pertpy 0.6.0__py3-none-any.whl → 0.7.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pertpy/__init__.py +3 -2
- pertpy/data/__init__.py +5 -1
- pertpy/data/_dataloader.py +2 -4
- pertpy/data/_datasets.py +203 -92
- pertpy/metadata/__init__.py +4 -0
- pertpy/metadata/_cell_line.py +826 -0
- pertpy/metadata/_compound.py +129 -0
- pertpy/metadata/_drug.py +242 -0
- pertpy/metadata/_look_up.py +582 -0
- pertpy/metadata/_metadata.py +73 -0
- pertpy/metadata/_moa.py +129 -0
- pertpy/plot/__init__.py +1 -9
- pertpy/plot/_augur.py +53 -116
- pertpy/plot/_coda.py +277 -677
- pertpy/plot/_guide_rna.py +17 -35
- pertpy/plot/_milopy.py +59 -134
- pertpy/plot/_mixscape.py +152 -391
- pertpy/preprocessing/_guide_rna.py +88 -4
- pertpy/tools/__init__.py +8 -13
- pertpy/tools/_augur.py +315 -17
- pertpy/tools/_cinemaot.py +143 -4
- pertpy/tools/_coda/_base_coda.py +1210 -65
- pertpy/tools/_coda/_sccoda.py +50 -21
- pertpy/tools/_coda/_tasccoda.py +27 -19
- pertpy/tools/_dialogue.py +164 -56
- pertpy/tools/_differential_gene_expression.py +240 -14
- pertpy/tools/_distances/_distance_tests.py +8 -8
- pertpy/tools/_distances/_distances.py +184 -34
- pertpy/tools/_enrichment.py +465 -0
- pertpy/tools/_milo.py +345 -11
- pertpy/tools/_mixscape.py +668 -50
- pertpy/tools/_perturbation_space/_clustering.py +5 -1
- pertpy/tools/_perturbation_space/_discriminator_classifiers.py +526 -0
- pertpy/tools/_perturbation_space/_perturbation_space.py +135 -43
- pertpy/tools/_perturbation_space/_simple.py +51 -10
- pertpy/tools/_scgen/__init__.py +1 -1
- pertpy/tools/_scgen/_scgen.py +701 -0
- pertpy/tools/_scgen/_utils.py +1 -3
- pertpy/tools/decoupler_LICENSE +674 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/METADATA +31 -12
- pertpy-0.7.0.dist-info/RECORD +53 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/WHEEL +1 -1
- pertpy/plot/_cinemaot.py +0 -81
- pertpy/plot/_dialogue.py +0 -91
- pertpy/plot/_scgen.py +0 -337
- pertpy/tools/_metadata/__init__.py +0 -0
- pertpy/tools/_metadata/_cell_line.py +0 -613
- pertpy/tools/_metadata/_look_up.py +0 -342
- pertpy/tools/_perturbation_space/_discriminator_classifier.py +0 -381
- pertpy/tools/_scgen/_jax_scgen.py +0 -370
- pertpy-0.6.0.dist-info/RECORD +0 -50
- /pertpy/tools/_scgen/{_jax_scgenvae.py → _scgenvae.py} +0 -0
- {pertpy-0.6.0.dist-info → pertpy-0.7.0.dist-info}/licenses/LICENSE +0 -0
pertpy/plot/_mixscape.py
CHANGED
@@ -1,35 +1,8 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
import
|
4
|
-
from collections import OrderedDict
|
3
|
+
import warnings
|
5
4
|
from typing import TYPE_CHECKING, Literal
|
6
5
|
|
7
|
-
import numpy as np
|
8
|
-
import pandas as pd
|
9
|
-
import scanpy as sc
|
10
|
-
from matplotlib import pyplot as pl
|
11
|
-
from plotnine import (
|
12
|
-
aes,
|
13
|
-
element_blank,
|
14
|
-
element_text,
|
15
|
-
facet_wrap,
|
16
|
-
geom_bar,
|
17
|
-
geom_density,
|
18
|
-
geom_point,
|
19
|
-
ggplot,
|
20
|
-
labs,
|
21
|
-
scale_color_manual,
|
22
|
-
scale_fill_manual,
|
23
|
-
theme,
|
24
|
-
theme_classic,
|
25
|
-
xlab,
|
26
|
-
ylab,
|
27
|
-
)
|
28
|
-
from scanpy import get
|
29
|
-
from scanpy._settings import settings
|
30
|
-
from scanpy._utils import _check_use_raw, sanitize_anndata
|
31
|
-
from scanpy.plotting import _utils
|
32
|
-
|
33
6
|
if TYPE_CHECKING:
|
34
7
|
from collections.abc import Sequence
|
35
8
|
|
@@ -51,8 +24,8 @@ class MixscapePlot:
|
|
51
24
|
strip_text_size: int = 6,
|
52
25
|
panel_spacing_x: float = 0.3,
|
53
26
|
panel_spacing_y: float = 0.3,
|
54
|
-
legend_title_size: int =
|
55
|
-
legend_text_size: int =
|
27
|
+
legend_title_size: int = 18,
|
28
|
+
legend_text_size: int = 18,
|
56
29
|
show: bool | None = None,
|
57
30
|
save: bool | str | None = None,
|
58
31
|
):
|
@@ -73,58 +46,34 @@ class MixscapePlot:
|
|
73
46
|
Examples:
|
74
47
|
>>> import pertpy as pt
|
75
48
|
>>> mdata = pt.dt.papalexi_2021()
|
76
|
-
>>>
|
77
|
-
>>>
|
78
|
-
>>>
|
79
|
-
>>>
|
49
|
+
>>> ms = pt.tl.Mixscape()
|
50
|
+
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
51
|
+
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
52
|
+
>>> ms.plot_barplot(mdata["rna"], guide_rna_column="NT")
|
80
53
|
"""
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
KO_cells_percentage = KO_cells_percentage.sort_values("value", ascending=False)
|
87
|
-
|
88
|
-
new_levels = KO_cells_percentage[guide_rna_column]
|
89
|
-
all_cells_percentage[guide_rna_column] = pd.Categorical(
|
90
|
-
all_cells_percentage[guide_rna_column], categories=new_levels, ordered=False
|
91
|
-
)
|
92
|
-
all_cells_percentage[mixscape_class_global] = pd.Categorical(
|
93
|
-
all_cells_percentage[mixscape_class_global], categories=["NT", "NP", "KO"], ordered=False
|
94
|
-
)
|
95
|
-
all_cells_percentage["gene"] = all_cells_percentage[guide_rna_column].str.rsplit("g", expand=True)[0]
|
96
|
-
all_cells_percentage["guide_number"] = all_cells_percentage[guide_rna_column].str.rsplit("g", expand=True)[1]
|
97
|
-
all_cells_percentage["guide_number"] = "g" + all_cells_percentage["guide_number"]
|
98
|
-
NP_KO_cells = all_cells_percentage[all_cells_percentage["gene"] != "NT"]
|
99
|
-
|
100
|
-
p1 = (
|
101
|
-
ggplot(NP_KO_cells, aes(x="guide_number", y="value", fill="mixscape_class_global"))
|
102
|
-
+ scale_fill_manual(values=["#7d7d7d", "#c9c9c9", "#ff7256"])
|
103
|
-
+ geom_bar(stat="identity")
|
104
|
-
+ theme_classic()
|
105
|
-
+ xlab("sgRNA")
|
106
|
-
+ ylab("% of cells")
|
54
|
+
warnings.warn(
|
55
|
+
"This function is deprecated and will be removed in pertpy 0.8.0!"
|
56
|
+
" Please use the corresponding 'pt.tl' object",
|
57
|
+
FutureWarning,
|
58
|
+
stacklevel=2,
|
107
59
|
)
|
108
60
|
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
61
|
+
from pertpy.tools import Mixscape
|
62
|
+
|
63
|
+
ms = Mixscape()
|
64
|
+
return ms.plot_barplot(
|
65
|
+
adata=adata,
|
66
|
+
guide_rna_column=guide_rna_column,
|
67
|
+
mixscape_class_global=mixscape_class_global,
|
68
|
+
axis_text_x_size=axis_text_x_size,
|
69
|
+
axis_text_y_size=axis_text_y_size,
|
70
|
+
axis_title_size=axis_title_size,
|
71
|
+
legend_title_size=legend_title_size,
|
72
|
+
legend_text_size=legend_text_size,
|
73
|
+
show=show,
|
74
|
+
save=save,
|
122
75
|
)
|
123
76
|
|
124
|
-
_utils.savefig_or_show("mixscape_barplot", show=show, save=save)
|
125
|
-
if not show:
|
126
|
-
return p1
|
127
|
-
|
128
77
|
@staticmethod
|
129
78
|
def heatmap( # pragma: no cover
|
130
79
|
adata: AnnData,
|
@@ -138,7 +87,7 @@ class MixscapePlot:
|
|
138
87
|
vmax: float | None = 2,
|
139
88
|
show: bool | None = None,
|
140
89
|
save: bool | str | None = None,
|
141
|
-
**
|
90
|
+
**kwargs,
|
142
91
|
):
|
143
92
|
"""Heatmap plot using mixscape results. Requires `pt.tl.mixscape()` to be run first.
|
144
93
|
|
@@ -154,33 +103,41 @@ class MixscapePlot:
|
|
154
103
|
vmax: The value representing the upper limit of the color scale. Values larger than vmax are plotted with the same color as vmax.
|
155
104
|
show: Show the plot, do not return axis.
|
156
105
|
save: If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
157
|
-
ax: A matplotlib axes object. Only works if plotting a single component.
|
158
106
|
**kwds: Additional arguments to `scanpy.pl.rank_genes_groups_heatmap`.
|
159
107
|
|
160
108
|
Examples:
|
161
109
|
>>> import pertpy as pt
|
162
110
|
>>> mdata = pt.dt.papalexi_2021()
|
163
|
-
>>>
|
164
|
-
>>>
|
165
|
-
>>>
|
166
|
-
>>>
|
111
|
+
>>> ms = pt.tl.Mixscape()
|
112
|
+
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
113
|
+
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
114
|
+
>>> ms.plot_heatmap(
|
115
|
+
... adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", layer="X_pert", control="NT"
|
116
|
+
... )
|
167
117
|
"""
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
118
|
+
warnings.warn(
|
119
|
+
"This function is deprecated and will be removed in pertpy 0.8.0!"
|
120
|
+
" Please use the corresponding 'pt.tl' object",
|
121
|
+
FutureWarning,
|
122
|
+
stacklevel=2,
|
123
|
+
)
|
124
|
+
|
125
|
+
from pertpy.tools import Mixscape
|
126
|
+
|
127
|
+
ms = Mixscape()
|
128
|
+
return ms.plot_heatmap(
|
129
|
+
adata=adata,
|
130
|
+
labels=labels,
|
131
|
+
target_gene=target_gene,
|
132
|
+
control=control,
|
133
|
+
layer=layer,
|
134
|
+
method=method,
|
135
|
+
subsample_number=subsample_number,
|
177
136
|
vmin=vmin,
|
178
137
|
vmax=vmax,
|
179
|
-
n_genes=20,
|
180
|
-
groups=["NT"],
|
181
138
|
show=show,
|
182
139
|
save=save,
|
183
|
-
**
|
140
|
+
**kwargs,
|
184
141
|
)
|
185
142
|
|
186
143
|
@staticmethod
|
@@ -218,132 +175,32 @@ class MixscapePlot:
|
|
218
175
|
>>> import pertpy as pt
|
219
176
|
>>> mdata = pt.dt.papalexi_2021()
|
220
177
|
>>> mixscape_identifier = pt.tl.Mixscape()
|
221
|
-
>>> mixscape_identifier.perturbation_signature(mdata[
|
222
|
-
>>> mixscape_identifier.mixscape(adata
|
223
|
-
>>>
|
178
|
+
>>> mixscape_identifier.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
179
|
+
>>> mixscape_identifier.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
180
|
+
>>> mixscape_identifier.perturbscore(
|
181
|
+
... adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", color="orange"
|
182
|
+
... )
|
224
183
|
"""
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
rng = np.random.default_rng()
|
246
|
-
perturbation_score.loc[perturbation_score[labels] == gd, "y_jitter"] = rng.uniform(
|
247
|
-
low=0.001, high=top_r / 10, size=sum(perturbation_score[labels] == gd)
|
248
|
-
)
|
249
|
-
perturbation_score.loc[perturbation_score[labels] == target_gene, "y_jitter"] = rng.uniform(
|
250
|
-
low=-top_r / 10, high=0, size=sum(perturbation_score[labels] == target_gene)
|
251
|
-
)
|
252
|
-
# If split_by is provided, split densities based on the split_by
|
253
|
-
if split_by is not None:
|
254
|
-
perturbation_score["split"] = adata.obs[split_by][perturbation_score.index]
|
255
|
-
p2 = (
|
256
|
-
p
|
257
|
-
+ scale_color_manual(values=cols, drop=False)
|
258
|
-
+ geom_density(size=1.5)
|
259
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
260
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
261
|
-
+ ylab("Cell density")
|
262
|
-
+ xlab("Perturbation score")
|
263
|
-
+ theme(
|
264
|
-
legend_key_size=1,
|
265
|
-
legend_text=element_text(colour="black", size=14),
|
266
|
-
legend_title=element_blank(),
|
267
|
-
plot_title=element_text(size=16, face="bold"),
|
268
|
-
)
|
269
|
-
+ facet_wrap("split")
|
270
|
-
)
|
271
|
-
else:
|
272
|
-
p2 = (
|
273
|
-
p
|
274
|
-
+ scale_color_manual(values=cols, drop=False)
|
275
|
-
+ geom_density(size=1.5)
|
276
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
277
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
278
|
-
+ ylab("Cell density")
|
279
|
-
+ xlab("Perturbation score")
|
280
|
-
+ theme(
|
281
|
-
legend_key_size=1,
|
282
|
-
legend_text=element_text(colour="black", size=14),
|
283
|
-
legend_title=element_blank(),
|
284
|
-
plot_title=element_text(size=16, face="bold"),
|
285
|
-
)
|
286
|
-
)
|
287
|
-
# If before_mixscape is False, split densities based on mixscape classifications
|
288
|
-
else:
|
289
|
-
cols = {gd: "#7d7d7d", f"{target_gene} NP": "#c9c9c9", f"{target_gene} {perturbation_type}": color}
|
290
|
-
p = ggplot(perturbation_score, aes(x="pvec", color="mix")) + geom_density() + theme_classic()
|
291
|
-
p_copy = copy.deepcopy(p)
|
292
|
-
p_copy._build()
|
293
|
-
top_r = max(p_copy.layers[0].data["density"])
|
294
|
-
perturbation_score["y_jitter"] = perturbation_score["pvec"]
|
295
|
-
rng = np.random.default_rng()
|
296
|
-
gd2 = list(
|
297
|
-
set(perturbation_score["mix"]).difference([f"{target_gene} NP", f"{target_gene} {perturbation_type}"])
|
298
|
-
)[0]
|
299
|
-
perturbation_score.loc[perturbation_score["mix"] == gd2, "y_jitter"] = rng.uniform(
|
300
|
-
low=0.001, high=top_r / 10, size=sum(perturbation_score["mix"] == gd2)
|
301
|
-
)
|
302
|
-
perturbation_score.loc[
|
303
|
-
perturbation_score["mix"] == f"{target_gene} {perturbation_type}", "y_jitter"
|
304
|
-
] = rng.uniform(
|
305
|
-
low=-top_r / 10, high=0, size=sum(perturbation_score["mix"] == f"{target_gene} {perturbation_type}")
|
306
|
-
)
|
307
|
-
perturbation_score.loc[perturbation_score["mix"] == f"{target_gene} NP", "y_jitter"] = rng.uniform(
|
308
|
-
low=-top_r / 10, high=0, size=sum(perturbation_score["mix"] == f"{target_gene} NP")
|
309
|
-
)
|
310
|
-
# If split_by is provided, split densities based on the split_by
|
311
|
-
if split_by is not None:
|
312
|
-
perturbation_score["split"] = adata.obs[split_by][perturbation_score.index]
|
313
|
-
p2 = (
|
314
|
-
ggplot(perturbation_score, aes(x="pvec", color="mix"))
|
315
|
-
+ scale_color_manual(values=cols, drop=False)
|
316
|
-
+ geom_density(size=1.5)
|
317
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
318
|
-
+ theme_classic()
|
319
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
320
|
-
+ ylab("Cell density")
|
321
|
-
+ xlab("Perturbation score")
|
322
|
-
+ theme(
|
323
|
-
legend_key_size=1,
|
324
|
-
legend_text=element_text(colour="black", size=14),
|
325
|
-
legend_title=element_blank(),
|
326
|
-
plot_title=element_text(size=16, face="bold"),
|
327
|
-
)
|
328
|
-
+ facet_wrap("split")
|
329
|
-
)
|
330
|
-
else:
|
331
|
-
p2 = (
|
332
|
-
p
|
333
|
-
+ scale_color_manual(values=cols, drop=False)
|
334
|
-
+ geom_density(size=1.5)
|
335
|
-
+ geom_point(aes(x="pvec", y="y_jitter"), size=0.1)
|
336
|
-
+ theme(axis_text=element_text(size=18), axis_title=element_text(size=20))
|
337
|
-
+ ylab("Cell density")
|
338
|
-
+ xlab("Perturbation score")
|
339
|
-
+ theme(
|
340
|
-
legend_key_size=1,
|
341
|
-
legend_text=element_text(colour="black", size=14),
|
342
|
-
legend_title=element_blank(),
|
343
|
-
plot_title=element_text(size=16, face="bold"),
|
344
|
-
)
|
345
|
-
)
|
346
|
-
return p2
|
184
|
+
warnings.warn(
|
185
|
+
"This function is deprecated and will be removed in pertpy 0.8.0!"
|
186
|
+
" Please use the corresponding 'pt.tl' object",
|
187
|
+
FutureWarning,
|
188
|
+
stacklevel=2,
|
189
|
+
)
|
190
|
+
|
191
|
+
from pertpy.tools import Mixscape
|
192
|
+
|
193
|
+
ms = Mixscape()
|
194
|
+
return ms.plot_perturbscore(
|
195
|
+
adata=adata,
|
196
|
+
labels=labels,
|
197
|
+
target_gene=target_gene,
|
198
|
+
mixscape_class=mixscape_class,
|
199
|
+
color=color,
|
200
|
+
split_by=split_by,
|
201
|
+
before_mixscape=before_mixscape,
|
202
|
+
perturbation_type=perturbation_type,
|
203
|
+
)
|
347
204
|
|
348
205
|
@staticmethod
|
349
206
|
def violin( # pragma: no cover
|
@@ -367,7 +224,7 @@ class MixscapePlot:
|
|
367
224
|
show: bool | None = None,
|
368
225
|
save: bool | str | None = None,
|
369
226
|
ax: Axes | None = None,
|
370
|
-
**
|
227
|
+
**kwargs,
|
371
228
|
):
|
372
229
|
"""Violin plot using mixscape results. Requires `pt.tl.mixscape` to be run first.
|
373
230
|
|
@@ -385,7 +242,7 @@ class MixscapePlot:
|
|
385
242
|
show: Show the plot, do not return axis.
|
386
243
|
save: If `True` or a `str`, save the figure. A string is appended to the default filename. Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
387
244
|
ax: A matplotlib axes object. Only works if plotting a single component.
|
388
|
-
**
|
245
|
+
**kwargs: Additional arguments to `seaborn.violinplot`.
|
389
246
|
|
390
247
|
Returns:
|
391
248
|
A :class:`~matplotlib.axes.Axes` object if `ax` is `None` else `None`.
|
@@ -393,153 +250,46 @@ class MixscapePlot:
|
|
393
250
|
Examples:
|
394
251
|
>>> import pertpy as pt
|
395
252
|
>>> mdata = pt.dt.papalexi_2021()
|
396
|
-
>>>
|
397
|
-
>>>
|
398
|
-
>>>
|
399
|
-
>>>
|
253
|
+
>>> ms = pt.tl.Mixscape()
|
254
|
+
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
255
|
+
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
256
|
+
>>> ms.plot_violin(
|
257
|
+
... adata=mdata["rna"], target_gene_idents=["NT", "IFNGR2 NP", "IFNGR2 KO"], groupby="mixscape_class"
|
258
|
+
... )
|
400
259
|
"""
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
keys
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
obs_tidy = pd.melt(obs_df, value_vars=keys)
|
435
|
-
x = "variable"
|
436
|
-
ys = ["value"]
|
437
|
-
else:
|
438
|
-
obs_tidy = obs_df
|
439
|
-
x = groupby
|
440
|
-
ys = keys
|
441
|
-
|
442
|
-
if multi_panel and groupby is None and len(ys) == 1:
|
443
|
-
# This is a quick and dirty way for adapting scales across several
|
444
|
-
# keys if groupby is None.
|
445
|
-
y = ys[0]
|
446
|
-
|
447
|
-
g = sns.catplot(
|
448
|
-
y=y,
|
449
|
-
data=obs_tidy,
|
450
|
-
kind="violin",
|
451
|
-
scale=scale,
|
452
|
-
col=x,
|
453
|
-
col_order=keys,
|
454
|
-
sharey=False,
|
455
|
-
order=keys,
|
456
|
-
cut=0,
|
457
|
-
inner=None,
|
458
|
-
**kwds,
|
459
|
-
)
|
460
|
-
|
461
|
-
if stripplot:
|
462
|
-
grouped_df = obs_tidy.groupby(x)
|
463
|
-
for ax_id, key in zip(range(g.axes.shape[1]), keys):
|
464
|
-
sns.stripplot(
|
465
|
-
y=y,
|
466
|
-
data=grouped_df.get_group(key),
|
467
|
-
jitter=jitter,
|
468
|
-
size=size,
|
469
|
-
color="black",
|
470
|
-
ax=g.axes[0, ax_id],
|
471
|
-
)
|
472
|
-
if log:
|
473
|
-
g.set(yscale="log")
|
474
|
-
g.set_titles(col_template="{col_name}").set_xlabels("")
|
475
|
-
if rotation is not None:
|
476
|
-
for ax in g.axes[0]:
|
477
|
-
ax.tick_params(axis="x", labelrotation=rotation)
|
478
|
-
else:
|
479
|
-
# set by default the violin plot cut=0 to limit the extend
|
480
|
-
# of the violin plot (see stacked_violin code) for more info.
|
481
|
-
kwds.setdefault("cut", 0)
|
482
|
-
kwds.setdefault("inner")
|
483
|
-
|
484
|
-
if ax is None:
|
485
|
-
axs, _, _, _ = _utils.setup_axes(
|
486
|
-
ax=ax,
|
487
|
-
panels=["x"] if groupby is None else keys,
|
488
|
-
show_ticks=True,
|
489
|
-
right_margin=0.3,
|
490
|
-
)
|
491
|
-
else:
|
492
|
-
axs = [ax]
|
493
|
-
for ax, y, ylab in zip(axs, ys, ylabel): # noqa: F402
|
494
|
-
ax = sns.violinplot(
|
495
|
-
x=x,
|
496
|
-
y=y,
|
497
|
-
data=obs_tidy,
|
498
|
-
order=order,
|
499
|
-
orient="vertical",
|
500
|
-
scale=scale,
|
501
|
-
ax=ax,
|
502
|
-
hue=hue,
|
503
|
-
**kwds,
|
504
|
-
)
|
505
|
-
# Get the handles and labels.
|
506
|
-
handles, labels = ax.get_legend_handles_labels()
|
507
|
-
if stripplot:
|
508
|
-
ax = sns.stripplot(
|
509
|
-
x=x,
|
510
|
-
y=y,
|
511
|
-
data=obs_tidy,
|
512
|
-
order=order,
|
513
|
-
jitter=jitter,
|
514
|
-
color="black",
|
515
|
-
size=size,
|
516
|
-
ax=ax,
|
517
|
-
hue=hue,
|
518
|
-
dodge=True,
|
519
|
-
)
|
520
|
-
if xlabel == "" and groupby is not None and rotation is None:
|
521
|
-
xlabel = groupby.replace("_", " ")
|
522
|
-
ax.set_xlabel(xlabel)
|
523
|
-
if ylab is not None:
|
524
|
-
ax.set_ylabel(ylab)
|
525
|
-
|
526
|
-
if log:
|
527
|
-
ax.set_yscale("log")
|
528
|
-
if rotation is not None:
|
529
|
-
ax.tick_params(axis="x", labelrotation=rotation)
|
530
|
-
|
531
|
-
show = settings.autoshow if show is None else show
|
532
|
-
if hue is not None and stripplot is True:
|
533
|
-
pl.legend(handles, labels)
|
534
|
-
_utils.savefig_or_show("mixscape_violin", show=show, save=save)
|
535
|
-
|
536
|
-
if not show:
|
537
|
-
if multi_panel and groupby is None and len(ys) == 1:
|
538
|
-
return g
|
539
|
-
elif len(axs) == 1:
|
540
|
-
return axs[0]
|
541
|
-
else:
|
542
|
-
return axs
|
260
|
+
warnings.warn(
|
261
|
+
"This function is deprecated and will be removed in pertpy 0.8.0!"
|
262
|
+
" Please use the corresponding 'pt.tl' object",
|
263
|
+
FutureWarning,
|
264
|
+
stacklevel=2,
|
265
|
+
)
|
266
|
+
|
267
|
+
from pertpy.tools import Mixscape
|
268
|
+
|
269
|
+
ms = Mixscape()
|
270
|
+
return ms.plot_violin(
|
271
|
+
adata=adata,
|
272
|
+
target_gene_idents=target_gene_idents,
|
273
|
+
keys=keys,
|
274
|
+
groupby=groupby,
|
275
|
+
log=log,
|
276
|
+
use_raw=use_raw,
|
277
|
+
stripplot=stripplot,
|
278
|
+
hue=hue,
|
279
|
+
jitter=jitter,
|
280
|
+
size=size,
|
281
|
+
layer=layer,
|
282
|
+
scale=scale,
|
283
|
+
order=order,
|
284
|
+
multi_panel=multi_panel,
|
285
|
+
xlabel=xlabel,
|
286
|
+
ylabel=ylabel,
|
287
|
+
rotation=rotation,
|
288
|
+
show=show,
|
289
|
+
save=save,
|
290
|
+
ax=ax,
|
291
|
+
**kwargs,
|
292
|
+
)
|
543
293
|
|
544
294
|
@staticmethod
|
545
295
|
def lda( # pragma: no cover
|
@@ -552,7 +302,7 @@ class MixscapePlot:
|
|
552
302
|
n_components: int | None = None,
|
553
303
|
show: bool | None = None,
|
554
304
|
save: bool | str | None = None,
|
555
|
-
**
|
305
|
+
**kwargs,
|
556
306
|
):
|
557
307
|
"""Visualizing perturbation responses with Linear Discriminant Analysis. Requires `pt.tl.mixscape()` to be run first.
|
558
308
|
|
@@ -562,33 +312,44 @@ class MixscapePlot:
|
|
562
312
|
labels: The column of `.obs` with target gene labels.
|
563
313
|
mixscape_class: The column of `.obs` with the mixscape classification result.
|
564
314
|
mixscape_class_global: The column of `.obs` with mixscape global classification result (perturbed, NP or NT).
|
565
|
-
perturbation_type:
|
315
|
+
perturbation_type: Specify type of CRISPR perturbation expected for labeling mixscape classifications.
|
316
|
+
Defaults to 'KO'.
|
566
317
|
lda_key: If not speficied, lda looks .uns["mixscape_lda"] for the LDA results.
|
567
318
|
n_components: The number of dimensions of the embedding.
|
568
319
|
show: Show the plot, do not return axis.
|
569
|
-
save: If `True` or a `str`, save the figure. A string is appended to the default filename.
|
570
|
-
|
320
|
+
save: If `True` or a `str`, save the figure. A string is appended to the default filename.
|
321
|
+
Infer the filetype if ending on {`'.pdf'`, `'.png'`, `'.svg'`}.
|
322
|
+
**kwargs: Additional arguments to `scanpy.pl.umap`.
|
571
323
|
|
572
324
|
Examples:
|
573
325
|
>>> import pertpy as pt
|
574
326
|
>>> mdata = pt.dt.papalexi_2021()
|
575
|
-
>>>
|
576
|
-
>>>
|
577
|
-
>>>
|
578
|
-
>>>
|
579
|
-
>>>
|
327
|
+
>>> ms = pt.tl.Mixscape()
|
328
|
+
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
|
329
|
+
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
330
|
+
>>> ms.lda(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
|
331
|
+
>>> ms.plot_lda(adata=mdata["rna"], control="NT")
|
580
332
|
"""
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
|
593
|
-
|
594
|
-
|
333
|
+
warnings.warn(
|
334
|
+
"This function is deprecated and will be removed in pertpy 0.8.0!"
|
335
|
+
" Please use the corresponding 'pt.tl' object",
|
336
|
+
FutureWarning,
|
337
|
+
stacklevel=2,
|
338
|
+
)
|
339
|
+
|
340
|
+
from pertpy.tools import Mixscape
|
341
|
+
|
342
|
+
ms = Mixscape()
|
343
|
+
|
344
|
+
return ms.plot_lda(
|
345
|
+
adata=adata,
|
346
|
+
control=control,
|
347
|
+
mixscape_class=mixscape_class,
|
348
|
+
mixscape_class_global=mixscape_class_global,
|
349
|
+
perturbation_type=perturbation_type,
|
350
|
+
lda_key=lda_key,
|
351
|
+
n_components=n_components,
|
352
|
+
show=show,
|
353
|
+
save=save,
|
354
|
+
**kwargs,
|
355
|
+
)
|