passagemath-schemes 10.8.1a4__cp314-cp314t-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (312) hide show
  1. passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.8.1a4.dist-info/METADATA +203 -0
  7. passagemath_schemes-10.8.1a4.dist-info/METADATA.bak +204 -0
  8. passagemath_schemes-10.8.1a4.dist-info/RECORD +312 -0
  9. passagemath_schemes-10.8.1a4.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.8.1a4.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9556 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314t-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2578 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +727 -0
  29. sage/lfunctions/pari.py +971 -0
  30. sage/lfunctions/zero_sums.cpython-314t-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5132 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +414 -0
  34. sage/modular/abvar/abvar_newform.py +246 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +187 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +721 -0
  40. sage/modular/abvar/homspace.py +989 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +741 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-314t-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1406 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-314t-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +361 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +659 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1491 -0
  57. sage/modular/arithgroup/congroup_generic.py +630 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +266 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-314t-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1067 -0
  61. sage/modular/arithgroup/tests.py +425 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3736 -0
  64. sage/modular/btquotients/pautomorphicform.py +2564 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1107 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +571 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1076 -0
  77. sage/modular/hecke/algebra.py +725 -0
  78. sage/modular/hecke/all.py +19 -0
  79. sage/modular/hecke/ambient_module.py +994 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +302 -0
  82. sage/modular/hecke/hecke_operator.py +736 -0
  83. sage/modular/hecke/homspace.py +185 -0
  84. sage/modular/hecke/module.py +1744 -0
  85. sage/modular/hecke/morphism.py +139 -0
  86. sage/modular/hecke/submodule.py +970 -0
  87. sage/modular/hypergeometric_misc.cpython-314t-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2020 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1070 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +817 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +120 -0
  101. sage/modular/modform/ambient_g1.py +199 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +487 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4105 -0
  108. sage/modular/modform/half_integral.py +154 -0
  109. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  110. sage/modular/modform/j_invariant.py +47 -0
  111. sage/modular/modform/l_series_gross_zagier.py +127 -0
  112. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314t-darwin.so +0 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  114. sage/modular/modform/notes.py +45 -0
  115. sage/modular/modform/numerical.py +514 -0
  116. sage/modular/modform/periods.py +14 -0
  117. sage/modular/modform/ring.py +1257 -0
  118. sage/modular/modform/space.py +1859 -0
  119. sage/modular/modform/submodule.py +118 -0
  120. sage/modular/modform/tests.py +64 -0
  121. sage/modular/modform/theta.py +110 -0
  122. sage/modular/modform/vm_basis.py +380 -0
  123. sage/modular/modform/weight1.py +221 -0
  124. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  125. sage/modular/modform_hecketriangle/abstract_space.py +2527 -0
  126. sage/modular/modform_hecketriangle/all.py +30 -0
  127. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  128. sage/modular/modform_hecketriangle/constructor.py +416 -0
  129. sage/modular/modform_hecketriangle/element.py +351 -0
  130. sage/modular/modform_hecketriangle/functors.py +752 -0
  131. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  132. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  133. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3349 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1426 -0
  135. sage/modular/modform_hecketriangle/readme.py +1214 -0
  136. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  137. sage/modular/modform_hecketriangle/space.py +1037 -0
  138. sage/modular/modform_hecketriangle/subspace.py +423 -0
  139. sage/modular/modsym/all.py +17 -0
  140. sage/modular/modsym/ambient.py +3844 -0
  141. sage/modular/modsym/boundary.py +1420 -0
  142. sage/modular/modsym/element.py +336 -0
  143. sage/modular/modsym/g1list.py +178 -0
  144. sage/modular/modsym/ghlist.py +182 -0
  145. sage/modular/modsym/hecke_operator.py +73 -0
  146. sage/modular/modsym/manin_symbol.cpython-314t-darwin.so +0 -0
  147. sage/modular/modsym/manin_symbol.pxd +5 -0
  148. sage/modular/modsym/manin_symbol.pyx +497 -0
  149. sage/modular/modsym/manin_symbol_list.py +1291 -0
  150. sage/modular/modsym/modsym.py +400 -0
  151. sage/modular/modsym/modular_symbols.py +384 -0
  152. sage/modular/modsym/p1list_nf.py +1241 -0
  153. sage/modular/modsym/relation_matrix.py +591 -0
  154. sage/modular/modsym/relation_matrix_pyx.cpython-314t-darwin.so +0 -0
  155. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  156. sage/modular/modsym/space.py +2468 -0
  157. sage/modular/modsym/subspace.py +455 -0
  158. sage/modular/modsym/tests.py +376 -0
  159. sage/modular/multiple_zeta.py +2635 -0
  160. sage/modular/multiple_zeta_F_algebra.py +789 -0
  161. sage/modular/overconvergent/all.py +6 -0
  162. sage/modular/overconvergent/genus0.py +1879 -0
  163. sage/modular/overconvergent/hecke_series.py +1187 -0
  164. sage/modular/overconvergent/weightspace.py +776 -0
  165. sage/modular/pollack_stevens/all.py +4 -0
  166. sage/modular/pollack_stevens/distributions.py +874 -0
  167. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  168. sage/modular/pollack_stevens/manin_map.py +856 -0
  169. sage/modular/pollack_stevens/modsym.py +1590 -0
  170. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  171. sage/modular/pollack_stevens/sigma0.py +534 -0
  172. sage/modular/pollack_stevens/space.py +1078 -0
  173. sage/modular/quasimodform/all.py +3 -0
  174. sage/modular/quasimodform/element.py +846 -0
  175. sage/modular/quasimodform/ring.py +826 -0
  176. sage/modular/quatalg/all.py +3 -0
  177. sage/modular/quatalg/brandt.py +1642 -0
  178. sage/modular/ssmod/all.py +8 -0
  179. sage/modular/ssmod/ssmod.py +827 -0
  180. sage/rings/all__sagemath_schemes.py +1 -0
  181. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  182. sage/rings/polynomial/binary_form_reduce.py +585 -0
  183. sage/schemes/all.py +41 -0
  184. sage/schemes/berkovich/all.py +6 -0
  185. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  186. sage/schemes/berkovich/berkovich_space.py +700 -0
  187. sage/schemes/curves/affine_curve.py +2924 -0
  188. sage/schemes/curves/all.py +33 -0
  189. sage/schemes/curves/closed_point.py +434 -0
  190. sage/schemes/curves/constructor.py +397 -0
  191. sage/schemes/curves/curve.py +542 -0
  192. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  193. sage/schemes/curves/point.py +463 -0
  194. sage/schemes/curves/projective_curve.py +3203 -0
  195. sage/schemes/curves/weighted_projective_curve.py +106 -0
  196. sage/schemes/curves/zariski_vankampen.py +1931 -0
  197. sage/schemes/cyclic_covers/all.py +2 -0
  198. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  199. sage/schemes/cyclic_covers/constructor.py +137 -0
  200. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  201. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  202. sage/schemes/elliptic_curves/BSD.py +991 -0
  203. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  204. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  205. sage/schemes/elliptic_curves/all.py +49 -0
  206. sage/schemes/elliptic_curves/cardinality.py +609 -0
  207. sage/schemes/elliptic_curves/cm.py +1103 -0
  208. sage/schemes/elliptic_curves/constructor.py +1530 -0
  209. sage/schemes/elliptic_curves/ec_database.py +175 -0
  210. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3971 -0
  211. sage/schemes/elliptic_curves/ell_egros.py +457 -0
  212. sage/schemes/elliptic_curves/ell_field.py +2837 -0
  213. sage/schemes/elliptic_curves/ell_finite_field.py +3249 -0
  214. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  215. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  216. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  217. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  218. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  219. sage/schemes/elliptic_curves/ell_point.py +4944 -0
  220. sage/schemes/elliptic_curves/ell_rational_field.py +7184 -0
  221. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  222. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  223. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  224. sage/schemes/elliptic_curves/formal_group.py +760 -0
  225. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  226. sage/schemes/elliptic_curves/gal_reps_number_field.py +1663 -0
  227. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  228. sage/schemes/elliptic_curves/heegner.py +7328 -0
  229. sage/schemes/elliptic_curves/height.py +2108 -0
  230. sage/schemes/elliptic_curves/hom.py +1788 -0
  231. sage/schemes/elliptic_curves/hom_composite.py +1084 -0
  232. sage/schemes/elliptic_curves/hom_fractional.py +544 -0
  233. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  234. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  235. sage/schemes/elliptic_curves/hom_sum.py +681 -0
  236. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  237. sage/schemes/elliptic_curves/homset.py +271 -0
  238. sage/schemes/elliptic_curves/isogeny_class.py +1523 -0
  239. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  240. sage/schemes/elliptic_curves/jacobian.py +247 -0
  241. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  242. sage/schemes/elliptic_curves/kraus.py +1014 -0
  243. sage/schemes/elliptic_curves/lseries_ell.py +915 -0
  244. sage/schemes/elliptic_curves/mod5family.py +105 -0
  245. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  246. sage/schemes/elliptic_curves/mod_sym_num.cpython-314t-darwin.so +0 -0
  247. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  248. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  249. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  250. sage/schemes/elliptic_curves/padics.py +1816 -0
  251. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  252. sage/schemes/elliptic_curves/period_lattice_region.cpython-314t-darwin.so +0 -0
  253. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  254. sage/schemes/elliptic_curves/saturation.py +716 -0
  255. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  256. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  257. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  258. sage/schemes/hyperelliptic_curves/all.py +6 -0
  259. sage/schemes/hyperelliptic_curves/constructor.py +369 -0
  260. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1948 -0
  261. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +936 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  264. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  265. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  266. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +312 -0
  267. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_generic.py +437 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  270. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +878 -0
  271. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  272. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  273. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3863 -0
  274. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  275. sage/schemes/jacobians/all.py +2 -0
  276. sage/schemes/overview.py +161 -0
  277. sage/schemes/plane_conics/all.py +22 -0
  278. sage/schemes/plane_conics/con_field.py +1296 -0
  279. sage/schemes/plane_conics/con_finite_field.py +158 -0
  280. sage/schemes/plane_conics/con_number_field.py +456 -0
  281. sage/schemes/plane_conics/con_rational_field.py +406 -0
  282. sage/schemes/plane_conics/con_rational_function_field.py +581 -0
  283. sage/schemes/plane_conics/constructor.py +249 -0
  284. sage/schemes/plane_quartics/all.py +2 -0
  285. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  286. sage/schemes/plane_quartics/quartic_generic.py +53 -0
  287. sage/schemes/riemann_surfaces/all.py +1 -0
  288. sage/schemes/riemann_surfaces/riemann_surface.py +4177 -0
  289. sage_wheels/share/cremona/cremona_mini.db +0 -0
  290. sage_wheels/share/ellcurves/rank0 +30427 -0
  291. sage_wheels/share/ellcurves/rank1 +31871 -0
  292. sage_wheels/share/ellcurves/rank10 +6 -0
  293. sage_wheels/share/ellcurves/rank11 +6 -0
  294. sage_wheels/share/ellcurves/rank12 +1 -0
  295. sage_wheels/share/ellcurves/rank14 +1 -0
  296. sage_wheels/share/ellcurves/rank15 +1 -0
  297. sage_wheels/share/ellcurves/rank17 +1 -0
  298. sage_wheels/share/ellcurves/rank19 +1 -0
  299. sage_wheels/share/ellcurves/rank2 +2388 -0
  300. sage_wheels/share/ellcurves/rank20 +1 -0
  301. sage_wheels/share/ellcurves/rank21 +1 -0
  302. sage_wheels/share/ellcurves/rank22 +1 -0
  303. sage_wheels/share/ellcurves/rank23 +1 -0
  304. sage_wheels/share/ellcurves/rank24 +1 -0
  305. sage_wheels/share/ellcurves/rank28 +1 -0
  306. sage_wheels/share/ellcurves/rank3 +836 -0
  307. sage_wheels/share/ellcurves/rank4 +10 -0
  308. sage_wheels/share/ellcurves/rank5 +5 -0
  309. sage_wheels/share/ellcurves/rank6 +5 -0
  310. sage_wheels/share/ellcurves/rank7 +5 -0
  311. sage_wheels/share/ellcurves/rank8 +6 -0
  312. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,736 @@
1
+ # sage_setup: distribution = sagemath-schemes
2
+ # sage.doctest: needs sage.libs.flint sage.libs.pari
3
+ """
4
+ Hecke operators
5
+ """
6
+ # ****************************************************************************
7
+ # Copyright (C) 2004 William Stein <wstein@gmail.com>
8
+ #
9
+ # Distributed under the terms of the GNU General Public License (GPL)
10
+ #
11
+ # This code is distributed in the hope that it will be useful,
12
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
13
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
+ # General Public License for more details.
15
+ #
16
+ # The full text of the GPL is available at:
17
+ #
18
+ # https://www.gnu.org/licenses/
19
+ # ****************************************************************************
20
+ from sage.structure.element import AlgebraElement
21
+ from sage.structure.richcmp import richcmp, rich_to_bool
22
+ from sage.categories.homset import End
23
+ import sage.arith.misc as arith
24
+ from sage.rings.integer import Integer
25
+
26
+ from . import algebra
27
+ from . import morphism
28
+
29
+
30
+ class HeckeAlgebraElement(AlgebraElement):
31
+ r"""
32
+ Base class for elements of Hecke algebras.
33
+ """
34
+ def __init__(self, parent) -> None:
35
+ r"""
36
+ Create an element of a Hecke algebra.
37
+
38
+ EXAMPLES::
39
+
40
+ sage: R = ModularForms(Gamma0(7), 4).hecke_algebra()
41
+ sage: sage.modular.hecke.hecke_operator.HeckeAlgebraElement(R) # please don't do this!
42
+ Generic element of a structure
43
+ """
44
+ if not isinstance(parent, algebra.HeckeAlgebra_base):
45
+ raise TypeError("parent (=%s) must be a Hecke algebra" % parent)
46
+ AlgebraElement.__init__(self, parent)
47
+
48
+ def domain(self):
49
+ r"""
50
+ The domain of this operator. This is the Hecke module associated to the
51
+ parent Hecke algebra.
52
+
53
+ EXAMPLES::
54
+
55
+ sage: R = ModularForms(Gamma0(7), 4).hecke_algebra()
56
+ sage: sage.modular.hecke.hecke_operator.HeckeAlgebraElement(R).domain()
57
+ Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(7)
58
+ of weight 4 over Rational Field
59
+ """
60
+ return self.parent().module()
61
+
62
+ def codomain(self):
63
+ r"""
64
+ The codomain of this operator. This is the Hecke module associated to the
65
+ parent Hecke algebra.
66
+
67
+ EXAMPLES::
68
+
69
+ sage: R = ModularForms(Gamma0(7), 4).hecke_algebra()
70
+ sage: sage.modular.hecke.hecke_operator.HeckeAlgebraElement(R).codomain()
71
+ Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(7)
72
+ of weight 4 over Rational Field
73
+ """
74
+ return self.parent().module()
75
+
76
+ def hecke_module_morphism(self):
77
+ """
78
+ Return the endomorphism of Hecke modules defined by the matrix
79
+ attached to this Hecke operator.
80
+
81
+ EXAMPLES::
82
+
83
+ sage: M = ModularSymbols(Gamma1(13))
84
+ sage: t = M.hecke_operator(2)
85
+ sage: t
86
+ Hecke operator T_2 on Modular Symbols space of dimension 15 for Gamma_1(13)
87
+ of weight 2 with sign 0 over Rational Field
88
+ sage: t.hecke_module_morphism()
89
+ Hecke module morphism T_2 defined by the matrix
90
+ [ 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0]
91
+ [ 0 2 0 1 0 1 0 0 -1 0 0 0 0 0 1]
92
+ [ 0 1 2 0 0 0 0 0 0 0 0 -1 1 0 0]
93
+ [ 1 0 0 2 0 -1 1 0 1 0 -1 1 -1 0 0]
94
+ [ 0 0 1 0 2 0 -1 0 0 0 0 0 0 0 0]
95
+ [ 0 0 0 0 0 0 0 0 0 0 0 1 -2 2 -1]
96
+ [ 0 0 0 0 0 2 -1 0 -1 0 0 0 0 1 0]
97
+ [ 0 0 0 0 1 0 0 2 0 0 0 0 0 0 -1]
98
+ [ 0 0 0 0 0 1 0 0 -1 0 2 -1 0 2 -1]
99
+ [ 0 0 0 0 0 1 1 0 0 -1 0 1 -1 2 0]
100
+ [ 0 0 0 0 0 2 0 0 -1 -1 1 -1 0 1 0]
101
+ [ 0 0 0 0 0 1 1 0 1 0 0 0 -1 1 0]
102
+ [ 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0]
103
+ [ 0 0 0 0 0 1 0 0 1 -1 2 0 0 0 -1]
104
+ [ 0 0 0 0 0 0 0 0 0 1 0 -1 2 0 -1]
105
+ Domain: Modular Symbols space of dimension 15 for Gamma_1(13) of weight ...
106
+ Codomain: Modular Symbols space of dimension 15 for Gamma_1(13) of weight ...
107
+ """
108
+ try:
109
+ return self.__hecke_module_morphism
110
+ except AttributeError:
111
+ T = self.matrix()
112
+ M = self.domain()
113
+ H = End(M)
114
+ if isinstance(self, HeckeOperator):
115
+ name = "T_%s" % self.index()
116
+ else:
117
+ name = ""
118
+ self.__hecke_module_morphism = morphism.HeckeModuleMorphism_matrix(H, T, name)
119
+ return self.__hecke_module_morphism
120
+
121
+ def _add_(self, other):
122
+ """
123
+ Add ``self`` to ``other``.
124
+
125
+ EXAMPLES::
126
+
127
+ sage: M = ModularSymbols(11)
128
+ sage: t = M.hecke_operator(2)
129
+ sage: t
130
+ Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
131
+ sage: t + t # indirect doctest
132
+ Hecke operator on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field defined by:
133
+ [ 6 0 -2]
134
+ [ 0 -4 0]
135
+ [ 0 0 -4]
136
+
137
+ We can also add Hecke operators with different indexes::
138
+
139
+ sage: M = ModularSymbols(Gamma1(6),4)
140
+ sage: t2 = M.hecke_operator(2); t3 = M.hecke_operator(3)
141
+ sage: t2 + t3
142
+ Hecke operator on Modular Symbols space of dimension 6 for Gamma_1(6) of weight 4 with sign 0 over Rational Field defined by:
143
+ [ 35 0 0 8/5 8/5 -16/5]
144
+ [ 4 28 0 -19/5 -19/5 38/5]
145
+ [ 18 0 9 -6 8 -2]
146
+ [ 0 18 4 -23/5 -13/5 46/5]
147
+ [ 0 18 4 2/5 -38/5 46/5]
148
+ [ 0 18 4 2/5 -13/5 21/5]
149
+ sage: (t2 - t3).charpoly('x')
150
+ x^6 + 36*x^5 + 104*x^4 - 3778*x^3 + 7095*x^2 - 3458*x
151
+ """
152
+ return self.parent()(self.matrix() + other.matrix(), check=False)
153
+
154
+ def __call__(self, x):
155
+ """
156
+ Apply this Hecke operator to `x`.
157
+
158
+ EXAMPLES::
159
+
160
+ sage: M = ModularSymbols(11); t2 = M.hecke_operator(2)
161
+ sage: t2(M.gen(0))
162
+ 3*(1,0) - (1,9)
163
+
164
+ ::
165
+
166
+ sage: t2 = M.hecke_operator(2); t3 = M.hecke_operator(3)
167
+ sage: t3(t2(M.gen(0)))
168
+ 12*(1,0) - 2*(1,9)
169
+ sage: (t3*t2)(M.gen(0))
170
+ 12*(1,0) - 2*(1,9)
171
+ """
172
+ T = self.hecke_module_morphism()
173
+ return T(x)
174
+
175
+ def __rmul__(self, left):
176
+ """
177
+ EXAMPLES::
178
+
179
+ sage: M = ModularSymbols(11); t2 = M.hecke_operator(2)
180
+ sage: 2*t2
181
+ Hecke operator on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field defined by:
182
+ [ 6 0 -2]
183
+ [ 0 -4 0]
184
+ [ 0 0 -4]
185
+ """
186
+ return self.parent()(left * self.matrix())
187
+
188
+ def _sub_(self, other):
189
+ """
190
+ Compute the difference of ``self`` and ``other``, where ``other`` has
191
+ already been coerced into the parent of ``self``.
192
+
193
+ EXAMPLES::
194
+
195
+ sage: M = ModularSymbols(Gamma1(6),4)
196
+ sage: t2 = M.hecke_operator(2); t3 = M.hecke_operator(3)
197
+ sage: t2 - t3 # indirect doctest
198
+ Hecke operator on Modular Symbols space of dimension 6 for Gamma_1(6) of weight 4 with sign 0 over Rational Field defined by:
199
+ [ -19 0 0 -4/5 -4/5 8/5]
200
+ [ 4 -26 0 17/5 17/5 -34/5]
201
+ [ -18 0 7 -18/5 12/5 6/5]
202
+ [ 0 -18 4 3/5 23/5 -26/5]
203
+ [ 0 -18 4 -2/5 28/5 -26/5]
204
+ [ 0 -18 4 -2/5 23/5 -21/5]
205
+ """
206
+ return self.parent()(self.matrix() - other.matrix(), check=False)
207
+
208
+ def apply_sparse(self, x):
209
+ """
210
+ Apply this Hecke operator to x, where we avoid computing the matrix
211
+ of x if possible.
212
+
213
+ EXAMPLES::
214
+
215
+ sage: M = ModularSymbols(11)
216
+ sage: T = M.hecke_operator(23)
217
+ sage: T.apply_sparse(M.gen(0))
218
+ 24*(1,0) - 5*(1,9)
219
+ """
220
+ if x not in self.domain():
221
+ raise TypeError("x (=%s) must be in %s" % (x, self.domain()))
222
+ # Generic implementation which doesn't actually do anything
223
+ # special regarding sparseness. Override this for speed.
224
+ T = self.hecke_module_morphism()
225
+ return T(x)
226
+
227
+ def charpoly(self, var='x'):
228
+ """
229
+ Return the characteristic polynomial of this Hecke operator.
230
+
231
+ INPUT:
232
+
233
+ - ``var`` -- string (default: ``'x'``)
234
+
235
+ OUTPUT: a monic polynomial in the given variable
236
+
237
+ EXAMPLES::
238
+
239
+ sage: M = ModularSymbols(Gamma1(6),4)
240
+ sage: M.hecke_operator(2).charpoly('x')
241
+ x^6 - 14*x^5 + 29*x^4 + 172*x^3 - 124*x^2 - 320*x + 256
242
+ """
243
+ return self.matrix().charpoly(var)
244
+
245
+ def decomposition(self):
246
+ """
247
+ Decompose the Hecke module under the action of this Hecke
248
+ operator.
249
+
250
+ EXAMPLES::
251
+
252
+ sage: M = ModularSymbols(11)
253
+ sage: t2 = M.hecke_operator(2)
254
+ sage: t2.decomposition()
255
+ [Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field,
256
+ Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field]
257
+
258
+ ::
259
+
260
+ sage: M = ModularSymbols(33, sign=1).new_submodule()
261
+ sage: T = M.hecke_operator(2)
262
+ sage: T.decomposition()
263
+ [Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 6 for Gamma_0(33) of weight 2 with sign 1 over Rational Field,
264
+ Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 6 for Gamma_0(33) of weight 2 with sign 1 over Rational Field]
265
+ """
266
+ try:
267
+ return self.__decomposition
268
+ except AttributeError:
269
+ pass
270
+ if isinstance(self, HeckeOperator) and \
271
+ arith.gcd(self.index(), self.domain().level()) == 1:
272
+ D = self.hecke_module_morphism().decomposition(is_diagonalizable=True)
273
+ else:
274
+ # TODO: There are other weaker hypotheses that imply diagonalizability.
275
+ D = self.hecke_module_morphism().decomposition()
276
+ D.sort()
277
+ D.set_immutable()
278
+ self.__decomposition = D
279
+ return D
280
+
281
+ def det(self):
282
+ """
283
+ Return the determinant of this Hecke operator.
284
+
285
+ EXAMPLES::
286
+
287
+ sage: M = ModularSymbols(23)
288
+ sage: T = M.hecke_operator(3)
289
+ sage: T.det()
290
+ 100
291
+ """
292
+ return self.hecke_module_morphism().det()
293
+
294
+ def fcp(self, var='x'):
295
+ """
296
+ Return the factorization of the characteristic polynomial of this
297
+ Hecke operator.
298
+
299
+ EXAMPLES::
300
+
301
+ sage: M = ModularSymbols(23)
302
+ sage: T = M.hecke_operator(3)
303
+ sage: T.fcp('x')
304
+ (x - 4) * (x^2 - 5)^2
305
+ """
306
+ return self.hecke_module_morphism().fcp(var)
307
+
308
+ def image(self):
309
+ """
310
+ Return the image of this Hecke operator.
311
+
312
+ EXAMPLES::
313
+
314
+ sage: M = ModularSymbols(23)
315
+ sage: T = M.hecke_operator(3)
316
+ sage: T.fcp('x')
317
+ (x - 4) * (x^2 - 5)^2
318
+ sage: T.image()
319
+ Modular Symbols subspace of dimension 5 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field
320
+ sage: (T-4).image()
321
+ Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field
322
+ sage: (T**2-5).image()
323
+ Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field
324
+ """
325
+ return self.hecke_module_morphism().image()
326
+
327
+ def kernel(self):
328
+ """
329
+ Return the kernel of this Hecke operator.
330
+
331
+ EXAMPLES::
332
+
333
+ sage: M = ModularSymbols(23)
334
+ sage: T = M.hecke_operator(3)
335
+ sage: T.fcp('x')
336
+ (x - 4) * (x^2 - 5)^2
337
+ sage: T.kernel()
338
+ Modular Symbols subspace of dimension 0 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field
339
+ sage: (T-4).kernel()
340
+ Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field
341
+ sage: (T**2-5).kernel()
342
+ Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field
343
+ """
344
+ return self.hecke_module_morphism().kernel()
345
+
346
+ def trace(self):
347
+ """
348
+ Return the trace of this Hecke operator.
349
+
350
+ ::
351
+
352
+ sage: M = ModularSymbols(1,12)
353
+ sage: T = M.hecke_operator(2)
354
+ sage: T.trace()
355
+ 2001
356
+ """
357
+ return self.hecke_module_morphism().trace()
358
+
359
+ def __getitem__(self, ij):
360
+ """
361
+ EXAMPLES::
362
+
363
+ sage: M = ModularSymbols(1,12)
364
+ sage: T = M.hecke_operator(2).matrix_form()
365
+ sage: T[0,0]
366
+ -24
367
+ """
368
+ return self.matrix()[ij]
369
+
370
+
371
+ class HeckeAlgebraElement_matrix(HeckeAlgebraElement):
372
+ r"""
373
+ An element of the Hecke algebra represented by a matrix.
374
+ """
375
+ def __init__(self, parent, A):
376
+ r"""
377
+ Initialise an element from a matrix. This *must* be over the base ring
378
+ of ``self`` and have the right size.
379
+
380
+ This is a bit overkill as similar checks will be performed by the call
381
+ and coerce methods of the parent of self, but it can't hurt to be
382
+ paranoid. Any fancy coercion / base_extension / etc happens there, not
383
+ here.
384
+
385
+ TESTS::
386
+
387
+ sage: T = ModularForms(Gamma0(7), 4).hecke_algebra()
388
+ sage: M = sage.modular.hecke.hecke_operator.HeckeAlgebraElement_matrix(T, matrix(QQ,3,[2,3,0,1,2,3,7,8,9])); M
389
+ Hecke operator on Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(7) of weight 4 over Rational Field defined by:
390
+ [2 3 0]
391
+ [1 2 3]
392
+ [7 8 9]
393
+ sage: loads(dumps(M)) == M
394
+ True
395
+ sage: sage.modular.hecke.hecke_operator.HeckeAlgebraElement_matrix(T, matrix(Integers(2),3,[2,3,0,1,2,3,7,8,9]))
396
+ Traceback (most recent call last):
397
+ ...
398
+ TypeError: base ring of matrix (Ring of integers modulo 2) does not match base ring of space (Rational Field)
399
+ sage: sage.modular.hecke.hecke_operator.HeckeAlgebraElement_matrix(T, matrix(QQ,2,[2,3,0,1]))
400
+ Traceback (most recent call last):
401
+ ...
402
+ TypeError: A must be a square matrix of rank 3
403
+ """
404
+ HeckeAlgebraElement.__init__(self, parent)
405
+ from sage.structure.element import Matrix
406
+ if not isinstance(A, Matrix):
407
+ raise TypeError("A must be a matrix")
408
+ if not A.base_ring() == self.parent().base_ring():
409
+ raise TypeError("base ring of matrix (%s) does not match base ring of space (%s)" % (A.base_ring(), self.parent().base_ring()))
410
+ if not A.nrows() == A.ncols() == self.parent().module().rank():
411
+ raise TypeError("A must be a square matrix of rank %s" % self.parent().module().rank())
412
+ self.__matrix = A
413
+
414
+ def _richcmp_(self, other, op):
415
+ r"""
416
+ Compare ``self`` to ``other``, where the coercion model has already ensured
417
+ that ``other`` has the same parent as ``self``.
418
+
419
+ EXAMPLES::
420
+
421
+ sage: T = ModularForms(SL2Z, 12).hecke_algebra()
422
+ sage: m = T(matrix(QQ, 2, [1,2,0,1]), check=False); n = T.hecke_operator(14)
423
+ sage: m == n
424
+ False
425
+ sage: m == n.matrix_form()
426
+ False
427
+ sage: n.matrix_form() == T(matrix(QQ, 2, [401856,0,0,4051542498456]), check=False)
428
+ True
429
+ """
430
+ if not isinstance(other, HeckeAlgebraElement_matrix):
431
+ if isinstance(other, HeckeOperator):
432
+ return richcmp(self, other.matrix_form(), op)
433
+ else:
434
+ raise RuntimeError("Bug in coercion code") # can't get here
435
+
436
+ return richcmp(self.__matrix, other.__matrix, op)
437
+
438
+ def _repr_(self):
439
+ r"""
440
+ String representation of ``self``.
441
+
442
+ EXAMPLES::
443
+
444
+ sage: M = ModularSymbols(1,12)
445
+ sage: M.hecke_operator(2).matrix_form()._repr_()
446
+ 'Hecke operator on Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field defined by:\n[ -24 0 0]\n[ 0 -24 0]\n[4860 0 2049]'
447
+ sage: ModularForms(Gamma0(100)).hecke_operator(4).matrix_form()._repr_()
448
+ 'Hecke operator on Modular Forms space of dimension 24 for Congruence Subgroup Gamma0(100) of weight 2 over Rational Field defined by:\n24 x 24 dense matrix over Rational Field'
449
+ """
450
+ return "Hecke operator on %s defined by:\n%r" % (self.parent().module(), self.__matrix)
451
+
452
+ def _latex_(self):
453
+ r"""
454
+ Latex representation of ``self`` (just prints the matrix).
455
+
456
+ EXAMPLES::
457
+
458
+ sage: M = ModularSymbols(1,12)
459
+ sage: M.hecke_operator(2).matrix_form()._latex_()
460
+ '\\left(\\begin{array}{rrr}\n-24 & 0 & 0 \\\\\n0 & -24 & 0 \\\\\n4860 & 0 & 2049\n\\end{array}\\right)'
461
+ """
462
+ return self.__matrix._latex_()
463
+
464
+ def matrix(self):
465
+ """
466
+ Return the matrix that defines this Hecke algebra element.
467
+
468
+ EXAMPLES::
469
+
470
+ sage: M = ModularSymbols(1,12)
471
+ sage: T = M.hecke_operator(2).matrix_form()
472
+ sage: T.matrix()
473
+ [ -24 0 0]
474
+ [ 0 -24 0]
475
+ [4860 0 2049]
476
+ """
477
+ return self.__matrix
478
+
479
+ def _mul_(self, other):
480
+ r"""
481
+ Multiply ``self`` by ``other`` (which has already been coerced into an element
482
+ of the parent of ``self``).
483
+
484
+ EXAMPLES::
485
+
486
+ sage: M = ModularSymbols(1,12)
487
+ sage: T = M.hecke_operator(2).matrix_form()
488
+ sage: T * T # indirect doctest
489
+ Hecke operator on Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field defined by:
490
+ [ 576 0 0]
491
+ [ 0 576 0]
492
+ [9841500 0 4198401]
493
+ """
494
+ return self.parent()(other.matrix() * self.matrix(), check=False)
495
+
496
+
497
+ class DiamondBracketOperator(HeckeAlgebraElement_matrix):
498
+ r"""
499
+ The diamond bracket operator `\langle d \rangle` for some `d \in \ZZ /
500
+ N\ZZ` (which need not be a unit, although if it is not, the operator will
501
+ be zero).
502
+ """
503
+ def __init__(self, parent, d):
504
+ r"""
505
+ Standard init function.
506
+
507
+ EXAMPLES::
508
+
509
+ sage: M = ModularSymbols(Gamma1(5),6)
510
+ sage: d = M.diamond_bracket_operator(2); d # indirect doctest
511
+ Diamond bracket operator <2> on Modular Symbols space of dimension 10 for Gamma_1(5) of weight 6 with sign 0 over Rational Field
512
+ sage: type(d)
513
+ <class 'sage.modular.hecke.hecke_operator.DiamondBracketOperator'>
514
+ sage: d.matrix()
515
+ [ 0 1 0 0 0 0 0 0 0 0]
516
+ [ 1 0 0 0 0 0 0 0 0 0]
517
+ [ 0 0 0 0 0 0 1 0 0 0]
518
+ [ 0 0 0 0 0 0 0 0 0 1]
519
+ [ 0 0 0 0 0 0 0 1 0 0]
520
+ [ 0 0 17/16 11/16 -3/4 -1 17/16 -3/4 0 11/16]
521
+ [ 0 0 1 0 0 0 0 0 0 0]
522
+ [ 0 0 0 0 1 0 0 0 0 0]
523
+ [ 0 0 -1/2 1/2 1 0 -1/2 1 -1 1/2]
524
+ [ 0 0 0 1 0 0 0 0 0 0]
525
+ sage: d**4 == 1
526
+ True
527
+ """
528
+ self.__d = d
529
+ A = parent.diamond_bracket_matrix(d)
530
+ HeckeAlgebraElement_matrix.__init__(self, parent, A)
531
+
532
+ def _repr_(self):
533
+ r"""
534
+ EXAMPLES::
535
+
536
+ sage: ModularSymbols(Gamma1(5), 6).diamond_bracket_operator(2)._repr_()
537
+ 'Diamond bracket operator <2> on Modular Symbols space of dimension 10 for Gamma_1(5) of weight 6 with sign 0 over Rational Field'
538
+ """
539
+ return "Diamond bracket operator <%s> on %s" % (self.__d, self.domain())
540
+
541
+ def _latex_(self):
542
+ r"""
543
+ EXAMPLES::
544
+
545
+ sage: latex(ModularSymbols(Gamma1(5), 12).diamond_bracket_operator(2)) # indirect doctest
546
+ \langle 2 \rangle
547
+ """
548
+ return r"\langle %s \rangle" % self.__d
549
+
550
+
551
+ class HeckeOperator(HeckeAlgebraElement):
552
+ r"""
553
+ The Hecke operator `T_n` for some `n` (which need not be coprime to the
554
+ level). The matrix is not computed until it is needed.
555
+ """
556
+ def __init__(self, parent, n):
557
+ """
558
+ EXAMPLES::
559
+
560
+ sage: M = ModularSymbols(11)
561
+ sage: H = M.hecke_operator(2005); H
562
+ Hecke operator T_2005 on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
563
+ sage: H == loads(dumps(H))
564
+ True
565
+
566
+ We create a Hecke operator of large index (greater than 32 bits)::
567
+
568
+ sage: M1 = ModularSymbols(21,2)
569
+ sage: M1.hecke_operator(13^9)
570
+ Hecke operator T_10604499373 on Modular Symbols space of dimension 5 for Gamma_0(21) of weight 2 with sign 0 over Rational Field
571
+ """
572
+ HeckeAlgebraElement.__init__(self, parent)
573
+ if not isinstance(n, (int, Integer)):
574
+ raise TypeError("n must be an int")
575
+ self.__n = int(n)
576
+
577
+ def _richcmp_(self, other, op):
578
+ r"""
579
+ Compare ``self`` and ``other`` (where the coercion model has already ensured
580
+ that ``self`` and ``other`` have the same parent). Hecke operators on the same
581
+ space compare as equal if and only if their matrices are equal, so we
582
+ check if the indices are the same and if not we compute the matrices
583
+ (which is potentially expensive).
584
+
585
+ EXAMPLES::
586
+
587
+ sage: M = ModularSymbols(Gamma0(7), 4)
588
+ sage: m = M.hecke_operator(3)
589
+ sage: m == m
590
+ True
591
+ sage: m == 2*m
592
+ False
593
+ sage: m == M.hecke_operator(5)
594
+ False
595
+
596
+ These last two tests involve a coercion::
597
+
598
+ sage: m == m.matrix_form()
599
+ True
600
+ sage: m == m.matrix()
601
+ False
602
+ """
603
+ if not isinstance(other, HeckeOperator):
604
+ if isinstance(other, HeckeAlgebraElement_matrix):
605
+ return richcmp(self.matrix_form(), other, op)
606
+ else:
607
+ raise RuntimeError("Bug in coercion code") # can't get here
608
+
609
+ if self.__n == other.__n:
610
+ return rich_to_bool(op, 0)
611
+ return richcmp(self.matrix(), other.matrix(), op)
612
+
613
+ def _repr_(self):
614
+ r"""
615
+ String representation of ``self``.
616
+
617
+ EXAMPLES::
618
+
619
+ sage: ModularSymbols(Gamma0(7), 4).hecke_operator(6)._repr_()
620
+ 'Hecke operator T_6 on Modular Symbols space of dimension 4 for Gamma_0(7) of weight 4 with sign 0 over Rational Field'
621
+ """
622
+ return "Hecke operator T_%s on %s" % (self.__n, self.domain())
623
+
624
+ def _latex_(self):
625
+ r"""
626
+ LaTeX representation of ``self``.
627
+
628
+ EXAMPLES::
629
+
630
+ sage: ModularSymbols(Gamma0(7), 4).hecke_operator(6)._latex_()
631
+ 'T_{6}'
632
+ """
633
+ return "T_{%s}" % self.__n
634
+
635
+ def _mul_(self, other):
636
+ r"""
637
+ Multiply this Hecke operator by another element of the same algebra.
638
+
639
+ If the other element is of the form `T_m` for some m, we check
640
+ whether the product is equal to `T_{mn}` and return that; if
641
+ the product is not (easily seen to be) of the form `T_{mn}`,
642
+ then we calculate the product of the two matrices and return a
643
+ Hecke algebra element defined by that.
644
+
645
+ EXAMPLES: We create the space of modular symbols of level
646
+ `11` and weight `2`, then compute `T_2`
647
+ and `T_3` on it, along with their composition.
648
+
649
+ ::
650
+
651
+ sage: M = ModularSymbols(11)
652
+ sage: t2 = M.hecke_operator(2); t3 = M.hecke_operator(3)
653
+ sage: t2*t3 # indirect doctest
654
+ Hecke operator T_6 on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
655
+ sage: t3.matrix() * t2.matrix()
656
+ [12 0 -2]
657
+ [ 0 2 0]
658
+ [ 0 0 2]
659
+ sage: (t2*t3).matrix()
660
+ [12 0 -2]
661
+ [ 0 2 0]
662
+ [ 0 0 2]
663
+
664
+ When we compute `T_2^5` the result is not (easily seen to
665
+ be) a Hecke operator of the form `T_n`, so it is returned
666
+ as a Hecke module homomorphism defined as a matrix::
667
+
668
+ sage: t2**5
669
+ Hecke operator on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field defined by:
670
+ [243 0 -55]
671
+ [ 0 -32 0]
672
+ [ 0 0 -32]
673
+ """
674
+ if isinstance(other, HeckeOperator) and other.parent() == self.parent():
675
+ n = None
676
+ if arith.gcd(self.__n, other.__n) == 1:
677
+ n = self.__n * other.__n
678
+ else:
679
+ P = set(arith.prime_divisors(self.domain().level()))
680
+ if P.issubset(set(arith.prime_divisors(self.__n))) and \
681
+ P.issubset(set(arith.prime_divisors(other.__n))):
682
+ n = self.__n * other.__n
683
+ if n:
684
+ return HeckeOperator(self.parent(), n)
685
+ # otherwise
686
+ return self.matrix_form() * other
687
+
688
+ def index(self):
689
+ """
690
+ Return the index of this Hecke operator, i.e., if this Hecke
691
+ operator is `T_n`, return the int `n`.
692
+
693
+ EXAMPLES::
694
+
695
+ sage: T = ModularSymbols(11).hecke_operator(17)
696
+ sage: T.index()
697
+ 17
698
+ """
699
+ return self.__n
700
+
701
+ def matrix(self, *args, **kwds):
702
+ """
703
+ Return the matrix underlying this Hecke operator.
704
+
705
+ EXAMPLES::
706
+
707
+ sage: T = ModularSymbols(11).hecke_operator(17)
708
+ sage: T.matrix()
709
+ [18 0 -4]
710
+ [ 0 -2 0]
711
+ [ 0 0 -2]
712
+ """
713
+ try:
714
+ return self.__matrix
715
+ except AttributeError:
716
+ self.__matrix = self.parent().hecke_matrix(self.__n, *args, **kwds)
717
+ return self.__matrix
718
+
719
+ def matrix_form(self):
720
+ """
721
+ Return the matrix form of this element of a Hecke algebra.
722
+
723
+ ::
724
+
725
+ sage: T = ModularSymbols(11).hecke_operator(17)
726
+ sage: T.matrix_form()
727
+ Hecke operator on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field defined by:
728
+ [18 0 -4]
729
+ [ 0 -2 0]
730
+ [ 0 0 -2]
731
+ """
732
+ try:
733
+ return self.__matrix_form
734
+ except AttributeError:
735
+ self.__matrix_form = self.parent()(self.matrix(), check=False)
736
+ return self.__matrix_form