pertpy 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pertpy/__init__.py +3 -2
- pertpy/data/__init__.py +5 -1
- pertpy/data/_dataloader.py +2 -4
- pertpy/data/_datasets.py +203 -92
- pertpy/metadata/__init__.py +4 -0
- pertpy/metadata/_cell_line.py +826 -0
- pertpy/metadata/_compound.py +129 -0
- pertpy/metadata/_drug.py +242 -0
- pertpy/metadata/_look_up.py +582 -0
- pertpy/metadata/_metadata.py +73 -0
- pertpy/metadata/_moa.py +129 -0
- pertpy/plot/__init__.py +1 -9
- pertpy/plot/_augur.py +53 -116
- pertpy/plot/_coda.py +277 -677
- pertpy/plot/_guide_rna.py +17 -35
- pertpy/plot/_milopy.py +59 -134
- pertpy/plot/_mixscape.py +152 -391
- pertpy/preprocessing/_guide_rna.py +88 -4
- pertpy/tools/__init__.py +8 -13
- pertpy/tools/_augur.py +315 -17
- pertpy/tools/_cinemaot.py +143 -4
- pertpy/tools/_coda/_base_coda.py +1210 -65
- pertpy/tools/_coda/_sccoda.py +50 -21
- pertpy/tools/_coda/_tasccoda.py +27 -19
- pertpy/tools/_dialogue.py +164 -56
- pertpy/tools/_differential_gene_expression.py +240 -14
- pertpy/tools/_distances/_distance_tests.py +8 -8
- pertpy/tools/_distances/_distances.py +184 -34
- pertpy/tools/_enrichment.py +465 -0
- pertpy/tools/_milo.py +345 -11
- pertpy/tools/_mixscape.py +668 -50
- pertpy/tools/_perturbation_space/_clustering.py +5 -1
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +526 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +135 -43
- pertpy/tools/_perturbation_space/_simple.py +51 -10
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_scgen.py +701 -0
- pertpy/tools/_scgen/_utils.py +1 -3
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/METADATA +31 -12
- pertpy-0.7.0.dist-info/RECORD +53 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/licenses/LICENSE +0 -0
pertpy/tools/_mixscape.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
import
|
4
|
-
from
|
3
|
+
import copy
|
4
|
+
from collections import OrderedDict
|
5
|
+
from typing import TYPE_CHECKING, Literal
|
5
6
|
|
7
|
+
import matplotlib.pyplot as plt
|
6
8
|
import numpy as np
|
7
9
|
import pandas as pd
|
8
10
|
import scanpy as sc
|
9
|
-
|
11
|
+
import seaborn as sns
|
12
|
+
from scanpy import get
|
13
|
+
from scanpy._settings import settings
|
14
|
+
from scanpy._utils import _check_use_raw, sanitize_anndata
|
15
|
+
from scanpy.plotting import _utils
|
10
16
|
from scanpy.tools._utils import _choose_representation
|
11
17
|
from scipy.sparse import csr_matrix, issparse, spmatrix
|
12
18
|
from sklearn.mixture import GaussianMixture
|
@@ -14,11 +20,13 @@ from sklearn.mixture import GaussianMixture
|
|
14
20
|
import pertpy as pt
|
15
21
|
|
16
22
|
if TYPE_CHECKING:
|
23
|
+
from collections.abc import Sequence
|
24
|
+
|
17
25
|
from anndata import AnnData
|
26
|
+
from matplotlib.axes import Axes
|
27
|
+
from matplotlib.colors import Colormap
|
18
28
|
from scipy import sparse
|
19
29
|
|
20
|
-
warnings.simplefilter("ignore")
|
21
|
-
|
22
30
|
|
23
31
|
class Mixscape:
|
24
32
|
"""Python implementation of Mixscape."""
|
@@ -65,15 +73,15 @@ class Mixscape:
|
|
65
73
|
|
66
74
|
Returns:
|
67
75
|
If `copy=True`, returns the copy of `adata` with the perturbation signature in `.layers["X_pert"]`.
|
68
|
-
Otherwise writes the perturbation signature directly to `.layers["X_pert"]` of the provided `adata`.
|
76
|
+
Otherwise, writes the perturbation signature directly to `.layers["X_pert"]` of the provided `adata`.
|
69
77
|
|
70
78
|
Examples:
|
71
79
|
Calcutate perturbation signature for each cell in the dataset:
|
72
80
|
|
73
81
|
>>> import pertpy as pt
|
74
82
|
>>> mdata = pt.dt.papalexi_2021()
|
75
|
-
>>>
|
76
|
-
>>>
|
83
|
+
>>> ms_pt = pt.tl.Mixscape()
|
84
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
77
85
|
"""
|
78
86
|
if copy:
|
79
87
|
adata = adata.copy()
|
@@ -86,18 +94,17 @@ class Mixscape:
|
|
86
94
|
split_masks = [np.full(adata.n_obs, True, dtype=bool)]
|
87
95
|
else:
|
88
96
|
split_obs = adata.obs[split_by]
|
89
|
-
|
90
|
-
split_masks = [split_obs == cat for cat in cats]
|
97
|
+
split_masks = [split_obs == cat for cat in split_obs.unique()]
|
91
98
|
|
92
|
-
|
99
|
+
representation = _choose_representation(adata, use_rep=use_rep, n_pcs=n_pcs)
|
93
100
|
|
94
101
|
for split_mask in split_masks:
|
95
102
|
control_mask_split = control_mask & split_mask
|
96
103
|
|
97
|
-
R_split =
|
98
|
-
R_control =
|
104
|
+
R_split = representation[split_mask]
|
105
|
+
R_control = representation[control_mask_split]
|
99
106
|
|
100
|
-
from pynndescent import NNDescent
|
107
|
+
from pynndescent import NNDescent
|
101
108
|
|
102
109
|
eps = kwargs.pop("epsilon", 0.1)
|
103
110
|
nn_index = NNDescent(R_control, **kwargs)
|
@@ -161,7 +168,6 @@ class Mixscape:
|
|
161
168
|
|
162
169
|
Args:
|
163
170
|
adata: The annotated data object.
|
164
|
-
pert_key: The column of `.obs` with perturbation categories, should also contain `control`.
|
165
171
|
labels: The column of `.obs` with target gene labels.
|
166
172
|
control: Control category from the `pert_key` column.
|
167
173
|
new_class_name: Name of mixscape classification to be stored in `.obs`.
|
@@ -177,26 +183,26 @@ class Mixscape:
|
|
177
183
|
|
178
184
|
Returns:
|
179
185
|
If `copy=True`, returns the copy of `adata` with the classification result in `.obs`.
|
180
|
-
Otherwise writes the results directly to `.obs` of the provided `adata`.
|
186
|
+
Otherwise, writes the results directly to `.obs` of the provided `adata`.
|
181
187
|
|
182
|
-
mixscape_class: pandas.Series (`adata.obs['mixscape_class']`).
|
183
|
-
|
188
|
+
- mixscape_class: pandas.Series (`adata.obs['mixscape_class']`).
|
189
|
+
Classification result with cells being either classified as perturbed (KO, by default) or non-perturbed (NP) based on their target gene class.
|
184
190
|
|
185
|
-
mixscape_class_global: pandas.Series (`adata.obs['mixscape_class_global']`).
|
186
|
-
|
191
|
+
- mixscape_class_global: pandas.Series (`adata.obs['mixscape_class_global']`).
|
192
|
+
Global classification result (perturbed, NP or NT).
|
187
193
|
|
188
|
-
mixscape_class_p_ko: pandas.Series (`adata.obs['mixscape_class_p_ko']`).
|
189
|
-
|
190
|
-
|
194
|
+
- mixscape_class_p_ko: pandas.Series (`adata.obs['mixscape_class_p_ko']`).
|
195
|
+
Posterior probabilities used to determine if a cell is KO (default).
|
196
|
+
Name of this item will change to match perturbation_type parameter setting. (>0.5) or NP.
|
191
197
|
|
192
198
|
Examples:
|
193
199
|
Calcutate perturbation signature for each cell in the dataset:
|
194
200
|
|
195
201
|
>>> import pertpy as pt
|
196
202
|
>>> mdata = pt.dt.papalexi_2021()
|
197
|
-
>>>
|
198
|
-
>>>
|
199
|
-
>>>
|
203
|
+
>>> ms_pt = pt.tl.Mixscape()
|
204
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
205
|
+
>>> ms_pt.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
200
206
|
"""
|
201
207
|
if copy:
|
202
208
|
adata = adata.copy()
|
@@ -220,10 +226,9 @@ class Mixscape:
|
|
220
226
|
try:
|
221
227
|
X = adata_comp.layers["X_pert"]
|
222
228
|
except KeyError:
|
223
|
-
|
224
|
-
|
225
|
-
)
|
226
|
-
raise
|
229
|
+
raise KeyError(
|
230
|
+
"No 'X_pert' found in .layers! Please run pert_sign first to calculate perturbation signature!"
|
231
|
+
) from None
|
227
232
|
# initialize return variables
|
228
233
|
adata.obs[f"{new_class_name}_p_{perturbation_type.lower()}"] = 0
|
229
234
|
adata.obs[new_class_name] = adata.obs[labels].astype(str)
|
@@ -305,9 +310,9 @@ class Mixscape:
|
|
305
310
|
old_classes = adata.obs[new_class_name][all_cells]
|
306
311
|
n_iter += 1
|
307
312
|
|
308
|
-
adata.obs.loc[
|
309
|
-
|
310
|
-
|
313
|
+
adata.obs.loc[(adata.obs[new_class_name] == gene) & split_mask, new_class_name] = (
|
314
|
+
f"{gene} {perturbation_type}"
|
315
|
+
)
|
311
316
|
|
312
317
|
adata.obs[f"{new_class_name}_global"] = [a.split(" ")[-1] for a in adata.obs[new_class_name]]
|
313
318
|
adata.obs.loc[orig_guide_cells_index, f"{new_class_name}_p_{perturbation_type.lower()}"] = post_prob
|
@@ -342,15 +347,17 @@ class Mixscape:
|
|
342
347
|
control: Control category from the `pert_key` column. Defaults to 'NT'.
|
343
348
|
n_comps: Number of principal components to use. Defaults to 10.
|
344
349
|
min_de_genes: Required number of genes that are differentially expressed for method to separate perturbed and non-perturbed cells.
|
345
|
-
logfc_threshold: Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells.
|
350
|
+
logfc_threshold: Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells.
|
351
|
+
Defaults to 0.25.
|
346
352
|
split_by: Provide the column `.obs` if multiple biological replicates exist to calculate
|
347
353
|
pval_cutoff: P-value cut-off for selection of significantly DE genes.
|
348
|
-
perturbation_type:
|
354
|
+
perturbation_type: Specify type of CRISPR perturbation expected for labeling mixscape classifications.
|
355
|
+
Defaults to KO.
|
349
356
|
copy: Determines whether a copy of the `adata` is returned.
|
350
357
|
|
351
358
|
Returns:
|
352
359
|
If `copy=True`, returns the copy of `adata` with the LDA result in `.uns`.
|
353
|
-
Otherwise writes the results directly to `.uns` of the provided `adata`.
|
360
|
+
Otherwise, writes the results directly to `.uns` of the provided `adata`.
|
354
361
|
|
355
362
|
mixscape_lda: numpy.ndarray (`adata.uns['mixscape_lda']`).
|
356
363
|
LDA result.
|
@@ -360,10 +367,10 @@ class Mixscape:
|
|
360
367
|
|
361
368
|
>>> import pertpy as pt
|
362
369
|
>>> mdata = pt.dt.papalexi_2021()
|
363
|
-
>>>
|
364
|
-
>>>
|
365
|
-
>>>
|
366
|
-
>>>
|
370
|
+
>>> ms_pt = pt.tl.Mixscape()
|
371
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
372
|
+
>>> ms_pt.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
373
|
+
>>> ms_pt.lda(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
367
374
|
"""
|
368
375
|
if copy:
|
369
376
|
adata = adata.copy()
|
@@ -437,7 +444,7 @@ class Mixscape:
|
|
437
444
|
min_de_genes: float,
|
438
445
|
logfc_threshold: float,
|
439
446
|
) -> dict[tuple, np.ndarray]:
|
440
|
-
"""
|
447
|
+
"""Determine gene sets across all splits/groups through differential gene expression
|
441
448
|
|
442
449
|
Args:
|
443
450
|
adata: :class:`~anndata.AnnData` object
|
@@ -469,15 +476,6 @@ class Mixscape:
|
|
469
476
|
return perturbation_markers
|
470
477
|
|
471
478
|
def _get_column_indices(self, adata, col_names):
|
472
|
-
"""Fetches the column indices in X for a given list of column names
|
473
|
-
|
474
|
-
Args:
|
475
|
-
adata: :class:`~anndata.AnnData` object
|
476
|
-
col_names: Column names to extract the indices for
|
477
|
-
|
478
|
-
Returns:
|
479
|
-
Set of column indices
|
480
|
-
"""
|
481
479
|
if isinstance(col_names, str): # pragma: no cover
|
482
480
|
col_names = [col_names]
|
483
481
|
|
@@ -501,3 +499,623 @@ class Mixscape:
|
|
501
499
|
sd = X.std()
|
502
500
|
|
503
501
|
return [mu, sd]
|
502
|
+
|
503
|
+
def plot_barplot( # pragma: no cover
|
504
|
+
self,
|
505
|
+
adata: AnnData,
|
506
|
+
guide_rna_column: str,
|
507
|
+
mixscape_class_global: str = "mixscape_class_global",
|
508
|
+
axis_text_x_size: int = 8,
|
509
|
+
axis_text_y_size: int = 6,
|
510
|
+
axis_title_size: int = 8,
|
511
|
+
legend_title_size: int = 8,
|
512
|
+
legend_text_size: int = 8,
|
513
|
+
return_fig: bool | None = None,
|
514
|
+
ax: Axes | None = None,
|
515
|
+
show: bool | None = None,
|
516
|
+
save: bool | str | None = None,
|
517
|
+
):
|
518
|
+
"""Barplot to visualize perturbation scores calculated by the `mixscape` function.
|
519
|
+
|
520
|
+
Args:
|
521
|
+
adata: The annotated data object.
|
522
|
+
guide_rna_column: The column of `.obs` with guide RNA labels. The target gene labels.
|
523
|
+
The format must be <gene_target>g<#>. Examples are 'STAT2g1' and 'ATF2g1'.
|
524
|
+
mixscape_class_global: The column of `.obs` with mixscape global classification result (perturbed, NP or NT).
|
525
|
+
show: Show the plot, do not return axis.
|
526
|
+
save: If True or a str, save the figure. A string is appended to the default filename.
|
527
|
+
Infer the filetype if ending on {'.pdf', '.png', '.svg'}.
|
528
|
+
|
529
|
+
Returns:
|
530
|
+
If `show==False`, return a :class:`~matplotlib.axes.Axes.
|
531
|
+
|
532
|
+
Examples:
|
533
|
+
>>> import pertpy as pt
|
534
|
+
>>> mdata = pt.dt.papalexi_2021()
|
535
|
+
>>> ms_pt = pt.tl.Mixscape()
|
536
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
537
|
+
>>> ms_pt.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
538
|
+
>>> ms_pt.plot_barplot(mdata["rna"], guide_rna_column="NT")
|
539
|
+
|
540
|
+
Preview:
|
541
|
+
.. image:: /_static/docstring_previews/mixscape_barplot.png
|
542
|
+
"""
|
543
|
+
if mixscape_class_global not in adata.obs:
|
544
|
+
raise ValueError("Please run the `mixscape` function first.")
|
545
|
+
count = pd.crosstab(index=adata.obs[mixscape_class_global], columns=adata.obs[guide_rna_column])
|
546
|
+
all_cells_percentage = pd.melt(count / count.sum(), ignore_index=False).reset_index()
|
547
|
+
KO_cells_percentage = all_cells_percentage[all_cells_percentage[mixscape_class_global] == "KO"]
|
548
|
+
KO_cells_percentage = KO_cells_percentage.sort_values("value", ascending=False)
|
549
|
+
|
550
|
+
new_levels = KO_cells_percentage[guide_rna_column]
|
551
|
+
all_cells_percentage[guide_rna_column] = pd.Categorical(
|
552
|
+
all_cells_percentage[guide_rna_column], categories=new_levels, ordered=False
|
553
|
+
)
|
554
|
+
all_cells_percentage[mixscape_class_global] = pd.Categorical(
|
555
|
+
all_cells_percentage[mixscape_class_global], categories=["NT", "NP", "KO"], ordered=False
|
556
|
+
)
|
557
|
+
all_cells_percentage["gene"] = all_cells_percentage[guide_rna_column].str.rsplit("g", expand=True)[0]
|
558
|
+
all_cells_percentage["guide_number"] = all_cells_percentage[guide_rna_column].str.rsplit("g", expand=True)[1]
|
559
|
+
all_cells_percentage["guide_number"] = "g" + all_cells_percentage["guide_number"]
|
560
|
+
NP_KO_cells = all_cells_percentage[all_cells_percentage["gene"] != "NT"]
|
561
|
+
|
562
|
+
if show:
|
563
|
+
color_mapping = {"KO": "salmon", "NP": "lightgray", "NT": "grey"}
|
564
|
+
unique_genes = NP_KO_cells["gene"].unique()
|
565
|
+
fig, axs = plt.subplots(int(len(unique_genes) / 5), 5, figsize=(25, 25), sharey=True)
|
566
|
+
for i, gene in enumerate(unique_genes):
|
567
|
+
ax = axs[int(i / 5), i % 5]
|
568
|
+
grouped_df = (
|
569
|
+
NP_KO_cells[NP_KO_cells["gene"] == gene]
|
570
|
+
.groupby(["guide_number", "mixscape_class_global"], observed=False)["value"]
|
571
|
+
.sum()
|
572
|
+
.unstack()
|
573
|
+
)
|
574
|
+
grouped_df.plot(
|
575
|
+
kind="bar",
|
576
|
+
stacked=True,
|
577
|
+
color=[color_mapping[col] for col in grouped_df.columns],
|
578
|
+
ax=ax,
|
579
|
+
width=0.8,
|
580
|
+
legend=False,
|
581
|
+
)
|
582
|
+
ax.set_title(
|
583
|
+
gene, bbox={"facecolor": "white", "edgecolor": "black", "pad": 1}, fontsize=axis_title_size
|
584
|
+
)
|
585
|
+
ax.set(xlabel="sgRNA", ylabel="% of cells")
|
586
|
+
sns.despine(ax=ax, top=True, right=True, left=False, bottom=False)
|
587
|
+
ax.set_xticklabels(ax.get_xticklabels(), rotation=0, ha="right", fontsize=axis_text_x_size)
|
588
|
+
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=axis_text_y_size)
|
589
|
+
fig.subplots_adjust(right=0.8)
|
590
|
+
fig.subplots_adjust(hspace=0.5, wspace=0.5)
|
591
|
+
ax.legend(
|
592
|
+
title="mixscape_class_global",
|
593
|
+
loc="center right",
|
594
|
+
bbox_to_anchor=(2.2, 3.5),
|
595
|
+
frameon=True,
|
596
|
+
fontsize=legend_text_size,
|
597
|
+
title_fontsize=legend_title_size,
|
598
|
+
)
|
599
|
+
|
600
|
+
plt.tight_layout()
|
601
|
+
_utils.savefig_or_show("mixscape_barplot", show=show, save=save)
|
602
|
+
|
603
|
+
def plot_heatmap( # pragma: no cover
|
604
|
+
self,
|
605
|
+
adata: AnnData,
|
606
|
+
labels: str,
|
607
|
+
target_gene: str,
|
608
|
+
control: str,
|
609
|
+
layer: str | None = None,
|
610
|
+
method: str | None = "wilcoxon",
|
611
|
+
subsample_number: int | None = 900,
|
612
|
+
vmin: float | None = -2,
|
613
|
+
vmax: float | None = 2,
|
614
|
+
return_fig: bool | None = None,
|
615
|
+
show: bool | None = None,
|
616
|
+
save: bool | str | None = None,
|
617
|
+
**kwds,
|
618
|
+
) -> Axes | None:
|
619
|
+
"""Heatmap plot using mixscape results. Requires `pt.tl.mixscape()` to be run first.
|
620
|
+
|
621
|
+
Args:
|
622
|
+
adata: The annotated data object.
|
623
|
+
labels: The column of `.obs` with target gene labels.
|
624
|
+
target_gene: Target gene name to visualize heatmap for.
|
625
|
+
control: Control category from the `pert_key` column.
|
626
|
+
layer: Key from `adata.layers` whose value will be used to perform tests on.
|
627
|
+
method: The default method is 'wilcoxon', see `method` parameter in `scanpy.tl.rank_genes_groups` for more options.
|
628
|
+
subsample_number: Subsample to this number of observations.
|
629
|
+
vmin: The value representing the lower limit of the color scale. Values smaller than vmin are plotted with the same color as vmin.
|
630
|
+
vmax: The value representing the upper limit of the color scale. Values larger than vmax are plotted with the same color as vmax.
|
631
|
+
show: Show the plot, do not return axis.
|
632
|
+
save: If `True` or a `str`, save the figure. A string is appended to the default filename.
|
633
|
+
Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
634
|
+
ax: A matplotlib axes object. Only works if plotting a single component.
|
635
|
+
**kwds: Additional arguments to `scanpy.pl.rank_genes_groups_heatmap`.
|
636
|
+
|
637
|
+
Returns:
|
638
|
+
If `show==False`, return a :class:`~matplotlib.axes.Axes`.
|
639
|
+
|
640
|
+
Examples:
|
641
|
+
>>> import pertpy as pt
|
642
|
+
>>> mdata = pt.dt.papalexi_2021()
|
643
|
+
>>> ms_pt = pt.tl.Mixscape()
|
644
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
645
|
+
>>> ms_pt.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
646
|
+
>>> ms_pt.plot_heatmap(
|
647
|
+
... adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", layer="X_pert", control="NT"
|
648
|
+
... )
|
649
|
+
|
650
|
+
Preview:
|
651
|
+
.. image:: /_static/docstring_previews/mixscape_heatmap.png
|
652
|
+
"""
|
653
|
+
if "mixscape_class" not in adata.obs:
|
654
|
+
raise ValueError("Please run `pt.tl.mixscape` first.")
|
655
|
+
adata_subset = adata[(adata.obs[labels] == target_gene) | (adata.obs[labels] == control)].copy()
|
656
|
+
sc.tl.rank_genes_groups(adata_subset, layer=layer, groupby=labels, method=method)
|
657
|
+
sc.pp.scale(adata_subset, max_value=vmax)
|
658
|
+
sc.pp.subsample(adata_subset, n_obs=subsample_number)
|
659
|
+
|
660
|
+
return sc.pl.rank_genes_groups_heatmap(
|
661
|
+
adata_subset,
|
662
|
+
groupby="mixscape_class",
|
663
|
+
vmin=vmin,
|
664
|
+
vmax=vmax,
|
665
|
+
n_genes=20,
|
666
|
+
groups=["NT"],
|
667
|
+
return_fig=return_fig,
|
668
|
+
show=show,
|
669
|
+
save=save,
|
670
|
+
**kwds,
|
671
|
+
)
|
672
|
+
|
673
|
+
def plot_perturbscore( # pragma: no cover
|
674
|
+
self,
|
675
|
+
adata: AnnData,
|
676
|
+
labels: str,
|
677
|
+
target_gene: str,
|
678
|
+
mixscape_class: str = "mixscape_class",
|
679
|
+
color: str = "orange",
|
680
|
+
palette: dict[str, str] = None,
|
681
|
+
split_by: str = None,
|
682
|
+
before_mixscape: bool = False,
|
683
|
+
perturbation_type: str = "KO",
|
684
|
+
return_fig: bool | None = None,
|
685
|
+
ax: Axes | None = None,
|
686
|
+
show: bool | None = None,
|
687
|
+
save: bool | str | None = None,
|
688
|
+
) -> None:
|
689
|
+
"""Density plots to visualize perturbation scores calculated by the `pt.tl.mixscape` function.
|
690
|
+
|
691
|
+
Requires `pt.tl.mixscape` to be run first.
|
692
|
+
|
693
|
+
https://satijalab.org/seurat/reference/plotperturbscore
|
694
|
+
|
695
|
+
Args:
|
696
|
+
adata: The annotated data object.
|
697
|
+
labels: The column of `.obs` with target gene labels.
|
698
|
+
target_gene: Target gene name to visualize perturbation scores for.
|
699
|
+
mixscape_class: The column of `.obs` with mixscape classifications.
|
700
|
+
color: Specify color of target gene class or knockout cell class. For control non-targeting and non-perturbed cells, colors are set to different shades of grey.
|
701
|
+
palette: Optional full color palette to overwrite all colors.
|
702
|
+
split_by: Provide the column `.obs` if multiple biological replicates exist to calculate
|
703
|
+
the perturbation signature for every replicate separately.
|
704
|
+
before_mixscape: Option to split densities based on mixscape classification (default) or original target gene classification.
|
705
|
+
Default is set to NULL and plots cells by original class ID.
|
706
|
+
perturbation_type: Specify type of CRISPR perturbation expected for labeling mixscape classifications.
|
707
|
+
Defaults to `KO`.
|
708
|
+
|
709
|
+
Examples:
|
710
|
+
Visualizing the perturbation scores for the cells in a dataset:
|
711
|
+
|
712
|
+
>>> import pertpy as pt
|
713
|
+
>>> mdata = pt.dt.papalexi_2021()
|
714
|
+
>>> ms_pt = pt.tl.Mixscape()
|
715
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
716
|
+
>>> ms_pt.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
717
|
+
>>> ms_pt.plot_perturbscore(adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", color="orange")
|
718
|
+
|
719
|
+
Preview:
|
720
|
+
.. image:: /_static/docstring_previews/mixscape_perturbscore.png
|
721
|
+
"""
|
722
|
+
if "mixscape" not in adata.uns:
|
723
|
+
raise ValueError("Please run the `mixscape` function first.")
|
724
|
+
perturbation_score = None
|
725
|
+
for key in adata.uns["mixscape"][target_gene].keys():
|
726
|
+
perturbation_score_temp = adata.uns["mixscape"][target_gene][key]
|
727
|
+
perturbation_score_temp["name"] = key
|
728
|
+
if perturbation_score is None:
|
729
|
+
perturbation_score = copy.deepcopy(perturbation_score_temp)
|
730
|
+
else:
|
731
|
+
perturbation_score = pd.concat([perturbation_score, perturbation_score_temp])
|
732
|
+
perturbation_score["mix"] = adata.obs[mixscape_class][perturbation_score.index]
|
733
|
+
gd = list(set(perturbation_score[labels]).difference({target_gene}))[0]
|
734
|
+
|
735
|
+
# If before_mixscape is True, split densities based on original target gene classification
|
736
|
+
if before_mixscape is True:
|
737
|
+
palette = {gd: "#7d7d7d", target_gene: color}
|
738
|
+
plot_dens = sns.kdeplot(data=perturbation_score, x="pvec", hue=labels, fill=False, common_norm=False)
|
739
|
+
top_r = max(plot_dens.get_lines()[cond].get_data()[1].max() for cond in range(len(plot_dens.get_lines())))
|
740
|
+
plt.close()
|
741
|
+
perturbation_score["y_jitter"] = perturbation_score["pvec"]
|
742
|
+
rng = np.random.default_rng()
|
743
|
+
perturbation_score.loc[perturbation_score[labels] == gd, "y_jitter"] = rng.uniform(
|
744
|
+
low=0.001, high=top_r / 10, size=sum(perturbation_score[labels] == gd)
|
745
|
+
)
|
746
|
+
perturbation_score.loc[perturbation_score[labels] == target_gene, "y_jitter"] = rng.uniform(
|
747
|
+
low=-top_r / 10, high=0, size=sum(perturbation_score[labels] == target_gene)
|
748
|
+
)
|
749
|
+
# If split_by is provided, split densities based on the split_by
|
750
|
+
if split_by is not None:
|
751
|
+
sns.set_theme(style="whitegrid")
|
752
|
+
g = sns.FacetGrid(
|
753
|
+
data=perturbation_score, col=split_by, hue=split_by, palette=palette, height=5, sharey=False
|
754
|
+
)
|
755
|
+
g.map(sns.kdeplot, "pvec", fill=True, common_norm=False, palette=palette)
|
756
|
+
g.map(sns.scatterplot, "pvec", "y_jitter", s=10, alpha=0.5, palette=palette)
|
757
|
+
g.set_axis_labels("Perturbation score", "Cell density")
|
758
|
+
g.add_legend(title=split_by, fontsize=14, title_fontsize=16)
|
759
|
+
g.despine(left=True)
|
760
|
+
|
761
|
+
# If split_by is not provided, create a single plot
|
762
|
+
else:
|
763
|
+
sns.set_theme(style="whitegrid")
|
764
|
+
sns.kdeplot(
|
765
|
+
data=perturbation_score, x="pvec", hue="gene_target", fill=True, common_norm=False, palette=palette
|
766
|
+
)
|
767
|
+
sns.scatterplot(
|
768
|
+
data=perturbation_score, x="pvec", y="y_jitter", hue="gene_target", palette=palette, s=10, alpha=0.5
|
769
|
+
)
|
770
|
+
plt.xlabel("Perturbation score", fontsize=16)
|
771
|
+
plt.ylabel("Cell density", fontsize=16)
|
772
|
+
plt.title("Density Plot", fontsize=18)
|
773
|
+
plt.legend(title="gene_target", title_fontsize=14, fontsize=12)
|
774
|
+
sns.despine()
|
775
|
+
|
776
|
+
if save:
|
777
|
+
plt.savefig(save, bbox_inches="tight")
|
778
|
+
if show:
|
779
|
+
plt.show()
|
780
|
+
if return_fig:
|
781
|
+
return plt.gcf()
|
782
|
+
if not (show or save):
|
783
|
+
return plt.gca()
|
784
|
+
|
785
|
+
# If before_mixscape is False, split densities based on mixscape classifications
|
786
|
+
else:
|
787
|
+
if palette is None:
|
788
|
+
palette = {gd: "#7d7d7d", f"{target_gene} NP": "#c9c9c9", f"{target_gene} {perturbation_type}": color}
|
789
|
+
plot_dens = sns.kdeplot(data=perturbation_score, x="pvec", hue=labels, fill=False, common_norm=False)
|
790
|
+
top_r = max(plot_dens.get_lines()[i].get_data()[1].max() for i in range(len(plot_dens.get_lines())))
|
791
|
+
plt.close()
|
792
|
+
perturbation_score["y_jitter"] = perturbation_score["pvec"]
|
793
|
+
rng = np.random.default_rng()
|
794
|
+
gd2 = list(
|
795
|
+
set(perturbation_score["mix"]).difference([f"{target_gene} NP", f"{target_gene} {perturbation_type}"])
|
796
|
+
)[0]
|
797
|
+
perturbation_score.loc[perturbation_score["mix"] == gd2, "y_jitter"] = rng.uniform(
|
798
|
+
low=0.001, high=top_r / 10, size=sum(perturbation_score["mix"] == gd2)
|
799
|
+
).astype(np.float32)
|
800
|
+
perturbation_score.loc[perturbation_score["mix"] == f"{target_gene} {perturbation_type}", "y_jitter"] = (
|
801
|
+
rng.uniform(
|
802
|
+
low=-top_r / 10, high=0, size=sum(perturbation_score["mix"] == f"{target_gene} {perturbation_type}")
|
803
|
+
)
|
804
|
+
)
|
805
|
+
perturbation_score.loc[perturbation_score["mix"] == f"{target_gene} NP", "y_jitter"] = rng.uniform(
|
806
|
+
low=-top_r / 10, high=0, size=sum(perturbation_score["mix"] == f"{target_gene} NP")
|
807
|
+
)
|
808
|
+
# If split_by is provided, split densities based on the split_by
|
809
|
+
if split_by is not None:
|
810
|
+
sns.set_theme(style="whitegrid")
|
811
|
+
g = sns.FacetGrid(
|
812
|
+
data=perturbation_score, col=split_by, hue="mix", palette=palette, height=5, sharey=False
|
813
|
+
)
|
814
|
+
g.map(sns.kdeplot, "pvec", fill=True, common_norm=False, alpha=0.7)
|
815
|
+
g.map(sns.scatterplot, "pvec", "y_jitter", s=10, alpha=0.5)
|
816
|
+
g.set_axis_labels("Perturbation score", "Cell density")
|
817
|
+
g.add_legend(title="mix", fontsize=14, title_fontsize=16)
|
818
|
+
g.despine(left=True)
|
819
|
+
|
820
|
+
# If split_by is not provided, create a single plot
|
821
|
+
else:
|
822
|
+
sns.set_theme(style="whitegrid")
|
823
|
+
sns.kdeplot(
|
824
|
+
data=perturbation_score,
|
825
|
+
x="pvec",
|
826
|
+
hue="mix",
|
827
|
+
fill=True,
|
828
|
+
common_norm=False,
|
829
|
+
palette=palette,
|
830
|
+
alpha=0.7,
|
831
|
+
)
|
832
|
+
sns.scatterplot(
|
833
|
+
data=perturbation_score, x="pvec", y="y_jitter", hue="mix", palette=palette, s=10, alpha=0.5
|
834
|
+
)
|
835
|
+
plt.xlabel("Perturbation score", fontsize=16)
|
836
|
+
plt.ylabel("Cell density", fontsize=16)
|
837
|
+
plt.title("Density", fontsize=18)
|
838
|
+
plt.legend(title="mixscape class", title_fontsize=14, fontsize=12)
|
839
|
+
sns.despine()
|
840
|
+
|
841
|
+
if save:
|
842
|
+
plt.savefig(save, bbox_inches="tight")
|
843
|
+
if show:
|
844
|
+
plt.show()
|
845
|
+
if return_fig:
|
846
|
+
return plt.gcf()
|
847
|
+
if not (show or save):
|
848
|
+
return plt.gca()
|
849
|
+
|
850
|
+
def plot_violin( # pragma: no cover
|
851
|
+
self,
|
852
|
+
adata: AnnData,
|
853
|
+
target_gene_idents: str | list[str],
|
854
|
+
keys: str | Sequence[str] = "mixscape_class_p_ko",
|
855
|
+
groupby: str | None = "mixscape_class",
|
856
|
+
log: bool = False,
|
857
|
+
use_raw: bool | None = None,
|
858
|
+
stripplot: bool = True,
|
859
|
+
hue: str | None = None,
|
860
|
+
jitter: float | bool = True,
|
861
|
+
size: int = 1,
|
862
|
+
layer: str | None = None,
|
863
|
+
scale: Literal["area", "count", "width"] = "width",
|
864
|
+
order: Sequence[str] | None = None,
|
865
|
+
multi_panel: bool | None = None,
|
866
|
+
xlabel: str = "",
|
867
|
+
ylabel: str | Sequence[str] | None = None,
|
868
|
+
rotation: float | None = None,
|
869
|
+
ax: Axes | None = None,
|
870
|
+
show: bool | None = None,
|
871
|
+
save: bool | str | None = None,
|
872
|
+
**kwargs,
|
873
|
+
):
|
874
|
+
"""Violin plot using mixscape results.
|
875
|
+
|
876
|
+
Requires `pt.tl.mixscape` to be run first.
|
877
|
+
|
878
|
+
Args:
|
879
|
+
adata: The annotated data object.
|
880
|
+
target_gene_idents: Target gene name to plot.
|
881
|
+
keys: Keys for accessing variables of `.var_names` or fields of `.obs`. Default is 'mixscape_class_p_ko'.
|
882
|
+
groupby: The key of the observation grouping to consider. Default is 'mixscape_class'.
|
883
|
+
log: Plot on logarithmic axis.
|
884
|
+
use_raw: Whether to use `raw` attribute of `adata`. Defaults to `True` if `.raw` is present.
|
885
|
+
stripplot: Add a stripplot on top of the violin plot.
|
886
|
+
order: Order in which to show the categories.
|
887
|
+
xlabel: Label of the x-axis. Defaults to `groupby` if `rotation` is `None`, otherwise, no label is shown.
|
888
|
+
ylabel: Label of the y-axis. If `None` and `groupby` is `None`, defaults to `'value'`.
|
889
|
+
If `None` and `groubpy` is not `None`, defaults to `keys`.
|
890
|
+
show: Show the plot, do not return axis.
|
891
|
+
save: If `True` or a `str`, save the figure. A string is appended to the default filename.
|
892
|
+
Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
893
|
+
ax: A matplotlib axes object. Only works if plotting a single component.
|
894
|
+
**kwargs: Additional arguments to `seaborn.violinplot`.
|
895
|
+
|
896
|
+
Returns:
|
897
|
+
A :class:`~matplotlib.axes.Axes` object if `ax` is `None` else `None`.
|
898
|
+
|
899
|
+
Examples:
|
900
|
+
>>> import pertpy as pt
|
901
|
+
>>> mdata = pt.dt.papalexi_2021()
|
902
|
+
>>> ms_pt = pt.tl.Mixscape()
|
903
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
904
|
+
>>> ms_pt.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
905
|
+
>>> ms_pt.plot_violin(
|
906
|
+
... adata=mdata["rna"], target_gene_idents=["NT", "IFNGR2 NP", "IFNGR2 KO"], groupby="mixscape_class"
|
907
|
+
... )
|
908
|
+
|
909
|
+
Preview:
|
910
|
+
.. image:: /_static/docstring_previews/mixscape_violin.png
|
911
|
+
"""
|
912
|
+
if isinstance(target_gene_idents, str):
|
913
|
+
mixscape_class_mask = adata.obs[groupby] == target_gene_idents
|
914
|
+
elif isinstance(target_gene_idents, list):
|
915
|
+
mixscape_class_mask = np.full_like(adata.obs[groupby], False, dtype=bool)
|
916
|
+
for ident in target_gene_idents:
|
917
|
+
mixscape_class_mask |= adata.obs[groupby] == ident
|
918
|
+
adata = adata[mixscape_class_mask]
|
919
|
+
|
920
|
+
sanitize_anndata(adata)
|
921
|
+
use_raw = _check_use_raw(adata, use_raw)
|
922
|
+
if isinstance(keys, str):
|
923
|
+
keys = [keys]
|
924
|
+
keys = list(OrderedDict.fromkeys(keys)) # remove duplicates, preserving the order
|
925
|
+
|
926
|
+
if isinstance(ylabel, str | type(None)):
|
927
|
+
ylabel = [ylabel] * (1 if groupby is None else len(keys))
|
928
|
+
if groupby is None:
|
929
|
+
if len(ylabel) != 1:
|
930
|
+
raise ValueError(f"Expected number of y-labels to be `1`, found `{len(ylabel)}`.")
|
931
|
+
elif len(ylabel) != len(keys):
|
932
|
+
raise ValueError(f"Expected number of y-labels to be `{len(keys)}`, " f"found `{len(ylabel)}`.")
|
933
|
+
|
934
|
+
if groupby is not None:
|
935
|
+
if hue is not None:
|
936
|
+
obs_df = get.obs_df(adata, keys=[groupby] + keys + [hue], layer=layer, use_raw=use_raw)
|
937
|
+
else:
|
938
|
+
obs_df = get.obs_df(adata, keys=[groupby] + keys, layer=layer, use_raw=use_raw)
|
939
|
+
|
940
|
+
else:
|
941
|
+
obs_df = get.obs_df(adata, keys=keys, layer=layer, use_raw=use_raw)
|
942
|
+
if groupby is None:
|
943
|
+
obs_tidy = pd.melt(obs_df, value_vars=keys)
|
944
|
+
x = "variable"
|
945
|
+
ys = ["value"]
|
946
|
+
else:
|
947
|
+
obs_tidy = obs_df
|
948
|
+
x = groupby
|
949
|
+
ys = keys
|
950
|
+
|
951
|
+
if multi_panel and groupby is None and len(ys) == 1:
|
952
|
+
# This is a quick and dirty way for adapting scales across several
|
953
|
+
# keys if groupby is None.
|
954
|
+
y = ys[0]
|
955
|
+
|
956
|
+
g = sns.catplot(
|
957
|
+
y=y,
|
958
|
+
data=obs_tidy,
|
959
|
+
kind="violin",
|
960
|
+
scale=scale,
|
961
|
+
col=x,
|
962
|
+
col_order=keys,
|
963
|
+
sharey=False,
|
964
|
+
order=keys,
|
965
|
+
cut=0,
|
966
|
+
inner=None,
|
967
|
+
**kwargs,
|
968
|
+
)
|
969
|
+
|
970
|
+
if stripplot:
|
971
|
+
grouped_df = obs_tidy.groupby(x)
|
972
|
+
for ax_id, key in zip(range(g.axes.shape[1]), keys, strict=False):
|
973
|
+
sns.stripplot(
|
974
|
+
y=y,
|
975
|
+
data=grouped_df.get_group(key),
|
976
|
+
jitter=jitter,
|
977
|
+
size=size,
|
978
|
+
color="black",
|
979
|
+
ax=g.axes[0, ax_id],
|
980
|
+
)
|
981
|
+
if log:
|
982
|
+
g.set(yscale="log")
|
983
|
+
g.set_titles(col_template="{col_name}").set_xlabels("")
|
984
|
+
if rotation is not None:
|
985
|
+
for ax in g.axes[0]:
|
986
|
+
ax.tick_params(axis="x", labelrotation=rotation)
|
987
|
+
else:
|
988
|
+
# set by default the violin plot cut=0 to limit the extend
|
989
|
+
# of the violin plot (see stacked_violin code) for more info.
|
990
|
+
kwargs.setdefault("cut", 0)
|
991
|
+
kwargs.setdefault("inner")
|
992
|
+
|
993
|
+
if ax is None:
|
994
|
+
axs, _, _, _ = _utils.setup_axes(
|
995
|
+
ax=ax,
|
996
|
+
panels=["x"] if groupby is None else keys,
|
997
|
+
show_ticks=True,
|
998
|
+
right_margin=0.3,
|
999
|
+
)
|
1000
|
+
else:
|
1001
|
+
axs = [ax]
|
1002
|
+
for ax, y, ylab in zip(axs, ys, ylabel, strict=False):
|
1003
|
+
ax = sns.violinplot(
|
1004
|
+
x=x,
|
1005
|
+
y=y,
|
1006
|
+
data=obs_tidy,
|
1007
|
+
order=order,
|
1008
|
+
orient="vertical",
|
1009
|
+
scale=scale,
|
1010
|
+
ax=ax,
|
1011
|
+
hue=hue,
|
1012
|
+
**kwargs,
|
1013
|
+
)
|
1014
|
+
# Get the handles and labels.
|
1015
|
+
handles, labels = ax.get_legend_handles_labels()
|
1016
|
+
if stripplot:
|
1017
|
+
ax = sns.stripplot(
|
1018
|
+
x=x,
|
1019
|
+
y=y,
|
1020
|
+
data=obs_tidy,
|
1021
|
+
order=order,
|
1022
|
+
jitter=jitter,
|
1023
|
+
color="black",
|
1024
|
+
size=size,
|
1025
|
+
ax=ax,
|
1026
|
+
hue=hue,
|
1027
|
+
dodge=True,
|
1028
|
+
)
|
1029
|
+
if xlabel == "" and groupby is not None and rotation is None:
|
1030
|
+
xlabel = groupby.replace("_", " ")
|
1031
|
+
ax.set_xlabel(xlabel)
|
1032
|
+
if ylab is not None:
|
1033
|
+
ax.set_ylabel(ylab)
|
1034
|
+
|
1035
|
+
if log:
|
1036
|
+
ax.set_yscale("log")
|
1037
|
+
if rotation is not None:
|
1038
|
+
ax.tick_params(axis="x", labelrotation=rotation)
|
1039
|
+
|
1040
|
+
show = settings.autoshow if show is None else show
|
1041
|
+
if hue is not None and stripplot is True:
|
1042
|
+
plt.legend(handles, labels)
|
1043
|
+
_utils.savefig_or_show("mixscape_violin", show=show, save=save)
|
1044
|
+
|
1045
|
+
if not show:
|
1046
|
+
if multi_panel and groupby is None and len(ys) == 1:
|
1047
|
+
return g
|
1048
|
+
elif len(axs) == 1:
|
1049
|
+
return axs[0]
|
1050
|
+
else:
|
1051
|
+
return axs
|
1052
|
+
|
1053
|
+
def plot_lda( # pragma: no cover
|
1054
|
+
self,
|
1055
|
+
adata: AnnData,
|
1056
|
+
control: str,
|
1057
|
+
mixscape_class: str = "mixscape_class",
|
1058
|
+
mixscape_class_global: str = "mixscape_class_global",
|
1059
|
+
perturbation_type: str | None = "KO",
|
1060
|
+
lda_key: str | None = "mixscape_lda",
|
1061
|
+
n_components: int | None = None,
|
1062
|
+
color_map: Colormap | str | None = None,
|
1063
|
+
palette: str | Sequence[str] | None = None,
|
1064
|
+
return_fig: bool | None = None,
|
1065
|
+
ax: Axes | None = None,
|
1066
|
+
show: bool | None = None,
|
1067
|
+
save: bool | str | None = None,
|
1068
|
+
**kwds,
|
1069
|
+
) -> None:
|
1070
|
+
"""Visualizing perturbation responses with Linear Discriminant Analysis. Requires `pt.tl.mixscape()` to be run first.
|
1071
|
+
|
1072
|
+
Args:
|
1073
|
+
adata: The annotated data object.
|
1074
|
+
control: Control category from the `pert_key` column.
|
1075
|
+
mixscape_class: The column of `.obs` with the mixscape classification result.
|
1076
|
+
mixscape_class_global: The column of `.obs` with mixscape global classification result (perturbed, NP or NT).
|
1077
|
+
perturbation_type: Specify type of CRISPR perturbation expected for labeling mixscape classifications.
|
1078
|
+
Defaults to 'KO'.
|
1079
|
+
lda_key: If not specified, lda looks .uns["mixscape_lda"] for the LDA results.
|
1080
|
+
n_components: The number of dimensions of the embedding.
|
1081
|
+
show: Show the plot, do not return axis.
|
1082
|
+
save: If `True` or a `str`, save the figure. A string is appended to the default filename.
|
1083
|
+
Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
1084
|
+
**kwds: Additional arguments to `scanpy.pl.umap`.
|
1085
|
+
|
1086
|
+
Examples:
|
1087
|
+
>>> import pertpy as pt
|
1088
|
+
>>> mdata = pt.dt.papalexi_2021()
|
1089
|
+
>>> ms_pt = pt.tl.Mixscape()
|
1090
|
+
>>> ms_pt.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
1091
|
+
>>> ms_pt.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
1092
|
+
>>> ms_pt.lda(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
1093
|
+
>>> ms_pt.plot_lda(adata=mdata["rna"], control="NT")
|
1094
|
+
|
1095
|
+
Preview:
|
1096
|
+
.. image:: /_static/docstring_previews/mixscape_lda.png
|
1097
|
+
"""
|
1098
|
+
if mixscape_class not in adata.obs:
|
1099
|
+
raise ValueError(f'Did not find `.obs["{mixscape_class!r}"]`. Please run the `mixscape` function first.')
|
1100
|
+
if lda_key not in adata.uns:
|
1101
|
+
raise ValueError(f'Did not find `.uns["{lda_key!r}"]`. Please run the `lda` function first.')
|
1102
|
+
|
1103
|
+
adata_subset = adata[
|
1104
|
+
(adata.obs[mixscape_class_global] == perturbation_type) | (adata.obs[mixscape_class_global] == control)
|
1105
|
+
].copy()
|
1106
|
+
adata_subset.obsm[lda_key] = adata_subset.uns[lda_key]
|
1107
|
+
if n_components is None:
|
1108
|
+
n_components = adata_subset.uns[lda_key].shape[1]
|
1109
|
+
sc.pp.neighbors(adata_subset, use_rep=lda_key)
|
1110
|
+
sc.tl.umap(adata_subset, n_components=n_components)
|
1111
|
+
sc.pl.umap(
|
1112
|
+
adata_subset,
|
1113
|
+
color=mixscape_class,
|
1114
|
+
palette=palette,
|
1115
|
+
color_map=color_map,
|
1116
|
+
return_fig=return_fig,
|
1117
|
+
show=show,
|
1118
|
+
save=save,
|
1119
|
+
ax=ax,
|
1120
|
+
**kwds,
|
1121
|
+
)
|