passagemath-schemes 10.8.1a4__cp314-cp314t-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (312) hide show
  1. passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.8.1a4.dist-info/METADATA +203 -0
  7. passagemath_schemes-10.8.1a4.dist-info/METADATA.bak +204 -0
  8. passagemath_schemes-10.8.1a4.dist-info/RECORD +312 -0
  9. passagemath_schemes-10.8.1a4.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.8.1a4.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9556 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314t-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2578 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +727 -0
  29. sage/lfunctions/pari.py +971 -0
  30. sage/lfunctions/zero_sums.cpython-314t-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5132 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +414 -0
  34. sage/modular/abvar/abvar_newform.py +246 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +187 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +721 -0
  40. sage/modular/abvar/homspace.py +989 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +741 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-314t-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1406 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-314t-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +361 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +659 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1491 -0
  57. sage/modular/arithgroup/congroup_generic.py +630 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +266 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-314t-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1067 -0
  61. sage/modular/arithgroup/tests.py +425 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3736 -0
  64. sage/modular/btquotients/pautomorphicform.py +2564 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1107 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +571 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1076 -0
  77. sage/modular/hecke/algebra.py +725 -0
  78. sage/modular/hecke/all.py +19 -0
  79. sage/modular/hecke/ambient_module.py +994 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +302 -0
  82. sage/modular/hecke/hecke_operator.py +736 -0
  83. sage/modular/hecke/homspace.py +185 -0
  84. sage/modular/hecke/module.py +1744 -0
  85. sage/modular/hecke/morphism.py +139 -0
  86. sage/modular/hecke/submodule.py +970 -0
  87. sage/modular/hypergeometric_misc.cpython-314t-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2020 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1070 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +817 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +120 -0
  101. sage/modular/modform/ambient_g1.py +199 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +487 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4105 -0
  108. sage/modular/modform/half_integral.py +154 -0
  109. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  110. sage/modular/modform/j_invariant.py +47 -0
  111. sage/modular/modform/l_series_gross_zagier.py +127 -0
  112. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314t-darwin.so +0 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  114. sage/modular/modform/notes.py +45 -0
  115. sage/modular/modform/numerical.py +514 -0
  116. sage/modular/modform/periods.py +14 -0
  117. sage/modular/modform/ring.py +1257 -0
  118. sage/modular/modform/space.py +1859 -0
  119. sage/modular/modform/submodule.py +118 -0
  120. sage/modular/modform/tests.py +64 -0
  121. sage/modular/modform/theta.py +110 -0
  122. sage/modular/modform/vm_basis.py +380 -0
  123. sage/modular/modform/weight1.py +221 -0
  124. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  125. sage/modular/modform_hecketriangle/abstract_space.py +2527 -0
  126. sage/modular/modform_hecketriangle/all.py +30 -0
  127. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  128. sage/modular/modform_hecketriangle/constructor.py +416 -0
  129. sage/modular/modform_hecketriangle/element.py +351 -0
  130. sage/modular/modform_hecketriangle/functors.py +752 -0
  131. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  132. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  133. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3349 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1426 -0
  135. sage/modular/modform_hecketriangle/readme.py +1214 -0
  136. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  137. sage/modular/modform_hecketriangle/space.py +1037 -0
  138. sage/modular/modform_hecketriangle/subspace.py +423 -0
  139. sage/modular/modsym/all.py +17 -0
  140. sage/modular/modsym/ambient.py +3844 -0
  141. sage/modular/modsym/boundary.py +1420 -0
  142. sage/modular/modsym/element.py +336 -0
  143. sage/modular/modsym/g1list.py +178 -0
  144. sage/modular/modsym/ghlist.py +182 -0
  145. sage/modular/modsym/hecke_operator.py +73 -0
  146. sage/modular/modsym/manin_symbol.cpython-314t-darwin.so +0 -0
  147. sage/modular/modsym/manin_symbol.pxd +5 -0
  148. sage/modular/modsym/manin_symbol.pyx +497 -0
  149. sage/modular/modsym/manin_symbol_list.py +1291 -0
  150. sage/modular/modsym/modsym.py +400 -0
  151. sage/modular/modsym/modular_symbols.py +384 -0
  152. sage/modular/modsym/p1list_nf.py +1241 -0
  153. sage/modular/modsym/relation_matrix.py +591 -0
  154. sage/modular/modsym/relation_matrix_pyx.cpython-314t-darwin.so +0 -0
  155. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  156. sage/modular/modsym/space.py +2468 -0
  157. sage/modular/modsym/subspace.py +455 -0
  158. sage/modular/modsym/tests.py +376 -0
  159. sage/modular/multiple_zeta.py +2635 -0
  160. sage/modular/multiple_zeta_F_algebra.py +789 -0
  161. sage/modular/overconvergent/all.py +6 -0
  162. sage/modular/overconvergent/genus0.py +1879 -0
  163. sage/modular/overconvergent/hecke_series.py +1187 -0
  164. sage/modular/overconvergent/weightspace.py +776 -0
  165. sage/modular/pollack_stevens/all.py +4 -0
  166. sage/modular/pollack_stevens/distributions.py +874 -0
  167. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  168. sage/modular/pollack_stevens/manin_map.py +856 -0
  169. sage/modular/pollack_stevens/modsym.py +1590 -0
  170. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  171. sage/modular/pollack_stevens/sigma0.py +534 -0
  172. sage/modular/pollack_stevens/space.py +1078 -0
  173. sage/modular/quasimodform/all.py +3 -0
  174. sage/modular/quasimodform/element.py +846 -0
  175. sage/modular/quasimodform/ring.py +826 -0
  176. sage/modular/quatalg/all.py +3 -0
  177. sage/modular/quatalg/brandt.py +1642 -0
  178. sage/modular/ssmod/all.py +8 -0
  179. sage/modular/ssmod/ssmod.py +827 -0
  180. sage/rings/all__sagemath_schemes.py +1 -0
  181. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  182. sage/rings/polynomial/binary_form_reduce.py +585 -0
  183. sage/schemes/all.py +41 -0
  184. sage/schemes/berkovich/all.py +6 -0
  185. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  186. sage/schemes/berkovich/berkovich_space.py +700 -0
  187. sage/schemes/curves/affine_curve.py +2924 -0
  188. sage/schemes/curves/all.py +33 -0
  189. sage/schemes/curves/closed_point.py +434 -0
  190. sage/schemes/curves/constructor.py +397 -0
  191. sage/schemes/curves/curve.py +542 -0
  192. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  193. sage/schemes/curves/point.py +463 -0
  194. sage/schemes/curves/projective_curve.py +3203 -0
  195. sage/schemes/curves/weighted_projective_curve.py +106 -0
  196. sage/schemes/curves/zariski_vankampen.py +1931 -0
  197. sage/schemes/cyclic_covers/all.py +2 -0
  198. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  199. sage/schemes/cyclic_covers/constructor.py +137 -0
  200. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  201. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  202. sage/schemes/elliptic_curves/BSD.py +991 -0
  203. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  204. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  205. sage/schemes/elliptic_curves/all.py +49 -0
  206. sage/schemes/elliptic_curves/cardinality.py +609 -0
  207. sage/schemes/elliptic_curves/cm.py +1103 -0
  208. sage/schemes/elliptic_curves/constructor.py +1530 -0
  209. sage/schemes/elliptic_curves/ec_database.py +175 -0
  210. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3971 -0
  211. sage/schemes/elliptic_curves/ell_egros.py +457 -0
  212. sage/schemes/elliptic_curves/ell_field.py +2837 -0
  213. sage/schemes/elliptic_curves/ell_finite_field.py +3249 -0
  214. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  215. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  216. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  217. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  218. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  219. sage/schemes/elliptic_curves/ell_point.py +4944 -0
  220. sage/schemes/elliptic_curves/ell_rational_field.py +7184 -0
  221. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  222. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  223. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  224. sage/schemes/elliptic_curves/formal_group.py +760 -0
  225. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  226. sage/schemes/elliptic_curves/gal_reps_number_field.py +1663 -0
  227. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  228. sage/schemes/elliptic_curves/heegner.py +7328 -0
  229. sage/schemes/elliptic_curves/height.py +2108 -0
  230. sage/schemes/elliptic_curves/hom.py +1788 -0
  231. sage/schemes/elliptic_curves/hom_composite.py +1084 -0
  232. sage/schemes/elliptic_curves/hom_fractional.py +544 -0
  233. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  234. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  235. sage/schemes/elliptic_curves/hom_sum.py +681 -0
  236. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  237. sage/schemes/elliptic_curves/homset.py +271 -0
  238. sage/schemes/elliptic_curves/isogeny_class.py +1523 -0
  239. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  240. sage/schemes/elliptic_curves/jacobian.py +247 -0
  241. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  242. sage/schemes/elliptic_curves/kraus.py +1014 -0
  243. sage/schemes/elliptic_curves/lseries_ell.py +915 -0
  244. sage/schemes/elliptic_curves/mod5family.py +105 -0
  245. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  246. sage/schemes/elliptic_curves/mod_sym_num.cpython-314t-darwin.so +0 -0
  247. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  248. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  249. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  250. sage/schemes/elliptic_curves/padics.py +1816 -0
  251. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  252. sage/schemes/elliptic_curves/period_lattice_region.cpython-314t-darwin.so +0 -0
  253. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  254. sage/schemes/elliptic_curves/saturation.py +716 -0
  255. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  256. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  257. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  258. sage/schemes/hyperelliptic_curves/all.py +6 -0
  259. sage/schemes/hyperelliptic_curves/constructor.py +369 -0
  260. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1948 -0
  261. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +936 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  264. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  265. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  266. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +312 -0
  267. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_generic.py +437 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  270. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +878 -0
  271. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  272. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  273. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3863 -0
  274. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  275. sage/schemes/jacobians/all.py +2 -0
  276. sage/schemes/overview.py +161 -0
  277. sage/schemes/plane_conics/all.py +22 -0
  278. sage/schemes/plane_conics/con_field.py +1296 -0
  279. sage/schemes/plane_conics/con_finite_field.py +158 -0
  280. sage/schemes/plane_conics/con_number_field.py +456 -0
  281. sage/schemes/plane_conics/con_rational_field.py +406 -0
  282. sage/schemes/plane_conics/con_rational_function_field.py +581 -0
  283. sage/schemes/plane_conics/constructor.py +249 -0
  284. sage/schemes/plane_quartics/all.py +2 -0
  285. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  286. sage/schemes/plane_quartics/quartic_generic.py +53 -0
  287. sage/schemes/riemann_surfaces/all.py +1 -0
  288. sage/schemes/riemann_surfaces/riemann_surface.py +4177 -0
  289. sage_wheels/share/cremona/cremona_mini.db +0 -0
  290. sage_wheels/share/ellcurves/rank0 +30427 -0
  291. sage_wheels/share/ellcurves/rank1 +31871 -0
  292. sage_wheels/share/ellcurves/rank10 +6 -0
  293. sage_wheels/share/ellcurves/rank11 +6 -0
  294. sage_wheels/share/ellcurves/rank12 +1 -0
  295. sage_wheels/share/ellcurves/rank14 +1 -0
  296. sage_wheels/share/ellcurves/rank15 +1 -0
  297. sage_wheels/share/ellcurves/rank17 +1 -0
  298. sage_wheels/share/ellcurves/rank19 +1 -0
  299. sage_wheels/share/ellcurves/rank2 +2388 -0
  300. sage_wheels/share/ellcurves/rank20 +1 -0
  301. sage_wheels/share/ellcurves/rank21 +1 -0
  302. sage_wheels/share/ellcurves/rank22 +1 -0
  303. sage_wheels/share/ellcurves/rank23 +1 -0
  304. sage_wheels/share/ellcurves/rank24 +1 -0
  305. sage_wheels/share/ellcurves/rank28 +1 -0
  306. sage_wheels/share/ellcurves/rank3 +836 -0
  307. sage_wheels/share/ellcurves/rank4 +10 -0
  308. sage_wheels/share/ellcurves/rank5 +5 -0
  309. sage_wheels/share/ellcurves/rank6 +5 -0
  310. sage_wheels/share/ellcurves/rank7 +5 -0
  311. sage_wheels/share/ellcurves/rank8 +6 -0
  312. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,989 @@
1
+ # sage_setup: distribution = sagemath-schemes
2
+ # sage.doctest: needs sage.libs.flint sage.libs.pari
3
+ """
4
+ Spaces of homomorphisms between modular abelian varieties
5
+
6
+ EXAMPLES:
7
+
8
+ First, we consider J0(37). This Jacobian has two simple factors,
9
+ corresponding to distinct newforms. These two intersect
10
+ nontrivially in J0(37).
11
+
12
+ ::
13
+
14
+ sage: J = J0(37)
15
+ sage: D = J.decomposition() ; D
16
+ [Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37),
17
+ Simple abelian subvariety 37b(1,37) of dimension 1 of J0(37)]
18
+ sage: D[0].intersection(D[1])
19
+ (Finite subgroup with invariants [2, 2] over QQ of
20
+ Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37),
21
+ Simple abelian subvariety of dimension 0 of J0(37))
22
+
23
+ As an abstract product, since these newforms are distinct, the
24
+ corresponding simple abelian varieties are not isogenous, and so
25
+ there are no maps between them. The endomorphism ring of the
26
+ corresponding product is thus isomorphic to the direct sum of the
27
+ endomorphism rings for each factor. Since the factors correspond to
28
+ abelian varieties of dimension 1, these endomorphism rings are each
29
+ isomorphic to ZZ.
30
+
31
+ ::
32
+
33
+ sage: Hom(D[0],D[1]).gens()
34
+ ()
35
+ sage: A = D[0] * D[1] ; A
36
+ Abelian subvariety of dimension 2 of J0(37) x J0(37)
37
+ sage: A.endomorphism_ring().gens()
38
+ (Abelian variety endomorphism of Abelian subvariety of dimension 2 of J0(37) x J0(37),
39
+ Abelian variety endomorphism of Abelian subvariety of dimension 2 of J0(37) x J0(37))
40
+ sage: [ x.matrix() for x in A.endomorphism_ring().gens() ]
41
+ [
42
+ [1 0 0 0] [0 0 0 0]
43
+ [0 1 0 0] [0 0 0 0]
44
+ [0 0 0 0] [0 0 1 0]
45
+ [0 0 0 0], [0 0 0 1]
46
+ ]
47
+
48
+ However, these two newforms have a congruence between them modulo
49
+ 2, which gives rise to interesting endomorphisms of J0(37).
50
+
51
+ ::
52
+
53
+ sage: E = J.endomorphism_ring()
54
+ sage: E.gens()
55
+ (Abelian variety endomorphism of Abelian variety J0(37) of dimension 2,
56
+ Abelian variety endomorphism of Abelian variety J0(37) of dimension 2)
57
+ sage: [ x.matrix() for x in E.gens() ]
58
+ [
59
+ [1 0 0 0] [ 0 1 1 -1]
60
+ [0 1 0 0] [ 1 0 1 0]
61
+ [0 0 1 0] [ 0 0 -1 1]
62
+ [0 0 0 1], [ 0 0 0 1]
63
+ ]
64
+ sage: (-1*E.gens()[0] + E.gens()[1]).matrix()
65
+ [-1 1 1 -1]
66
+ [ 1 -1 1 0]
67
+ [ 0 0 -2 1]
68
+ [ 0 0 0 0]
69
+
70
+ Of course, these endomorphisms will be reflected in the Hecke
71
+ algebra, which is in fact the full endomorphism ring of J0(37) in
72
+ this case::
73
+
74
+ sage: J.hecke_operator(2).matrix()
75
+ [-1 1 1 -1]
76
+ [ 1 -1 1 0]
77
+ [ 0 0 -2 1]
78
+ [ 0 0 0 0]
79
+ sage: T = E.image_of_hecke_algebra()
80
+ sage: T.gens()
81
+ (Abelian variety endomorphism of Abelian variety J0(37) of dimension 2,
82
+ Abelian variety endomorphism of Abelian variety J0(37) of dimension 2)
83
+ sage: [ x.matrix() for x in T.gens() ]
84
+ [
85
+ [1 0 0 0] [ 0 1 1 -1]
86
+ [0 1 0 0] [ 1 0 1 0]
87
+ [0 0 1 0] [ 0 0 -1 1]
88
+ [0 0 0 1], [ 0 0 0 1]
89
+ ]
90
+ sage: T.index_in(E)
91
+ 1
92
+
93
+ Next, we consider J0(33). In this case, we have both oldforms and
94
+ newforms. There are two copies of J0(11), one for each degeneracy
95
+ map from J0(11) to J0(33). There is also one newform at level 33.
96
+ The images of the two degeneracy maps are, of course, isogenous.
97
+
98
+ ::
99
+
100
+ sage: J = J0(33)
101
+ sage: D = J.decomposition()
102
+ sage: D
103
+ [Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33),
104
+ Simple abelian subvariety 11a(3,33) of dimension 1 of J0(33),
105
+ Simple abelian subvariety 33a(1,33) of dimension 1 of J0(33)]
106
+ sage: Hom(D[0],D[1]).gens()
107
+ (Abelian variety morphism:
108
+ From: Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
109
+ To: Simple abelian subvariety 11a(3,33) of dimension 1 of J0(33),)
110
+ sage: Hom(D[0],D[1]).gens()[0].matrix()
111
+ [ 0 1]
112
+ [-1 0]
113
+
114
+ Then this gives that the component corresponding to the sum of the
115
+ oldforms will have a rank 4 endomorphism ring. We also have a rank
116
+ one endomorphism ring for the newform 33a (since it is again
117
+ 1-dimensional), which gives a rank 5 endomorphism ring for J0(33).
118
+
119
+ ::
120
+
121
+ sage: DD = J.decomposition(simple=False) ; DD
122
+ [Abelian subvariety of dimension 2 of J0(33),
123
+ Abelian subvariety of dimension 1 of J0(33)]
124
+ sage: A, B = DD
125
+ sage: A == D[0] + D[1]
126
+ True
127
+ sage: A.endomorphism_ring().gens()
128
+ (Abelian variety endomorphism of Abelian subvariety of dimension 2 of J0(33),
129
+ Abelian variety endomorphism of Abelian subvariety of dimension 2 of J0(33),
130
+ Abelian variety endomorphism of Abelian subvariety of dimension 2 of J0(33),
131
+ Abelian variety endomorphism of Abelian subvariety of dimension 2 of J0(33))
132
+ sage: B.endomorphism_ring().gens()
133
+ (Abelian variety endomorphism of Abelian subvariety of dimension 1 of J0(33),)
134
+ sage: E = J.endomorphism_ring() ; E.gens() # long time (3s on sage.math, 2011)
135
+ (Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
136
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
137
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
138
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
139
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3)
140
+
141
+ In this case, the image of the Hecke algebra will only have rank 3,
142
+ so that it is of infinite index in the full endomorphism ring.
143
+ However, if we call this image T, we can still ask about the index
144
+ of T in its saturation, which is 1 in this case.
145
+
146
+ ::
147
+
148
+ sage: # long time
149
+ sage: T = E.image_of_hecke_algebra()
150
+ sage: T.gens()
151
+ (Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
152
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
153
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3)
154
+ sage: T.index_in(E)
155
+ +Infinity
156
+ sage: T.index_in_saturation()
157
+ 1
158
+
159
+ TESTS::
160
+
161
+ sage: J = J0(37) ; J.Hom(J)(matrix(ZZ,4,[5..20]))
162
+ Abelian variety endomorphism of Abelian variety J0(37) of dimension 2
163
+ sage: K = J0(11) * J0(11) ; J.Hom(K)(matrix(ZZ,4,[5..20]))
164
+ Abelian variety morphism:
165
+ From: Abelian variety J0(37) of dimension 2
166
+ To: Abelian variety J0(11) x J0(11) of dimension 2
167
+
168
+ AUTHORS:
169
+
170
+ - William Stein (2007-03)
171
+
172
+ - Craig Citro, Robert Bradshaw (2008-03): Rewrote with modabvar overhaul
173
+ """
174
+
175
+ # ****************************************************************************
176
+ # Copyright (C) 2007 William Stein <wstein@gmail.com>
177
+ #
178
+ # This program is free software: you can redistribute it and/or modify
179
+ # it under the terms of the GNU General Public License as published by
180
+ # the Free Software Foundation, either version 2 of the License, or
181
+ # (at your option) any later version.
182
+ # https://www.gnu.org/licenses/
183
+ # ****************************************************************************
184
+
185
+
186
+ from copy import copy
187
+
188
+ from sage.categories.homset import HomsetWithBase
189
+ from sage.structure.element import parent
190
+ from sage.structure.parent import Parent
191
+ from sage.misc.lazy_attribute import lazy_attribute
192
+
193
+
194
+ from sage.modular.abvar import morphism
195
+
196
+ from sage.rings.infinity import Infinity
197
+
198
+ from sage.matrix.matrix_space import MatrixSpace
199
+ from sage.matrix.constructor import matrix, identity_matrix
200
+ from sage.structure.element import Matrix
201
+
202
+ from sage.rings.integer_ring import ZZ
203
+
204
+
205
+ class Homspace(HomsetWithBase):
206
+ """
207
+ A space of homomorphisms between two modular abelian varieties.
208
+ """
209
+ Element = morphism.Morphism
210
+
211
+ def __init__(self, domain, codomain, cat):
212
+ """
213
+ Create a homspace.
214
+
215
+ INPUT:
216
+
217
+ - ``domain, codomain`` -- modular abelian varieties
218
+
219
+ - ``cat`` -- category
220
+
221
+ EXAMPLES::
222
+
223
+ sage: H = Hom(J0(11), J0(22)); H
224
+ Space of homomorphisms from Abelian variety J0(11) of dimension 1
225
+ to Abelian variety J0(22) of dimension 2
226
+ sage: Hom(J0(11), J0(11))
227
+ Endomorphism ring of Abelian variety J0(11) of dimension 1
228
+ sage: type(H)
229
+ <class 'sage.modular.abvar.homspace.Homspace_with_category'>
230
+ sage: H.homset_category()
231
+ Category of modular abelian varieties over Rational Field
232
+ """
233
+ from .abvar import ModularAbelianVariety_abstract
234
+ if not isinstance(domain, ModularAbelianVariety_abstract):
235
+ raise TypeError("domain must be a modular abelian variety")
236
+ if not isinstance(codomain, ModularAbelianVariety_abstract):
237
+ raise TypeError("codomain must be a modular abelian variety")
238
+ self._gens = None
239
+ HomsetWithBase.__init__(self, domain, codomain, category=cat)
240
+
241
+ def identity(self):
242
+ """
243
+ Return the identity endomorphism.
244
+
245
+ EXAMPLES::
246
+
247
+ sage: E = End(J0(11))
248
+ sage: E.identity()
249
+ Abelian variety endomorphism of Abelian variety J0(11) of dimension 1
250
+ sage: E.one()
251
+ Abelian variety endomorphism of Abelian variety J0(11) of dimension 1
252
+
253
+ sage: H = Hom(J0(11), J0(22))
254
+ sage: H.identity()
255
+ Traceback (most recent call last):
256
+ ...
257
+ TypeError: the identity map is only defined for endomorphisms
258
+ """
259
+ if self.domain() is not self.codomain():
260
+ raise TypeError("the identity map is only defined for endomorphisms")
261
+ M = self.matrix_space().one()
262
+ return self.element_class(self, M)
263
+
264
+ @lazy_attribute
265
+ def _matrix_space(self):
266
+ """
267
+ Return the matrix space of ``self``.
268
+
269
+ .. WARNING::
270
+
271
+ During unpickling, the domain and codomain may be unable to
272
+ provide the necessary information. This is why this is a lazy
273
+ attribute. See :issue:`14793`.
274
+
275
+ EXAMPLES::
276
+
277
+ sage: Hom(J0(11), J0(22))._matrix_space
278
+ Full MatrixSpace of 2 by 4 dense matrices over Integer Ring
279
+ """
280
+ return MatrixSpace(ZZ, 2*self.domain().dimension(), 2*self.codomain().dimension())
281
+
282
+ def _element_constructor_from_element_class(self, *args, **keywords):
283
+ """
284
+ Used in the coercion framework. Unfortunately, the default method
285
+ would get the order of parent and data different from what is expected
286
+ in ``MatrixMorphism.__init__``.
287
+
288
+ EXAMPLES::
289
+
290
+ sage: H = Hom(J0(11), J0(22))
291
+ sage: phi = H(matrix(ZZ,2,4,[5..12])); phi # indirect doctest
292
+ Abelian variety morphism:
293
+ From: Abelian variety J0(11) of dimension 1
294
+ To: Abelian variety J0(22) of dimension 2
295
+ """
296
+ return self.element_class(self, *args, **keywords)
297
+
298
+ def __call__(self, M, **kwds):
299
+ r"""
300
+ Create a homomorphism in this space from M. M can be any of the
301
+ following:
302
+
303
+ - a Morphism of abelian varieties
304
+
305
+ - a matrix of the appropriate size
306
+ (i.e. 2\*self.domain().dimension() x
307
+ 2\*self.codomain().dimension()) whose entries are coercible
308
+ into self.base_ring()
309
+
310
+ - anything that can be coerced into self.matrix_space()
311
+
312
+ EXAMPLES::
313
+
314
+ sage: H = Hom(J0(11), J0(22))
315
+ sage: phi = H(matrix(ZZ,2,4,[5..12])) ; phi
316
+ Abelian variety morphism:
317
+ From: Abelian variety J0(11) of dimension 1
318
+ To: Abelian variety J0(22) of dimension 2
319
+ sage: phi.matrix()
320
+ [ 5 6 7 8]
321
+ [ 9 10 11 12]
322
+ sage: phi.matrix().parent()
323
+ Full MatrixSpace of 2 by 4 dense matrices over Integer Ring
324
+
325
+ ::
326
+
327
+ sage: H = J0(22).Hom(J0(11)*J0(11))
328
+ sage: m1 = J0(22).degeneracy_map(11,1).matrix() ; m1
329
+ [ 0 1]
330
+ [-1 1]
331
+ [-1 0]
332
+ [ 0 -1]
333
+ sage: m2 = J0(22).degeneracy_map(11,2).matrix() ; m2
334
+ [ 1 -2]
335
+ [ 0 -2]
336
+ [ 1 -1]
337
+ [ 0 -1]
338
+ sage: m = m1.transpose().stack(m2.transpose()).transpose() ; m
339
+ [ 0 1 1 -2]
340
+ [-1 1 0 -2]
341
+ [-1 0 1 -1]
342
+ [ 0 -1 0 -1]
343
+ sage: phi = H(m) ; phi
344
+ Abelian variety morphism:
345
+ From: Abelian variety J0(22) of dimension 2
346
+ To: Abelian variety J0(11) x J0(11) of dimension 2
347
+ sage: phi.matrix()
348
+ [ 0 1 1 -2]
349
+ [-1 1 0 -2]
350
+ [-1 0 1 -1]
351
+ [ 0 -1 0 -1]
352
+ """
353
+ side = kwds.get("side", "left")
354
+ if isinstance(M, morphism.Morphism):
355
+ if M.parent() is self:
356
+ return M
357
+ elif M.domain() == self.domain() and M.codomain() == self.codomain():
358
+ M = M.matrix()
359
+ else:
360
+ raise ValueError("cannot convert %s into %s" % (M, self))
361
+ elif isinstance(M, Matrix):
362
+ if M.base_ring() != ZZ:
363
+ M = M.change_ring(ZZ)
364
+ if side == "left":
365
+ if M.nrows() != 2*self.domain().dimension() or M.ncols() != 2*self.codomain().dimension():
366
+ raise TypeError("matrix has wrong dimension")
367
+ else:
368
+ if M.ncols() != 2*self.domain().dimension() or M.nrows() != 2*self.codomain().dimension():
369
+ raise TypeError("matrix has wrong dimension")
370
+ elif self.matrix_space().has_coerce_map_from(parent(M)):
371
+ M = self.matrix_space()(M)
372
+ else:
373
+ raise TypeError("can only coerce in matrices or morphisms")
374
+ return self.element_class(self, M, side)
375
+
376
+ def _repr_(self):
377
+ """
378
+ String representation of a modular abelian variety homspace.
379
+
380
+ EXAMPLES::
381
+
382
+ sage: J = J0(11)
383
+ sage: End(J)._repr_()
384
+ 'Endomorphism ring of Abelian variety J0(11) of dimension 1'
385
+ """
386
+ return "Space of homomorphisms from %s to %s" %\
387
+ (self.domain(), self.codomain())
388
+
389
+ def _get_matrix(self, g):
390
+ """
391
+ Given an object g, try to return a matrix corresponding to g with
392
+ dimensions the same as those of self.matrix_space().
393
+
394
+ INPUT:
395
+
396
+ - ``g`` -- a matrix or morphism or object with a list method
397
+
398
+ OUTPUT: a matrix
399
+
400
+ EXAMPLES::
401
+
402
+ sage: E = End(J0(11))
403
+ sage: E._get_matrix(matrix(QQ,2,[1,2,3,4]))
404
+ [1 2]
405
+ [3 4]
406
+ sage: E._get_matrix(J0(11).hecke_operator(2))
407
+ [-2 0]
408
+ [ 0 -2]
409
+
410
+ ::
411
+
412
+ sage: H = Hom(J0(11) * J0(17), J0(22))
413
+ sage: H._get_matrix(tuple([8..23]))
414
+ [ 8 9 10 11]
415
+ [12 13 14 15]
416
+ [16 17 18 19]
417
+ [20 21 22 23]
418
+ sage: H._get_matrix(tuple([8..23]))
419
+ [ 8 9 10 11]
420
+ [12 13 14 15]
421
+ [16 17 18 19]
422
+ [20 21 22 23]
423
+ sage: H._get_matrix([8..23])
424
+ [ 8 9 10 11]
425
+ [12 13 14 15]
426
+ [16 17 18 19]
427
+ [20 21 22 23]
428
+ """
429
+ try:
430
+ if g.parent() is self.matrix_space():
431
+ return g
432
+ except AttributeError:
433
+ pass
434
+
435
+ if isinstance(g, morphism.Morphism):
436
+ return g.matrix()
437
+ elif hasattr(g, 'list'):
438
+ return self.matrix_space()(g.list())
439
+ else:
440
+ return self.matrix_space()(g)
441
+
442
+ def free_module(self):
443
+ r"""
444
+ Return this endomorphism ring as a free submodule of a big
445
+ `\ZZ^{4nm}`, where `n` is the dimension of
446
+ the domain abelian variety and `m` the dimension of the
447
+ codomain.
448
+
449
+ OUTPUT: free module
450
+
451
+ EXAMPLES::
452
+
453
+ sage: E = Hom(J0(11), J0(22))
454
+ sage: E.free_module()
455
+ Free module of degree 8 and rank 2 over Integer Ring
456
+ Echelon basis matrix:
457
+ [ 1 0 -3 1 1 1 -1 -1]
458
+ [ 0 1 -3 1 1 1 -1 0]
459
+ """
460
+ self.calculate_generators()
461
+ V = ZZ**(4*self.domain().dimension() * self.codomain().dimension())
462
+ return V.submodule([V(m.matrix().list()) for m in self.gens()])
463
+
464
+ def gen(self, i=0):
465
+ """
466
+ Return `i`-th generator of ``self``.
467
+
468
+ INPUT:
469
+
470
+ - ``i`` -- integer
471
+
472
+ OUTPUT: a morphism
473
+
474
+ EXAMPLES::
475
+
476
+ sage: E = End(J0(22))
477
+ sage: E.gen(0).matrix()
478
+ [1 0 0 0]
479
+ [0 1 0 0]
480
+ [0 0 1 0]
481
+ [0 0 0 1]
482
+ """
483
+ self.calculate_generators()
484
+ if i > self.ngens():
485
+ raise ValueError("self only has %s generators" % self.ngens())
486
+ return self.element_class(self, self._gens[i])
487
+
488
+ def ngens(self):
489
+ """
490
+ Return number of generators of ``self``.
491
+
492
+ OUTPUT: integer
493
+
494
+ EXAMPLES::
495
+
496
+ sage: E = End(J0(22))
497
+ sage: E.ngens()
498
+ 4
499
+ """
500
+ self.calculate_generators()
501
+ return len(self._gens)
502
+
503
+ def gens(self) -> tuple:
504
+ """
505
+ Return tuple of generators for this endomorphism ring.
506
+
507
+ EXAMPLES::
508
+
509
+ sage: E = End(J0(22))
510
+ sage: E.gens()
511
+ (Abelian variety endomorphism of Abelian variety J0(22) of dimension 2,
512
+ Abelian variety endomorphism of Abelian variety J0(22) of dimension 2,
513
+ Abelian variety endomorphism of Abelian variety J0(22) of dimension 2,
514
+ Abelian variety endomorphism of Abelian variety J0(22) of dimension 2)
515
+ """
516
+ try:
517
+ return self._gen_morphisms
518
+ except AttributeError:
519
+ self.calculate_generators()
520
+ self._gen_morphisms = tuple([self.gen(i) for i in range(self.ngens())])
521
+ return self._gen_morphisms
522
+
523
+ def matrix_space(self):
524
+ """
525
+ Return the underlying matrix space that we view this endomorphism
526
+ ring as being embedded into.
527
+
528
+ EXAMPLES::
529
+
530
+ sage: E = End(J0(22))
531
+ sage: E.matrix_space()
532
+ Full MatrixSpace of 4 by 4 dense matrices over Integer Ring
533
+ """
534
+ return self._matrix_space
535
+
536
+ def calculate_generators(self):
537
+ """
538
+ If generators haven't already been computed, calculate generators
539
+ for this homspace. If they have been computed, do nothing.
540
+
541
+ EXAMPLES::
542
+
543
+ sage: E = End(J0(11))
544
+ sage: E.calculate_generators()
545
+ """
546
+
547
+ if self._gens is not None:
548
+ return
549
+
550
+ if (self.domain() == self.codomain()) and (self.domain().dimension() == 1):
551
+ self._gens = (identity_matrix(ZZ, 2),)
552
+ return
553
+
554
+ phi = self.domain()._isogeny_to_product_of_powers()
555
+ psi = self.codomain()._isogeny_to_product_of_powers()
556
+
557
+ H_simple = phi.codomain().Hom(psi.codomain())
558
+ im_gens = H_simple._calculate_product_gens()
559
+
560
+ M = phi.matrix()
561
+ Mt = psi.complementary_isogeny().matrix()
562
+
563
+ R = ZZ**(4*self.domain().dimension()*self.codomain().dimension())
564
+ gens = R.submodule([(M*self._get_matrix(g)*Mt).list()
565
+ for g in im_gens]).saturation().basis()
566
+ self._gens = tuple([self._get_matrix(g) for g in gens])
567
+
568
+ def _calculate_product_gens(self):
569
+ """
570
+ For internal use.
571
+
572
+ Calculate generators for ``self``, assuming that ``self`` is a product
573
+ of simple factors.
574
+
575
+ EXAMPLES::
576
+
577
+ sage: E = End(J0(37))
578
+ sage: E.gens()
579
+ (Abelian variety endomorphism of Abelian variety J0(37) of dimension 2,
580
+ Abelian variety endomorphism of Abelian variety J0(37) of dimension 2)
581
+ sage: [ x.matrix() for x in E.gens() ]
582
+ [
583
+ [1 0 0 0] [ 0 1 1 -1]
584
+ [0 1 0 0] [ 1 0 1 0]
585
+ [0 0 1 0] [ 0 0 -1 1]
586
+ [0 0 0 1], [ 0 0 0 1]
587
+ ]
588
+ sage: E._calculate_product_gens()
589
+ [
590
+ [1 0 0 0] [0 0 0 0]
591
+ [0 1 0 0] [0 0 0 0]
592
+ [0 0 0 0] [0 0 1 0]
593
+ [0 0 0 0], [0 0 0 1]
594
+ ]
595
+ """
596
+ Afactors = self.domain().decomposition(simple=False)
597
+ Bfactors = self.codomain().decomposition(simple=False)
598
+ if len(Afactors) == 1 and len(Bfactors) == 1:
599
+ Asimples = Afactors[0].decomposition()
600
+ Bsimples = Bfactors[0].decomposition()
601
+ if len(Asimples) == 1 and len(Bsimples) == 1:
602
+ # Handle the base case of A, B simple
603
+ gens = self._calculate_simple_gens()
604
+
605
+ else:
606
+ # Handle the case of A, B simple powers
607
+ gens = []
608
+ phi_matrix = Afactors[0]._isogeny_to_product_of_simples().matrix()
609
+ psi_t_matrix = Bfactors[0]._isogeny_to_product_of_simples().complementary_isogeny().matrix()
610
+ for i in range(len(Asimples)):
611
+ for j in range(len(Bsimples)):
612
+ hom_gens = Asimples[i].Hom(Bsimples[j]).gens()
613
+ for sub_gen in hom_gens:
614
+ sub_mat = sub_gen.matrix()
615
+ M = copy(self.matrix_space().zero_matrix())
616
+ M.set_block(sub_mat.nrows()*i, sub_mat.ncols()*j, sub_mat)
617
+ gens.append(phi_matrix * M * psi_t_matrix)
618
+
619
+ else:
620
+ # Handle the case of A, B generic
621
+ gens = []
622
+ cur_row = 0
623
+ for Afactor in Afactors:
624
+ cur_row += Afactor.dimension() * 2
625
+ cur_col = 0
626
+ for Bfactor in Bfactors:
627
+ cur_col += Bfactor.dimension() * 2
628
+ Asimple = Afactor[0]
629
+ Bsimple = Bfactor[0]
630
+ if Asimple.newform_label() == Bsimple.newform_label():
631
+ for sub_gen in Afactor.Hom(Bfactor).gens():
632
+ sub_mat = sub_gen.matrix()
633
+ M = copy(self.matrix_space().zero_matrix())
634
+ M.set_block(cur_row - sub_mat.nrows(),
635
+ cur_col - sub_mat.ncols(),
636
+ sub_mat)
637
+ gens.append(M)
638
+
639
+ return gens
640
+
641
+ def _calculate_simple_gens(self):
642
+ """
643
+ Calculate generators for ``self``, where both the domain and codomain
644
+ for ``self`` are assumed to be simple abelian varieties.
645
+
646
+ The saturation of the span of these generators in ``self``
647
+ will be the full space of homomorphisms from the domain of
648
+ ``self`` to its codomain.
649
+
650
+ EXAMPLES::
651
+
652
+ sage: H = Hom(J0(11), J0(22)[0])
653
+ sage: H._calculate_simple_gens()
654
+ [
655
+ [1 0]
656
+ [1 1]
657
+ ]
658
+ sage: J = J0(11) * J0(33) ; J.decomposition()
659
+ [Simple abelian subvariety 11a(1,11) of dimension 1 of J0(11) x J0(33),
660
+ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(11) x J0(33),
661
+ Simple abelian subvariety 11a(3,33) of dimension 1 of J0(11) x J0(33),
662
+ Simple abelian subvariety 33a(1,33) of dimension 1 of J0(11) x J0(33)]
663
+ sage: J[0].Hom(J[1])._calculate_simple_gens()
664
+ [
665
+ [ 0 -1]
666
+ [ 1 -1]
667
+ ]
668
+ sage: J[0].Hom(J[2])._calculate_simple_gens()
669
+ [
670
+ [-1 0]
671
+ [-1 -1]
672
+ ]
673
+ sage: J[0].Hom(J[0])._calculate_simple_gens()
674
+ [
675
+ [1 0]
676
+ [0 1]
677
+ ]
678
+ sage: J[1].Hom(J[2])._calculate_simple_gens()
679
+ [
680
+ [ 0 -4]
681
+ [ 4 0]
682
+ ]
683
+
684
+ ::
685
+
686
+ sage: J = J0(23) ; J.decomposition()
687
+ [Simple abelian variety J0(23) of dimension 2]
688
+ sage: J[0].Hom(J[0])._calculate_simple_gens()
689
+ [
690
+ [1 0 0 0] [ 0 1 -1 0]
691
+ [0 1 0 0] [ 0 1 -1 1]
692
+ [0 0 1 0] [-1 2 -2 1]
693
+ [0 0 0 1], [-1 1 0 -1]
694
+ ]
695
+ sage: J.hecke_operator(2).matrix()
696
+ [ 0 1 -1 0]
697
+ [ 0 1 -1 1]
698
+ [-1 2 -2 1]
699
+ [-1 1 0 -1]
700
+
701
+ ::
702
+
703
+ sage: H = Hom(J0(11), J0(22)[0])
704
+ sage: H._calculate_simple_gens()
705
+ [
706
+ [1 0]
707
+ [1 1]
708
+ ]
709
+ """
710
+ A = self.domain()
711
+ B = self.codomain()
712
+
713
+ if A.newform_label() != B.newform_label():
714
+ return []
715
+
716
+ f = A._isogeny_to_newform_abelian_variety()
717
+ g = B._isogeny_to_newform_abelian_variety().complementary_isogeny()
718
+
719
+ Af = f.codomain()
720
+ ls = Af._calculate_endomorphism_generators()
721
+
722
+ Mf = f.matrix()
723
+ Mg = g.matrix()
724
+
725
+ return [Mf * self._get_matrix(e) * Mg for e in ls]
726
+
727
+
728
+ # NOTE/WARNING/TODO: Below in the __init__, etc. we do *not* check
729
+ # that the input gens are give something that spans a sub*ring*, as opposed
730
+ # to just a subgroup.
731
+ class EndomorphismSubring(Homspace):
732
+
733
+ def __init__(self, A, gens=None, category=None):
734
+ """
735
+ A subring of the endomorphism ring.
736
+
737
+ INPUT:
738
+
739
+ - ``A`` -- an abelian variety
740
+
741
+ - ``gens`` -- (default: ``None``) if given
742
+ should be a tuple of the generators as matrices
743
+
744
+ EXAMPLES::
745
+
746
+ sage: J0(23).endomorphism_ring()
747
+ Endomorphism ring of Abelian variety J0(23) of dimension 2
748
+ sage: sage.modular.abvar.homspace.EndomorphismSubring(J0(25))
749
+ Endomorphism ring of Abelian variety J0(25) of dimension 0
750
+ sage: E = J0(11).endomorphism_ring()
751
+ sage: type(E)
752
+ <class 'sage.modular.abvar.homspace.EndomorphismSubring_with_category'>
753
+ sage: E.homset_category()
754
+ Category of modular abelian varieties over Rational Field
755
+ sage: E.category()
756
+ Category of endsets of modular abelian varieties over Rational Field
757
+ sage: E in Rings()
758
+ True
759
+ sage: TestSuite(E).run(skip=["_test_prod"])
760
+
761
+ TESTS:
762
+
763
+ The following tests against a problem on 32 bit machines that
764
+ occurred while working on :issue:`9944`::
765
+
766
+ sage: sage.modular.abvar.homspace.EndomorphismSubring(J1(12345))
767
+ Endomorphism ring of Abelian variety J1(12345) of dimension 5405473
768
+
769
+ :issue:`16275` removed the custom ``__reduce__`` method, since
770
+ :meth:`Homset.__reduce__` already implements appropriate
771
+ unpickling by construction::
772
+
773
+ sage: E.__reduce__.__module__
774
+ 'sage.categories.homset'
775
+ sage: E.__reduce__()
776
+ (<function Hom at ...>,
777
+ (Abelian variety J0(11) of dimension 1,
778
+ Abelian variety J0(11) of dimension 1,
779
+ Category of modular abelian varieties over Rational Field,
780
+ False))
781
+ """
782
+ self._J = A.ambient_variety()
783
+ self._A = A
784
+
785
+ # Initialise self with the correct category.
786
+ if category is None:
787
+ homset_cat = A.category()
788
+ else:
789
+ homset_cat = category
790
+ # Remark: Parent.__init__ will automatically form the join
791
+ # of the category of rings and of homset_cat
792
+ Parent.__init__(self, A.base_ring(), category=homset_cat.Endsets())
793
+ Homspace.__init__(self, A, A, cat=homset_cat)
794
+ if gens is None:
795
+ self._gens = None
796
+ else:
797
+ self._gens = tuple([self._get_matrix(g) for g in gens])
798
+ self._is_full_ring = gens is None
799
+
800
+ def _repr_(self):
801
+ """
802
+ Return the string representation of ``self``.
803
+
804
+ EXAMPLES::
805
+
806
+ sage: J0(31).endomorphism_ring()._repr_()
807
+ 'Endomorphism ring of Abelian variety J0(31) of dimension 2'
808
+ sage: J0(31).endomorphism_ring().image_of_hecke_algebra()._repr_()
809
+ 'Subring of endomorphism ring of Abelian variety J0(31) of dimension 2'
810
+ """
811
+ if self._is_full_ring:
812
+ return "Endomorphism ring of %s" % self._A
813
+ else:
814
+ return "Subring of endomorphism ring of %s" % self._A
815
+
816
+ def abelian_variety(self):
817
+ """
818
+ Return the abelian variety that this endomorphism ring is attached
819
+ to.
820
+
821
+ EXAMPLES::
822
+
823
+ sage: J0(11).endomorphism_ring().abelian_variety()
824
+ Abelian variety J0(11) of dimension 1
825
+ """
826
+ return self._A
827
+
828
+ def index_in(self, other, check=True):
829
+ """
830
+ Return the index of ``self`` in ``other``.
831
+
832
+ INPUT:
833
+
834
+ - ``other`` -- another endomorphism subring of the
835
+ same abelian variety
836
+
837
+ - ``check`` -- boolean (default: ``True``); whether to do some
838
+ type and other consistency checks
839
+
840
+ EXAMPLES::
841
+
842
+ sage: R = J0(33).endomorphism_ring()
843
+ sage: R.index_in(R)
844
+ 1
845
+ sage: J = J0(37) ; E = J.endomorphism_ring() ; T = E.image_of_hecke_algebra()
846
+ sage: T.index_in(E)
847
+ 1
848
+ sage: J = J0(22) ; E = J.endomorphism_ring() ; T = E.image_of_hecke_algebra()
849
+ sage: T.index_in(E)
850
+ +Infinity
851
+ """
852
+ if check:
853
+ if not isinstance(other, EndomorphismSubring):
854
+ raise ValueError("other must be a subring of an endomorphism ring of an abelian variety.")
855
+ if not (self.abelian_variety() == other.abelian_variety()):
856
+ raise ValueError("self and other must be endomorphisms of the same abelian variety")
857
+
858
+ M = self.free_module()
859
+ N = other.free_module()
860
+ if M.rank() < N.rank():
861
+ return Infinity
862
+ return M.index_in(N)
863
+
864
+ def index_in_saturation(self):
865
+ """
866
+ Given a Hecke algebra T, compute its index in its saturation.
867
+
868
+ EXAMPLES::
869
+
870
+ sage: End(J0(23)).image_of_hecke_algebra().index_in_saturation()
871
+ 1
872
+ sage: End(J0(44)).image_of_hecke_algebra().index_in_saturation()
873
+ 2
874
+ """
875
+ A = self.abelian_variety()
876
+ d = A.dimension()
877
+ M = ZZ**(4*d**2)
878
+ gens = [x.matrix().list() for x in self.gens()]
879
+ R = M.submodule(gens)
880
+ return R.index_in_saturation()
881
+
882
+ def discriminant(self):
883
+ """
884
+ Return the discriminant of this ring, which is the discriminant of
885
+ the trace pairing.
886
+
887
+ .. NOTE::
888
+
889
+ One knows that for modular abelian varieties, the
890
+ endomorphism ring should be isomorphic to an order in a
891
+ number field. However, the discriminant returned by this
892
+ function will be `2^n` ( `n =`
893
+ self.dimension()) times the discriminant of that order,
894
+ since the elements are represented as 2d x 2d
895
+ matrices. Notice, for example, that the case of a one
896
+ dimensional abelian variety, whose endomorphism ring must
897
+ be ZZ, has discriminant 2, as in the example below.
898
+
899
+ EXAMPLES::
900
+
901
+ sage: J0(33).endomorphism_ring().discriminant()
902
+ -64800
903
+ sage: J0(46).endomorphism_ring().discriminant() # long time (6s on sage.math, 2011)
904
+ 24200000000
905
+ sage: J0(11).endomorphism_ring().discriminant()
906
+ 2
907
+ """
908
+ g = self.gens()
909
+ M = matrix(ZZ, len(g), [(g[i]*g[j]).trace()
910
+ for i in range(len(g)) for j in range(len(g))])
911
+ return M.determinant()
912
+
913
+ def image_of_hecke_algebra(self, check_every=1):
914
+ """
915
+ Compute the image of the Hecke algebra inside this endomorphism
916
+ subring.
917
+
918
+ We simply calculate Hecke operators up to the Sturm bound, and look
919
+ at the submodule spanned by them. While computing, we can check to
920
+ see if the submodule spanned so far is saturated and of maximal
921
+ dimension, in which case we may be done. The optional argument
922
+ check_every determines how many Hecke operators we add in before
923
+ checking to see if this condition is met.
924
+
925
+ INPUT:
926
+
927
+ - ``check_every`` -- integer (default: 1); if this integer is positive,
928
+ this integer determines how many Hecke operators we add in before
929
+ checking to see if the submodule spanned so far is maximal and
930
+ saturated
931
+
932
+ OUTPUT: the image of the Hecke algebra as a subring of ``self``
933
+
934
+ EXAMPLES::
935
+
936
+ sage: E = J0(33).endomorphism_ring()
937
+ sage: E.image_of_hecke_algebra()
938
+ Subring of endomorphism ring of Abelian variety J0(33) of dimension 3
939
+ sage: E.image_of_hecke_algebra().gens()
940
+ (Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
941
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3,
942
+ Abelian variety endomorphism of Abelian variety J0(33) of dimension 3)
943
+ sage: [ x.matrix() for x in E.image_of_hecke_algebra().gens() ]
944
+ [
945
+ [1 0 0 0 0 0] [ 0 2 0 -1 1 -1] [ 0 0 1 -1 1 -1]
946
+ [0 1 0 0 0 0] [-1 -2 2 -1 2 -1] [ 0 -1 1 0 1 -1]
947
+ [0 0 1 0 0 0] [ 0 0 1 -1 3 -1] [ 0 0 1 0 2 -2]
948
+ [0 0 0 1 0 0] [-2 2 0 1 1 -1] [-2 0 1 1 1 -1]
949
+ [0 0 0 0 1 0] [-1 1 0 2 0 -3] [-1 0 1 1 0 -1]
950
+ [0 0 0 0 0 1], [-1 1 -1 1 1 -2], [-1 0 0 1 0 -1]
951
+ ]
952
+ sage: J0(33).hecke_operator(2).matrix()
953
+ [-1 0 1 -1 1 -1]
954
+ [ 0 -2 1 0 1 -1]
955
+ [ 0 0 0 0 2 -2]
956
+ [-2 0 1 0 1 -1]
957
+ [-1 0 1 1 -1 -1]
958
+ [-1 0 0 1 0 -2]
959
+ """
960
+ try:
961
+ return self.__hecke_algebra_image
962
+ except AttributeError:
963
+ pass
964
+
965
+ A = self.abelian_variety()
966
+ if not A.is_hecke_stable():
967
+ raise ValueError("ambient variety is not Hecke stable")
968
+
969
+ M = A.modular_symbols()
970
+
971
+ d = A.dimension()
972
+ EndVecZ = ZZ**(4*d**2)
973
+
974
+ if d == 1:
975
+ self.__hecke_algebra_image = EndomorphismSubring(A, [[1, 0, 0, 1]])
976
+ return self.__hecke_algebra_image
977
+
978
+ V = EndVecZ.submodule([A.hecke_operator(1).matrix().list()])
979
+
980
+ for n in range(2, M.sturm_bound()+1):
981
+ if (check_every > 0 and
982
+ n % check_every == 0 and
983
+ V.dimension() == d and
984
+ V.index_in_saturation() == 1):
985
+ break
986
+ V += EndVecZ.submodule([A.hecke_operator(n).matrix().list()])
987
+
988
+ self.__hecke_algebra_image = EndomorphismSubring(A, V.basis())
989
+ return self.__hecke_algebra_image