scikit-learn-intelex 2025.0.0__py311-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-311-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-311-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +242 -0
- daal4py/sklearn/_utils.py +241 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +155 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +53 -0
- onedal/_device_offload.py +229 -0
- onedal/_onedal_py_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-311-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +560 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +116 -0
- onedal/common/tests/test_policy.py +75 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +95 -0
- onedal/datatypes/tests/test_data.py +235 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +720 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +149 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +778 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +168 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +41 -0
- onedal/tests/utils/_dataframes_support.py +168 -0
- onedal/tests/utils/_device_selection.py +107 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +91 -0
- onedal/utils/validation.py +432 -0
- scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
- scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +65 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +98 -0
- sklearnex/_device_offload.py +121 -0
- sklearnex/_utils.py +109 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +140 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +192 -0
- sklearnex/cluster/k_means.py +383 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +153 -0
- sklearnex/conftest.py +73 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +368 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +414 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2016 -0
- sklearnex/ensemble/tests/test_forest.py +120 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +463 -0
- sklearnex/linear_model/incremental_ridge.py +418 -0
- sklearnex/linear_model/linear.py +302 -0
- sklearnex/linear_model/logistic_path.py +17 -0
- sklearnex/linear_model/logistic_regression.py +403 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +142 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +231 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +226 -0
- sklearnex/neighbors/knn_regression.py +203 -0
- sklearnex/neighbors/knn_unsupervised.py +170 -0
- sklearnex/neighbors/tests/test_neighbors.py +80 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +133 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +228 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +419 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +328 -0
- sklearnex/svm/nusvc.py +332 -0
- sklearnex/svm/nusvr.py +148 -0
- sklearnex/svm/svc.py +360 -0
- sklearnex/svm/svr.py +149 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/_utils.py +328 -0
- sklearnex/tests/_utils_spmd.py +198 -0
- sklearnex/tests/test_common.py +54 -0
- sklearnex/tests/test_config.py +43 -0
- sklearnex/tests/test_memory_usage.py +291 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +103 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +296 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from onedal.spmd.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
|
|
18
|
+
from onedal.spmd.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
|
|
19
|
+
|
|
20
|
+
from ...ensemble import RandomForestClassifier as RandomForestClassifier_Batch
|
|
21
|
+
from ...ensemble import RandomForestRegressor as RandomForestRegressor_Batch
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class RandomForestClassifier(RandomForestClassifier_Batch):
|
|
25
|
+
__doc__ = RandomForestClassifier_Batch.__doc__
|
|
26
|
+
_onedal_factory = onedal_RandomForestClassifier
|
|
27
|
+
|
|
28
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
29
|
+
# TODO:
|
|
30
|
+
# check which methods supported SPMD interface on CPU.
|
|
31
|
+
ready = super()._onedal_cpu_supported(method_name, *data)
|
|
32
|
+
if not ready:
|
|
33
|
+
raise RuntimeError(
|
|
34
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
35
|
+
"is not supported with given inputs."
|
|
36
|
+
)
|
|
37
|
+
return ready
|
|
38
|
+
|
|
39
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
40
|
+
ready = super()._onedal_gpu_supported(method_name, *data)
|
|
41
|
+
if not ready:
|
|
42
|
+
raise RuntimeError(
|
|
43
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
44
|
+
"is not supported with given inputs."
|
|
45
|
+
)
|
|
46
|
+
return ready
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class RandomForestRegressor(RandomForestRegressor_Batch):
|
|
50
|
+
__doc__ = RandomForestRegressor_Batch.__doc__
|
|
51
|
+
_onedal_factory = onedal_RandomForestRegressor
|
|
52
|
+
|
|
53
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
54
|
+
# TODO:
|
|
55
|
+
# check which methods supported SPMD interface on CPU.
|
|
56
|
+
ready = super()._onedal_cpu_supported(method_name, *data)
|
|
57
|
+
if not ready:
|
|
58
|
+
raise RuntimeError(
|
|
59
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
60
|
+
"is not supported with given inputs."
|
|
61
|
+
)
|
|
62
|
+
return ready
|
|
63
|
+
|
|
64
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
65
|
+
ready = super()._onedal_gpu_supported(method_name, *data)
|
|
66
|
+
if not ready:
|
|
67
|
+
raise RuntimeError(
|
|
68
|
+
f"Method {method_name} in {self.__class__.__name__} "
|
|
69
|
+
"is not supported with given inputs."
|
|
70
|
+
)
|
|
71
|
+
return ready
|
|
@@ -0,0 +1,265 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from sklearn.datasets import make_regression
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
from sklearnex.tests._utils_spmd import (
|
|
26
|
+
_generate_classification_data,
|
|
27
|
+
_generate_regression_data,
|
|
28
|
+
_get_local_tensor,
|
|
29
|
+
_mpi_libs_and_gpu_available,
|
|
30
|
+
_spmd_assert_allclose,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@pytest.mark.skipif(
|
|
35
|
+
not _mpi_libs_and_gpu_available,
|
|
36
|
+
reason="GPU device and MPI libs required for test",
|
|
37
|
+
)
|
|
38
|
+
@pytest.mark.parametrize(
|
|
39
|
+
"dataframe,queue",
|
|
40
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
41
|
+
)
|
|
42
|
+
@pytest.mark.mpi
|
|
43
|
+
def test_rfcls_spmd_gold(dataframe, queue):
|
|
44
|
+
# Import spmd and batch algo
|
|
45
|
+
from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
|
|
46
|
+
from sklearnex.spmd.ensemble import (
|
|
47
|
+
RandomForestClassifier as RandomForestClassifier_SPMD,
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
# Create gold data and convert to dataframe
|
|
51
|
+
X_train = np.array(
|
|
52
|
+
[
|
|
53
|
+
[0.0, 0.0],
|
|
54
|
+
[0.0, 1.0],
|
|
55
|
+
[1.0, 0.0],
|
|
56
|
+
[0.0, 2.0],
|
|
57
|
+
[2.0, 0.0],
|
|
58
|
+
[1.0, 1.0],
|
|
59
|
+
[0.0, -1.0],
|
|
60
|
+
[-1.0, 0.0],
|
|
61
|
+
[-1.0, -1.0],
|
|
62
|
+
]
|
|
63
|
+
)
|
|
64
|
+
y_train = np.array([0, 2, 1, 2, 1, 0, 1, 2, 0])
|
|
65
|
+
X_test = np.array(
|
|
66
|
+
[
|
|
67
|
+
[1.0, -1.0],
|
|
68
|
+
[-1.0, 1.0],
|
|
69
|
+
[0.0, 1.0],
|
|
70
|
+
[10.0, -10.0],
|
|
71
|
+
]
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
75
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
76
|
+
)
|
|
77
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
78
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
81
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
# Ensure predictions of batch algo match spmd
|
|
85
|
+
spmd_model = RandomForestClassifier_SPMD(n_estimators=3, random_state=0).fit(
|
|
86
|
+
local_dpt_X_train, local_dpt_y_train
|
|
87
|
+
)
|
|
88
|
+
batch_model = RandomForestClassifier_Batch(n_estimators=3, random_state=0).fit(
|
|
89
|
+
X_train, y_train
|
|
90
|
+
)
|
|
91
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
92
|
+
batch_result = batch_model.predict(X_test)
|
|
93
|
+
|
|
94
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
95
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
@pytest.mark.skipif(
|
|
99
|
+
not _mpi_libs_and_gpu_available,
|
|
100
|
+
reason="GPU device and MPI libs required for test",
|
|
101
|
+
)
|
|
102
|
+
@pytest.mark.parametrize("n_samples", [200, 1000])
|
|
103
|
+
@pytest.mark.parametrize("n_features_and_classes", [(5, 2), (25, 2), (25, 10)])
|
|
104
|
+
@pytest.mark.parametrize("n_estimators", [10, 100])
|
|
105
|
+
@pytest.mark.parametrize("max_depth", [3, None])
|
|
106
|
+
@pytest.mark.parametrize(
|
|
107
|
+
"dataframe,queue",
|
|
108
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
109
|
+
)
|
|
110
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
111
|
+
@pytest.mark.mpi
|
|
112
|
+
def test_rfcls_spmd_synthetic(
|
|
113
|
+
n_samples, n_features_and_classes, n_estimators, max_depth, dataframe, queue, dtype
|
|
114
|
+
):
|
|
115
|
+
n_features, n_classes = n_features_and_classes
|
|
116
|
+
# Import spmd and batch algo
|
|
117
|
+
from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
|
|
118
|
+
from sklearnex.spmd.ensemble import (
|
|
119
|
+
RandomForestClassifier as RandomForestClassifier_SPMD,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
# Generate data and convert to dataframe
|
|
123
|
+
X_train, X_test, y_train, _ = _generate_classification_data(
|
|
124
|
+
n_samples, n_features, n_classes, dtype=dtype
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
128
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
129
|
+
)
|
|
130
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
131
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
132
|
+
)
|
|
133
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
134
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
# Ensure predictions of batch algo match spmd
|
|
138
|
+
spmd_model = RandomForestClassifier_SPMD(
|
|
139
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
140
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
141
|
+
batch_model = RandomForestClassifier_Batch(
|
|
142
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
143
|
+
).fit(X_train, y_train)
|
|
144
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
145
|
+
batch_result = batch_model.predict(X_test)
|
|
146
|
+
|
|
147
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
148
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
@pytest.mark.skipif(
|
|
152
|
+
not _mpi_libs_and_gpu_available,
|
|
153
|
+
reason="GPU device and MPI libs required for test",
|
|
154
|
+
)
|
|
155
|
+
@pytest.mark.parametrize(
|
|
156
|
+
"dataframe,queue",
|
|
157
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
158
|
+
)
|
|
159
|
+
@pytest.mark.mpi
|
|
160
|
+
def test_rfreg_spmd_gold(dataframe, queue):
|
|
161
|
+
# Import spmd and batch algo
|
|
162
|
+
from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
|
|
163
|
+
from sklearnex.spmd.ensemble import (
|
|
164
|
+
RandomForestRegressor as RandomForestRegressor_SPMD,
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
# Create gold data and convert to dataframe
|
|
168
|
+
X_train = np.array(
|
|
169
|
+
[
|
|
170
|
+
[0.0, 0.0],
|
|
171
|
+
[0.0, 1.0],
|
|
172
|
+
[1.0, 0.0],
|
|
173
|
+
[0.0, 2.0],
|
|
174
|
+
[2.0, 0.0],
|
|
175
|
+
[1.0, 1.0],
|
|
176
|
+
[0.0, -1.0],
|
|
177
|
+
[-1.0, 0.0],
|
|
178
|
+
[-1.0, -1.0],
|
|
179
|
+
]
|
|
180
|
+
)
|
|
181
|
+
y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
|
|
182
|
+
X_test = np.array(
|
|
183
|
+
[
|
|
184
|
+
[1.0, -1.0],
|
|
185
|
+
[-1.0, 1.0],
|
|
186
|
+
[0.0, 1.0],
|
|
187
|
+
[10.0, -10.0],
|
|
188
|
+
]
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
192
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
193
|
+
)
|
|
194
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
195
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
196
|
+
)
|
|
197
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
198
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
# Ensure predictions of batch algo match spmd
|
|
202
|
+
spmd_model = RandomForestRegressor_SPMD(n_estimators=3, random_state=0).fit(
|
|
203
|
+
local_dpt_X_train, local_dpt_y_train
|
|
204
|
+
)
|
|
205
|
+
batch_model = RandomForestRegressor_Batch(n_estimators=3, random_state=0).fit(
|
|
206
|
+
X_train, y_train
|
|
207
|
+
)
|
|
208
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
209
|
+
batch_result = batch_model.predict(X_test)
|
|
210
|
+
|
|
211
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
212
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
@pytest.mark.skipif(
|
|
216
|
+
not _mpi_libs_and_gpu_available,
|
|
217
|
+
reason="GPU device and MPI libs required for test",
|
|
218
|
+
)
|
|
219
|
+
@pytest.mark.parametrize("n_samples", [200, 1000])
|
|
220
|
+
@pytest.mark.parametrize("n_features", [5, 25])
|
|
221
|
+
@pytest.mark.parametrize("n_estimators", [10, 100])
|
|
222
|
+
@pytest.mark.parametrize("max_depth", [3, None])
|
|
223
|
+
@pytest.mark.parametrize(
|
|
224
|
+
"dataframe,queue",
|
|
225
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
226
|
+
)
|
|
227
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
228
|
+
@pytest.mark.mpi
|
|
229
|
+
def test_rfreg_spmd_synthetic(
|
|
230
|
+
n_samples, n_features, n_estimators, max_depth, dataframe, queue, dtype
|
|
231
|
+
):
|
|
232
|
+
# Import spmd and batch algo
|
|
233
|
+
from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
|
|
234
|
+
from sklearnex.spmd.ensemble import (
|
|
235
|
+
RandomForestRegressor as RandomForestRegressor_SPMD,
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
# Generate data and convert to dataframe
|
|
239
|
+
X_train, X_test, y_train, _ = _generate_regression_data(
|
|
240
|
+
n_samples, n_features, dtype=dtype
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
244
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
245
|
+
)
|
|
246
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
247
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
248
|
+
)
|
|
249
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
250
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
251
|
+
)
|
|
252
|
+
|
|
253
|
+
# Ensure predictions of batch algo match spmd
|
|
254
|
+
spmd_model = RandomForestRegressor_Batch(
|
|
255
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
256
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
257
|
+
batch_model = RandomForestRegressor_Batch(
|
|
258
|
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
|
259
|
+
).fit(X_train, y_train)
|
|
260
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
261
|
+
batch_result = batch_model.predict(X_test)
|
|
262
|
+
|
|
263
|
+
# TODO: remove skips when SPMD and batch are aligned
|
|
264
|
+
pytest.skip("SPMD and batch random forest results not aligned")
|
|
265
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from .incremental_linear_model import IncrementalLinearRegression
|
|
18
|
+
from .linear_model import LinearRegression
|
|
19
|
+
from .logistic_regression import LogisticRegression
|
|
20
|
+
|
|
21
|
+
__all__ = ["IncrementalLinearRegression", "LinearRegression", "LogisticRegression"]
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
from onedal.spmd.linear_model import (
|
|
19
|
+
IncrementalLinearRegression as onedalSPMD_IncrementalLinearRegression,
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
from ...linear_model import (
|
|
23
|
+
IncrementalLinearRegression as base_IncrementalLinearRegression,
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class IncrementalLinearRegression(base_IncrementalLinearRegression):
|
|
28
|
+
"""
|
|
29
|
+
Distributed incremental estimator for linear regression.
|
|
30
|
+
Allows for distributed training of linear regression if data is split into batches.
|
|
31
|
+
|
|
32
|
+
API is the same as for `sklearnex.linear_model.IncrementalLinearRegression`.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
_onedal_incremental_linear = staticmethod(onedalSPMD_IncrementalLinearRegression)
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from onedal.spmd.linear_model import LinearRegression
|
|
18
|
+
|
|
19
|
+
# TODO:
|
|
20
|
+
# Currently it uses `onedal` module interface.
|
|
21
|
+
# Add sklearnex dispatching.
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from onedal.spmd.linear_model import LogisticRegression
|
|
18
|
+
|
|
19
|
+
# TODO:
|
|
20
|
+
# Currently it uses `onedal` module interface.
|
|
21
|
+
# Add sklearnex dispatching.
|