
+ if weighted:
233
+ weights = gen.uniform(low=-0.5, high=1.0, size=data_size)
234
+ weights = weights.astype(dtype=dtype)
235
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
236
+ basicstat = BasicStatistics(result_options=result_option)
237
+
238
+ if weighted:
239
+ result = basicstat.fit(X_df, sample_weight=weights_df)
240
+ else:
241
+ result = basicstat.fit(X_df)
242
+
243
+ res = getattr(result, result_option)
244
+ if weighted:
245
+ weighted_data = weights * X
246
+ gtr = function(weighted_data)
247
+ else:
248
+ gtr = function(X)
249
+
250
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
251
+ assert_allclose(gtr, res, atol=tol)