passagemath-schemes 10.8.1a4__cp314-cp314t-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (312) hide show
  1. passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.8.1a4.dist-info/METADATA +203 -0
  7. passagemath_schemes-10.8.1a4.dist-info/METADATA.bak +204 -0
  8. passagemath_schemes-10.8.1a4.dist-info/RECORD +312 -0
  9. passagemath_schemes-10.8.1a4.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.8.1a4.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9556 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314t-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2578 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +727 -0
  29. sage/lfunctions/pari.py +971 -0
  30. sage/lfunctions/zero_sums.cpython-314t-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5132 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +414 -0
  34. sage/modular/abvar/abvar_newform.py +246 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +187 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +721 -0
  40. sage/modular/abvar/homspace.py +989 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +741 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-314t-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1406 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-314t-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +361 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +659 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1491 -0
  57. sage/modular/arithgroup/congroup_generic.py +630 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +266 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-314t-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1067 -0
  61. sage/modular/arithgroup/tests.py +425 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3736 -0
  64. sage/modular/btquotients/pautomorphicform.py +2564 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1107 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +571 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1076 -0
  77. sage/modular/hecke/algebra.py +725 -0
  78. sage/modular/hecke/all.py +19 -0
  79. sage/modular/hecke/ambient_module.py +994 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +302 -0
  82. sage/modular/hecke/hecke_operator.py +736 -0
  83. sage/modular/hecke/homspace.py +185 -0
  84. sage/modular/hecke/module.py +1744 -0
  85. sage/modular/hecke/morphism.py +139 -0
  86. sage/modular/hecke/submodule.py +970 -0
  87. sage/modular/hypergeometric_misc.cpython-314t-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2020 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1070 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +817 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +120 -0
  101. sage/modular/modform/ambient_g1.py +199 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +487 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4105 -0
  108. sage/modular/modform/half_integral.py +154 -0
  109. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  110. sage/modular/modform/j_invariant.py +47 -0
  111. sage/modular/modform/l_series_gross_zagier.py +127 -0
  112. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314t-darwin.so +0 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  114. sage/modular/modform/notes.py +45 -0
  115. sage/modular/modform/numerical.py +514 -0
  116. sage/modular/modform/periods.py +14 -0
  117. sage/modular/modform/ring.py +1257 -0
  118. sage/modular/modform/space.py +1859 -0
  119. sage/modular/modform/submodule.py +118 -0
  120. sage/modular/modform/tests.py +64 -0
  121. sage/modular/modform/theta.py +110 -0
  122. sage/modular/modform/vm_basis.py +380 -0
  123. sage/modular/modform/weight1.py +221 -0
  124. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  125. sage/modular/modform_hecketriangle/abstract_space.py +2527 -0
  126. sage/modular/modform_hecketriangle/all.py +30 -0
  127. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  128. sage/modular/modform_hecketriangle/constructor.py +416 -0
  129. sage/modular/modform_hecketriangle/element.py +351 -0
  130. sage/modular/modform_hecketriangle/functors.py +752 -0
  131. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  132. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  133. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3349 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1426 -0
  135. sage/modular/modform_hecketriangle/readme.py +1214 -0
  136. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  137. sage/modular/modform_hecketriangle/space.py +1037 -0
  138. sage/modular/modform_hecketriangle/subspace.py +423 -0
  139. sage/modular/modsym/all.py +17 -0
  140. sage/modular/modsym/ambient.py +3844 -0
  141. sage/modular/modsym/boundary.py +1420 -0
  142. sage/modular/modsym/element.py +336 -0
  143. sage/modular/modsym/g1list.py +178 -0
  144. sage/modular/modsym/ghlist.py +182 -0
  145. sage/modular/modsym/hecke_operator.py +73 -0
  146. sage/modular/modsym/manin_symbol.cpython-314t-darwin.so +0 -0
  147. sage/modular/modsym/manin_symbol.pxd +5 -0
  148. sage/modular/modsym/manin_symbol.pyx +497 -0
  149. sage/modular/modsym/manin_symbol_list.py +1291 -0
  150. sage/modular/modsym/modsym.py +400 -0
  151. sage/modular/modsym/modular_symbols.py +384 -0
  152. sage/modular/modsym/p1list_nf.py +1241 -0
  153. sage/modular/modsym/relation_matrix.py +591 -0
  154. sage/modular/modsym/relation_matrix_pyx.cpython-314t-darwin.so +0 -0
  155. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  156. sage/modular/modsym/space.py +2468 -0
  157. sage/modular/modsym/subspace.py +455 -0
  158. sage/modular/modsym/tests.py +376 -0
  159. sage/modular/multiple_zeta.py +2635 -0
  160. sage/modular/multiple_zeta_F_algebra.py +789 -0
  161. sage/modular/overconvergent/all.py +6 -0
  162. sage/modular/overconvergent/genus0.py +1879 -0
  163. sage/modular/overconvergent/hecke_series.py +1187 -0
  164. sage/modular/overconvergent/weightspace.py +776 -0
  165. sage/modular/pollack_stevens/all.py +4 -0
  166. sage/modular/pollack_stevens/distributions.py +874 -0
  167. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  168. sage/modular/pollack_stevens/manin_map.py +856 -0
  169. sage/modular/pollack_stevens/modsym.py +1590 -0
  170. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  171. sage/modular/pollack_stevens/sigma0.py +534 -0
  172. sage/modular/pollack_stevens/space.py +1078 -0
  173. sage/modular/quasimodform/all.py +3 -0
  174. sage/modular/quasimodform/element.py +846 -0
  175. sage/modular/quasimodform/ring.py +826 -0
  176. sage/modular/quatalg/all.py +3 -0
  177. sage/modular/quatalg/brandt.py +1642 -0
  178. sage/modular/ssmod/all.py +8 -0
  179. sage/modular/ssmod/ssmod.py +827 -0
  180. sage/rings/all__sagemath_schemes.py +1 -0
  181. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  182. sage/rings/polynomial/binary_form_reduce.py +585 -0
  183. sage/schemes/all.py +41 -0
  184. sage/schemes/berkovich/all.py +6 -0
  185. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  186. sage/schemes/berkovich/berkovich_space.py +700 -0
  187. sage/schemes/curves/affine_curve.py +2924 -0
  188. sage/schemes/curves/all.py +33 -0
  189. sage/schemes/curves/closed_point.py +434 -0
  190. sage/schemes/curves/constructor.py +397 -0
  191. sage/schemes/curves/curve.py +542 -0
  192. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  193. sage/schemes/curves/point.py +463 -0
  194. sage/schemes/curves/projective_curve.py +3203 -0
  195. sage/schemes/curves/weighted_projective_curve.py +106 -0
  196. sage/schemes/curves/zariski_vankampen.py +1931 -0
  197. sage/schemes/cyclic_covers/all.py +2 -0
  198. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  199. sage/schemes/cyclic_covers/constructor.py +137 -0
  200. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  201. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  202. sage/schemes/elliptic_curves/BSD.py +991 -0
  203. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  204. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  205. sage/schemes/elliptic_curves/all.py +49 -0
  206. sage/schemes/elliptic_curves/cardinality.py +609 -0
  207. sage/schemes/elliptic_curves/cm.py +1103 -0
  208. sage/schemes/elliptic_curves/constructor.py +1530 -0
  209. sage/schemes/elliptic_curves/ec_database.py +175 -0
  210. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3971 -0
  211. sage/schemes/elliptic_curves/ell_egros.py +457 -0
  212. sage/schemes/elliptic_curves/ell_field.py +2837 -0
  213. sage/schemes/elliptic_curves/ell_finite_field.py +3249 -0
  214. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  215. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  216. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  217. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  218. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  219. sage/schemes/elliptic_curves/ell_point.py +4944 -0
  220. sage/schemes/elliptic_curves/ell_rational_field.py +7184 -0
  221. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  222. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  223. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  224. sage/schemes/elliptic_curves/formal_group.py +760 -0
  225. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  226. sage/schemes/elliptic_curves/gal_reps_number_field.py +1663 -0
  227. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  228. sage/schemes/elliptic_curves/heegner.py +7328 -0
  229. sage/schemes/elliptic_curves/height.py +2108 -0
  230. sage/schemes/elliptic_curves/hom.py +1788 -0
  231. sage/schemes/elliptic_curves/hom_composite.py +1084 -0
  232. sage/schemes/elliptic_curves/hom_fractional.py +544 -0
  233. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  234. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  235. sage/schemes/elliptic_curves/hom_sum.py +681 -0
  236. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  237. sage/schemes/elliptic_curves/homset.py +271 -0
  238. sage/schemes/elliptic_curves/isogeny_class.py +1523 -0
  239. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  240. sage/schemes/elliptic_curves/jacobian.py +247 -0
  241. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  242. sage/schemes/elliptic_curves/kraus.py +1014 -0
  243. sage/schemes/elliptic_curves/lseries_ell.py +915 -0
  244. sage/schemes/elliptic_curves/mod5family.py +105 -0
  245. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  246. sage/schemes/elliptic_curves/mod_sym_num.cpython-314t-darwin.so +0 -0
  247. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  248. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  249. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  250. sage/schemes/elliptic_curves/padics.py +1816 -0
  251. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  252. sage/schemes/elliptic_curves/period_lattice_region.cpython-314t-darwin.so +0 -0
  253. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  254. sage/schemes/elliptic_curves/saturation.py +716 -0
  255. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  256. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  257. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  258. sage/schemes/hyperelliptic_curves/all.py +6 -0
  259. sage/schemes/hyperelliptic_curves/constructor.py +369 -0
  260. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1948 -0
  261. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +936 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  264. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  265. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  266. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +312 -0
  267. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_generic.py +437 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  270. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +878 -0
  271. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  272. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  273. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3863 -0
  274. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  275. sage/schemes/jacobians/all.py +2 -0
  276. sage/schemes/overview.py +161 -0
  277. sage/schemes/plane_conics/all.py +22 -0
  278. sage/schemes/plane_conics/con_field.py +1296 -0
  279. sage/schemes/plane_conics/con_finite_field.py +158 -0
  280. sage/schemes/plane_conics/con_number_field.py +456 -0
  281. sage/schemes/plane_conics/con_rational_field.py +406 -0
  282. sage/schemes/plane_conics/con_rational_function_field.py +581 -0
  283. sage/schemes/plane_conics/constructor.py +249 -0
  284. sage/schemes/plane_quartics/all.py +2 -0
  285. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  286. sage/schemes/plane_quartics/quartic_generic.py +53 -0
  287. sage/schemes/riemann_surfaces/all.py +1 -0
  288. sage/schemes/riemann_surfaces/riemann_surface.py +4177 -0
  289. sage_wheels/share/cremona/cremona_mini.db +0 -0
  290. sage_wheels/share/ellcurves/rank0 +30427 -0
  291. sage_wheels/share/ellcurves/rank1 +31871 -0
  292. sage_wheels/share/ellcurves/rank10 +6 -0
  293. sage_wheels/share/ellcurves/rank11 +6 -0
  294. sage_wheels/share/ellcurves/rank12 +1 -0
  295. sage_wheels/share/ellcurves/rank14 +1 -0
  296. sage_wheels/share/ellcurves/rank15 +1 -0
  297. sage_wheels/share/ellcurves/rank17 +1 -0
  298. sage_wheels/share/ellcurves/rank19 +1 -0
  299. sage_wheels/share/ellcurves/rank2 +2388 -0
  300. sage_wheels/share/ellcurves/rank20 +1 -0
  301. sage_wheels/share/ellcurves/rank21 +1 -0
  302. sage_wheels/share/ellcurves/rank22 +1 -0
  303. sage_wheels/share/ellcurves/rank23 +1 -0
  304. sage_wheels/share/ellcurves/rank24 +1 -0
  305. sage_wheels/share/ellcurves/rank28 +1 -0
  306. sage_wheels/share/ellcurves/rank3 +836 -0
  307. sage_wheels/share/ellcurves/rank4 +10 -0
  308. sage_wheels/share/ellcurves/rank5 +5 -0
  309. sage_wheels/share/ellcurves/rank6 +5 -0
  310. sage_wheels/share/ellcurves/rank7 +5 -0
  311. sage_wheels/share/ellcurves/rank8 +6 -0
  312. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,725 @@
1
+ # sage_setup: distribution = sagemath-schemes
2
+ # sage.doctest: needs sage.libs.flint sage.libs.pari
3
+ """
4
+ Hecke algebras
5
+
6
+ In Sage a "Hecke algebra" always refers to an algebra of endomorphisms of some
7
+ explicit module, rather than the abstract Hecke algebra of double cosets
8
+ attached to a subgroup of the modular group.
9
+
10
+ We distinguish between "anemic Hecke algebras", which are algebras of Hecke
11
+ operators whose indices do not divide some integer N (the level), and "full
12
+ Hecke algebras", which include Hecke operators coprime to the level. Morphisms
13
+ in the category of Hecke modules are not required to commute with the action of
14
+ the full Hecke algebra, only with the anemic algebra.
15
+ """
16
+ # ****************************************************************************
17
+ # Copyright (C) 2004 William Stein <wstein@gmail.com>
18
+ #
19
+ # Distributed under the terms of the GNU General Public License (GPL)
20
+ #
21
+ # This code is distributed in the hope that it will be useful,
22
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
23
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24
+ # General Public License for more details.
25
+ #
26
+ # The full text of the GPL is available at:
27
+ #
28
+ # https://www.gnu.org/licenses/
29
+ # ****************************************************************************
30
+ from collections.abc import Iterator
31
+
32
+ from sage.rings.infinity import infinity
33
+ from sage.categories.algebras import Algebras
34
+ from sage.matrix.constructor import matrix
35
+ from sage.arith.functions import lcm
36
+ from sage.arith.misc import gcd
37
+ from sage.misc.latex import latex
38
+ from sage.matrix.matrix_space import MatrixSpace
39
+ from sage.rings.integer_ring import ZZ
40
+ from sage.rings.rational_field import QQ
41
+ from sage.structure.element import Element
42
+ from sage.structure.unique_representation import CachedRepresentation
43
+ from sage.misc.cachefunc import cached_method
44
+ from sage.structure.parent import Parent
45
+ from sage.structure.richcmp import richcmp_method, richcmp
46
+
47
+
48
+ def _heckebasis(M) -> list:
49
+ r"""
50
+ Return a basis of the Hecke algebra of M as a ZZ-module.
51
+
52
+ INPUT:
53
+
54
+ - ``M`` -- a Hecke module
55
+
56
+ OUTPUT: list of Hecke algebra elements represented as matrices
57
+
58
+ EXAMPLES::
59
+
60
+ sage: M = ModularSymbols(11,2,1)
61
+ sage: sage.modular.hecke.algebra._heckebasis(M)
62
+ [Hecke operator on Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field defined by:
63
+ [1 0]
64
+ [0 1],
65
+ Hecke operator on Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field defined by:
66
+ [0 2]
67
+ [0 5]]
68
+ """
69
+ d = M.rank()
70
+ WW = ZZ**(d**2)
71
+ MM = MatrixSpace(QQ, d)
72
+ S = []
73
+ Denom = []
74
+ B1 = []
75
+ for i in range(1, M.hecke_bound() + 1):
76
+ v = M.hecke_operator(i).matrix()
77
+ den = v.denominator()
78
+ Denom.append(den)
79
+ S.append(v)
80
+ den = lcm(Denom)
81
+ B = [WW((den * m).list()) for m in S]
82
+ UU = WW.submodule(B)
83
+ for u in UU.basis():
84
+ u1 = u.list()
85
+ m1 = M.hecke_algebra()(MM(u1), check=False)
86
+ B1.append((1 / den) * m1)
87
+ return B1
88
+
89
+
90
+ @richcmp_method
91
+ class HeckeAlgebra_base(CachedRepresentation, Parent):
92
+ """
93
+ Base class for algebras of Hecke operators on a fixed Hecke module.
94
+
95
+ INPUT:
96
+
97
+ - ``M`` -- a Hecke module
98
+
99
+ EXAMPLES::
100
+
101
+ sage: CuspForms(1, 12).hecke_algebra() # indirect doctest
102
+ Full Hecke algebra acting on Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for Modular Group SL(2,Z) of weight 12 over Rational Field
103
+ """
104
+ @staticmethod
105
+ def __classcall__(cls, M):
106
+ r"""
107
+ We need to work around a problem originally discovered by David
108
+ Loeffler on 2009-04-13: The problem is that if one creates two
109
+ subspaces of a Hecke module which are equal as subspaces but have
110
+ different bases, then the caching machinery needs to distinguish
111
+ between them. So we need to add ``basis_matrix`` to the cache key even
112
+ though it is not looked at by the constructor.
113
+
114
+ TESTS:
115
+
116
+ We test that coercion is OK between the Hecke algebras associated to two submodules which are equal but have different bases::
117
+
118
+ sage: M = CuspForms(Gamma0(57))
119
+ sage: f1,f2,f3 = M.newforms()
120
+ sage: N1 = M.submodule(M.free_module().submodule_with_basis([f1.element().element(), f2.element().element()]))
121
+ sage: N2 = M.submodule(M.free_module().submodule_with_basis([f1.element().element(), (f1.element() + f2.element()).element()]))
122
+ sage: N1.hecke_operator(5).matrix_form()
123
+ Hecke operator on Modular Forms subspace of dimension 2 of ... defined by:
124
+ [-3 0]
125
+ [ 0 1]
126
+ sage: N2.hecke_operator(5).matrix_form()
127
+ Hecke operator on Modular Forms subspace of dimension 2 of ... defined by:
128
+ [-3 0]
129
+ [-4 1]
130
+ sage: N1.hecke_algebra()(N2.hecke_operator(5)).matrix_form()
131
+ Hecke operator on Modular Forms subspace of dimension 2 of ... defined by:
132
+ [-3 0]
133
+ [ 0 1]
134
+ sage: N1.hecke_algebra()(N2.hecke_operator(5).matrix_form())
135
+ Hecke operator on Modular Forms subspace of dimension 2 of ... defined by:
136
+ [-3 0]
137
+ [ 0 1]
138
+ """
139
+ if isinstance(M, tuple):
140
+ M = M[0]
141
+ try:
142
+ M = (M, M.basis_matrix())
143
+ except AttributeError:
144
+ # The AttributeError occurs if M is not a free module; then it might not have a basis_matrix method
145
+ pass
146
+ return super().__classcall__(cls, M)
147
+
148
+ def __init__(self, M) -> None:
149
+ """
150
+ Initialization.
151
+
152
+ EXAMPLES::
153
+
154
+ sage: from sage.modular.hecke.algebra import HeckeAlgebra_base
155
+ sage: type(HeckeAlgebra_base(CuspForms(1, 12)))
156
+ <class 'sage.modular.hecke.algebra.HeckeAlgebra_base_with_category'>
157
+ """
158
+ if isinstance(M, tuple):
159
+ M = M[0]
160
+ from .module import HeckeModule_generic
161
+ if not isinstance(M, HeckeModule_generic):
162
+ msg = f"M (={M}) must be a HeckeModule"
163
+ raise TypeError(msg)
164
+ self.__M = M
165
+ cat = Algebras(M.base_ring()).Commutative()
166
+ Parent.__init__(self, base=M.base_ring(), category=cat)
167
+
168
+ def _an_element_(self):
169
+ r"""
170
+ Return an element of this algebra.
171
+
172
+ Used by the coercion machinery.
173
+
174
+ EXAMPLES::
175
+
176
+ sage: CuspForms(1, 12).hecke_algebra().an_element() # indirect doctest
177
+ Hecke operator T_2 on Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for Modular Group SL(2,Z) of weight 12 over Rational Field
178
+ """
179
+ return self.hecke_operator(self.level() + 1)
180
+
181
+ def _element_constructor_(self, x, check=True):
182
+ r"""
183
+ Convert x into an element of this Hecke algebra. Here x is either:
184
+
185
+ - an element of a Hecke algebra equal to this one
186
+
187
+ - an element of the corresponding anemic Hecke algebra, if x is a full
188
+ Hecke algebra
189
+
190
+ - an element of the corresponding full Hecke algebra of the
191
+ form `T_i` where i is coprime to ``self.level()``, if self
192
+ is an anemic Hecke algebra
193
+
194
+ - something that can be converted into an element of the
195
+ underlying matrix space.
196
+
197
+ In the last case, the parameter ``check`` controls whether or
198
+ not to check that this element really does lie in the
199
+ appropriate algebra. At present, setting ``check=True`` raises
200
+ a :exc:`NotImplementedError` unless x is a scalar (or a diagonal
201
+ matrix).
202
+
203
+ EXAMPLES::
204
+
205
+ sage: T = ModularSymbols(11).hecke_algebra()
206
+ sage: T.gen(2) in T
207
+ True
208
+ sage: 5 in T
209
+ True
210
+ sage: T.gen(2).matrix() in T
211
+ Traceback (most recent call last):
212
+ ...
213
+ NotImplementedError: membership testing for '...' not implemented
214
+ sage: T(T.gen(2).matrix(), check=False)
215
+ Hecke operator on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field defined by:
216
+ [ 3 0 -1]
217
+ [ 0 -2 0]
218
+ [ 0 0 -2]
219
+ sage: A = ModularSymbols(11).anemic_hecke_algebra()
220
+ sage: A(T.gen(3))
221
+ Hecke operator T_3 on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
222
+ sage: A(T.gen(11))
223
+ Traceback (most recent call last):
224
+ ...
225
+ TypeError: Don't know how to construct an element of Anemic Hecke algebra acting on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field from Hecke operator T_11 on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
226
+ """
227
+ from .hecke_operator import HeckeAlgebraElement_matrix, HeckeOperator, HeckeAlgebraElement
228
+
229
+ if not isinstance(x, Element):
230
+ x = self.base_ring()(x)
231
+
232
+ parent = x.parent()
233
+
234
+ if parent is self.base_ring():
235
+ return HeckeAlgebraElement_matrix(self, x * self.matrix_space().one())
236
+
237
+ if parent is self:
238
+ return x
239
+
240
+ if isinstance(x, HeckeOperator):
241
+ if x.parent() == self \
242
+ or (not self.is_anemic() and x.parent() == self.anemic_subalgebra()) \
243
+ or (self.is_anemic() and x.parent().anemic_subalgebra() == self and gcd(x.index(), self.level()) == 1):
244
+ return HeckeOperator(self, x.index())
245
+
246
+ if isinstance(x, HeckeAlgebraElement):
247
+ if x.parent() == self or (not self.is_anemic() and x.parent() == self.anemic_subalgebra()):
248
+ if x.parent().module().basis_matrix() == self.module().basis_matrix():
249
+ return HeckeAlgebraElement_matrix(self, x.matrix())
250
+ else:
251
+ A = matrix([self.module().coordinate_vector(x.parent().module().gen(i))
252
+ for i in range(x.parent().module().rank())])
253
+ return HeckeAlgebraElement_matrix(self, ~A * x.matrix() * A)
254
+
255
+ try:
256
+ A = self.matrix_space()(x)
257
+ if check:
258
+ if not A.is_scalar():
259
+ msg = f"membership testing for '{self}' not implemented"
260
+ raise NotImplementedError(msg)
261
+ return HeckeAlgebraElement_matrix(self, A)
262
+ except TypeError:
263
+ raise TypeError("Don't know how to construct an element of %s from %s" % (self, x))
264
+
265
+ def _coerce_map_from_(self, R):
266
+ """
267
+ Coercion of a parent ``R`` into this Hecke algebra.
268
+
269
+ The parents that coerce into ``self`` are: Hecke
270
+ algebras which are equal to ``self``, or to the anemic subalgebra
271
+ of ``self`` if ``self`` is not anemic; and parents that coerce into
272
+ the base ring of ``self``.
273
+
274
+ EXAMPLES::
275
+
276
+ sage: C = CuspForms(3, 12)
277
+ sage: A = C.anemic_hecke_algebra()
278
+ sage: F = C.hecke_algebra()
279
+ sage: F.coerce(A.2) # indirect doctest
280
+ Hecke operator T_2 on Cuspidal subspace of dimension 3 of Modular Forms space of dimension 5 for Congruence Subgroup Gamma0(3) of weight 12 over Rational Field
281
+ """
282
+ if R == self:
283
+ return True
284
+ if not self.is_anemic() and R == self.anemic_subalgebra():
285
+ return True
286
+ return self.base_ring().has_coerce_map_from(R)
287
+
288
+ def gen(self, n):
289
+ """
290
+ Return the `n`-th Hecke operator.
291
+
292
+ EXAMPLES::
293
+
294
+ sage: T = ModularSymbols(11).hecke_algebra()
295
+ sage: T.gen(2)
296
+ Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
297
+ """
298
+ return self.hecke_operator(n)
299
+
300
+ def ngens(self):
301
+ r"""
302
+ The size of the set of generators returned by gens(), which is clearly
303
+ infinity.
304
+
305
+ (This is not necessarily a minimal set of generators.)
306
+
307
+ EXAMPLES::
308
+
309
+ sage: CuspForms(1, 12).anemic_hecke_algebra().ngens()
310
+ +Infinity
311
+ """
312
+ return infinity
313
+
314
+ def one(self):
315
+ """
316
+ Return the unit of the Hecke algebra.
317
+
318
+ EXAMPLES::
319
+
320
+ sage: M = ModularSymbols(11,2,1)
321
+ sage: H = M.hecke_algebra()
322
+ sage: H.one()
323
+ Hecke operator on Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field defined by:
324
+ [1 0]
325
+ [0 1]
326
+ """
327
+ from .hecke_operator import HeckeAlgebraElement_matrix
328
+ A = self.matrix_space()
329
+ return HeckeAlgebraElement_matrix(self, A.one())
330
+
331
+ def is_noetherian(self) -> bool:
332
+ """
333
+ Return ``True`` if this Hecke algebra is Noetherian as a ring.
334
+
335
+ This is true if and only if the base ring is Noetherian.
336
+
337
+ EXAMPLES::
338
+
339
+ sage: CuspForms(1, 12).anemic_hecke_algebra().is_noetherian()
340
+ True
341
+ """
342
+ return self.base_ring().is_noetherian()
343
+
344
+ @cached_method
345
+ def matrix_space(self):
346
+ r"""
347
+ Return the underlying matrix space of this module.
348
+
349
+ EXAMPLES::
350
+
351
+ sage: CuspForms(3, 24, base_ring=Qp(5)).anemic_hecke_algebra().matrix_space()
352
+ Full MatrixSpace of 7 by 7 dense matrices over 5-adic Field with capped relative precision 20
353
+ """
354
+ return MatrixSpace(self.base_ring(), self.module().rank())
355
+
356
+ def _latex_(self) -> str:
357
+ r"""
358
+ LaTeX representation of ``self``.
359
+
360
+ EXAMPLES::
361
+
362
+ sage: latex(CuspForms(3, 24).hecke_algebra()) # indirect doctest
363
+ \mathbf{T}_{\text{\texttt{Cuspidal...Gamma0(3)...24...}
364
+ """
365
+ return "\\mathbf{T}_{%s}" % latex(self.__M)
366
+
367
+ def level(self):
368
+ r"""
369
+ Return the level of this Hecke algebra, which is (by definition) the
370
+ level of the Hecke module on which it acts.
371
+
372
+ EXAMPLES::
373
+
374
+ sage: ModularSymbols(37).hecke_algebra().level()
375
+ 37
376
+ """
377
+ return self.module().level()
378
+
379
+ def module(self):
380
+ """
381
+ The Hecke module on which this algebra is acting.
382
+
383
+ EXAMPLES::
384
+
385
+ sage: T = ModularSymbols(1,12).hecke_algebra()
386
+ sage: T.module()
387
+ Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
388
+ """
389
+ return self.__M
390
+
391
+ def rank(self):
392
+ r"""
393
+ The rank of this Hecke algebra as a module over its base
394
+ ring. Not implemented at present.
395
+
396
+ EXAMPLES::
397
+
398
+ sage: ModularSymbols(Gamma1(3), 3).hecke_algebra().rank()
399
+ Traceback (most recent call last):
400
+ ...
401
+ NotImplementedError
402
+ """
403
+ raise NotImplementedError
404
+
405
+ @cached_method
406
+ def basis(self):
407
+ r"""
408
+ Return a basis for this Hecke algebra as a free module over
409
+ its base ring.
410
+
411
+ EXAMPLES::
412
+
413
+ sage: ModularSymbols(Gamma1(3), 3).hecke_algebra().basis()
414
+ (Hecke operator on Modular Symbols space of dimension 2 for Gamma_1(3) of weight 3 with sign 0 over Rational Field defined by:
415
+ [1 0]
416
+ [0 1],
417
+ Hecke operator on Modular Symbols space of dimension 2 for Gamma_1(3) of weight 3 with sign 0 over Rational Field defined by:
418
+ [0 0]
419
+ [0 2])
420
+
421
+ sage: M = ModularSymbols(Gamma0(22), sign=1)
422
+ sage: H = M.hecke_algebra()
423
+ sage: B = H.basis()
424
+ sage: len(B)
425
+ 5
426
+ sage: all(b in H for b in B)
427
+ True
428
+ sage: [B[0, 0] for B in M.anemic_hecke_algebra().basis()]
429
+ Traceback (most recent call last):
430
+ ...
431
+ NotImplementedError: basis not implemented for anemic Hecke algebra
432
+ """
433
+ bound = self.__M.hecke_bound()
434
+ dim = self.__M.rank()
435
+
436
+ # current implementation gets stuck in an infinite loop when dimension of Hecke alg != dimension of space
437
+ if self.is_anemic():
438
+ raise NotImplementedError("basis not implemented for anemic Hecke algebra")
439
+
440
+ if dim == 0:
441
+ basis = []
442
+ elif dim == 1:
443
+ basis = [self.hecke_operator(1)]
444
+ else:
445
+ span = [self.hecke_operator(n) for n in range(1, bound + 1)]
446
+ rand_max = 5
447
+ while True:
448
+ # Project the full Hecke module to a random submodule to ease the HNF reduction.
449
+ v = (ZZ**dim).random_element(x=rand_max)
450
+ proj_span = matrix([T.matrix() * v for T in span])._clear_denom()[0]
451
+ proj_basis = proj_span.hermite_form()
452
+ if proj_basis[dim - 1] == 0:
453
+ # We got unlucky, choose another projection.
454
+ rand_max *= 2
455
+ continue
456
+ # Lift the projected basis to a basis in the Hecke algebra.
457
+ trans = proj_span.solve_left(proj_basis)
458
+ basis = [sum(c * T for c, T in zip(row, span) if c != 0)
459
+ for row in trans[:dim]]
460
+ break
461
+
462
+ return tuple(basis)
463
+
464
+ @cached_method
465
+ def discriminant(self):
466
+ r"""
467
+ Return the discriminant of this Hecke algebra.
468
+
469
+ This is the
470
+ determinant of the matrix `{\rm Tr}(x_i x_j)` where `x_1,
471
+ \dots,x_d` is a basis for self, and `{\rm Tr}(x)` signifies
472
+ the trace (in the sense of linear algebra) of left
473
+ multiplication by `x` on the algebra (*not* the trace of the
474
+ operator `x` acting on the underlying Hecke module!). For
475
+ further discussion and conjectures see Calegari + Stein,
476
+ *Conjectures about discriminants of Hecke algebras of prime
477
+ level*, Springer LNCS 3076.
478
+
479
+ EXAMPLES::
480
+
481
+ sage: BrandtModule(3, 4).hecke_algebra().discriminant()
482
+ 1
483
+ sage: ModularSymbols(65, sign=1).cuspidal_submodule().hecke_algebra().discriminant()
484
+ 6144
485
+ sage: ModularSymbols(1,4,sign=1).cuspidal_submodule().hecke_algebra().discriminant()
486
+ 1
487
+ sage: H = CuspForms(1, 24).hecke_algebra()
488
+ sage: H.discriminant()
489
+ 83041344
490
+ """
491
+ basis = self.basis()
492
+ d = len(basis)
493
+ if d <= 1:
494
+ return ZZ.one()
495
+ trace_matrix = matrix(ZZ, d)
496
+ for i in range(d):
497
+ for j in range(i + 1):
498
+ trace_matrix[i, j] = trace_matrix[j, i] = basis[i].matrix().trace_of_product(basis[j].matrix())
499
+ return trace_matrix.det()
500
+
501
+ def gens(self) -> Iterator:
502
+ r"""
503
+ Return a generator over all Hecke operator `T_n`
504
+ for `n = 1, 2, 3, \ldots`.
505
+
506
+ This is infinite.
507
+
508
+ EXAMPLES::
509
+
510
+ sage: T = ModularSymbols(1,12).hecke_algebra()
511
+ sage: g = T.gens()
512
+ sage: next(g)
513
+ Hecke operator T_1 on Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
514
+ sage: next(g)
515
+ Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
516
+ """
517
+ n = 1
518
+ while True:
519
+ yield self.hecke_operator(n)
520
+ n += 1
521
+
522
+ @cached_method(key=lambda self, n: int(n))
523
+ def hecke_operator(self, n):
524
+ """
525
+ Return the `n`-th Hecke operator `T_n`.
526
+
527
+ EXAMPLES::
528
+
529
+ sage: T = ModularSymbols(1,12).hecke_algebra()
530
+ sage: T.hecke_operator(2)
531
+ Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
532
+ """
533
+ return self.__M._hecke_operator_class()(self, n)
534
+
535
+ def hecke_matrix(self, n, *args, **kwds):
536
+ """
537
+ Return the matrix of the `n`-th Hecke operator `T_n`.
538
+
539
+ EXAMPLES::
540
+
541
+ sage: T = ModularSymbols(1,12).hecke_algebra()
542
+ sage: T.hecke_matrix(2)
543
+ [ -24 0 0]
544
+ [ 0 -24 0]
545
+ [4860 0 2049]
546
+ """
547
+ return self.__M.hecke_matrix(n, *args, **kwds)
548
+
549
+ def diamond_bracket_matrix(self, d):
550
+ r"""
551
+ Return the matrix of the diamond bracket operator `\langle d \rangle`.
552
+
553
+ EXAMPLES::
554
+
555
+ sage: T = ModularSymbols(Gamma1(7), 4).hecke_algebra()
556
+ sage: d3 = T.diamond_bracket_matrix(3)
557
+ sage: x = d3.charpoly().variables()[0]
558
+ sage: d3.charpoly() == (x^3-1)^4
559
+ True
560
+ """
561
+ return self.__M.diamond_bracket_matrix(d)
562
+
563
+ @cached_method(key=lambda self, d: int(d) % self.__M.level())
564
+ def diamond_bracket_operator(self, d):
565
+ r"""
566
+ Return the diamond bracket operator `\langle d \rangle`.
567
+
568
+ EXAMPLES::
569
+
570
+ sage: T = ModularSymbols(Gamma1(7), 4).hecke_algebra()
571
+ sage: T.diamond_bracket_operator(3)
572
+ Diamond bracket operator <3> on Modular Symbols space of dimension 12 for Gamma_1(7) of weight 4 with sign 0 over Rational Field
573
+ """
574
+ return self.__M._diamond_operator_class()(self, d)
575
+
576
+
577
+ class HeckeAlgebra_full(HeckeAlgebra_base):
578
+ r"""
579
+ A full Hecke algebra (including the operators `T_n` where `n` is not
580
+ assumed to be coprime to the level).
581
+ """
582
+ def _repr_(self) -> str:
583
+ r"""
584
+ String representation of ``self``.
585
+
586
+ EXAMPLES::
587
+
588
+ sage: ModularForms(37).hecke_algebra()._repr_()
589
+ 'Full Hecke algebra acting on Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(37) of weight 2 over Rational Field'
590
+ """
591
+ return "Full Hecke algebra acting on %s" % self.module()
592
+
593
+ def __richcmp__(self, other, op) -> bool:
594
+ r"""
595
+ Compare ``self`` to ``other``.
596
+
597
+ EXAMPLES::
598
+
599
+ sage: A = ModularForms(37).hecke_algebra()
600
+ sage: A == QQ
601
+ False
602
+ sage: A == ModularForms(37).anemic_hecke_algebra()
603
+ False
604
+ sage: A == A
605
+ True
606
+ """
607
+ if not isinstance(other, HeckeAlgebra_full):
608
+ return NotImplemented
609
+ return richcmp(self.module(), other.module(), op)
610
+
611
+ def is_anemic(self) -> bool:
612
+ """
613
+ Return ``False``, since this the full Hecke algebra.
614
+
615
+ EXAMPLES::
616
+
617
+ sage: H = CuspForms(3, 12).hecke_algebra()
618
+ sage: H.is_anemic()
619
+ False
620
+ """
621
+ return False
622
+
623
+ def anemic_subalgebra(self):
624
+ r"""
625
+ The subalgebra of ``self`` generated by the Hecke operators of
626
+ index coprime to the level.
627
+
628
+ EXAMPLES::
629
+
630
+ sage: H = CuspForms(3, 12).hecke_algebra()
631
+ sage: H.anemic_subalgebra()
632
+ Anemic Hecke algebra acting on Cuspidal subspace of dimension 3 of Modular Forms space of dimension 5 for Congruence Subgroup Gamma0(3) of weight 12 over Rational Field
633
+ """
634
+ return self.module().anemic_hecke_algebra()
635
+
636
+
637
+ HeckeAlgebra = HeckeAlgebra_full
638
+
639
+
640
+ class HeckeAlgebra_anemic(HeckeAlgebra_base):
641
+ r"""
642
+ An anemic Hecke algebra, generated by Hecke operators with index coprime to the level.
643
+ """
644
+ def _repr_(self) -> str:
645
+ r"""
646
+ EXAMPLES::
647
+
648
+ sage: H = CuspForms(3, 12).anemic_hecke_algebra()._repr_()
649
+ """
650
+ return "Anemic Hecke algebra acting on %s" % self.module()
651
+
652
+ def __richcmp__(self, other, op) -> bool:
653
+ r"""
654
+ Compare ``self`` to ``other``.
655
+
656
+ EXAMPLES::
657
+
658
+ sage: A = ModularForms(23).anemic_hecke_algebra()
659
+ sage: A == QQ
660
+ False
661
+ sage: A == ModularForms(23).hecke_algebra()
662
+ False
663
+ sage: A == A
664
+ True
665
+ """
666
+ if not isinstance(other, HeckeAlgebra_anemic):
667
+ return NotImplemented
668
+ return richcmp(self.module(), other.module(), op)
669
+
670
+ def hecke_operator(self, n):
671
+ """
672
+ Return the `n`-th Hecke operator, for `n` any
673
+ positive integer coprime to the level.
674
+
675
+ EXAMPLES::
676
+
677
+ sage: T = ModularSymbols(Gamma1(5),3).anemic_hecke_algebra()
678
+ sage: T.hecke_operator(2)
679
+ Hecke operator T_2 on Modular Symbols space of dimension 4 for Gamma_1(5) of weight 3 with sign 0 over Rational Field
680
+ sage: T.hecke_operator(5)
681
+ Traceback (most recent call last):
682
+ ...
683
+ IndexError: Hecke operator T_5 not defined in the anemic Hecke algebra
684
+ """
685
+ n = int(n)
686
+ if gcd(self.module().level(), n) != 1:
687
+ raise IndexError("Hecke operator T_%s not defined in the anemic Hecke algebra" % n)
688
+ return self.module()._hecke_operator_class()(self, n)
689
+
690
+ def is_anemic(self) -> bool:
691
+ """
692
+ Return ``True``, since this is the anemic Hecke algebra.
693
+
694
+ EXAMPLES::
695
+
696
+ sage: H = CuspForms(3, 12).anemic_hecke_algebra()
697
+ sage: H.is_anemic()
698
+ True
699
+ """
700
+ return True
701
+
702
+ def gens(self) -> Iterator:
703
+ r"""
704
+ Return a generator over all Hecke operator `T_n` for
705
+ `n = 1, 2, 3, \ldots`, with `n` coprime to the
706
+ level. This is an infinite sequence.
707
+
708
+ EXAMPLES::
709
+
710
+ sage: T = ModularSymbols(12,2).anemic_hecke_algebra()
711
+ sage: g = T.gens()
712
+ sage: next(g)
713
+ Hecke operator T_1 on Modular Symbols space of dimension 5 for Gamma_0(12) of weight 2 with sign 0 over Rational Field
714
+ sage: next(g)
715
+ Hecke operator T_5 on Modular Symbols space of dimension 5 for Gamma_0(12) of weight 2 with sign 0 over Rational Field
716
+ """
717
+ level = self.level()
718
+ n = 1
719
+ while True:
720
+ if gcd(n, level) == 1:
721
+ yield self.hecke_operator(n)
722
+ n += 1
723
+
724
+
725
+ AnemicHeckeAlgebra = HeckeAlgebra_anemic