pertpy 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pertpy/__init__.py +3 -2
- pertpy/data/__init__.py +5 -1
- pertpy/data/_dataloader.py +2 -4
- pertpy/data/_datasets.py +203 -92
- pertpy/metadata/__init__.py +4 -0
- pertpy/metadata/_cell_line.py +826 -0
- pertpy/metadata/_compound.py +129 -0
- pertpy/metadata/_drug.py +242 -0
- pertpy/metadata/_look_up.py +582 -0
- pertpy/metadata/_metadata.py +73 -0
- pertpy/metadata/_moa.py +129 -0
- pertpy/plot/__init__.py +1 -9
- pertpy/plot/_augur.py +53 -116
- pertpy/plot/_coda.py +277 -677
- pertpy/plot/_guide_rna.py +17 -35
- pertpy/plot/_milopy.py +59 -134
- pertpy/plot/_mixscape.py +152 -391
- pertpy/preprocessing/_guide_rna.py +88 -4
- pertpy/tools/__init__.py +8 -13
- pertpy/tools/_augur.py +315 -17
- pertpy/tools/_cinemaot.py +143 -4
- pertpy/tools/_coda/_base_coda.py +1210 -65
- pertpy/tools/_coda/_sccoda.py +50 -21
- pertpy/tools/_coda/_tasccoda.py +27 -19
- pertpy/tools/_dialogue.py +164 -56
- pertpy/tools/_differential_gene_expression.py +240 -14
- pertpy/tools/_distances/_distance_tests.py +8 -8
- pertpy/tools/_distances/_distances.py +184 -34
- pertpy/tools/_enrichment.py +465 -0
- pertpy/tools/_milo.py +345 -11
- pertpy/tools/_mixscape.py +668 -50
- pertpy/tools/_perturbation_space/_clustering.py +5 -1
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +526 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +135 -43
- pertpy/tools/_perturbation_space/_simple.py +51 -10
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_scgen.py +701 -0
- pertpy/tools/_scgen/_utils.py +1 -3
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/METADATA +31 -12
- pertpy-0.7.0.dist-info/RECORD +53 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/licenses/LICENSE +0 -0
pertpy/tools/_cinemaot.py
CHANGED
@@ -2,14 +2,17 @@ from __future__ import annotations
|
|
2
2
|
|
3
3
|
from typing import TYPE_CHECKING
|
4
4
|
|
5
|
+
import matplotlib.pyplot as plt
|
5
6
|
import numpy as np
|
6
7
|
import pandas as pd
|
7
8
|
import scanpy as sc
|
8
9
|
import scipy.stats as ss
|
10
|
+
import seaborn as sns
|
9
11
|
import sklearn.metrics
|
10
12
|
from ott.geometry import pointcloud
|
11
13
|
from ott.problems.linear import linear_problem
|
12
14
|
from ott.solvers.linear import sinkhorn, sinkhorn_lr
|
15
|
+
from scanpy.plotting import _utils
|
13
16
|
from scipy.sparse import issparse
|
14
17
|
from sklearn.decomposition import FastICA
|
15
18
|
from sklearn.linear_model import LinearRegression
|
@@ -17,6 +20,7 @@ from sklearn.neighbors import NearestNeighbors
|
|
17
20
|
|
18
21
|
if TYPE_CHECKING:
|
19
22
|
from anndata import AnnData
|
23
|
+
from matplotlib.axes import Axes
|
20
24
|
from statsmodels.tools.typing import ArrayLike
|
21
25
|
|
22
26
|
|
@@ -67,6 +71,14 @@ class Cinemaot:
|
|
67
71
|
Returns an AnnData object that contains the single-cell level treatment effect as de.X and the
|
68
72
|
corresponding low dimensional embedding in de.obsm['X_embedding'], and optional matching matrix
|
69
73
|
stored in the de.obsm['ot']. Also puts the confounding variation in adata.obsm[cf_rep].
|
74
|
+
|
75
|
+
Examples:
|
76
|
+
>>> import pertpy as pt
|
77
|
+
>>> adata = pt.dt.cinemaot_example()
|
78
|
+
>>> model = pt.tl.Cinemaot()
|
79
|
+
>>> out_adata = model.causaleffect(
|
80
|
+
>>> adata, pert_key="perturbation", control="No stimulation", return_matching=True,
|
81
|
+
>>> thres=0.5, smoothness=1e-5, eps=1e-3, solver="Sinkhorn", preweight_label="cell_type0528")
|
70
82
|
"""
|
71
83
|
available_solvers = ["Sinkhorn", "LRSinkhorn"]
|
72
84
|
if solver not in available_solvers:
|
@@ -225,6 +237,14 @@ class Cinemaot:
|
|
225
237
|
Returns an anndata object that contains the single-cell level treatment effect as de.X and the
|
226
238
|
corresponding low dimensional embedding in de.obsm['X_embedding'], and optional matching matrix
|
227
239
|
stored in the de.obsm['ot']. Also puts the confounding variation in adata.obsm[cf_rep].
|
240
|
+
|
241
|
+
Examples:
|
242
|
+
>>> import pertpy as pt
|
243
|
+
>>> adata = pt.dt.cinemaot_example()
|
244
|
+
>>> model = pt.tl.Cinemaot()
|
245
|
+
>>> ad, de = model.causaleffect_weighted(
|
246
|
+
>>> adata, pert_key="perturbation", control="No stimulation", return_matching=True,
|
247
|
+
>>> thres=0.5, smoothness=1e-5, eps=1e-3, solver="Sinkhorn")
|
228
248
|
"""
|
229
249
|
available_solvers = ["Sinkhorn", "LRSinkhorn"]
|
230
250
|
assert solver in available_solvers, (
|
@@ -288,6 +308,16 @@ class Cinemaot:
|
|
288
308
|
|
289
309
|
Returns:
|
290
310
|
Returns an anndata object that contains aggregated pseudobulk profiles and associated metadata.
|
311
|
+
|
312
|
+
Examples:
|
313
|
+
>>> import pertpy as pt
|
314
|
+
>>> adata = pt.dt.cinemaot_example()
|
315
|
+
>>> model = pt.tl.Cinemaot()
|
316
|
+
>>> de = model.causaleffect(
|
317
|
+
>>> adata, pert_key="perturbation", control="No stimulation", return_matching=True, thres=0.5,
|
318
|
+
>>> smoothness=1e-5, eps=1e-3, solver="Sinkhorn", preweight_label="cell_type0528")
|
319
|
+
>>> adata_pb = model.generate_pseudobulk(
|
320
|
+
>>> adata, de, pert_key="perturbation", control="No stimulation", label_list=None)
|
291
321
|
"""
|
292
322
|
sc.pp.neighbors(de, use_rep=de_rep)
|
293
323
|
sc.tl.leiden(de, resolution=de_resolution)
|
@@ -336,6 +366,12 @@ class Cinemaot:
|
|
336
366
|
|
337
367
|
Returns:
|
338
368
|
Returns the estimated dimension number.
|
369
|
+
|
370
|
+
Examples:
|
371
|
+
>>> import pertpy as pt
|
372
|
+
>>> adata = pt.dt.cinemaot_example()
|
373
|
+
>>> model = pt.tl.Cinemaot()
|
374
|
+
>>> dim = model.get_dim(adata)
|
339
375
|
"""
|
340
376
|
sk = SinkhornKnopp()
|
341
377
|
if issparse(adata.raw.X):
|
@@ -369,6 +405,12 @@ class Cinemaot:
|
|
369
405
|
|
370
406
|
Returns:
|
371
407
|
Returns the indices.
|
408
|
+
|
409
|
+
Examples:
|
410
|
+
>>> import pertpy as pt
|
411
|
+
>>> adata = pt.dt.cinemaot_example()
|
412
|
+
>>> model = pt.tl.Cinemaot()
|
413
|
+
>>> idx = model.get_weightidx(adata, pert_key="perturbation", control="No stimulation")
|
372
414
|
"""
|
373
415
|
adata_ = adata.copy()
|
374
416
|
X_pca1 = adata_.obsm[use_rep][adata_.obs[pert_key] == control, :]
|
@@ -485,6 +527,15 @@ class Cinemaot:
|
|
485
527
|
|
486
528
|
Returns:
|
487
529
|
Returns an AnnData object that contains the single-cell level synergy matrix de.X and the embedding.
|
530
|
+
|
531
|
+
Examples:
|
532
|
+
>>> import pertpy as pt
|
533
|
+
>>> adata = pt.dt.dong_2023()
|
534
|
+
>>> sc.pp.pca(adata)
|
535
|
+
>>> model = pt.tl.Cinemaot()
|
536
|
+
>>> combo = model.synergy(adata, pert_key='perturbation', base='No stimulation', A='IFNb', B='IFNg',
|
537
|
+
>>> AB='IFNb+ IFNg', thres=0.5, smoothness=1e-5, eps=1e-3, solver='Sinkhorn')
|
538
|
+
|
488
539
|
"""
|
489
540
|
adata1 = adata[adata.obs[pert_key].isin([base, A]), :].copy()
|
490
541
|
adata2 = adata[adata.obs[pert_key].isin([B, AB]), :].copy()
|
@@ -552,6 +603,12 @@ class Cinemaot:
|
|
552
603
|
|
553
604
|
Returns:
|
554
605
|
Returns the confounder effect (c_effect) and the residual effect (s_effect).
|
606
|
+
|
607
|
+
Examples:
|
608
|
+
>>> import pertpy as pt
|
609
|
+
>>> adata = pt.dt.cinemaot_example()
|
610
|
+
>>> model = pt.tl.Cinemaot()
|
611
|
+
>>> c_effect, s_effect = model.attribution_scatter(adata, pert_key="perturbation", control="No stimulation")
|
555
612
|
"""
|
556
613
|
cf = adata.obsm[cf_rep]
|
557
614
|
if use_raw:
|
@@ -582,6 +639,84 @@ class Cinemaot:
|
|
582
639
|
s_effect = (np.linalg.norm(e1, axis=0) + 1e-6) / (np.linalg.norm(e0, axis=0) + 1e-6)
|
583
640
|
return c_effect, s_effect
|
584
641
|
|
642
|
+
def plot_vis_matching(
|
643
|
+
self,
|
644
|
+
adata: AnnData,
|
645
|
+
de: AnnData,
|
646
|
+
pert_key: str,
|
647
|
+
control: str,
|
648
|
+
de_label: str,
|
649
|
+
source_label: str,
|
650
|
+
matching_rep: str = "ot",
|
651
|
+
resolution: float = 0.5,
|
652
|
+
normalize: str = "col",
|
653
|
+
title: str = "CINEMA-OT matching matrix",
|
654
|
+
min_val: float = 0.01,
|
655
|
+
show: bool = True,
|
656
|
+
save: str | None = None,
|
657
|
+
ax: Axes | None = None,
|
658
|
+
**kwargs,
|
659
|
+
) -> None:
|
660
|
+
"""Visualize the CINEMA-OT matching matrix.
|
661
|
+
|
662
|
+
Args:
|
663
|
+
adata: the original anndata after running cinemaot.causaleffect or cinemaot.causaleffect_weighted.
|
664
|
+
de: The anndata output from Cinemaot.causaleffect() or Cinemaot.causaleffect_weighted().
|
665
|
+
pert_key: The column of `.obs` with perturbation categories, should also contain `control`.
|
666
|
+
control: Control category from the `pert_key` column.
|
667
|
+
de_label: the label for differential response. If none, use leiden cluster labels at resolution 1.0.
|
668
|
+
source_label: the confounder / cell type label.
|
669
|
+
matching_rep: the place that stores the matching matrix. default de.obsm['ot'].
|
670
|
+
normalize: normalize the coarse-grained matching matrix by row / column.
|
671
|
+
title: the title for the figure.
|
672
|
+
min_val: The min value to truncate the matching matrix.
|
673
|
+
show: Show the plot, do not return axis.
|
674
|
+
save: If `True` or a `str`, save the figure. A string is appended to the default filename.
|
675
|
+
Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
676
|
+
**kwargs: Other parameters to input for seaborn.heatmap.
|
677
|
+
|
678
|
+
Examples:
|
679
|
+
>>> import pertpy as pt
|
680
|
+
>>> adata = pt.dt.cinemaot_example()
|
681
|
+
>>> cot = pt.tl.Cinemaot()
|
682
|
+
>>> de = cot.causaleffect(
|
683
|
+
>>> adata, pert_key="perturbation", control="No stimulation", return_matching=True,
|
684
|
+
>>> thres=0.5, smoothness=1e-5, eps=1e-3, solver="Sinkhorn", preweight_label="cell_type0528")
|
685
|
+
>>> cot.plot_vis_matching(
|
686
|
+
>>> adata, de, pert_key="perturbation",control="No stimulation", de_label=None, source_label="cell_type0528")
|
687
|
+
"""
|
688
|
+
adata_ = adata[adata.obs[pert_key] == control]
|
689
|
+
|
690
|
+
df = pd.DataFrame(de.obsm[matching_rep])
|
691
|
+
if de_label is None:
|
692
|
+
de_label = "leiden"
|
693
|
+
sc.pp.neighbors(de, use_rep="X_embedding")
|
694
|
+
sc.tl.leiden(de, resolution=resolution)
|
695
|
+
df["de_label"] = de.obs[de_label].astype(str).values
|
696
|
+
df["de_label"] = "Response " + df["de_label"]
|
697
|
+
df = df.groupby("de_label").sum().T
|
698
|
+
df["source_label"] = adata_.obs[source_label].astype(str).values
|
699
|
+
df = df.groupby("source_label").sum()
|
700
|
+
|
701
|
+
if normalize == "col":
|
702
|
+
df = df / df.sum(axis=0)
|
703
|
+
else:
|
704
|
+
df = (df.T / df.sum(axis=1)).T
|
705
|
+
df = df.clip(lower=min_val) - min_val
|
706
|
+
if normalize == "col":
|
707
|
+
df = df / df.sum(axis=0)
|
708
|
+
else:
|
709
|
+
df = (df.T / df.sum(axis=1)).T
|
710
|
+
|
711
|
+
g = sns.heatmap(df, annot=True, ax=ax, **kwargs)
|
712
|
+
plt.title(title)
|
713
|
+
_utils.savefig_or_show("matching_heatmap", show=show, save=save)
|
714
|
+
if not show:
|
715
|
+
if ax is not None:
|
716
|
+
return ax
|
717
|
+
else:
|
718
|
+
return g
|
719
|
+
|
585
720
|
|
586
721
|
class Xi:
|
587
722
|
"""
|
@@ -610,7 +745,7 @@ class Xi:
|
|
610
745
|
# same as pandas rank method 'first'
|
611
746
|
rankdata = ss.rankdata(randomized, method="ordinal")
|
612
747
|
# Reindexing based on pairs of indices before and after
|
613
|
-
unrandomized = [rankdata[j] for i, j in sorted(zip(randomized_indices, range(len_x)))]
|
748
|
+
unrandomized = [rankdata[j] for i, j in sorted(zip(randomized_indices, range(len_x), strict=False))]
|
614
749
|
return unrandomized
|
615
750
|
|
616
751
|
@property
|
@@ -648,6 +783,7 @@ class Xi:
|
|
648
783
|
for x, y in zip(
|
649
784
|
x1,
|
650
785
|
x2,
|
786
|
+
strict=False,
|
651
787
|
)
|
652
788
|
]
|
653
789
|
)
|
@@ -694,13 +830,16 @@ class Xi:
|
|
694
830
|
ind = [i + 1 for i in range(self.sample_size)]
|
695
831
|
ind2 = [2 * self.sample_size - 2 * ind[i - 1] + 1 for i in ind]
|
696
832
|
|
697
|
-
a = np.mean([i * j * j for i, j in zip(ind2, sorted_ordered_x_rank)]) / self.sample_size
|
833
|
+
a = np.mean([i * j * j for i, j in zip(ind2, sorted_ordered_x_rank, strict=False)]) / self.sample_size
|
698
834
|
|
699
|
-
c = np.mean([i * j for i, j in zip(ind2, sorted_ordered_x_rank)]) / self.sample_size
|
835
|
+
c = np.mean([i * j for i, j in zip(ind2, sorted_ordered_x_rank, strict=False)]) / self.sample_size
|
700
836
|
|
701
837
|
cq = np.cumsum(sorted_ordered_x_rank)
|
702
838
|
|
703
|
-
m = [
|
839
|
+
m = [
|
840
|
+
(i + (self.sample_size - j) * k) / self.sample_size
|
841
|
+
for i, j, k in zip(cq, ind, sorted_ordered_x_rank, strict=False)
|
842
|
+
]
|
704
843
|
|
705
844
|
b = np.mean([np.square(i) for i in m])
|
706
845
|
v = (a - 2 * b + np.square(c)) / np.square(self.inverse_g_mean)
|