pertpy 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (53) hide show
  1. pertpy/__init__.py +3 -2
  2. pertpy/data/__init__.py +5 -1
  3. pertpy/data/_dataloader.py +2 -4
  4. pertpy/data/_datasets.py +203 -92
  5. pertpy/metadata/__init__.py +4 -0
  6. pertpy/metadata/_cell_line.py +826 -0
  7. pertpy/metadata/_compound.py +129 -0
  8. pertpy/metadata/_drug.py +242 -0
  9. pertpy/metadata/_look_up.py +582 -0
  10. pertpy/metadata/_metadata.py +73 -0
  11. pertpy/metadata/_moa.py +129 -0
  12. pertpy/plot/__init__.py +1 -9
  13. pertpy/plot/_augur.py +53 -116
  14. pertpy/plot/_coda.py +277 -677
  15. pertpy/plot/_guide_rna.py +17 -35
  16. pertpy/plot/_milopy.py +59 -134
  17. pertpy/plot/_mixscape.py +152 -391
  18. pertpy/preprocessing/_guide_rna.py +88 -4
  19. pertpy/tools/__init__.py +8 -13
  20. pertpy/tools/_augur.py +315 -17
  21. pertpy/tools/_cinemaot.py +143 -4
  22. pertpy/tools/_coda/_base_coda.py +1210 -65
  23. pertpy/tools/_coda/_sccoda.py +50 -21
  24. pertpy/tools/_coda/_tasccoda.py +27 -19
  25. pertpy/tools/_dialogue.py +164 -56
  26. pertpy/tools/_differential_gene_expression.py +240 -14
  27. pertpy/tools/_distances/_distance_tests.py +8 -8
  28. pertpy/tools/_distances/_distances.py +184 -34
  29. pertpy/tools/_enrichment.py +465 -0
  30. pertpy/tools/_milo.py +345 -11
  31. pertpy/tools/_mixscape.py +668 -50
  32. pertpy/tools/_perturbation_space/_clustering.py +5 -1
  33. pertpy/tools/_perturbation_space/_discriminator_classifiers.py +526 -0
  34. pertpy/tools/_perturbation_space/_perturbation_space.py +135 -43
  35. pertpy/tools/_perturbation_space/_simple.py +51 -10
  36. pertpy/tools/_scgen/__init__.py +1 -1
  37. pertpy/tools/_scgen/_scgen.py +701 -0
  38. pertpy/tools/_scgen/_utils.py +1 -3
  39. pertpy/tools/decoupler_LICENSE +674 -0
  40. {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/METADATA +31 -12
  41. pertpy-0.7.0.dist-info/RECORD +53 -0
  42. {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/WHEEL +1 -1
  43. pertpy/plot/_cinemaot.py +0 -81
  44. pertpy/plot/_dialogue.py +0 -91
  45. pertpy/plot/_scgen.py +0 -337
  46. pertpy/tools/_metadata/__init__.py +0 -0
  47. pertpy/tools/_metadata/_cell_line.py +0 -613
  48. pertpy/tools/_metadata/_look_up.py +0 -342
  49. pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
  50. pertpy/tools/_scgen/_jax_scgen.py +0 -370
  51. pertpy-0.6.0.dist-info/RECORD +0 -50
  52. /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
  53. {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,129 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING, Literal
4
+
5
+ import pandas as pd
6
+ import pubchempy as pcp
7
+
8
+ from ._look_up import LookUp
9
+ from ._metadata import MetaData
10
+
11
+ if TYPE_CHECKING:
12
+ from anndata import AnnData
13
+
14
+
15
+ class Compound(MetaData):
16
+ """Utilities to fetch metadata for compounds."""
17
+
18
+ def __init__(self):
19
+ super().__init__()
20
+
21
+ def annotate_compounds(
22
+ self,
23
+ adata: AnnData,
24
+ query_id: str = "perturbation",
25
+ query_id_type: Literal["name", "cid"] = "name",
26
+ verbosity: int | str = 5,
27
+ copy: bool = False,
28
+ ) -> AnnData:
29
+ """Fetch compound annotation from pubchempy.
30
+
31
+ Args:
32
+ adata: The data object to annotate.
33
+ query_id: The column of `.obs` with compound identifiers. Defaults to 'perturbation'.
34
+ query_id_type: The type of compound identifiers, 'name' or 'cid'. Defaults to 'name'.
35
+ verbosity: The number of unmatched identifiers to print, can be either non-negative values or "all".
36
+ Defaults to 5.
37
+ copy: Determines whether a copy of the `adata` is returned. Defaults to False.
38
+
39
+ Returns:
40
+ Returns an AnnData object with compound annotation.
41
+ """
42
+ if copy:
43
+ adata = adata.copy()
44
+
45
+ if query_id not in adata.obs.columns:
46
+ raise ValueError(f"The requested query_id {query_id} is not in `adata.obs`.\n" f"Please check again. ")
47
+
48
+ query_dict = {}
49
+ not_matched_identifiers = []
50
+ for compound in adata.obs[query_id].dropna().astype(str).unique():
51
+ if query_id_type == "name":
52
+ cids = pcp.get_compounds(compound, "name")
53
+ if len(cids) == 0: # search did not work
54
+ not_matched_identifiers.append(compound)
55
+ if len(cids) >= 1:
56
+ # If the name matches the first synonym offered by PubChem (outside of capitalization),
57
+ # it is not changed (outside of capitalization). Otherwise, it is replaced with the first synonym.
58
+ query_dict[compound] = [
59
+ cids[0].synonyms[0],
60
+ cids[0].cid,
61
+ cids[0].canonical_smiles,
62
+ ]
63
+ else:
64
+ try:
65
+ cid = pcp.Compound.from_cid(compound)
66
+ query_dict[compound] = [
67
+ cid.synonyms[0],
68
+ compound,
69
+ cid.canonical_smiles,
70
+ ]
71
+ except pcp.BadRequestError:
72
+ # pubchempy throws badrequest if a cid is not found
73
+ not_matched_identifiers.append(compound)
74
+
75
+ identifier_num_all = len(adata.obs[query_id].unique())
76
+ self._warn_unmatch(
77
+ total_identifiers=identifier_num_all,
78
+ unmatched_identifiers=not_matched_identifiers,
79
+ query_id=query_id,
80
+ reference_id=query_id_type,
81
+ metadata_type="compound",
82
+ verbosity=verbosity,
83
+ )
84
+
85
+ query_df = pd.DataFrame.from_dict(query_dict, orient="index", columns=["pubchem_name", "pubchem_ID", "smiles"])
86
+ # Merge and remove duplicate columns
87
+ # Column is converted to float after merging due to unmatches
88
+ # Convert back to integers
89
+ if query_id_type == "cid":
90
+ query_df.pubchem_ID = query_df.pubchem_ID.astype("Int64")
91
+ adata.obs = (
92
+ adata.obs.merge(
93
+ query_df,
94
+ left_on=query_id,
95
+ right_on="pubchem_ID",
96
+ how="left",
97
+ suffixes=("", "_fromMeta"),
98
+ )
99
+ .filter(regex="^(?!.*_fromMeta)")
100
+ .set_index(adata.obs.index)
101
+ )
102
+ else:
103
+ adata.obs = (
104
+ adata.obs.merge(
105
+ query_df,
106
+ left_on=query_id,
107
+ right_index=True,
108
+ how="left",
109
+ suffixes=("", "_fromMeta"),
110
+ )
111
+ .filter(regex="^(?!.*_fromMeta)")
112
+ .set_index(adata.obs.index)
113
+ )
114
+ adata.obs.pubchem_ID = adata.obs.pubchem_ID.astype("Int64")
115
+
116
+ return adata
117
+
118
+ def lookup(self) -> LookUp:
119
+ """Generate LookUp object for CompoundMetaData.
120
+
121
+ The LookUp object provides an overview of the metadata to annotate.
122
+ Each annotate_{metadata} function has a corresponding lookup function in the LookUp object,
123
+ where users can search the reference_id in the metadata and
124
+ compare with the query_id in their own data.
125
+
126
+ Returns:
127
+ Returns a LookUp object specific for compound annotation.
128
+ """
129
+ return LookUp(type="compound")
@@ -0,0 +1,242 @@
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ from collections import ChainMap
5
+ from pathlib import Path
6
+ from typing import TYPE_CHECKING, Literal
7
+
8
+ import pandas as pd
9
+ from rich import print
10
+ from scanpy import settings
11
+
12
+ from pertpy.data._dataloader import _download
13
+
14
+ from ._look_up import LookUp
15
+ from ._metadata import MetaData
16
+
17
+ if TYPE_CHECKING:
18
+ from anndata import AnnData
19
+
20
+
21
+ def _download_drug_annotation(
22
+ source: Literal["chembl", "dgidb", "pharmgkb"] = "chembl",
23
+ ) -> pd.DataFrame | dict[str, dict[str, list[str]]]:
24
+ if source == "chembl":
25
+ # Prepared in https://github.com/theislab/pertpy-datasets/blob/main/chembl_data.ipynb
26
+ chembl_path = Path(settings.cachedir) / "chembl.json"
27
+ if not Path(chembl_path).exists():
28
+ print("[bold yellow]No metadata file was found for chembl. Starting download now.")
29
+ _download(
30
+ url="https://figshare.com/ndownloader/files/43871718",
31
+ output_file_name="chembl.json",
32
+ output_path=settings.cachedir,
33
+ block_size=4096,
34
+ is_zip=False,
35
+ )
36
+ with chembl_path.open() as file:
37
+ chembl_json = json.load(file)
38
+ return chembl_json
39
+
40
+ elif source == "dgidb":
41
+ dgidb_path = Path(settings.cachedir) / "dgidb.tsv"
42
+ if not Path(dgidb_path).exists():
43
+ print("[bold yellow]No metadata file was found for dgidb. Starting download now.")
44
+ _download(
45
+ url="https://www.dgidb.org/data/latest/interactions.tsv",
46
+ output_file_name="dgidb.tsv",
47
+ output_path=settings.cachedir,
48
+ block_size=4096,
49
+ is_zip=False,
50
+ )
51
+ dgidb_df = pd.read_table(dgidb_path)
52
+ return dgidb_df
53
+
54
+ else:
55
+ pharmgkb_path = Path(settings.cachedir) / "pharmgkb.tsv"
56
+ if not Path(pharmgkb_path).exists():
57
+ print("[bold yellow]No metadata file was found for pharmGKB. Starting download now.")
58
+ _download(
59
+ url="https://api.pharmgkb.org/v1/download/file/data/relationships.zip",
60
+ output_file_name="pharmgkb.zip",
61
+ output_path=settings.cachedir,
62
+ block_size=4096,
63
+ is_zip=True,
64
+ )
65
+ Path.rename(Path(settings.cachedir) / "relationships.tsv", pharmgkb_path)
66
+
67
+ pharmgkb_df = pd.read_table(pharmgkb_path)
68
+ pharmgkb_df = pharmgkb_df[pharmgkb_df["Association"] != "not associated"]
69
+ pharmgkb_df = pharmgkb_df[
70
+ (pharmgkb_df["Entity1_type"] == "Gene")
71
+ & ((pharmgkb_df["Entity2_type"] == "Chemical") | (pharmgkb_df["Entity2_type"] == "Disease"))
72
+ ]
73
+ pharmgkb_df.rename(
74
+ columns={
75
+ "Entity2_name": "Compound|Disease",
76
+ "Entity1_name": "Gene",
77
+ "Entity2_type": "Type",
78
+ },
79
+ inplace=True,
80
+ )
81
+ pharmgkb_df.drop(["Entity1_type", "Entity1_id", "Entity2_id"], axis=1, inplace=True)
82
+
83
+ return pharmgkb_df
84
+
85
+
86
+ class Drug(MetaData):
87
+ """Utilities to fetch metadata for drug studies."""
88
+
89
+ def __init__(self):
90
+ self.chembl = self.DrugDataBase(database="chembl")
91
+ self.dgidb = self.DrugDataBase(database="dgidb")
92
+ self.pharmgkb = self.DrugDataBase(database="pharmgkb")
93
+
94
+ def annotate(
95
+ self,
96
+ adata: AnnData,
97
+ source: Literal["chembl", "dgidb", "pharmgkb"] = "chembl",
98
+ copy: bool = False,
99
+ ) -> AnnData:
100
+ """Annotates genes by their involvement in applied drugs.
101
+
102
+ Genes need to be in HGNC format.
103
+
104
+ Args:
105
+ adata: AnnData object containing log-normalised data.
106
+ source: Source of the metadata, chembl, dgidb or pharmgkb. Defaults to chembl.
107
+ copy: Determines whether a copy of the `adata` is returned. Defaults to False.
108
+
109
+ Returns:
110
+ An AnnData object with a new column `drug` in the var slot.
111
+ """
112
+ if copy:
113
+ adata = adata.copy()
114
+
115
+ if source == "chembl":
116
+ if not self.chembl.loaded:
117
+ self.chembl.set()
118
+ interaction = self.chembl.dataframe
119
+ elif source == "dgidb":
120
+ if not self.dgidb.loaded:
121
+ self.dgidb.set()
122
+ interaction = self.dgidb.dataframe
123
+ else:
124
+ if not self.pharmgkb.loaded:
125
+ self.pharmgkb.set()
126
+ interaction = self.pharmgkb.data
127
+
128
+ if source != "pharmgkb":
129
+ exploded_df = interaction.explode("targets")
130
+ gene_compound_dict = (
131
+ exploded_df.groupby("targets")["compounds"]
132
+ .apply(lambda compounds: "|".join(sorted(set(compounds))))
133
+ .to_dict()
134
+ )
135
+
136
+ adata.var["compounds"] = adata.var_names.map(lambda gene: gene_compound_dict.get(gene, ""))
137
+ else:
138
+ compounds = interaction[interaction["Type"] == "Chemical"]
139
+ exploded_df = compounds.explode("Gene")
140
+ gene_compound_dict = (
141
+ exploded_df.groupby("Gene")["Compound|Disease"]
142
+ .apply(lambda compounds: "|".join(sorted(set(compounds))))
143
+ .to_dict()
144
+ )
145
+
146
+ adata.var["compounds"] = adata.var_names.map(lambda gene: gene_compound_dict.get(gene, ""))
147
+ diseases = interaction[interaction["Type"] == "Disease"]
148
+ exploded_df = diseases.explode("Gene")
149
+ gene_disease_dict = (
150
+ exploded_df.groupby("Gene")["Compound|Disease"]
151
+ .apply(lambda diseases: "|".join(sorted(set(diseases))))
152
+ .to_dict()
153
+ )
154
+
155
+ adata.var["diseases"] = adata.var_names.map(lambda gene: gene_disease_dict.get(gene, ""))
156
+ return adata
157
+
158
+ def lookup(self) -> LookUp:
159
+ """Generate LookUp object for Drug.
160
+
161
+ The LookUp object provides an overview of the metadata to annotate.
162
+ annotate function has a corresponding lookup function in the LookUp object,
163
+ where users can search the compound and targets in the metadata.
164
+
165
+ Returns:
166
+ Returns a LookUp object specific for drug annotation.
167
+ """
168
+ if not self.chembl.loaded:
169
+ self.chembl.set()
170
+ if not self.dgidb.loaded:
171
+ self.dgidb.set()
172
+ if not self.pharmgkb.loaded:
173
+ self.pharmgkb.set()
174
+
175
+ return LookUp(
176
+ type="drug",
177
+ transfer_metadata=[
178
+ self.chembl.dataframe,
179
+ self.dgidb.data,
180
+ self.pharmgkb.data,
181
+ ],
182
+ )
183
+
184
+ class DrugDataBase:
185
+ def __init__(self, database: Literal["chembl", "dgidb", "pharmgkb"] = "chembl"):
186
+ self.database = database
187
+ self.loaded = False
188
+
189
+ def set(self) -> None:
190
+ self.loaded = True
191
+ data = _download_drug_annotation(source=self.database)
192
+ self.data = data
193
+ if self.database == "chembl":
194
+ if not isinstance(data, dict):
195
+ raise ValueError(
196
+ "The chembl data is in a wrong format. Please clear the cache and reinitialize the object."
197
+ )
198
+ self.dictionary = data
199
+ targets = dict(ChainMap(*[data[cat] for cat in data]))
200
+ self.dataframe = pd.DataFrame([{"Compound": k, "Targets": v} for k, v in targets.items()])
201
+ self.dataframe.rename(
202
+ columns={"Targets": "targets", "Compound": "compounds"},
203
+ inplace=True,
204
+ )
205
+ elif self.database == "dgidb":
206
+ if not isinstance(data, pd.DataFrame):
207
+ raise ValueError(
208
+ "The dgidb data is in a wrong format. Please clear the cache and reinitialize the object."
209
+ )
210
+ self.dataframe = data.groupby("drug_claim_name")["gene_claim_name"].apply(list).reset_index()
211
+ self.dataframe.rename(
212
+ columns={
213
+ "gene_claim_name": "targets",
214
+ "drug_claim_name": "compounds",
215
+ },
216
+ inplace=True,
217
+ )
218
+ self.dictionary = self.dataframe.set_index("compounds")["targets"].to_dict()
219
+ else:
220
+ if not isinstance(data, pd.DataFrame):
221
+ raise ValueError(
222
+ "The pharmGKB data is in a wrong format. Please clear the cache and reinitialize the object."
223
+ )
224
+ self.dataframe = data.groupby("Compound|Disease")["Gene"].apply(list).reset_index()
225
+ self.dataframe.rename(
226
+ columns={
227
+ "Gene": "targets",
228
+ "Compound|Disease": "compounds|diseases",
229
+ },
230
+ inplace=True,
231
+ )
232
+ self.dictionary = self.dataframe.set_index("compounds|diseases")["targets"].to_dict()
233
+
234
+ def df(self) -> pd.DataFrame:
235
+ if not self.loaded:
236
+ self.set()
237
+ return self.dataframe
238
+
239
+ def dict(self) -> dict[str, list[str]] | dict[str, dict[str, list[str]]]:
240
+ if not self.loaded:
241
+ self.set()
242
+ return self.dictionary