pertpy 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pertpy/__init__.py +3 -2
- pertpy/data/__init__.py +5 -1
- pertpy/data/_dataloader.py +2 -4
- pertpy/data/_datasets.py +203 -92
- pertpy/metadata/__init__.py +4 -0
- pertpy/metadata/_cell_line.py +826 -0
- pertpy/metadata/_compound.py +129 -0
- pertpy/metadata/_drug.py +242 -0
- pertpy/metadata/_look_up.py +582 -0
- pertpy/metadata/_metadata.py +73 -0
- pertpy/metadata/_moa.py +129 -0
- pertpy/plot/__init__.py +1 -9
- pertpy/plot/_augur.py +53 -116
- pertpy/plot/_coda.py +277 -677
- pertpy/plot/_guide_rna.py +17 -35
- pertpy/plot/_milopy.py +59 -134
- pertpy/plot/_mixscape.py +152 -391
- pertpy/preprocessing/_guide_rna.py +88 -4
- pertpy/tools/__init__.py +8 -13
- pertpy/tools/_augur.py +315 -17
- pertpy/tools/_cinemaot.py +143 -4
- pertpy/tools/_coda/_base_coda.py +1210 -65
- pertpy/tools/_coda/_sccoda.py +50 -21
- pertpy/tools/_coda/_tasccoda.py +27 -19
- pertpy/tools/_dialogue.py +164 -56
- pertpy/tools/_differential_gene_expression.py +240 -14
- pertpy/tools/_distances/_distance_tests.py +8 -8
- pertpy/tools/_distances/_distances.py +184 -34
- pertpy/tools/_enrichment.py +465 -0
- pertpy/tools/_milo.py +345 -11
- pertpy/tools/_mixscape.py +668 -50
- pertpy/tools/_perturbation_space/_clustering.py +5 -1
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +526 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +135 -43
- pertpy/tools/_perturbation_space/_simple.py +51 -10
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_scgen.py +701 -0
- pertpy/tools/_scgen/_utils.py +1 -3
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/METADATA +31 -12
- pertpy-0.7.0.dist-info/RECORD +53 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/licenses/LICENSE +0 -0
@@ -1,381 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
from typing import TYPE_CHECKING
|
4
|
-
|
5
|
-
import anndata
|
6
|
-
import pytorch_lightning as pl
|
7
|
-
import scipy
|
8
|
-
import torch
|
9
|
-
from anndata import AnnData
|
10
|
-
from pytorch_lightning.callbacks import EarlyStopping
|
11
|
-
from sklearn.model_selection import train_test_split
|
12
|
-
from sklearn.preprocessing import LabelEncoder
|
13
|
-
from torch import optim
|
14
|
-
from torch.utils.data import DataLoader, Dataset, WeightedRandomSampler
|
15
|
-
|
16
|
-
from pertpy.tools._perturbation_space._perturbation_space import PerturbationSpace
|
17
|
-
|
18
|
-
if TYPE_CHECKING:
|
19
|
-
import numpy as np
|
20
|
-
|
21
|
-
|
22
|
-
class DiscriminatorClassifierSpace(PerturbationSpace):
|
23
|
-
"""Leveraging discriminator classifier. Fit a regressor model to the data and take the feature space.
|
24
|
-
|
25
|
-
See here https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289078/ (Dose-response analysis) and Sup 17-19)
|
26
|
-
We use either the coefficients of the model for each perturbation as a feature or train a classifier example
|
27
|
-
(simple MLP or logistic regression and take the penultimate layer as feature space and apply pseudobulking approach).
|
28
|
-
"""
|
29
|
-
|
30
|
-
def load( # type: ignore
|
31
|
-
self,
|
32
|
-
adata: AnnData,
|
33
|
-
target_col: str = "perturbations",
|
34
|
-
layer_key: str = None,
|
35
|
-
hidden_dim: list[int] = None,
|
36
|
-
dropout: float = 0.0,
|
37
|
-
batch_norm: bool = True,
|
38
|
-
batch_size: int = 256,
|
39
|
-
test_split_size: float = 0.2,
|
40
|
-
validation_split_size: float = 0.25,
|
41
|
-
):
|
42
|
-
"""Creates a model with the specified parameters (hidden_dim, dropout, batch_norm).
|
43
|
-
|
44
|
-
It further creates dataloaders and fixes class imbalance due to control.
|
45
|
-
Sets the device to a GPU if available.
|
46
|
-
|
47
|
-
Args:
|
48
|
-
adata: AnnData object of size cells x genes
|
49
|
-
target_col: .obs column that stores the perturbations. Defaults to "perturbations".
|
50
|
-
layer_key: Layer to use. Defaults to None.
|
51
|
-
hidden_dim: list of hidden layers of the neural network. For instance: [512, 256].
|
52
|
-
dropout: amount of dropout applied, constant for all layers. Defaults to 0.
|
53
|
-
batch_norm: Whether to apply batch normalization. Defaults to True.
|
54
|
-
batch_size: The batch size. Defaults to 256.
|
55
|
-
test_split_size: Default to 0.2.
|
56
|
-
validation_split_size: Size of the validation split taking into account that is taking with respect to the resultant train split.
|
57
|
-
Defaults to 0.25.
|
58
|
-
|
59
|
-
Examples:
|
60
|
-
>>> import pertpy as pt
|
61
|
-
>>> adata = pt.dt.papalexi_2021()['rna']
|
62
|
-
>>> dcs = pt.tl.DiscriminatorClassifierSpace()
|
63
|
-
>>> dcs.load(adata, target_col="gene_target")
|
64
|
-
"""
|
65
|
-
if layer_key is not None and layer_key not in adata.obs.columns:
|
66
|
-
raise ValueError(f"Layer key {layer_key} not found in adata. {layer_key}")
|
67
|
-
|
68
|
-
if target_col not in adata.obs:
|
69
|
-
raise ValueError(f"Column {target_col!r} does not exist in the .obs attribute.")
|
70
|
-
|
71
|
-
if hidden_dim is None:
|
72
|
-
hidden_dim = [512]
|
73
|
-
|
74
|
-
# Labels are strings, one hot encoding for classification
|
75
|
-
n_classes = len(adata.obs[target_col].unique())
|
76
|
-
labels = adata.obs[target_col]
|
77
|
-
label_encoder = LabelEncoder()
|
78
|
-
encoded_labels = label_encoder.fit_transform(labels)
|
79
|
-
adata.obs["encoded_perturbations"] = encoded_labels
|
80
|
-
|
81
|
-
# Split the data in train, test and validation
|
82
|
-
X = list(range(0, adata.n_obs))
|
83
|
-
y = adata.obs[target_col]
|
84
|
-
|
85
|
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_split_size, stratify=y)
|
86
|
-
X_train, X_val, y_train, y_val = train_test_split(
|
87
|
-
X_train, y_train, test_size=validation_split_size, stratify=y_train
|
88
|
-
)
|
89
|
-
|
90
|
-
train_dataset = PLDataset(
|
91
|
-
adata=adata[X_train], target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
|
92
|
-
)
|
93
|
-
val_dataset = PLDataset(
|
94
|
-
adata=adata[X_val], target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
|
95
|
-
)
|
96
|
-
test_dataset = PLDataset(
|
97
|
-
adata=adata[X_test], target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
|
98
|
-
) # we don't need to pass y_test since the label selection is done inside
|
99
|
-
|
100
|
-
# Fix class unbalance (likely to happen in perturbation datasets)
|
101
|
-
# Usually control cells are overrepresented such that predicting control all time would give good results
|
102
|
-
# Cells with rare perturbations are sampled more
|
103
|
-
class_weights = 1.0 / torch.bincount(torch.tensor(train_dataset.labels.values))
|
104
|
-
train_weights = class_weights[train_dataset.labels]
|
105
|
-
train_sampler = WeightedRandomSampler(train_weights, len(train_weights))
|
106
|
-
|
107
|
-
self.train_dataloader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=4)
|
108
|
-
self.test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
|
109
|
-
self.valid_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
|
110
|
-
|
111
|
-
# Define the network
|
112
|
-
sizes = [adata.n_vars] + hidden_dim + [n_classes]
|
113
|
-
self.net = MLP(sizes=sizes, dropout=dropout, batch_norm=batch_norm)
|
114
|
-
|
115
|
-
# Define a dataset that gathers all the data and dataloader for getting embeddings
|
116
|
-
total_dataset = PLDataset(
|
117
|
-
adata=adata, target_col="encoded_perturbations", label_col=target_col, layer_key=layer_key
|
118
|
-
)
|
119
|
-
self.entire_dataset = DataLoader(total_dataset, batch_size=batch_size * 2, shuffle=False, num_workers=4)
|
120
|
-
|
121
|
-
return self
|
122
|
-
|
123
|
-
def train(self, max_epochs: int = 40, val_epochs_check: int = 5, patience: int = 2):
|
124
|
-
"""Trains and test the defined model in the load step.
|
125
|
-
|
126
|
-
Args:
|
127
|
-
max_epochs: max epochs for training. Default to 40
|
128
|
-
val_epochs_check: check in validation dataset each val_epochs_check epochs
|
129
|
-
patience: patience before the early stopping flag is activated
|
130
|
-
|
131
|
-
Examples:
|
132
|
-
>>> import pertpy as pt
|
133
|
-
>>> adata = pt.dt.papalexi_2021()['rna']
|
134
|
-
>>> dcs = pt.tl.DiscriminatorClassifierSpace()
|
135
|
-
>>> dcs.load(adata, target_col="gene_target")
|
136
|
-
>>> dcs.train(max_epochs=5)
|
137
|
-
"""
|
138
|
-
self.trainer = pl.Trainer(
|
139
|
-
min_epochs=1,
|
140
|
-
max_epochs=max_epochs,
|
141
|
-
check_val_every_n_epoch=val_epochs_check,
|
142
|
-
callbacks=[EarlyStopping(monitor="val_loss", mode="min", patience=patience)],
|
143
|
-
devices="auto",
|
144
|
-
accelerator="auto",
|
145
|
-
)
|
146
|
-
|
147
|
-
self.model = PerturbationClassifier(model=self.net)
|
148
|
-
|
149
|
-
self.trainer.fit(
|
150
|
-
model=self.model, train_dataloaders=self.train_dataloader, val_dataloaders=self.valid_dataloader
|
151
|
-
)
|
152
|
-
self.trainer.test(model=self.model, dataloaders=self.test_dataloader)
|
153
|
-
|
154
|
-
def get_embeddings(self) -> AnnData:
|
155
|
-
"""Access to the embeddings of the last layer.
|
156
|
-
|
157
|
-
Returns:
|
158
|
-
AnnData whose `X` attribute is the perturbation embedding and whose .obs['perturbations'] are the names of the perturbations.
|
159
|
-
|
160
|
-
Examples:
|
161
|
-
>>> import pertpy as pt
|
162
|
-
>>> adata = pt.dt.papalexi_2021()['rna']
|
163
|
-
>>> dcs = pt.tl.DiscriminatorClassifierSpace()
|
164
|
-
>>> dcs.load(adata, target_col="gene_target")
|
165
|
-
>>> dcs.train()
|
166
|
-
>>> embeddings = dcs.get_embeddings()
|
167
|
-
"""
|
168
|
-
with torch.no_grad():
|
169
|
-
self.model.eval()
|
170
|
-
for dataset_count, batch in enumerate(self.entire_dataset):
|
171
|
-
emb, y = self.model.get_embeddings(batch)
|
172
|
-
batch_adata = AnnData(X=emb.cpu().numpy())
|
173
|
-
batch_adata.obs["perturbations"] = y
|
174
|
-
if dataset_count == 0:
|
175
|
-
pert_adata = batch_adata
|
176
|
-
else:
|
177
|
-
pert_adata = anndata.concat([pert_adata, batch_adata])
|
178
|
-
|
179
|
-
return pert_adata
|
180
|
-
|
181
|
-
|
182
|
-
class MLP(torch.nn.Module):
|
183
|
-
"""
|
184
|
-
A multilayer perceptron with ReLU activations, optional Dropout and optional BatchNorm.
|
185
|
-
"""
|
186
|
-
|
187
|
-
def __init__(
|
188
|
-
self,
|
189
|
-
sizes: list[int],
|
190
|
-
dropout: float = 0.0,
|
191
|
-
batch_norm: bool = True,
|
192
|
-
layer_norm: bool = False,
|
193
|
-
last_layer_act: str = "linear",
|
194
|
-
) -> None:
|
195
|
-
"""
|
196
|
-
Args:
|
197
|
-
sizes: size of layers
|
198
|
-
dropout: Dropout probability. Defaults to 0.0.
|
199
|
-
batch_norm: batch norm. Defaults to True.
|
200
|
-
layer_norm: layern norm, common in Transformers. Defaults to False.
|
201
|
-
last_layer_act: activation function of last layer. Defaults to "linear".
|
202
|
-
"""
|
203
|
-
super().__init__()
|
204
|
-
layers = []
|
205
|
-
for s in range(len(sizes) - 1):
|
206
|
-
layers += [
|
207
|
-
torch.nn.Linear(sizes[s], sizes[s + 1]),
|
208
|
-
torch.nn.BatchNorm1d(sizes[s + 1]) if batch_norm and s < len(sizes) - 2 else None,
|
209
|
-
torch.nn.LayerNorm(sizes[s + 1]) if layer_norm and s < len(sizes) - 2 and not batch_norm else None,
|
210
|
-
torch.nn.ReLU(),
|
211
|
-
torch.nn.Dropout(dropout) if s < len(sizes) - 2 else None,
|
212
|
-
]
|
213
|
-
|
214
|
-
layers = [layer for layer in layers if layer is not None][:-1]
|
215
|
-
self.activation = last_layer_act
|
216
|
-
if self.activation == "linear":
|
217
|
-
pass
|
218
|
-
elif self.activation == "ReLU":
|
219
|
-
self.relu = torch.nn.ReLU()
|
220
|
-
else:
|
221
|
-
raise ValueError("last_layer_act must be one of 'linear' or 'ReLU'")
|
222
|
-
|
223
|
-
self.network = torch.nn.Sequential(*layers)
|
224
|
-
|
225
|
-
self.network.apply(init_weights)
|
226
|
-
|
227
|
-
self.sizes = sizes
|
228
|
-
self.batch_norm = batch_norm
|
229
|
-
self.layer_norm = layer_norm
|
230
|
-
self.last_layer_act = last_layer_act
|
231
|
-
|
232
|
-
def forward(self, x) -> torch.Tensor:
|
233
|
-
if self.activation == "ReLU":
|
234
|
-
return self.relu(self.network(x))
|
235
|
-
return self.network(x)
|
236
|
-
|
237
|
-
def embedding(self, x) -> torch.Tensor:
|
238
|
-
for layer in self.network[:-1]:
|
239
|
-
x = layer(x)
|
240
|
-
return x
|
241
|
-
|
242
|
-
|
243
|
-
def init_weights(m):
|
244
|
-
if isinstance(m, torch.nn.Linear):
|
245
|
-
torch.nn.init.kaiming_uniform_(m.weight)
|
246
|
-
m.bias.data.fill_(0.01)
|
247
|
-
|
248
|
-
|
249
|
-
class PLDataset(Dataset):
|
250
|
-
"""
|
251
|
-
Dataset for perturbation classification.
|
252
|
-
Needed for training a model that classifies the perturbed cells and takes as perturbation embedding the second to last layer.
|
253
|
-
"""
|
254
|
-
|
255
|
-
def __init__(
|
256
|
-
self,
|
257
|
-
adata: np.array,
|
258
|
-
target_col: str = "perturbations",
|
259
|
-
label_col: str = "perturbations",
|
260
|
-
layer_key: str = None,
|
261
|
-
):
|
262
|
-
"""
|
263
|
-
Args:
|
264
|
-
adata: AnnData object with observations and labels.
|
265
|
-
target_col: key with the perturbation labels numerically encoded. Defaults to 'perturbations'.
|
266
|
-
label_col: key with the perturbation labels. Defaults to 'perturbations'.
|
267
|
-
layer_key: key of the layer to be used as data, otherwise .X
|
268
|
-
"""
|
269
|
-
|
270
|
-
if layer_key:
|
271
|
-
self.data = adata.layers[layer_key]
|
272
|
-
else:
|
273
|
-
self.data = adata.X
|
274
|
-
|
275
|
-
self.labels = adata.obs[target_col]
|
276
|
-
self.pert_labels = adata.obs[label_col]
|
277
|
-
|
278
|
-
def __len__(self):
|
279
|
-
return len(self.data)
|
280
|
-
|
281
|
-
def __getitem__(self, idx):
|
282
|
-
"""Returns a sample and corresponding perturbations applied (labels)"""
|
283
|
-
|
284
|
-
sample = self.data[idx].A if scipy.sparse.issparse(self.data) else self.data[idx]
|
285
|
-
num_label = self.labels[idx]
|
286
|
-
str_label = self.pert_labels[idx]
|
287
|
-
|
288
|
-
return sample, num_label, str_label
|
289
|
-
|
290
|
-
|
291
|
-
class PerturbationClassifier(pl.LightningModule):
|
292
|
-
def __init__(
|
293
|
-
self,
|
294
|
-
model: torch.nn.Module,
|
295
|
-
layers: list = [512], # noqa
|
296
|
-
dropout: float = 0.0,
|
297
|
-
batch_norm: bool = True,
|
298
|
-
layer_norm: bool = False,
|
299
|
-
last_layer_act: str = "linear",
|
300
|
-
lr=1e-4,
|
301
|
-
seed=42,
|
302
|
-
):
|
303
|
-
"""
|
304
|
-
Inputs:
|
305
|
-
layers - list: layers of the MLP
|
306
|
-
"""
|
307
|
-
super().__init__()
|
308
|
-
self.save_hyperparameters()
|
309
|
-
if model:
|
310
|
-
self.net = model
|
311
|
-
else:
|
312
|
-
self._create_model()
|
313
|
-
|
314
|
-
def _create_model(self):
|
315
|
-
self.net = MLP(
|
316
|
-
sizes=self.hparams.layers,
|
317
|
-
dropout=self.hparams.dropout,
|
318
|
-
batch_norm=self.hparams.batch_norm,
|
319
|
-
layer_norm=self.hparams.layer_norm,
|
320
|
-
last_layer_act=self.hparams.last_layer_act,
|
321
|
-
)
|
322
|
-
|
323
|
-
def forward(self, x):
|
324
|
-
x = self.net(x)
|
325
|
-
return x
|
326
|
-
|
327
|
-
def configure_optimizers(self):
|
328
|
-
optimizer = optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=0.1)
|
329
|
-
|
330
|
-
return optimizer
|
331
|
-
|
332
|
-
def training_step(self, batch, batch_idx):
|
333
|
-
x, y, _ = batch
|
334
|
-
x = x.to(torch.float32)
|
335
|
-
y = y.to(torch.long)
|
336
|
-
|
337
|
-
y_hat = self.forward(x)
|
338
|
-
|
339
|
-
loss = torch.nn.functional.cross_entropy(y_hat, y)
|
340
|
-
self.log("train_loss", loss, prog_bar=True)
|
341
|
-
|
342
|
-
return loss
|
343
|
-
|
344
|
-
def validation_step(self, batch, batch_idx):
|
345
|
-
x, y, _ = batch
|
346
|
-
x = x.to(torch.float32)
|
347
|
-
y = y.to(torch.long)
|
348
|
-
|
349
|
-
y_hat = self.forward(x)
|
350
|
-
|
351
|
-
loss = torch.nn.functional.cross_entropy(y_hat, y)
|
352
|
-
self.log("val_loss", loss, prog_bar=True)
|
353
|
-
|
354
|
-
return loss
|
355
|
-
|
356
|
-
def test_step(self, batch, batch_idx):
|
357
|
-
x, y, _ = batch
|
358
|
-
x = x.to(torch.float32)
|
359
|
-
y = y.to(torch.long)
|
360
|
-
|
361
|
-
y_hat = self.forward(x)
|
362
|
-
|
363
|
-
loss = torch.nn.functional.cross_entropy(y_hat, y)
|
364
|
-
self.log("test_loss", loss, prog_bar=True)
|
365
|
-
|
366
|
-
return loss
|
367
|
-
|
368
|
-
def embedding(self, x):
|
369
|
-
"""
|
370
|
-
Inputs:
|
371
|
-
x - Input features of shape [Batch, SeqLen, 1]
|
372
|
-
"""
|
373
|
-
x = self.net.embedding(x)
|
374
|
-
return x
|
375
|
-
|
376
|
-
def get_embeddings(self, batch):
|
377
|
-
x, _, y = batch
|
378
|
-
x = x.to(torch.float32)
|
379
|
-
|
380
|
-
embedding = self.embedding(x)
|
381
|
-
return embedding, y
|