passagemath-objects 10.6.44__cp314-cp314t-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (280) hide show
  1. passagemath_objects/.dylibs/libgmp.10.dylib +0 -0
  2. passagemath_objects/__init__.py +3 -0
  3. passagemath_objects-10.6.44.dist-info/METADATA +115 -0
  4. passagemath_objects-10.6.44.dist-info/RECORD +280 -0
  5. passagemath_objects-10.6.44.dist-info/WHEEL +6 -0
  6. passagemath_objects-10.6.44.dist-info/top_level.txt +3 -0
  7. sage/all__sagemath_objects.py +37 -0
  8. sage/arith/all__sagemath_objects.py +5 -0
  9. sage/arith/long.pxd +411 -0
  10. sage/arith/numerical_approx.cpython-314t-darwin.so +0 -0
  11. sage/arith/numerical_approx.pxd +35 -0
  12. sage/arith/numerical_approx.pyx +75 -0
  13. sage/arith/power.cpython-314t-darwin.so +0 -0
  14. sage/arith/power.pxd +31 -0
  15. sage/arith/power.pyx +127 -0
  16. sage/categories/action.cpython-314t-darwin.so +0 -0
  17. sage/categories/action.pxd +29 -0
  18. sage/categories/action.pyx +641 -0
  19. sage/categories/algebra_functor.py +745 -0
  20. sage/categories/all__sagemath_objects.py +33 -0
  21. sage/categories/basic.py +62 -0
  22. sage/categories/cartesian_product.py +295 -0
  23. sage/categories/category.py +3401 -0
  24. sage/categories/category_cy_helper.cpython-314t-darwin.so +0 -0
  25. sage/categories/category_cy_helper.pxd +8 -0
  26. sage/categories/category_cy_helper.pyx +322 -0
  27. sage/categories/category_singleton.cpython-314t-darwin.so +0 -0
  28. sage/categories/category_singleton.pxd +3 -0
  29. sage/categories/category_singleton.pyx +342 -0
  30. sage/categories/category_types.py +637 -0
  31. sage/categories/category_with_axiom.py +2876 -0
  32. sage/categories/covariant_functorial_construction.py +703 -0
  33. sage/categories/facade_sets.py +228 -0
  34. sage/categories/functor.cpython-314t-darwin.so +0 -0
  35. sage/categories/functor.pxd +7 -0
  36. sage/categories/functor.pyx +691 -0
  37. sage/categories/homset.py +1338 -0
  38. sage/categories/homsets.py +364 -0
  39. sage/categories/isomorphic_objects.py +73 -0
  40. sage/categories/map.cpython-314t-darwin.so +0 -0
  41. sage/categories/map.pxd +34 -0
  42. sage/categories/map.pyx +2106 -0
  43. sage/categories/morphism.cpython-314t-darwin.so +0 -0
  44. sage/categories/morphism.pxd +14 -0
  45. sage/categories/morphism.pyx +895 -0
  46. sage/categories/objects.py +167 -0
  47. sage/categories/primer.py +1696 -0
  48. sage/categories/pushout.py +4834 -0
  49. sage/categories/quotients.py +64 -0
  50. sage/categories/realizations.py +200 -0
  51. sage/categories/sets_cat.py +3290 -0
  52. sage/categories/sets_with_partial_maps.py +52 -0
  53. sage/categories/subobjects.py +64 -0
  54. sage/categories/subquotients.py +21 -0
  55. sage/categories/with_realizations.py +311 -0
  56. sage/cpython/__init__.py +19 -0
  57. sage/cpython/_py2_random.py +619 -0
  58. sage/cpython/all.py +3 -0
  59. sage/cpython/atexit.cpython-314t-darwin.so +0 -0
  60. sage/cpython/atexit.pyx +269 -0
  61. sage/cpython/builtin_types.cpython-314t-darwin.so +0 -0
  62. sage/cpython/builtin_types.pyx +7 -0
  63. sage/cpython/cython_metaclass.cpython-314t-darwin.so +0 -0
  64. sage/cpython/cython_metaclass.h +117 -0
  65. sage/cpython/cython_metaclass.pxd +3 -0
  66. sage/cpython/cython_metaclass.pyx +130 -0
  67. sage/cpython/debug.cpython-314t-darwin.so +0 -0
  68. sage/cpython/debug.pyx +302 -0
  69. sage/cpython/dict_del_by_value.cpython-314t-darwin.so +0 -0
  70. sage/cpython/dict_del_by_value.pxd +9 -0
  71. sage/cpython/dict_del_by_value.pyx +191 -0
  72. sage/cpython/dict_internal.h +245 -0
  73. sage/cpython/getattr.cpython-314t-darwin.so +0 -0
  74. sage/cpython/getattr.pxd +9 -0
  75. sage/cpython/getattr.pyx +439 -0
  76. sage/cpython/pycore_long.h +97 -0
  77. sage/cpython/pycore_long.pxd +10 -0
  78. sage/cpython/python_debug.h +44 -0
  79. sage/cpython/python_debug.pxd +47 -0
  80. sage/cpython/pyx_visit.h +13 -0
  81. sage/cpython/string.cpython-314t-darwin.so +0 -0
  82. sage/cpython/string.pxd +76 -0
  83. sage/cpython/string.pyx +34 -0
  84. sage/cpython/string_impl.h +60 -0
  85. sage/cpython/type.cpython-314t-darwin.so +0 -0
  86. sage/cpython/type.pxd +2 -0
  87. sage/cpython/type.pyx +40 -0
  88. sage/cpython/wrapperdescr.pxd +67 -0
  89. sage/ext/all__sagemath_objects.py +3 -0
  90. sage/ext/ccobject.h +64 -0
  91. sage/ext/cplusplus.pxd +17 -0
  92. sage/ext/mod_int.h +30 -0
  93. sage/ext/mod_int.pxd +24 -0
  94. sage/ext/stdsage.pxd +39 -0
  95. sage/groups/all__sagemath_objects.py +1 -0
  96. sage/groups/group.cpython-314t-darwin.so +0 -0
  97. sage/groups/group.pxd +14 -0
  98. sage/groups/group.pyx +322 -0
  99. sage/groups/old.cpython-314t-darwin.so +0 -0
  100. sage/groups/old.pxd +14 -0
  101. sage/groups/old.pyx +219 -0
  102. sage/libs/all__sagemath_objects.py +3 -0
  103. sage/libs/gmp/__init__.py +1 -0
  104. sage/libs/gmp/all.pxd +6 -0
  105. sage/libs/gmp/binop.pxd +23 -0
  106. sage/libs/gmp/misc.pxd +8 -0
  107. sage/libs/gmp/mpf.pxd +88 -0
  108. sage/libs/gmp/mpn.pxd +57 -0
  109. sage/libs/gmp/mpq.pxd +57 -0
  110. sage/libs/gmp/mpz.pxd +202 -0
  111. sage/libs/gmp/pylong.cpython-314t-darwin.so +0 -0
  112. sage/libs/gmp/pylong.pxd +12 -0
  113. sage/libs/gmp/pylong.pyx +150 -0
  114. sage/libs/gmp/random.pxd +25 -0
  115. sage/libs/gmp/randomize.pxd +59 -0
  116. sage/libs/gmp/types.pxd +53 -0
  117. sage/libs/gmpxx.pxd +19 -0
  118. sage/misc/abstract_method.py +276 -0
  119. sage/misc/all__sagemath_objects.py +43 -0
  120. sage/misc/bindable_class.py +253 -0
  121. sage/misc/c3_controlled.cpython-314t-darwin.so +0 -0
  122. sage/misc/c3_controlled.pxd +2 -0
  123. sage/misc/c3_controlled.pyx +1402 -0
  124. sage/misc/cachefunc.cpython-314t-darwin.so +0 -0
  125. sage/misc/cachefunc.pxd +43 -0
  126. sage/misc/cachefunc.pyx +3781 -0
  127. sage/misc/call.py +188 -0
  128. sage/misc/classcall_metaclass.cpython-314t-darwin.so +0 -0
  129. sage/misc/classcall_metaclass.pxd +14 -0
  130. sage/misc/classcall_metaclass.pyx +599 -0
  131. sage/misc/constant_function.cpython-314t-darwin.so +0 -0
  132. sage/misc/constant_function.pyx +130 -0
  133. sage/misc/decorators.py +747 -0
  134. sage/misc/fast_methods.cpython-314t-darwin.so +0 -0
  135. sage/misc/fast_methods.pxd +20 -0
  136. sage/misc/fast_methods.pyx +351 -0
  137. sage/misc/flatten.py +90 -0
  138. sage/misc/fpickle.cpython-314t-darwin.so +0 -0
  139. sage/misc/fpickle.pyx +177 -0
  140. sage/misc/function_mangling.cpython-314t-darwin.so +0 -0
  141. sage/misc/function_mangling.pxd +11 -0
  142. sage/misc/function_mangling.pyx +308 -0
  143. sage/misc/inherit_comparison.cpython-314t-darwin.so +0 -0
  144. sage/misc/inherit_comparison.pxd +5 -0
  145. sage/misc/inherit_comparison.pyx +105 -0
  146. sage/misc/instancedoc.cpython-314t-darwin.so +0 -0
  147. sage/misc/instancedoc.pyx +331 -0
  148. sage/misc/lazy_attribute.cpython-314t-darwin.so +0 -0
  149. sage/misc/lazy_attribute.pyx +607 -0
  150. sage/misc/lazy_format.py +135 -0
  151. sage/misc/lazy_import.cpython-314t-darwin.so +0 -0
  152. sage/misc/lazy_import.pyx +1299 -0
  153. sage/misc/lazy_import_cache.py +36 -0
  154. sage/misc/lazy_list.cpython-314t-darwin.so +0 -0
  155. sage/misc/lazy_list.pxd +19 -0
  156. sage/misc/lazy_list.pyx +1187 -0
  157. sage/misc/lazy_string.cpython-314t-darwin.so +0 -0
  158. sage/misc/lazy_string.pxd +7 -0
  159. sage/misc/lazy_string.pyx +546 -0
  160. sage/misc/misc.py +1066 -0
  161. sage/misc/misc_c.cpython-314t-darwin.so +0 -0
  162. sage/misc/misc_c.pxd +3 -0
  163. sage/misc/misc_c.pyx +766 -0
  164. sage/misc/namespace_package.py +37 -0
  165. sage/misc/nested_class.cpython-314t-darwin.so +0 -0
  166. sage/misc/nested_class.pxd +3 -0
  167. sage/misc/nested_class.pyx +394 -0
  168. sage/misc/persist.cpython-314t-darwin.so +0 -0
  169. sage/misc/persist.pyx +1251 -0
  170. sage/misc/prandom.py +418 -0
  171. sage/misc/randstate.cpython-314t-darwin.so +0 -0
  172. sage/misc/randstate.pxd +30 -0
  173. sage/misc/randstate.pyx +1059 -0
  174. sage/misc/repr.py +203 -0
  175. sage/misc/reset.cpython-314t-darwin.so +0 -0
  176. sage/misc/reset.pyx +196 -0
  177. sage/misc/sage_ostools.cpython-314t-darwin.so +0 -0
  178. sage/misc/sage_ostools.pyx +323 -0
  179. sage/misc/sage_timeit.py +275 -0
  180. sage/misc/sage_timeit_class.cpython-314t-darwin.so +0 -0
  181. sage/misc/sage_timeit_class.pyx +120 -0
  182. sage/misc/sage_unittest.py +637 -0
  183. sage/misc/sageinspect.py +2768 -0
  184. sage/misc/session.cpython-314t-darwin.so +0 -0
  185. sage/misc/session.pyx +392 -0
  186. sage/misc/superseded.py +557 -0
  187. sage/misc/test_nested_class.py +228 -0
  188. sage/misc/timing.py +264 -0
  189. sage/misc/unknown.py +222 -0
  190. sage/misc/verbose.py +253 -0
  191. sage/misc/weak_dict.cpython-314t-darwin.so +0 -0
  192. sage/misc/weak_dict.pxd +15 -0
  193. sage/misc/weak_dict.pyx +1231 -0
  194. sage/modules/all__sagemath_objects.py +1 -0
  195. sage/modules/module.cpython-314t-darwin.so +0 -0
  196. sage/modules/module.pxd +5 -0
  197. sage/modules/module.pyx +329 -0
  198. sage/rings/all__sagemath_objects.py +3 -0
  199. sage/rings/integer_fake.h +22 -0
  200. sage/rings/integer_fake.pxd +55 -0
  201. sage/sets/all__sagemath_objects.py +3 -0
  202. sage/sets/pythonclass.cpython-314t-darwin.so +0 -0
  203. sage/sets/pythonclass.pxd +9 -0
  204. sage/sets/pythonclass.pyx +247 -0
  205. sage/structure/__init__.py +4 -0
  206. sage/structure/all.py +30 -0
  207. sage/structure/category_object.cpython-314t-darwin.so +0 -0
  208. sage/structure/category_object.pxd +28 -0
  209. sage/structure/category_object.pyx +1087 -0
  210. sage/structure/coerce.cpython-314t-darwin.so +0 -0
  211. sage/structure/coerce.pxd +44 -0
  212. sage/structure/coerce.pyx +2107 -0
  213. sage/structure/coerce_actions.cpython-314t-darwin.so +0 -0
  214. sage/structure/coerce_actions.pxd +27 -0
  215. sage/structure/coerce_actions.pyx +988 -0
  216. sage/structure/coerce_dict.cpython-314t-darwin.so +0 -0
  217. sage/structure/coerce_dict.pxd +51 -0
  218. sage/structure/coerce_dict.pyx +1557 -0
  219. sage/structure/coerce_exceptions.py +23 -0
  220. sage/structure/coerce_maps.cpython-314t-darwin.so +0 -0
  221. sage/structure/coerce_maps.pxd +28 -0
  222. sage/structure/coerce_maps.pyx +718 -0
  223. sage/structure/debug_options.cpython-314t-darwin.so +0 -0
  224. sage/structure/debug_options.pxd +6 -0
  225. sage/structure/debug_options.pyx +54 -0
  226. sage/structure/dynamic_class.py +541 -0
  227. sage/structure/element.cpython-314t-darwin.so +0 -0
  228. sage/structure/element.pxd +272 -0
  229. sage/structure/element.pyx +4772 -0
  230. sage/structure/element_wrapper.cpython-314t-darwin.so +0 -0
  231. sage/structure/element_wrapper.pxd +12 -0
  232. sage/structure/element_wrapper.pyx +582 -0
  233. sage/structure/factorization.py +1422 -0
  234. sage/structure/factorization_integer.py +105 -0
  235. sage/structure/factory.cpython-314t-darwin.so +0 -0
  236. sage/structure/factory.pyx +786 -0
  237. sage/structure/formal_sum.py +489 -0
  238. sage/structure/gens_py.py +73 -0
  239. sage/structure/global_options.py +1743 -0
  240. sage/structure/indexed_generators.py +863 -0
  241. sage/structure/list_clone.cpython-314t-darwin.so +0 -0
  242. sage/structure/list_clone.pxd +65 -0
  243. sage/structure/list_clone.pyx +1867 -0
  244. sage/structure/list_clone_demo.cpython-314t-darwin.so +0 -0
  245. sage/structure/list_clone_demo.pyx +248 -0
  246. sage/structure/list_clone_timings.py +179 -0
  247. sage/structure/list_clone_timings_cy.cpython-314t-darwin.so +0 -0
  248. sage/structure/list_clone_timings_cy.pyx +86 -0
  249. sage/structure/mutability.cpython-314t-darwin.so +0 -0
  250. sage/structure/mutability.pxd +21 -0
  251. sage/structure/mutability.pyx +348 -0
  252. sage/structure/nonexact.py +69 -0
  253. sage/structure/parent.cpython-314t-darwin.so +0 -0
  254. sage/structure/parent.pxd +112 -0
  255. sage/structure/parent.pyx +3093 -0
  256. sage/structure/parent_base.cpython-314t-darwin.so +0 -0
  257. sage/structure/parent_base.pxd +13 -0
  258. sage/structure/parent_base.pyx +44 -0
  259. sage/structure/parent_gens.cpython-314t-darwin.so +0 -0
  260. sage/structure/parent_gens.pxd +22 -0
  261. sage/structure/parent_gens.pyx +377 -0
  262. sage/structure/parent_old.cpython-314t-darwin.so +0 -0
  263. sage/structure/parent_old.pxd +25 -0
  264. sage/structure/parent_old.pyx +294 -0
  265. sage/structure/proof/__init__.py +1 -0
  266. sage/structure/proof/all.py +243 -0
  267. sage/structure/proof/proof.py +300 -0
  268. sage/structure/richcmp.cpython-314t-darwin.so +0 -0
  269. sage/structure/richcmp.pxd +213 -0
  270. sage/structure/richcmp.pyx +495 -0
  271. sage/structure/sage_object.cpython-314t-darwin.so +0 -0
  272. sage/structure/sage_object.pxd +3 -0
  273. sage/structure/sage_object.pyx +988 -0
  274. sage/structure/sage_object_test.py +19 -0
  275. sage/structure/sequence.py +937 -0
  276. sage/structure/set_factories.py +1178 -0
  277. sage/structure/set_factories_example.py +527 -0
  278. sage/structure/support_view.py +179 -0
  279. sage/structure/test_factory.py +56 -0
  280. sage/structure/unique_representation.py +1359 -0
@@ -0,0 +1,2876 @@
1
+ # sage_setup: distribution = sagemath-objects
2
+ # delvewheel: patch
3
+ r"""
4
+ Axioms
5
+
6
+ This documentation covers how to implement axioms and proceeds with an
7
+ overview of the implementation of the axiom infrastructure. It assumes
8
+ that the reader is familiar with the :ref:`category primer
9
+ <sage.categories.primer>`, and in particular its :ref:`section about
10
+ axioms <category-primer-axioms>`.
11
+
12
+ Implementing axioms
13
+ ===================
14
+
15
+ Simple case involving a single predefined axiom
16
+ -----------------------------------------------
17
+
18
+ Suppose that one wants to provide code (and documentation, tests, ...)
19
+ for the objects of some existing category ``Cs()`` that satisfy some
20
+ predefined axiom ``A``.
21
+
22
+ The first step is to open the hood and check whether there already
23
+ exists a class implementing the category ``Cs().A()``. For example,
24
+ taking ``Cs=Semigroups`` and the ``Finite`` axiom, there already
25
+ exists a class for the category of finite semigroups::
26
+
27
+ sage: Semigroups().Finite()
28
+ Category of finite semigroups
29
+ sage: type(Semigroups().Finite())
30
+ <class 'sage.categories.finite_semigroups.FiniteSemigroups_with_category'>
31
+
32
+ In this case, we say that the category of semigroups *implements* the
33
+ axiom ``Finite``, and code about finite semigroups should go in the
34
+ class :class:`FiniteSemigroups` (or, as usual, in its nested classes
35
+ ``ParentMethods``, ``ElementMethods``, and so on).
36
+
37
+ On the other hand, there is no class for the category of infinite
38
+ semigroups::
39
+
40
+ sage: Semigroups().Infinite()
41
+ Category of infinite semigroups
42
+ sage: type(Semigroups().Infinite())
43
+ <class 'sage.categories.category.JoinCategory_with_category'>
44
+
45
+ This category is indeed just constructed as the intersection of the
46
+ categories of semigroups and of infinite sets respectively::
47
+
48
+ sage: Semigroups().Infinite().super_categories()
49
+ [Category of semigroups, Category of infinite sets]
50
+
51
+ In this case, one needs to create a new class to implement the axiom
52
+ ``Infinite`` for this category. This boils down to adding a nested
53
+ class ``Semigroups.Infinite`` inheriting from :class:`CategoryWithAxiom`.
54
+
55
+ In the following example, we implement a category ``Cs``, with a
56
+ subcategory for the objects satisfying the ``Finite`` axiom defined in
57
+ the super category ``Sets`` (we will see later on how to *define* new
58
+ axioms)::
59
+
60
+ sage: from sage.categories.category_with_axiom import CategoryWithAxiom
61
+ sage: class Cs(Category):
62
+ ....: def super_categories(self):
63
+ ....: return [Sets()]
64
+ ....: class Finite(CategoryWithAxiom):
65
+ ....: class ParentMethods:
66
+ ....: def foo(self):
67
+ ....: print("I am a method on finite C's")
68
+
69
+ ::
70
+
71
+ sage: Cs().Finite()
72
+ Category of finite cs
73
+ sage: Cs().Finite().super_categories()
74
+ [Category of finite sets, Category of cs]
75
+ sage: Cs().Finite().all_super_categories()
76
+ [Category of finite cs, Category of finite sets,
77
+ Category of cs, Category of sets, ...]
78
+ sage: Cs().Finite().axioms()
79
+ frozenset({'Finite'})
80
+
81
+ Now a parent declared in the category ``Cs().Finite()`` inherits from
82
+ all the methods of finite sets and of finite `C`'s, as desired::
83
+
84
+ sage: P = Parent(category=Cs().Finite())
85
+ sage: P.is_finite() # Provided by Sets.Finite.ParentMethods
86
+ True
87
+ sage: P.foo() # Provided by Cs.Finite.ParentMethods
88
+ I am a method on finite C's
89
+
90
+ .. _category-with-axiom-design:
91
+
92
+ .. NOTE::
93
+
94
+ - This follows the same idiom as for
95
+ :ref:`sage.categories.covariant_functorial_construction`.
96
+
97
+ - From an object oriented point of view, any subcategory ``Cs()``
98
+ of :class:`Sets` inherits a ``Finite`` method. Usually ``Cs``
99
+ could complement this method by overriding it with a method
100
+ ``Cs.Finite`` which would make a super call to ``Sets.Finite``
101
+ and then do extra stuff.
102
+
103
+ In the above example, ``Cs`` also wants to complement
104
+ ``Sets.Finite``, though not by doing more stuff, but by
105
+ providing it with an additional mixin class containing the code
106
+ for finite ``Cs``. To keep the analogy, this mixin class is to
107
+ be put in ``Cs.Finite``.
108
+
109
+ - By defining the axiom ``Finite``, :class:`Sets` fixes the
110
+ semantic of ``Cs.Finite()`` for all its subcategories ``Cs``:
111
+ namely "the category of ``Cs`` which are finite as sets". Hence,
112
+ for example, ``Modules.Free.Finite`` cannot be used to model the
113
+ category of free modules of finite rank, even though their
114
+ traditional name "finite free modules" might suggest it.
115
+
116
+ - It may come as a surprise that we can actually use the same name
117
+ ``Finite`` for the mixin class and for the method defining the
118
+ axiom; indeed, by default a class does not have a binding
119
+ behavior and would completely override the method. See the
120
+ section :ref:`axioms-defining-a-new-axiom` for details and the
121
+ rationale behind it.
122
+
123
+ An alternative would have been to give another name to the mixin
124
+ class, like ``FiniteCategory``. However this would have resulted
125
+ in more namespace pollution, whereas using ``Finite`` is already
126
+ clear, explicit, and easier to remember.
127
+
128
+ - Under the hood, the category ``Cs().Finite()`` is aware that it
129
+ has been constructed from the category ``Cs()`` by adding the
130
+ axiom ``Finite``::
131
+
132
+ sage: Cs().Finite().base_category()
133
+ Category of cs
134
+ sage: Cs().Finite()._axiom
135
+ 'Finite'
136
+
137
+ Over time, the nested class ``Cs.Finite`` may become large and too
138
+ cumbersome to keep as a nested subclass of ``Cs``. Or the category with
139
+ axiom may have a name of its own in the literature, like *semigroups*
140
+ rather than *associative magmas*, or *fields* rather than *commutative
141
+ division rings*. In this case, the category with axiom can be put
142
+ elsewhere, typically in a separate file, with just a link from
143
+ ``Cs``::
144
+
145
+ sage: class Cs(Category):
146
+ ....: def super_categories(self):
147
+ ....: return [Sets()]
148
+ sage: class FiniteCs(CategoryWithAxiom):
149
+ ....: class ParentMethods:
150
+ ....: def foo(self):
151
+ ....: print("I am a method on finite C's")
152
+ sage: Cs.Finite = FiniteCs
153
+ sage: Cs().Finite()
154
+ Category of finite cs
155
+
156
+ For a real example, see the code of the class :class:`FiniteGroups` and the
157
+ link to it in :class:`Groups`. Note that the link is implemented using
158
+ :class:`~sage.misc.lazy_import.LazyImport`; this is highly recommended: it
159
+ makes sure that :class:`FiniteGroups` is imported after :class:`Groups` it
160
+ depends upon, and makes it explicit that the class :class:`Groups` can be
161
+ imported and is fully functional without importing :class:`FiniteGroups`.
162
+
163
+ .. NOTE::
164
+
165
+ Some categories with axioms are created upon Sage's startup. In such a
166
+ case, one needs to pass the ``at_startup=True`` option to
167
+ :class:`~sage.misc.lazy_import.LazyImport`, in order to quiet the warning
168
+ about that lazy import being resolved upon startup. See for example
169
+ ``Sets.Finite``.
170
+
171
+ This is undoubtedly a code smell. Nevertheless, it is preferable
172
+ to stick to lazy imports, first to resolve the import order
173
+ properly, and more importantly as a reminder that the category
174
+ would be best not constructed upon Sage's startup. This is to spur
175
+ developers to reduce the number of parents (and therefore
176
+ categories) that are constructed upon startup. Each
177
+ ``at_startup=True`` that will be removed will be a measure of
178
+ progress in this direction.
179
+
180
+ .. NOTE::
181
+
182
+ In principle, due to a limitation of
183
+ :class:`~sage.misc.lazy_import.LazyImport` with nested classes (see
184
+ :issue:`15648`), one should pass the option ``as_name`` to
185
+ :class:`~sage.misc.lazy_import.LazyImport`::
186
+
187
+ Finite = LazyImport('sage.categories.finite_groups', 'FiniteGroups',
188
+ as_name='Finite')
189
+
190
+ in order to prevent ``Groups.Finite`` to keep on reimporting
191
+ ``FiniteGroups``.
192
+
193
+ Given that passing this option introduces some redundancy and is
194
+ error prone, the axiom infrastructure includes a little workaround
195
+ which makes the ``as_name`` unnecessary in this case.
196
+
197
+ Making the category with axiom directly callable
198
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
199
+
200
+ If desired, a category with axiom can be constructed directly through
201
+ its class rather than through its base category::
202
+
203
+ sage: Semigroups()
204
+ Category of semigroups
205
+ sage: Semigroups() is Magmas().Associative()
206
+ True
207
+
208
+ sage: FiniteGroups()
209
+ Category of finite groups
210
+ sage: FiniteGroups() is Groups().Finite()
211
+ True
212
+
213
+ For this notation to work, the class :class:`Semigroups` needs to be
214
+ aware of the base category class (here, :class:`Magmas`) and of the
215
+ axiom (here, ``Associative``)::
216
+
217
+ sage: Semigroups._base_category_class_and_axiom
218
+ (<class 'sage.categories.magmas.Magmas'>, 'Associative')
219
+ sage: Fields._base_category_class_and_axiom
220
+ (<class 'sage.categories.division_rings.DivisionRings'>, 'Commutative')
221
+ sage: FiniteGroups._base_category_class_and_axiom
222
+ (<class 'sage.categories.groups.Groups'>, 'Finite')
223
+ sage: FiniteDimensionalAlgebrasWithBasis._base_category_class_and_axiom
224
+ (<class 'sage.categories.algebras_with_basis.AlgebrasWithBasis'>, 'FiniteDimensional')
225
+
226
+ In our example, the attribute ``_base_category_class_and_axiom`` was
227
+ set upon calling ``Cs().Finite()``, which makes the notation seemingly
228
+ work::
229
+
230
+ sage: FiniteCs()
231
+ Category of finite cs
232
+ sage: FiniteCs._base_category_class_and_axiom
233
+ (<class '__main__.Cs'>, 'Finite')
234
+ sage: FiniteCs._base_category_class_and_axiom_origin
235
+ 'set by __classget__'
236
+
237
+ But calling ``FiniteCs()`` right after defining the class would have
238
+ failed (try it!). In general, one needs to set the attribute explicitly::
239
+
240
+ sage: class FiniteCs(CategoryWithAxiom):
241
+ ....: _base_category_class_and_axiom = (Cs, 'Finite')
242
+ ....: class ParentMethods:
243
+ ....: def foo(self):
244
+ ....: print("I am a method on finite C's")
245
+
246
+ Having to set explicitly this link back from ``FiniteCs`` to ``Cs``
247
+ introduces redundancy in the code. It would therefore be desirable to
248
+ have the infrastructure set the link automatically instead (a
249
+ difficulty is to achieve this while supporting lazy imported
250
+ categories with axiom).
251
+
252
+ As a first step, the link is set automatically upon accessing the
253
+ class from the base category class::
254
+
255
+ sage: Algebras.WithBasis._base_category_class_and_axiom
256
+ (<class 'sage.categories.algebras.Algebras'>, 'WithBasis')
257
+ sage: Algebras.WithBasis._base_category_class_and_axiom_origin
258
+ 'set by __classget__'
259
+
260
+ Hence, for whatever this notation is worth, one can currently do::
261
+
262
+ sage: Algebras.WithBasis(QQ)
263
+ Category of algebras with basis over Rational Field
264
+
265
+ We don't recommend using syntax like ``Algebras.WithBasis(QQ)``, as it
266
+ may eventually be deprecated.
267
+
268
+ As a second step, Sage tries some obvious heuristics to deduce the link
269
+ from the name of the category with axiom (see
270
+ :func:`base_category_class_and_axiom` for the details). This typically
271
+ covers the following examples::
272
+
273
+ sage: FiniteCoxeterGroups()
274
+ Category of finite Coxeter groups
275
+ sage: FiniteCoxeterGroups() is CoxeterGroups().Finite()
276
+ True
277
+ sage: FiniteCoxeterGroups._base_category_class_and_axiom_origin
278
+ 'deduced by base_category_class_and_axiom'
279
+
280
+ sage: FiniteDimensionalAlgebrasWithBasis(QQ)
281
+ Category of finite dimensional algebras with basis over Rational Field
282
+ sage: FiniteDimensionalAlgebrasWithBasis(QQ) is Algebras(QQ).FiniteDimensional().WithBasis()
283
+ True
284
+
285
+ If the heuristic succeeds, the result is guaranteed to be correct. If
286
+ it fails, typically because the category has a name of its own like
287
+ :class:`Fields`, the attribute ``_base_category_class_and_axiom``
288
+ should be set explicitly. For more examples, see the code of the
289
+ classes :class:`Semigroups` or :class:`Fields`.
290
+
291
+ .. NOTE::
292
+
293
+ When printing out a category with axiom, the heuristic determines
294
+ whether a category has a name of its own by checking out how
295
+ ``_base_category_class_and_axiom`` was set::
296
+
297
+ sage: Fields._base_category_class_and_axiom_origin
298
+ 'hardcoded'
299
+
300
+ See :meth:`CategoryWithAxiom._without_axioms`,
301
+ :meth:`CategoryWithAxiom._repr_object_names_static`.
302
+
303
+ In our running example ``FiniteCs``, Sage failed to deduce
304
+ automatically the base category class and axiom because the class
305
+ ``Cs`` is not in the standard location ``sage.categories.cs``.
306
+
307
+ .. TOPIC:: Design discussion
308
+
309
+ The above deduction, based on names, is undoubtedly inelegant. But
310
+ it's safe (either the result is guaranteed to be correct, or an
311
+ error is raised), it saves on some redundant information, and it
312
+ is only used for the simple shorthands like ``FiniteGroups()`` for
313
+ ``Groups().Finite()``. Finally, most if not all of these
314
+ shorthands are likely to eventually disappear (see :issue:`15741`
315
+ and the :ref:`related discussion in the primer
316
+ <category-primer-axioms-single-entry-point>`).
317
+
318
+ .. _axioms-defining-a-new-axiom:
319
+
320
+ Defining a new axiom
321
+ --------------------
322
+
323
+ We describe now how to define a new axiom. The first step is to figure
324
+ out the largest category where the axiom makes sense. For example
325
+ ``Sets`` for ``Finite``, ``Magmas`` for ``Associative``, or
326
+ ``Modules`` for ``FiniteDimensional``. Here we define the axiom
327
+ ``Green`` for the category ``Cs`` and its subcategories::
328
+
329
+ sage: from sage.categories.category_with_axiom import CategoryWithAxiom
330
+ sage: class Cs(Category):
331
+ ....: def super_categories(self):
332
+ ....: return [Sets()]
333
+ ....: class SubcategoryMethods:
334
+ ....: def Green(self):
335
+ ....: '<documentation of the axiom Green>'
336
+ ....: return self._with_axiom("Green")
337
+ ....: class Green(CategoryWithAxiom):
338
+ ....: class ParentMethods:
339
+ ....: def foo(self):
340
+ ....: print("I am a method on green C's")
341
+
342
+ With the current implementation, the name of the axiom must also be
343
+ added to a global container::
344
+
345
+ sage: all_axioms = sage.categories.category_with_axiom.all_axioms
346
+ sage: all_axioms += ("Green",)
347
+
348
+ We can now use the axiom as usual::
349
+
350
+ sage: Cs().Green()
351
+ Category of green cs
352
+
353
+ sage: P = Parent(category=Cs().Green())
354
+ sage: P.foo()
355
+ I am a method on green C's
356
+
357
+ Compared with our first example, the only newcomer is the method
358
+ ``.Green()`` that can be used by any subcategory ``Ds()`` of ``Cs()``
359
+ to add the axiom ``Green``. Note that the expression ``Ds().Green``
360
+ always evaluates to this method, regardless of whether ``Ds`` has a
361
+ nested class ``Ds.Green`` or not (an implementation detail)::
362
+
363
+ sage: Cs().Green
364
+ <bound method Cs.SubcategoryMethods.Green of Category of cs>
365
+
366
+ Thanks to this feature (implemented in :meth:`CategoryWithAxiom.__classget__`),
367
+ the user is systematically referred to the documentation of this
368
+ method when doing introspection on ``Ds().Green``::
369
+
370
+ sage: C = Cs()
371
+ sage: C.Green? # not tested
372
+ sage: Cs().Green.__doc__
373
+ '<documentation of the axiom Green>'
374
+
375
+ It is therefore the natural spot for the documentation of the axiom.
376
+
377
+ .. NOTE::
378
+
379
+ The presence of the nested class ``Green`` in ``Cs`` is currently
380
+ mandatory even if it is empty.
381
+
382
+ .. TODO::
383
+
384
+ Specify whether or not one should systematically use
385
+ @cached_method in the definition of the axiom. And make sure all
386
+ the definition of axioms in Sage are consistent in this respect!
387
+
388
+ .. TODO::
389
+
390
+ We could possibly define an @axiom decorator? This could hide two
391
+ little implementation details: whether or not to make the method a
392
+ cached method, and the call to _with_axiom(...) under the hood. It
393
+ could do possibly do some more magic. The gain is not obvious though.
394
+
395
+ .. NOTE::
396
+
397
+ ``all_axioms`` is only used marginally, for sanity checks and when
398
+ trying to derive automatically the base category class. The order
399
+ of the axioms in this tuple also controls the order in which they
400
+ appear when printing out categories with axioms (see
401
+ :meth:`CategoryWithAxiom._repr_object_names_static`).
402
+
403
+ During a Sage session, new axioms should only be added at the *end*
404
+ of ``all_axioms``, as above, so as to not break the cache of
405
+ :func:`axioms_rank`. Otherwise, they can be inserted statically
406
+ anywhere in the tuple. For axioms defined within the Sage library,
407
+ the name is best inserted by editing directly the definition of
408
+ ``all_axioms`` in :mod:`sage.categories.category_with_axiom`.
409
+
410
+ .. TOPIC:: Design note
411
+
412
+ Let us state again that, unlike what the existence of
413
+ ``all_axioms`` might suggest, the definition of an axiom is local
414
+ to a category and its subcategories. In particular, two
415
+ independent categories ``Cs()`` and ``Ds()`` can very well define
416
+ axioms with the same name and different semantics. As long as the
417
+ two hierarchies of subcategories don't intersect, this is not a
418
+ problem. And if they do intersect naturally (that is if one is
419
+ likely to create a parent belonging to both categories), this
420
+ probably means that the categories ``Cs`` and ``Ds`` are about
421
+ related enough areas of mathematics that one should clear the
422
+ ambiguity by having either the same semantic or different names.
423
+
424
+ This caveat is no different from that of name clashes in hierarchy
425
+ of classes involving multiple inheritance.
426
+
427
+ .. TODO::
428
+
429
+ Explore ways to get rid of this global ``all_axioms`` tuple,
430
+ and/or have automatic registration there, and/or having a
431
+ register_axiom(...) method.
432
+
433
+ Special case: defining an axiom depending on several categories
434
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
435
+
436
+ In some cases, the largest category where the axiom makes sense is the
437
+ intersection of two categories. This is typically the case for axioms
438
+ specifying compatibility conditions between two otherwise unrelated
439
+ operations, like ``Distributive`` which specifies a compatibility
440
+ between `*` and `+`. Ideally, we would want the ``Distributive`` axiom
441
+ to be defined by::
442
+
443
+ sage: Magmas() & AdditiveMagmas()
444
+ Join of Category of magmas and Category of additive magmas
445
+
446
+ The current infrastructure does not support this perfectly: indeed,
447
+ defining an axiom for a category `C` requires `C` to have a class of
448
+ its own; hence a :class:`~.category.JoinCategory` as above won't do;
449
+ we need to implement a new class like
450
+ :class:`~.magmas_and_additive_magmas.MagmasAndAdditiveMagmas`;
451
+ furthermore, we cannot yet model the fact that ``MagmasAndAdditiveMagmas()``
452
+ *is* the intersection of ``Magmas()`` and ``AdditiveMagmas()`` rather than a
453
+ mere subcategory::
454
+
455
+ sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
456
+ sage: Magmas() & AdditiveMagmas() is MagmasAndAdditiveMagmas()
457
+ False
458
+ sage: Magmas() & AdditiveMagmas() # todo: not implemented
459
+ Category of magmas and additive magmas
460
+
461
+ Still, there is a workaround to get the natural notations::
462
+
463
+ sage: (Magmas() & AdditiveMagmas()).Distributive()
464
+ Category of distributive magmas and additive magmas
465
+ sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
466
+ Category of rings
467
+
468
+ The trick is to define ``Distributive`` as usual in
469
+ :class:`~.magmas_and_additive_magmas.MagmasAndAdditiveMagmas`, and to
470
+ add a method :meth:`Magmas.SubcategoryMethods.Distributive` which
471
+ checks that ``self`` is a subcategory of both ``Magmas()`` and
472
+ ``AdditiveMagmas()``, complains if not, and otherwise takes the
473
+ intersection of ``self`` with ``MagmasAndAdditiveMagmas()`` before
474
+ calling ``Distributive``.
475
+
476
+ The downsides of this workaround are:
477
+
478
+ - Creation of an otherwise empty class
479
+ :class:`~.magmas_and_additive_magmas.MagmasAndAdditiveMagmas`.
480
+
481
+ - Pollution of the namespace of ``Magmas()`` (and subcategories like
482
+ ``Groups()``) with a method that is irrelevant (but safely complains
483
+ if called).
484
+
485
+ - ``C._with_axiom('Distributive')`` is not strictly equivalent to
486
+ ``C.Distributive()``, which can be unpleasantly surprising::
487
+
488
+ sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
489
+ Category of rings
490
+
491
+ sage: (Monoids() & CommutativeAdditiveGroups())._with_axiom('Distributive')
492
+ Join of Category of monoids and Category of commutative additive groups
493
+
494
+ .. TODO::
495
+
496
+ Other categories that would be better implemented via an axiom
497
+ depending on a join category include:
498
+
499
+ - :class:`Algebras`: defining an associative unital algebra as a
500
+ ring and a module satisfying the suitable compatibility axiom
501
+ between inner multiplication and multiplication by scalars
502
+ (bilinearity). Of course this should be implemented at the level
503
+ of :class:`~.magmatic_algebras.MagmaticAlgebras`, if not higher.
504
+
505
+ - :class:`Bialgebras`: defining a bialgebra as an algebra and
506
+ coalgebra where the coproduct is a morphism for the product.
507
+
508
+ - :class:`Bimodules`: defining a bimodule as a left and right
509
+ module where the two actions commute.
510
+
511
+ .. TODO::
512
+
513
+ - Design and implement an idiom for the definition of an axiom by a join
514
+ category.
515
+
516
+ - Or support more advanced joins, through some hook or registration
517
+ process to specify that a given category *is* the intersection of two
518
+ (or more) categories.
519
+
520
+ - Or at least improve the above workaround to avoid the last issue; this
521
+ possibly could be achieved using a class ``Magmas.Distributive`` with a
522
+ bit of ``__classcall__`` magic.
523
+
524
+ Handling multiple axioms, arborescence structure of the code
525
+ ------------------------------------------------------------
526
+
527
+ Prelude
528
+ ^^^^^^^
529
+
530
+ Let us consider the category of magmas, together with two of its
531
+ axioms, namely ``Associative`` and ``Unital``. An associative magma is
532
+ a *semigroup* and a unital semigroup is a *monoid*. We have also seen
533
+ that axioms commute::
534
+
535
+ sage: Magmas().Unital()
536
+ Category of unital magmas
537
+ sage: Magmas().Associative()
538
+ Category of semigroups
539
+ sage: Magmas().Associative().Unital()
540
+ Category of monoids
541
+ sage: Magmas().Unital().Associative()
542
+ Category of monoids
543
+
544
+ At the level of the classes implementing these categories, the
545
+ following comes as a general naturalization of the previous section::
546
+
547
+ sage: Magmas.Unital
548
+ <class 'sage.categories.magmas.Magmas.Unital'>
549
+ sage: Magmas.Associative
550
+ <class 'sage.categories.semigroups.Semigroups'>
551
+ sage: Magmas.Associative.Unital
552
+ <class 'sage.categories.monoids.Monoids'>
553
+
554
+ However, the following may look suspicious at first::
555
+
556
+ sage: Magmas.Unital.Associative
557
+ Traceback (most recent call last):
558
+ ...
559
+ AttributeError: type object 'Magmas.Unital' has no attribute 'Associative'...
560
+
561
+ The purpose of this section is to explain the design of the code
562
+ layout and the rationale for this mismatch.
563
+
564
+ Abstract model
565
+ ^^^^^^^^^^^^^^
566
+
567
+ As we have seen in the :ref:`Primer <category-primer-axioms-explosion>`,
568
+ the objects of a category ``Cs()`` can usually satisfy, or not, many
569
+ different axioms. Out of all combinations of axioms, only a small
570
+ number are relevant in practice, in the sense that we actually want to
571
+ provide features for the objects satisfying these axioms.
572
+
573
+ Therefore, in the context of the category class ``Cs``, we want to
574
+ provide the system with a collection `(D_S)_{S\in \mathcal S}` where
575
+ each `S` is a subset of the axioms and the corresponding `D_S` is a
576
+ class for the subcategory of the objects of ``Cs()`` satisfying the
577
+ axioms in `S`. For example, if ``Cs()`` is the category of magmas, the
578
+ pairs `(S, D_S)` would include::
579
+
580
+ {Associative} : Semigroups
581
+ {Associative, Unital} : Monoids
582
+ {Associative, Unital, Inverse}: Groups
583
+ {Associative, Commutative} : Commutative Semigroups
584
+ {Unital, Inverse} : Loops
585
+
586
+ Then, given a subset `T` of axioms, we want the system to be able to
587
+ select automatically the relevant classes
588
+ `(D_S)_{S\in \mathcal S, S\subset T}`,
589
+ and build from them a category for the objects of ``Cs`` satisfying
590
+ the axioms in `T`, together with its hierarchy of super categories. If
591
+ `T` is in the indexing set `\mathcal S`, then the class of the
592
+ resulting category is directly `D_T`::
593
+
594
+ sage: C = Magmas().Unital().Inverse().Associative(); C
595
+ Category of groups
596
+ sage: type(C)
597
+ <class 'sage.categories.groups.Groups_with_category'>
598
+
599
+ Otherwise, we get a join category::
600
+
601
+ sage: C = Magmas().Infinite().Unital().Associative(); C
602
+ Category of infinite monoids
603
+ sage: type(C)
604
+ <class 'sage.categories.category.JoinCategory_with_category'>
605
+ sage: C.super_categories()
606
+ [Category of monoids, Category of infinite sets]
607
+
608
+ Concrete model as an arborescence of nested classes
609
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
610
+
611
+ We further want the construction to be efficient and amenable to
612
+ laziness. This led us to the following design decision: the collection
613
+ `(D_S)_{S\in \mathcal S}` of classes should be structured as an
614
+ arborescence (or equivalently a *rooted forest*). The root is ``Cs``,
615
+ corresponding to `S=\emptyset`. Any other class `D_S` should be the
616
+ child of a single class `D_{S'}` where `S'` is obtained from `S` by
617
+ removing a single axiom `A`. Of course, `D_{S'}` and `A` are
618
+ respectively the base category class and axiom of the category with
619
+ axiom `D_S` that we have met in the first section.
620
+
621
+ At this point, we urge the reader to explore the code of
622
+ :class:`Magmas` and
623
+ :class:`~.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas`
624
+ and see how the arborescence structure on the categories with axioms
625
+ is reflected by the nesting of category classes.
626
+
627
+ Discussion of the design
628
+ ^^^^^^^^^^^^^^^^^^^^^^^^
629
+
630
+ Performance
631
+ ~~~~~~~~~~~
632
+
633
+ Thanks to the arborescence structure on subsets of axioms,
634
+ constructing the hierarchy of categories and computing intersections
635
+ can be made efficient with, roughly speaking, a linear/quadratic
636
+ complexity in the size of the involved category hierarchy multiplied
637
+ by the number of axioms (see Section :ref:`axioms-algorithmic`). This
638
+ is to be put in perspective with the manipulation of arbitrary
639
+ collections of subsets (aka boolean functions) which can easily raise
640
+ NP-hard problems.
641
+
642
+ Furthermore, thanks to its locality, the algorithms can be made
643
+ suitably lazy: in particular, only the involved category classes need
644
+ to be imported.
645
+
646
+ Flexibility
647
+ ~~~~~~~~~~~
648
+
649
+ This design also brings in quite some flexibility, with the
650
+ possibility to support features such as defining new axioms depending
651
+ on other axioms and deduction rules. See below.
652
+
653
+ Asymmetry
654
+ ~~~~~~~~~
655
+
656
+ As we have seen at the beginning of this section, this design
657
+ introduces an asymmetry. It's not so bad in practice, since in most
658
+ practical cases, we want to work incrementally. It's for example more
659
+ natural to describe :class:`FiniteFields` as :class:`Fields` with the
660
+ axiom ``Finite`` rather than :class:`Magmas` and
661
+ :class:`AdditiveMagmas` with all (or at least sufficiently many) of
662
+ the following axioms::
663
+
664
+ sage: sorted(Fields().axioms())
665
+ ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
666
+ 'AdditiveUnital', 'Associative', 'Commutative', 'Distributive',
667
+ 'Division', 'NoZeroDivisors', 'Unital']
668
+
669
+ The main limitation is that the infrastructure currently imposes to be
670
+ incremental by steps of a single axiom.
671
+
672
+ In practice, among the roughly 60 categories with axioms that are
673
+ currently implemented in Sage, most admitted a (rather) natural choice
674
+ of a base category and single axiom to add. For example, one usually
675
+ thinks more naturally of a monoid as a semigroup which is unital
676
+ rather than as a unital magma which is associative. Modeling this
677
+ asymmetry in the code actually brings a bonus: it is used for printing
678
+ out categories in a (heuristically) mathematician-friendly way::
679
+
680
+ sage: Magmas().Commutative().Associative()
681
+ Category of commutative semigroups
682
+
683
+ Only in a few cases is a choice made that feels mathematically
684
+ arbitrary. This is essentially in the chain of nested classes
685
+ :class:`.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative`.
686
+
687
+ Placeholder classes
688
+ ~~~~~~~~~~~~~~~~~~~
689
+
690
+ Given that we can only add a single axiom at a time when implementing
691
+ a :class:`CategoryWithAxiom`, we need to create a few category classes
692
+ that are just placeholders. For the worst example, see the chain of
693
+ nested classes
694
+ :class:`.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative`.
695
+
696
+ This is suboptimal, but fits within the scope of the axiom
697
+ infrastructure which is to reduce a potentially exponential number of
698
+ placeholder category classes to just a couple.
699
+
700
+ Note also that, in the above example, it's likely that some of the
701
+ intermediate classes will grow to non placeholder ones, as people will
702
+ explore more weaker variants of rings.
703
+
704
+ Mismatch between the arborescence of nested classes and the hierarchy of categories
705
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
706
+
707
+ The fact that the hierarchy relation between categories is not
708
+ reflected directly as a relation between the classes may sound
709
+ suspicious at first! However, as mentioned in the primer, this is
710
+ actually a big selling point of the axioms infrastructure: by
711
+ calculating automatically the hierarchy relation between categories
712
+ with axioms one avoids the nightmare of maintaining it by hand.
713
+ Instead, only a rather minimal number of links needs to be maintained
714
+ in the code (one per category with axiom).
715
+
716
+ Besides, with the flexibility introduced by runtime deduction rules
717
+ (see below), the hierarchy of categories may depend on the parameters
718
+ of the categories and not just their class. So it's fine to make it
719
+ clear from the onset that the two relations do not match.
720
+
721
+ Evolutivity
722
+ ~~~~~~~~~~~
723
+
724
+ At this point, the arborescence structure has to be hardcoded by hand
725
+ with the annoyances we have seen. This does not preclude, in a future
726
+ iteration, to design and implement some idiom for categories with
727
+ axioms that adds several axioms at once to a base category; maybe some
728
+ variation around::
729
+
730
+ class DistributiveMagmasAndAdditiveMagmas:
731
+ ...
732
+
733
+ @category_with_axiom(
734
+ AdditiveAssociative,
735
+ AdditiveCommutative,
736
+ AdditiveUnital,
737
+ AdditiveInverse,
738
+ Associative)
739
+ def _(): return LazyImport('sage.categories.rngs', 'Rngs', at_startup=True)
740
+
741
+ or::
742
+
743
+ register_axiom_category(DistributiveMagmasAndAdditiveMagmas,
744
+ {AdditiveAssociative,
745
+ AdditiveCommutative,
746
+ AdditiveUnital,
747
+ AdditiveInverse,
748
+ Associative},
749
+ 'sage.categories.rngs', 'Rngs', at_startup=True)
750
+
751
+ The infrastructure would then be in charge of building the appropriate
752
+ arborescence under the hood. Or rely on some database (see discussion
753
+ on :issue:`10963`, in particular at the end of comment 332).
754
+
755
+ Axioms defined upon other axioms
756
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
757
+
758
+ Sometimes an axiom can only be defined when some other axiom
759
+ holds. For example, the axiom ``NoZeroDivisors`` only makes sense if
760
+ there is a zero, that is if the axiom ``AdditiveUnital`` holds. Hence,
761
+ for the category
762
+ :class:`~.magmas_and_additive_magmas.MagmasAndAdditiveMagmas`, we
763
+ consider in the abstract model only those subsets of axioms where the
764
+ presence of ``NoZeroDivisors`` implies that of ``AdditiveUnital``. We
765
+ also want the axiom to be only available if meaningful::
766
+
767
+ sage: Rings().NoZeroDivisors()
768
+ Category of domains
769
+ sage: Rings().Commutative().NoZeroDivisors()
770
+ Category of integral domains
771
+ sage: Semirings().NoZeroDivisors()
772
+ Traceback (most recent call last):
773
+ ...
774
+ AttributeError: 'Semirings_with_category' object has no attribute 'NoZeroDivisors'...
775
+
776
+ Concretely, this is to be implemented by defining the new axiom in the
777
+ (``SubcategoryMethods`` nested class of the) appropriate category with
778
+ axiom. For example the axiom ``NoZeroDivisors`` would be naturally
779
+ defined in
780
+ :class:`.magmas_and_additive_magmas.MagmasAndAdditiveMagmas.Distributive.AdditiveUnital`.
781
+
782
+ .. NOTE::
783
+
784
+ The axiom ``NoZeroDivisors`` is currently defined in
785
+ :class:`Rings`, by simple lack of need for the feature; it should
786
+ be lifted up as soon as relevant, that is when some code will be
787
+ available for parents with no zero divisors that are not
788
+ necessarily rings.
789
+
790
+ .. _axioms-deduction-rules:
791
+
792
+ Deduction rules
793
+ ^^^^^^^^^^^^^^^
794
+
795
+ A similar situation is when an axiom ``A`` of a category ``Cs``
796
+ implies some other axiom ``B``, with the same consequence as above on
797
+ the subsets of axioms appearing in the abstract model. For example, a
798
+ division ring necessarily has no zero divisors::
799
+
800
+ sage: 'NoZeroDivisors' in Rings().Division().axioms()
801
+ True
802
+ sage: 'NoZeroDivisors' in Rings().axioms()
803
+ False
804
+
805
+ This deduction rule is implemented by the method
806
+ :meth:`Rings.Division.extra_super_categories`::
807
+
808
+ sage: Rings().Division().extra_super_categories()
809
+ (Category of domains,)
810
+
811
+ In general, this is to be implemented by a method
812
+ ``Cs.A.extra_super_categories`` returning a tuple ``(Cs().B(),)``, or
813
+ preferably ``(Ds().B(),)`` where ``Ds`` is the category defining the
814
+ axiom ``B``.
815
+
816
+ This follows the same idiom as for deduction rules about functorial
817
+ constructions (see :meth:`.covariant_functorial_construction.CovariantConstructionCategory.extra_super_categories`).
818
+ For example, the fact that a Cartesian product of associative magmas
819
+ (i.e. of semigroups) is an associative magma is implemented in
820
+ :meth:`Semigroups.CartesianProducts.extra_super_categories`::
821
+
822
+ sage: Magmas().Associative()
823
+ Category of semigroups
824
+ sage: Magmas().Associative().CartesianProducts().extra_super_categories()
825
+ [Category of semigroups]
826
+
827
+ Similarly, the fact that the algebra of a commutative magma is
828
+ commutative is implemented in
829
+ :meth:`Magmas.Commutative.Algebras.extra_super_categories`::
830
+
831
+ sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
832
+ [Category of commutative magmas]
833
+
834
+ .. WARNING::
835
+
836
+ In some situations this idiom is inapplicable as it would require
837
+ to implement two classes for the same category. This is the
838
+ purpose of the next section.
839
+
840
+ Special case
841
+ ~~~~~~~~~~~~
842
+
843
+ In the previous examples, the deduction rule only had an influence on
844
+ the super categories of the category with axiom being constructed. For
845
+ example, when constructing ``Rings().Division()``, the rule
846
+ :meth:`Rings.Division.extra_super_categories` simply adds
847
+ ``Rings().NoZeroDivisors()`` as a super category thereof.
848
+
849
+ In some situations this idiom is inapplicable because a class for the
850
+ category with axiom under construction already exists elsewhere. Take
851
+ for example Wedderburn's theorem: any finite division ring is
852
+ commutative, i.e. is a finite field. In other words,
853
+ ``DivisionRings().Finite()`` *coincides* with ``Fields().Finite()``::
854
+
855
+ sage: DivisionRings().Finite()
856
+ Category of finite enumerated fields
857
+ sage: DivisionRings().Finite() is Fields().Finite()
858
+ True
859
+
860
+ Therefore we cannot create a class ``DivisionRings.Finite`` to hold
861
+ the desired ``extra_super_categories`` method, because there is
862
+ already a class for this category with axiom, namely
863
+ ``Fields.Finite``.
864
+
865
+ A natural idiom would be to have ``DivisionRings.Finite`` be a link to
866
+ ``Fields.Finite`` (locally introducing an undirected cycle in the
867
+ arborescence of nested classes). It would be a bit tricky to implement
868
+ though, since one would need to detect, upon constructing
869
+ ``DivisionRings().Finite()``, that ``DivisionRings.Finite`` is
870
+ actually ``Fields.Finite``, in order to construct appropriately
871
+ ``Fields().Finite()``; and reciprocally, upon computing the super
872
+ categories of ``Fields().Finite()``, to not try to add
873
+ ``DivisionRings().Finite()`` as a super category.
874
+
875
+ Instead the current idiom is to have a method
876
+ ``DivisionRings.Finite_extra_super_categories`` which mimics the
877
+ behavior of the would-be
878
+ ``DivisionRings.Finite.extra_super_categories``::
879
+
880
+ sage: DivisionRings().Finite_extra_super_categories()
881
+ (Category of commutative magmas,)
882
+
883
+ This idiom is admittedly rudimentary, but consistent with how
884
+ mathematical facts specifying non trivial inclusion relations between
885
+ categories are implemented elsewhere in the various
886
+ ``extra_super_categories`` methods of axiom categories and covariant
887
+ functorial constructions. Besides, it gives a natural spot (the
888
+ docstring of the method) to document and test the modeling of the
889
+ mathematical fact. Finally, Wedderburn's theorem is arguably a theorem
890
+ about division rings (in the context of division rings, finiteness
891
+ implies commutativity) and therefore lives naturally in
892
+ :class:`DivisionRings`.
893
+
894
+ An alternative would be to implement the category of finite division
895
+ rings (i.e. finite fields) in a class ``DivisionRings.Finite`` rather
896
+ than ``Fields.Finite``::
897
+
898
+ sage: from sage.categories.category_with_axiom import CategoryWithAxiom
899
+
900
+ sage: class MyDivisionRings(Category):
901
+ ....: def super_categories(self):
902
+ ....: return [Rings()]
903
+
904
+ sage: class MyFields(Category):
905
+ ....: def super_categories(self):
906
+ ....: return [MyDivisionRings()]
907
+
908
+ sage: class MyFiniteFields(CategoryWithAxiom):
909
+ ....: _base_category_class_and_axiom = (MyDivisionRings, "Finite")
910
+ ....: def extra_super_categories(self): # Wedderburn's theorem
911
+ ....: return [MyFields()]
912
+
913
+ sage: MyDivisionRings.Finite = MyFiniteFields
914
+
915
+ sage: MyDivisionRings().Finite()
916
+ Category of my finite fields
917
+ sage: MyFields().Finite() is MyDivisionRings().Finite()
918
+ True
919
+
920
+ In general, if several categories ``C1s()``, ``C2s()``, ... are mapped to
921
+ the same category when applying some axiom ``A`` (that is ``C1s().A()
922
+ == C2s().A() == ...``), then one should be careful to implement this
923
+ category in a single class ``Cs.A``, and set up methods
924
+ ``extra_super_categories`` or ``A_extra_super_categories`` methods as
925
+ appropriate. Each such method should return something like
926
+ ``[C2s()]`` and not ``[C2s().A()]`` for the latter would likely lead
927
+ to an infinite recursion.
928
+
929
+ .. TOPIC:: Design discussion
930
+
931
+ Supporting similar deduction rules will be an important feature in
932
+ the future, with quite a few occurrences already implemented in
933
+ upcoming issues. For the time being though there is a single
934
+ occurrence of this idiom outside of the tests. So this would be an
935
+ easy thing to refactor after :issue:`10963` if a better idiom is
936
+ found.
937
+
938
+ Larger synthetic examples
939
+ ~~~~~~~~~~~~~~~~~~~~~~~~~
940
+
941
+ We now consider some larger synthetic examples to check that the
942
+ machinery works as expected. Let us start with a category defining a
943
+ bunch of axioms, using :func:`axiom` for conciseness (don't do it for
944
+ real axioms; they deserve a full documentation!)::
945
+
946
+ sage: from sage.categories.category_singleton import Category_singleton
947
+ sage: from sage.categories.category_with_axiom import axiom
948
+ sage: import sage.categories.category_with_axiom
949
+ sage: all_axioms = sage.categories.category_with_axiom.all_axioms
950
+ sage: all_axioms += ("B","C","D","E","F")
951
+
952
+ sage: class As(Category_singleton):
953
+ ....: def super_categories(self):
954
+ ....: return [Objects()]
955
+ ....:
956
+ ....: class SubcategoryMethods:
957
+ ....: B = axiom("B")
958
+ ....: C = axiom("C")
959
+ ....: D = axiom("D")
960
+ ....: E = axiom("E")
961
+ ....: F = axiom("F")
962
+ ....:
963
+ ....: class B(CategoryWithAxiom):
964
+ ....: pass
965
+ ....: class C(CategoryWithAxiom):
966
+ ....: pass
967
+ ....: class D(CategoryWithAxiom):
968
+ ....: pass
969
+ ....: class E(CategoryWithAxiom):
970
+ ....: pass
971
+ ....: class F(CategoryWithAxiom):
972
+ ....: pass
973
+
974
+ Now we construct a subcategory where, by some theorem of William,
975
+ axioms ``B`` and ``C`` together are equivalent to ``E`` and ``F``
976
+ together::
977
+
978
+ sage: class A1s(Category_singleton):
979
+ ....: def super_categories(self):
980
+ ....: return [As()]
981
+ ....:
982
+ ....: class B(CategoryWithAxiom):
983
+ ....: def C_extra_super_categories(self):
984
+ ....: return [As().E(), As().F()]
985
+ ....:
986
+ ....: class E(CategoryWithAxiom):
987
+ ....: def F_extra_super_categories(self):
988
+ ....: return [As().B(), As().C()]
989
+
990
+ sage: A1s().B().C()
991
+ Category of e f a1s
992
+
993
+ The axioms ``B`` and ``C`` do not show up in the name of the obtained
994
+ category because, for concision, the printing uses some heuristics to
995
+ not show axioms that are implied by others. But they are satisfied::
996
+
997
+ sage: sorted(A1s().B().C().axioms())
998
+ ['B', 'C', 'E', 'F']
999
+
1000
+ Note also that this is a join category::
1001
+
1002
+ sage: type(A1s().B().C())
1003
+ <class 'sage.categories.category.JoinCategory_with_category'>
1004
+ sage: A1s().B().C().super_categories()
1005
+ [Category of e a1s,
1006
+ Category of f as,
1007
+ Category of b a1s,
1008
+ Category of c as]
1009
+
1010
+ As desired, William's theorem holds::
1011
+
1012
+ sage: A1s().B().C() is A1s().E().F()
1013
+ True
1014
+
1015
+ and propagates appropriately to subcategories::
1016
+
1017
+ sage: C = A1s().E().F().D().B().C()
1018
+ sage: C is A1s().B().C().E().F().D() # commutativity
1019
+ True
1020
+ sage: C is A1s().E().F().E().F().D() # William's theorem
1021
+ True
1022
+ sage: C is A1s().E().E().F().F().D() # commutativity
1023
+ True
1024
+ sage: C is A1s().E().F().D() # idempotency
1025
+ True
1026
+ sage: C is A1s().D().E().F()
1027
+ True
1028
+
1029
+ In this quick variant, we actually implement the category of ``b c
1030
+ a2s``, and choose to do so in ``A2s.B.C``::
1031
+
1032
+ sage: class A2s(Category_singleton):
1033
+ ....: def super_categories(self):
1034
+ ....: return [As()]
1035
+ ....:
1036
+ ....: class B(CategoryWithAxiom):
1037
+ ....: class C(CategoryWithAxiom):
1038
+ ....: def extra_super_categories(self):
1039
+ ....: return [As().E(), As().F()]
1040
+ ....:
1041
+ ....: class E(CategoryWithAxiom):
1042
+ ....: def F_extra_super_categories(self):
1043
+ ....: return [As().B(), As().C()]
1044
+
1045
+
1046
+ sage: A2s().B().C()
1047
+ Category of e f a2s
1048
+ sage: sorted(A2s().B().C().axioms())
1049
+ ['B', 'C', 'E', 'F']
1050
+ sage: type(A2s().B().C())
1051
+ <class '__main__.A2s.B.C_with_category'>
1052
+
1053
+ As desired, William's theorem and its consequences hold::
1054
+
1055
+ sage: A2s().B().C() is A2s().E().F()
1056
+ True
1057
+ sage: C = A2s().E().F().D().B().C()
1058
+ sage: C is A2s().B().C().E().F().D() # commutativity
1059
+ True
1060
+ sage: C is A2s().E().F().E().F().D() # William's theorem
1061
+ True
1062
+ sage: C is A2s().E().E().F().F().D() # commutativity
1063
+ True
1064
+ sage: C is A2s().E().F().D() # idempotency
1065
+ True
1066
+ sage: C is A2s().D().E().F()
1067
+ True
1068
+
1069
+ Finally, we "accidentally" implement the category of ``b c a1s``, both
1070
+ in ``A3s.B.C`` and ``A3s.E.F``::
1071
+
1072
+ sage: class A3s(Category_singleton):
1073
+ ....: def super_categories(self):
1074
+ ....: return [As()]
1075
+ ....:
1076
+ ....: class B(CategoryWithAxiom):
1077
+ ....: class C(CategoryWithAxiom):
1078
+ ....: def extra_super_categories(self):
1079
+ ....: return [As().E(), As().F()]
1080
+ ....:
1081
+ ....: class E(CategoryWithAxiom):
1082
+ ....: class F(CategoryWithAxiom):
1083
+ ....: def extra_super_categories(self):
1084
+ ....: return [As().B(), As().C()]
1085
+
1086
+ We can still construct, say::
1087
+
1088
+ sage: A3s().B()
1089
+ Category of b a3s
1090
+ sage: A3s().C()
1091
+ Category of c a3s
1092
+
1093
+ However,
1094
+ ::
1095
+
1096
+ sage: A3s().B().C() # not tested
1097
+
1098
+ runs into an infinite recursion loop, as ``A3s().B().C()`` wants to
1099
+ have ``A3s().E().F()`` as super category and reciprocally.
1100
+
1101
+ .. TODO::
1102
+
1103
+ The above example violates the specifications (a category should
1104
+ be modelled by at most one class), so it's appropriate that it
1105
+ fails. Yet, the error message could be usefully complemented by
1106
+ some hint at what the source of the problem is (a category
1107
+ implemented in two distinct classes). Leaving a large enough piece
1108
+ of the backtrace would be useful though, so that one can explore
1109
+ where the issue comes from (e.g. with post mortem debugging).
1110
+
1111
+ Specifications
1112
+ ==============
1113
+
1114
+ After fixing some vocabulary, we summarize here some specifications
1115
+ about categories and axioms.
1116
+
1117
+ The lattice of constructible categories
1118
+ ---------------------------------------
1119
+
1120
+ A mathematical category `C` is *implemented* if there is a class in
1121
+ Sage modelling it; it is *constructible* if it is either implemented,
1122
+ or is the intersection of *implemented* categories; in the latter case
1123
+ it is modelled by a :class:`~.category.JoinCategory`. The comparison of two
1124
+ constructible categories with the :meth:`Category.is_subcategory`
1125
+ method is supposed to model the comparison of the corresponding
1126
+ mathematical categories for inclusion of the objects (see
1127
+ :ref:`category-primer-subcategory` for details). For example::
1128
+
1129
+ sage: Fields().is_subcategory(Rings())
1130
+ True
1131
+
1132
+ However this modelling may be incomplete. It can happen that a
1133
+ mathematical fact implying that a category `A` is a subcategory of a
1134
+ category `B` is not implemented. Still, the comparison should endow
1135
+ the set of constructible categories with a poset structure and in fact
1136
+ a lattice structure.
1137
+
1138
+ In this lattice, the join of two categories (:meth:`Category.join`) is
1139
+ supposed to model their intersection. Given that we compare categories
1140
+ for inclusion, it would be more natural to call this operation the
1141
+ *meet*; blames go to me (Nicolas) for originally comparing categories
1142
+ by *amount of structure* rather than by *inclusion*. In practice, the
1143
+ join of two categories may be a strict super category of their
1144
+ intersection; first because this intersection might not be
1145
+ constructible; second because Sage might miss some mathematical
1146
+ information to recover the smallest constructible super category of
1147
+ the intersection.
1148
+
1149
+ Axioms
1150
+ ------
1151
+
1152
+ We say that an axiom ``A`` is *defined by* a category ``Cs()`` if
1153
+ ``Cs`` defines an appropriate method ``Cs.SubcategoryMethods.A``, with
1154
+ the semantic of the axiom specified in the documentation; for any
1155
+ subcategory ``Ds()``, ``Ds().A()`` models the subcategory of the
1156
+ objects of ``Ds()`` satisfying ``A``. In this case, we say that the
1157
+ axiom ``A`` is *defined for* the category ``Ds()``. Furthermore,
1158
+ ``Ds`` *implements the axiom* ``A`` if ``Ds`` has a category with
1159
+ axiom as nested class ``Ds.A``. The category ``Ds()`` *satisfies* the
1160
+ axiom if ``Ds()`` is a subcategory of ``Cs().A()`` (meaning that all
1161
+ the objects of ``Ds()`` are known to satisfy the axiom ``A``).
1162
+
1163
+ A digression on the structure of fibers when adding an axiom
1164
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1165
+
1166
+ Consider the application `\phi_A` which maps a category to its
1167
+ category of objects satisfying `A`. Equivalently, `\phi_A` is
1168
+ computing the intersection with the defining category with axiom of
1169
+ `A`. It follows immediately from the latter that `\phi_A` is a
1170
+ regressive endomorphism of the lattice of categories. It restricts
1171
+ to a regressive endomorphism ``Cs() |-> Cs().A()``
1172
+ on the lattice of constructible categories.
1173
+
1174
+ This endomorphism may have non trivial fibers, as in our favorite
1175
+ example: ``DivisionRings()`` and ``Fields()`` are in the same fiber
1176
+ for the axiom ``Finite``::
1177
+
1178
+ sage: DivisionRings().Finite() is Fields().Finite()
1179
+ True
1180
+
1181
+ Consider the intersection `S` of such a fiber of `\phi_A` with the
1182
+ upper set `I_A` of categories that do not satisfy ``A``. The fiber
1183
+ itself is a sublattice. However `I_A` is not guaranteed to be stable
1184
+ under intersection (though exceptions should be rare). Therefore,
1185
+ there is a priori no guarantee that `S` would be stable under
1186
+ intersection. Also it's presumably finite, in fact small, but this is
1187
+ not guaranteed either.
1188
+
1189
+ Specifications
1190
+ --------------
1191
+
1192
+ - Any constructible category ``C`` should admit a finite number of
1193
+ larger constructible categories.
1194
+
1195
+ - The methods ``super_categories``, ``extra_super_categories``, and
1196
+ friends should always return strict supercategories.
1197
+
1198
+ For example, to specify that a finite division ring is a finite
1199
+ field, ``DivisionRings.Finite_extra_super_categories`` should not
1200
+ return ``Fields().Finite()``! It could possibly return ``Fields()``;
1201
+ but it's preferable to return the largest category that contains the
1202
+ relevant information, in this case ``Magmas().Commutative()``, and
1203
+ to let the infrastructure apply the derivations.
1204
+
1205
+ - The base category of a :class:`CategoryWithAxiom` should be an
1206
+ implemented category (i.e. not a
1207
+ :class:`~.category.JoinCategory`). This is checked by
1208
+ :meth:`CategoryWithAxiom._test_category_with_axiom`.
1209
+
1210
+ - Arborescent structure: Let ``Cs()`` be a category, and `S` be some
1211
+ set of axioms defined in some super categories of ``Cs()`` but not
1212
+ satisfied by ``Cs()``. Suppose we want to provide a category with
1213
+ axiom for the elements of ``Cs()`` satisfying the axioms in
1214
+ `S`. Then, there should be a single enumeration ``A1, A2, ..., Ak``
1215
+ without repetition of axioms in `S` such that
1216
+ ``Cs.A1.A2....Ak`` is an implemented category.
1217
+ Furthermore, every intermediate step
1218
+ ``Cs.A1.A2....Ai`` with `i\leq k` should be a category with axiom
1219
+ having ``Ai`` as axiom and ``Cs.A1.A2....Ai-1`` as base category
1220
+ class; this base category class should not satisfy ``Ai``. In
1221
+ particular, when some axioms of `S` can be deduced from previous
1222
+ ones by deduction rules, they should not appear in the enumeration
1223
+ ``A1, A2, ..., Ak``.
1224
+
1225
+ - In particular, if ``Cs()`` is a category that satisfies some axiom
1226
+ ``A`` (e.g. from one of its super categories), then it should not
1227
+ implement that axiom. For example, a category class ``Cs`` can never
1228
+ have a nested class ``Cs.A.A``. Similarly, applying the
1229
+ specification recursively, a category satisfying ``A`` cannot have a
1230
+ nested class ``Cs.A1.A2.A3.A`` where ``A1``, ``A2``, ``A3`` are
1231
+ axioms.
1232
+
1233
+ - A category can only implement an axiom if this axiom is defined by
1234
+ some super category. The code has not been systematically checked to
1235
+ support having two super categories defining the same axiom (which
1236
+ should of course have the same semantic). You are welcome to try, at
1237
+ your own risk. :-)
1238
+
1239
+ - When a category defines an axiom or functorial construction ``A``,
1240
+ this fixes the semantic of ``A`` for all the subcategories. In
1241
+ particular, if two categories define ``A``, then these categories
1242
+ should be independent, and either the semantic of ``A`` should be
1243
+ the same, or there should be no natural intersection between the two
1244
+ hierarchies of subcategories.
1245
+
1246
+ - Any super category of a
1247
+ :class:`~.category.CategoryWithParameters` should either be a
1248
+ :class:`~.category.CategoryWithParameters` or a
1249
+ :class:`Category_singleton`.
1250
+
1251
+ - A :class:`CategoryWithAxiom` having a
1252
+ :class:`~sage.categories.category_singleton.Category_singleton` as base
1253
+ category should be a :class:`CategoryWithAxiom_singleton`. This is handled
1254
+ automatically by :meth:`CategoryWithAxiom.__init__` and checked in
1255
+ :meth:`CategoryWithAxiom._test_category_with_axiom`.
1256
+
1257
+ - A :class:`CategoryWithAxiom` having a
1258
+ :class:`Category_over_base_ring` as base category should be a
1259
+ :class:`Category_over_base_ring`. This currently has to be handled
1260
+ by hand, using :class:`CategoryWithAxiom_over_base_ring`. This is
1261
+ checked in :meth:`CategoryWithAxiom._test_category_with_axiom`.
1262
+
1263
+ .. TODO::
1264
+
1265
+ The following specifications would be desirable but are not yet
1266
+ implemented:
1267
+
1268
+ - A functorial construction category (Graded, CartesianProducts,
1269
+ ...) having a :class:`Category_singleton` as base category
1270
+ should be a :class:`CategoryWithAxiom_singleton`.
1271
+
1272
+ Nothing difficult to implement, but this will need to rework the
1273
+ current "no subclass of a concrete class" assertion test of
1274
+ :meth:`Category_singleton.__classcall__`.
1275
+
1276
+ - Similarly, a covariant functorial construction category having a
1277
+ :class:`Category_over_base_ring` as base category should be a
1278
+ :class:`Category_over_base_ring`.
1279
+
1280
+ The following specification might be desirable, or not:
1281
+
1282
+ - A join category involving a :class:`Category_over_base_ring`
1283
+ should be a :class:`Category_over_base_ring`. In the mean
1284
+ time, a ``base_ring`` method is automatically provided for most
1285
+ of those by :meth:`Modules.SubcategoryMethods.base_ring`.
1286
+
1287
+
1288
+ Design goals
1289
+ ============
1290
+
1291
+ As pointed out in the primer, the main design goal of the axioms
1292
+ infrastructure is to subdue the potential combinatorial explosion of
1293
+ the category hierarchy by letting the developer focus on implementing
1294
+ a few bookshelves for which there is actual code or mathematical
1295
+ information, and let Sage *compose dynamically and lazily* these
1296
+ building blocks to construct the minimal hierarchy of classes needed
1297
+ for the computation at hand. This allows for the infrastructure to
1298
+ scale smoothly as bookshelves are added, extended, or reorganized.
1299
+
1300
+ Other design goals include:
1301
+
1302
+ - Flexibility in the code layout: the category of, say, finite sets
1303
+ can be implemented either within the Sets category (in a nested
1304
+ class ``Sets.Finite``), or in a separate file (typically in a class
1305
+ ``FiniteSets`` in a lazily imported module
1306
+ sage.categories.finite_sets).
1307
+
1308
+ - Single point of truth: a theorem, like Wedderburn's, should be
1309
+ implemented in a single spot.
1310
+
1311
+ - Single entry point: for example, from the entry :class:`Rings`, one
1312
+ can explore a whole range of related categories just by applying
1313
+ axioms and constructions::
1314
+
1315
+ sage: Rings().Commutative().Finite().NoZeroDivisors()
1316
+ Category of finite integral domains
1317
+ sage: Rings().Finite().Division()
1318
+ Category of finite enumerated fields
1319
+
1320
+ This will allow for progressively getting rid of all the entries
1321
+ like :class:`GradedHopfAlgebrasWithBasis` which are polluting the
1322
+ global name space.
1323
+
1324
+ Note that this is not about precluding the existence of multiple
1325
+ natural ways to construct the same category::
1326
+
1327
+ sage: Groups().Finite()
1328
+ Category of finite groups
1329
+ sage: Monoids().Finite().Inverse()
1330
+ Category of finite groups
1331
+ sage: Sets().Finite() & Monoids().Inverse()
1332
+ Category of finite groups
1333
+
1334
+ - Concise idioms for the users (adding axioms, ...)
1335
+
1336
+ - Concise idioms and well highlighted hierarchy of bookshelves for
1337
+ the developer (especially with code folding)
1338
+
1339
+ - Introspection friendly (listing the axioms, recovering the mixins)
1340
+
1341
+ .. NOTE::
1342
+
1343
+ The constructor for instances of this class takes as input the
1344
+ base category. Hence, they should in principle be constructed
1345
+ as::
1346
+
1347
+ sage: FiniteSets(Sets())
1348
+ Category of finite sets
1349
+
1350
+ sage: Sets.Finite(Sets())
1351
+ Category of finite sets
1352
+
1353
+ None of these idioms are really practical for the user. So instead,
1354
+ this object is to be constructed using any of the following idioms::
1355
+
1356
+ sage: Sets()._with_axiom('Finite')
1357
+ Category of finite sets
1358
+ sage: FiniteSets()
1359
+ Category of finite sets
1360
+ sage: Sets().Finite()
1361
+ Category of finite sets
1362
+
1363
+ The later two are implemented using respectively
1364
+ :meth:`CategoryWithAxiom.__classcall__` and
1365
+ :meth:`CategoryWithAxiom.__classget__`.
1366
+
1367
+ Upcoming features
1368
+ =================
1369
+
1370
+ .. TODO::
1371
+
1372
+ - Implement compatibility axiom / functorial constructions. For
1373
+ example, one would want to have::
1374
+
1375
+ A.CartesianProducts() & B.CartesianProducts() = (A&B).CartesianProducts()
1376
+
1377
+ - Once full subcategories are implemented (see :issue:`10668`),
1378
+ make the relevant categories with axioms be such. This can be
1379
+ done systematically for, e.g., the axioms ``Associative`` or
1380
+ ``Commutative``, but not for the axiom ``Unital``: a semigroup
1381
+ morphism between two monoids need not preserve the unit.
1382
+
1383
+ Should all full subcategories be implemented in term of axioms?
1384
+
1385
+ .. _axioms-algorithmic:
1386
+
1387
+ Algorithms
1388
+ ==========
1389
+
1390
+ Computing joins
1391
+ ---------------
1392
+
1393
+ The workhorse of the axiom infrastructure is the algorithm for
1394
+ computing the join `J` of a set `C_1, \ldots, C_k` of categories (see
1395
+ :meth:`Category.join`). Formally, `J` is defined as the largest
1396
+ constructible category such that `J \subset C_i` for all `i`, and
1397
+ `J \subset C.A()` for every constructible category `C \supset J`
1398
+ and any axiom `A` satisfied by `J`.
1399
+
1400
+ The join `J` is naturally computed as a closure in the lattice of
1401
+ constructible categories: it starts with the `C_i`'s, gathers the set
1402
+ `S` of all the axioms satisfied by them, and repeatedly adds each
1403
+ axiom `A` to those categories that do not yet satisfy `A` using
1404
+ :meth:`Category._with_axiom`. Due to deduction rules or (extra) super
1405
+ categories, new categories or new axioms may appear in the
1406
+ process. The process stops when each remaining category has been
1407
+ combined with each axiom. In practice, only the smallest categories
1408
+ are kept along the way; this is correct because adding an axiom is
1409
+ covariant: ``C.A()`` is a subcategory of ``D.A()`` whenever ``C`` is a
1410
+ subcategory of ``D``.
1411
+
1412
+ As usual in such closure computations, the result does not depend on
1413
+ the order of execution. Furthermore, given that adding an axiom is an
1414
+ idempotent and regressive operation, the process is guaranteed to stop
1415
+ in a number of steps which is bounded by the number of super
1416
+ categories of `J`. In particular, it is a finite process.
1417
+
1418
+ .. TODO::
1419
+
1420
+ Detail this a bit. What could typically go wrong is a situation
1421
+ where, for some category ``C1``, ``C1.A()`` specifies a category
1422
+ ``C2`` as super category such that ``C2.A()`` specifies ``C3`` as
1423
+ super category such that ...; this would clearly cause an infinite
1424
+ execution. Note that this situation violates the specifications
1425
+ since ``C1.A()`` is supposed to be a subcategory of ``C2.A()``,
1426
+ ... so we would have an infinite increasing chain of constructible
1427
+ categories.
1428
+
1429
+ It's reasonable to assume that there is a finite number of axioms
1430
+ defined in the code. There remains to use this assumption to argue
1431
+ that any infinite execution of the algorithm would give rise to
1432
+ such an infinite sequence.
1433
+
1434
+ Adding an axiom
1435
+ ---------------
1436
+
1437
+ Let ``Cs`` be a category and ``A`` an axiom defined for this
1438
+ category. To compute ``Cs().A()``, there are two cases.
1439
+
1440
+ Adding an axiom ``A`` to a category ``Cs()`` not implementing it
1441
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1442
+
1443
+ In this case, ``Cs().A()`` returns the join of:
1444
+
1445
+ - ``Cs()``
1446
+ - ``Bs().A()`` for every direct super category ``Bs()`` of ``Cs()``
1447
+ - the categories appearing in ``Cs().A_extra_super_categories()``
1448
+
1449
+ This is a highly recursive process. In fact, as such, it would run
1450
+ right away into an infinite loop! Indeed, the join of ``Cs()`` with
1451
+ ``Bs().A()`` would trigger the construction of ``Cs().A()`` and
1452
+ reciprocally. To avoid this, the :meth:`Category.join` method itself
1453
+ does not use :meth:`Category._with_axiom` to add axioms, but its
1454
+ sister :meth:`Category._with_axiom_as_tuple`; the latter builds a
1455
+ tuple of categories that should be joined together but leaves the
1456
+ computation of the join to its caller, the master join calculation.
1457
+
1458
+ Adding an axiom ``A`` to a category ``Cs()`` implementing it
1459
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1460
+
1461
+ In this case ``Cs().A()`` simply constructs an instance `D` of
1462
+ ``Cs.A`` which models the desired category. The non trivial part is
1463
+ the construction of the super categories of `D`. Very much like
1464
+ above, this includes:
1465
+
1466
+ - ``Cs()``
1467
+ - ``Bs().A()`` for every super category ``Bs()`` of ``Cs()``
1468
+ - the categories appearing in ``D.extra_super_categories()``
1469
+
1470
+ This by itself may not be sufficient, due in particular to deduction
1471
+ rules. On may for example discover a new axiom ``A1`` satisfied by
1472
+ `D`, imposing to add ``A1`` to all of the above categories. Therefore
1473
+ the super categories are computed as the join of the above categories.
1474
+ Up to one twist: as is, the computation of this join would trigger
1475
+ recursively a recalculation of ``Cs().A()``! To avoid this,
1476
+ :meth:`Category.join` is given an optional argument to specify that
1477
+ the axiom ``A`` should *not* be applied to ``Cs()``.
1478
+
1479
+ Sketch of proof of correctness and evaluation of complexity
1480
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1481
+
1482
+ As we have seen, this is a highly recursive process! In particular,
1483
+ one needs to argue that, as long as the specifications are satisfied,
1484
+ the algorithm won't run in an infinite recursion, in particular in
1485
+ case of deduction rule.
1486
+
1487
+ .. TOPIC:: Theorem
1488
+
1489
+ Consider the construction of a category `C` by adding an axiom to
1490
+ a category (or computing of a join). Let `H` be the hierarchy of
1491
+ implemented categories above `C`. Let `n` and `m` be respectively
1492
+ the number of categories and the number of inheritance edges in
1493
+ `H`.
1494
+
1495
+ Assuming that the specifications are satisfied, the construction
1496
+ of `C` involves constructing the categories in `H` exactly once
1497
+ (and no other category), and at most `n` join calculations. In
1498
+ particular, the time complexity should be, roughly speaking,
1499
+ bounded by `n^2`. In particular, it's finite.
1500
+
1501
+ .. TOPIC:: Remark
1502
+
1503
+ It's actually to be expected that the complexity is more of the
1504
+ order of magnitude of `na+m`, where `a` is the number of axioms
1505
+ satisfied by `C`. But this is to be checked in detail, in
1506
+ particular due to the many category inclusion tests involved.
1507
+
1508
+ The key argument is that :class:`Category.join` cannot call itself
1509
+ recursively without going through the construction of some implemented
1510
+ category. In turn, the construction of some implemented category `C`
1511
+ only involves constructing strictly smaller categories, and possibly a
1512
+ direct join calculation whose result is strictly smaller than
1513
+ `C`. This statement is obvious if `C` implements the
1514
+ ``super_categories`` method directly, and easy to check for functorial
1515
+ construction categories. It requires a proof for categories with
1516
+ axioms since there is a recursive join involved.
1517
+
1518
+ .. TOPIC:: Lemma
1519
+
1520
+ Let `C` be a category implementing an axiom `A`. Recall that the
1521
+ construction of ``C.A()`` involves a single direct join
1522
+ calculation for computing the super categories. No other direct
1523
+ join calculation occur, and the calculation involves only
1524
+ implemented categories that are strictly smaller than ``C.A()``.
1525
+
1526
+ .. TOPIC:: Proof
1527
+
1528
+ Let `D` be a category involved in the join calculation for the
1529
+ super categories of ``C.A()``, and assume by induction that `D` is
1530
+ strictly smaller than ``C.A()``. A category `E` newly constructed
1531
+ from `D` can come from:
1532
+
1533
+ - ``D.(extra_)super_categories()``
1534
+
1535
+ In this case, the specifications impose that `E` should be
1536
+ strictly smaller than `D` and therefore strictly smaller than
1537
+ `C`.
1538
+
1539
+ - ``D.with_axiom_as_tuple('B')`` or ``D.B_extra_super_categories()``
1540
+ for some axiom `B`
1541
+
1542
+ In this case, the axiom `B` is satisfied by some subcategory of
1543
+ ``C.A()``, and therefore must be satisfied by ``C.A()`` itself.
1544
+ Since adding an axiom is a regressive construction, `E` must be a
1545
+ subcategory of ``C.A()``. If there is equality, then `E` and
1546
+ ``C.A()`` must have the same class, and therefore, `E` must be
1547
+ directly constructed as ``C.A()``. However the join construction
1548
+ explicitly prevents this call.
1549
+
1550
+ Note that a call to ``D.with_axiom_as_tuple('B')`` does not trigger
1551
+ a direct join calculation; but of course, if `D` implements `B`,
1552
+ the construction of the implemented category ``E = D.B()`` will
1553
+ involve a strictly smaller join calculation.
1554
+
1555
+
1556
+ Conclusion
1557
+ ==========
1558
+
1559
+ This is the end of the axioms documentation. Congratulations on
1560
+ having read that far!
1561
+
1562
+
1563
+ Tests
1564
+ =====
1565
+
1566
+ .. NOTE::
1567
+
1568
+ Quite a few categories with axioms are constructed early on during
1569
+ Sage's startup. Therefore, when playing around with the
1570
+ implementation of the axiom infrastructure, it is easy to break
1571
+ Sage. The following sequence of tests is designed to test the
1572
+ infrastructure from the ground up even in a partially broken
1573
+ Sage. Please don't remove the imports!
1574
+
1575
+ TESTS:
1576
+
1577
+ ::
1578
+
1579
+ sage: Magmas()
1580
+ Category of magmas
1581
+ sage: Magmas().Finite()
1582
+ Category of finite magmas
1583
+
1584
+ sage: Magmas().Unital()
1585
+ Category of unital magmas
1586
+ sage: Magmas().Commutative().Unital()
1587
+ Category of commutative unital magmas
1588
+ sage: Magmas().Associative()
1589
+ Category of semigroups
1590
+ sage: Magmas().Associative() & Magmas().Unital().Inverse() & Sets().Finite()
1591
+ Category of finite groups
1592
+ sage: _ is Groups().Finite()
1593
+ True
1594
+
1595
+ sage: from sage.categories.semigroups import Semigroups
1596
+ sage: Semigroups()
1597
+ Category of semigroups
1598
+ sage: Semigroups().Finite()
1599
+ Category of finite semigroups
1600
+
1601
+ sage: from sage.categories.modules_with_basis import ModulesWithBasis
1602
+ sage: ModulesWithBasis(QQ) is Modules(QQ).WithBasis()
1603
+ True
1604
+ sage: ModulesWithBasis(ZZ) is Modules(ZZ).WithBasis()
1605
+ True
1606
+
1607
+ sage: Semigroups().Unital()
1608
+ Category of monoids
1609
+ sage: Semigroups().Unital().Commutative()
1610
+ Category of commutative monoids
1611
+ sage: Semigroups().Commutative()
1612
+ Category of commutative semigroups
1613
+ sage: Semigroups().Commutative().Unital()
1614
+ Category of commutative monoids
1615
+ sage: Semigroups().Commutative().Unital().super_categories()
1616
+ [Category of monoids, Category of commutative magmas]
1617
+
1618
+ sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative()
1619
+ Category of commutative additive semigroups
1620
+
1621
+ sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
1622
+ sage: C = CommutativeAdditiveMonoids() & Monoids() & MagmasAndAdditiveMagmas().Distributive(); C
1623
+ Category of semirings
1624
+ sage: C is (CommutativeAdditiveMonoids() & Monoids()).Distributive()
1625
+ True
1626
+ sage: C.AdditiveInverse()
1627
+ Category of rings
1628
+ sage: Rings().axioms()
1629
+ frozenset({'AdditiveAssociative',
1630
+ 'AdditiveCommutative',
1631
+ 'AdditiveInverse',
1632
+ 'AdditiveUnital',
1633
+ 'Associative',
1634
+ 'Distributive',
1635
+ 'Unital'})
1636
+ sage: sorted(Rings().axioms())
1637
+ ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
1638
+ 'AdditiveUnital', 'Associative', 'Distributive', 'Unital']
1639
+
1640
+ sage: Domains().Commutative()
1641
+ Category of integral domains
1642
+
1643
+ sage: DivisionRings().Finite() # Wedderburn's theorem
1644
+ Category of finite enumerated fields
1645
+
1646
+ sage: FiniteMonoids().Algebras(QQ)
1647
+ Join of Category of monoid algebras over Rational Field
1648
+ and Category of finite dimensional algebras with basis over Rational Field
1649
+ and Category of finite set algebras over Rational Field
1650
+ sage: FiniteGroups().Algebras(QQ)
1651
+ Category of finite group algebras over Rational Field
1652
+ """
1653
+ # ****************************************************************************
1654
+ # Copyright (C) 2011-2014 Nicolas M. Thiery <nthiery at users.sf.net>
1655
+ #
1656
+ # Distributed under the terms of the GNU General Public License (GPL)
1657
+ # https://www.gnu.org/licenses/
1658
+ # ****************************************************************************
1659
+
1660
+ import importlib
1661
+ import re
1662
+ from sage.misc.cachefunc import cached_method, cached_function
1663
+ from sage.misc.lazy_attribute import lazy_class_attribute
1664
+ from sage.misc.lazy_import import LazyImport
1665
+ from sage.misc.call import call_method
1666
+ from sage.categories.category import Category
1667
+ from sage.categories.category_singleton import Category_singleton
1668
+ from sage.categories.category_types import Category_over_base_ring
1669
+ from sage.structure.dynamic_class import DynamicMetaclass
1670
+ from sage.categories.category_cy_helper import AxiomContainer, canonicalize_axioms
1671
+
1672
+ # The order of the axioms in this lists implies that
1673
+ # Magmas().Commutative().Unital() is printed as
1674
+ # ``Category of commutative unital magmas''
1675
+
1676
+ all_axioms = AxiomContainer()
1677
+ all_axioms += ("Flying", "Blue",
1678
+ "Compact",
1679
+ "Differentiable", "Smooth", "Analytic", "AlmostComplex",
1680
+ "FinitelyGeneratedAsMagma",
1681
+ "WellGenerated",
1682
+ "Facade", "Finite", "Infinite","Enumerated",
1683
+ "Complete",
1684
+ "Nilpotent",
1685
+ "FiniteDimensional", "FinitelyPresented", "Connected",
1686
+ "FinitelyGeneratedAsLambdaBracketAlgebra",
1687
+ "WithBasis",
1688
+ "Irreducible",
1689
+ "Supercommutative", "Supercocommutative",
1690
+ "Commutative", "Cocommutative", "Associative", "Inverse", "Unital", "Division", "NoZeroDivisors", "Cellular",
1691
+ "AdditiveCommutative", "AdditiveAssociative", "AdditiveInverse", "AdditiveUnital",
1692
+ "Distributive",
1693
+ "Endset",
1694
+ "Pointed",
1695
+ "Stratified",
1696
+ )
1697
+
1698
+
1699
+ def uncamelcase(s, separator=" "):
1700
+ """
1701
+ EXAMPLES::
1702
+
1703
+ sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras")
1704
+ 'finite dimensional algebras'
1705
+ sage: sage.categories.category_with_axiom.uncamelcase("JTrivialMonoids")
1706
+ 'j trivial monoids'
1707
+ sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras", "_")
1708
+ 'finite_dimensional_algebras'
1709
+ """
1710
+ return re.sub("(?!^)[A-Z]", lambda match: separator+match.group()[0], s).lower()
1711
+
1712
+
1713
+ def base_category_class_and_axiom(cls):
1714
+ """
1715
+ Try to deduce the base category and the axiom from the name of ``cls``.
1716
+
1717
+ The heuristic is to try to decompose the name as the concatenation
1718
+ of the name of a category and the name of an axiom, and looking up
1719
+ that category in the standard location (i.e. in
1720
+ :mod:`sage.categories.hopf_algebras` for :class:`HopfAlgebras`,
1721
+ and in :mod:`sage.categories.sets_cat` as a special case
1722
+ for :class:`Sets`).
1723
+
1724
+ If the heuristic succeeds, the result is guaranteed to be
1725
+ correct. Otherwise, an error is raised.
1726
+
1727
+ EXAMPLES::
1728
+
1729
+ sage: from sage.categories.category_with_axiom import base_category_class_and_axiom, CategoryWithAxiom
1730
+ sage: base_category_class_and_axiom(FiniteSets)
1731
+ (<class 'sage.categories.sets_cat.Sets'>, 'Finite')
1732
+ sage: Sets.Finite
1733
+ <class 'sage.categories.finite_sets.FiniteSets'>
1734
+ sage: base_category_class_and_axiom(Sets.Finite)
1735
+ (<class 'sage.categories.sets_cat.Sets'>, 'Finite')
1736
+
1737
+ sage: base_category_class_and_axiom(FiniteDimensionalHopfAlgebrasWithBasis)
1738
+ (<class 'sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis'>,
1739
+ 'FiniteDimensional')
1740
+
1741
+ sage: base_category_class_and_axiom(HopfAlgebrasWithBasis)
1742
+ (<class 'sage.categories.hopf_algebras.HopfAlgebras'>, 'WithBasis')
1743
+
1744
+ Along the way, this does some sanity checks::
1745
+
1746
+ sage: class FacadeSemigroups(CategoryWithAxiom):
1747
+ ....: pass
1748
+ sage: base_category_class_and_axiom(FacadeSemigroups)
1749
+ Traceback (most recent call last):
1750
+ ...
1751
+ AssertionError: Missing (lazy import) link
1752
+ for <class 'sage.categories.semigroups.Semigroups'>
1753
+ to <class '__main__.FacadeSemigroups'> for axiom Facade?
1754
+
1755
+ sage: Semigroups.Facade = FacadeSemigroups
1756
+ sage: base_category_class_and_axiom(FacadeSemigroups)
1757
+ (<class 'sage.categories.semigroups.Semigroups'>, 'Facade')
1758
+
1759
+ .. NOTE::
1760
+
1761
+ In the following example, we could possibly retrieve ``Sets``
1762
+ from the class name. However this cannot be implemented
1763
+ robustly until :issue:`9107` is fixed. Anyway this feature
1764
+ has not been needed so far::
1765
+
1766
+ sage: Sets.Infinite
1767
+ <class 'sage.categories.sets_cat.Sets.Infinite'>
1768
+ sage: base_category_class_and_axiom(Sets.Infinite)
1769
+ Traceback (most recent call last):
1770
+ ...
1771
+ TypeError: Could not retrieve the base category class and axiom
1772
+ for <class 'sage.categories.sets_cat.Sets.Infinite'>.
1773
+ ...
1774
+ """
1775
+ if "." in cls.__name__:
1776
+ # Case 1: class name of the form Sets.Infinite
1777
+ # Start of implementation when #9107 will be fixed:
1778
+ # axiom = cls.__name__.split(".")[-1]
1779
+ # ...
1780
+ pass
1781
+ else:
1782
+ # Case 2: class name of the form FiniteSets or AlgebrasWithBasis,
1783
+ # with the base class (say Algebras) being implemented in the
1784
+ # standard location (sage.categories.algebras)
1785
+ name = cls.__name__
1786
+ for axiom in all_axioms:
1787
+ if axiom == "WithBasis" and name.endswith(axiom):
1788
+ base_name = name[:-len(axiom)]
1789
+ elif name.startswith(axiom):
1790
+ base_name = name[len(axiom):]
1791
+ else:
1792
+ continue
1793
+ if base_name == "Sets": # Special case for Sets which is in sets_cat
1794
+ base_module_name = "sets_cat"
1795
+ else:
1796
+ base_module_name = uncamelcase(base_name, "_")
1797
+ try:
1798
+ base_module = importlib.import_module("sage.categories."+base_module_name)
1799
+ base_category_class = getattr(base_module, base_name)
1800
+ assert getattr(base_category_class, axiom, None) is cls, \
1801
+ "Missing (lazy import) link for {} to {} for axiom {}?".format(base_category_class, cls, axiom)
1802
+ return base_category_class, axiom
1803
+ except (ImportError,AttributeError):
1804
+ pass
1805
+ raise TypeError("""Could not retrieve the base category class and axiom for {}.
1806
+ Please specify it explicitly using the attribute _base_category_class_and_axiom.
1807
+ See CategoryWithAxiom for details.""".format(cls))
1808
+
1809
+
1810
+ @cached_function
1811
+ def axiom_of_nested_class(cls, nested_cls):
1812
+ r"""
1813
+ Given a class and a nested axiom class, return the axiom.
1814
+
1815
+ EXAMPLES:
1816
+
1817
+ This uses some heuristics like checking if the nested_cls carries
1818
+ the name of the axiom, or is built by appending or prepending the
1819
+ name of the axiom to that of the class::
1820
+
1821
+ sage: from sage.categories.category_with_axiom import TestObjects, axiom_of_nested_class
1822
+ sage: axiom_of_nested_class(TestObjects, TestObjects.FiniteDimensional)
1823
+ 'FiniteDimensional'
1824
+ sage: axiom_of_nested_class(TestObjects.FiniteDimensional,
1825
+ ....: TestObjects.FiniteDimensional.Finite)
1826
+ 'Finite'
1827
+ sage: axiom_of_nested_class(Sets, FiniteSets)
1828
+ 'Finite'
1829
+ sage: axiom_of_nested_class(Algebras, AlgebrasWithBasis)
1830
+ 'WithBasis'
1831
+
1832
+ In all other cases, the nested class should provide an attribute
1833
+ ``_base_category_class_and_axiom``::
1834
+
1835
+ sage: Semigroups._base_category_class_and_axiom
1836
+ (<class 'sage.categories.magmas.Magmas'>, 'Associative')
1837
+ sage: axiom_of_nested_class(Magmas, Semigroups)
1838
+ 'Associative'
1839
+ """
1840
+ try:
1841
+ axiom = nested_cls.__dict__["_base_category_class_and_axiom"][1]
1842
+ except KeyError:
1843
+ assert not isinstance(cls, DynamicMetaclass)
1844
+ nested_cls_name = nested_cls.__name__.split(".")[-1]
1845
+ if nested_cls_name in all_axioms:
1846
+ axiom = nested_cls_name
1847
+ else:
1848
+ cls_name = cls.__name__.split(".")[-1]
1849
+ if nested_cls_name.startswith(cls_name):
1850
+ axiom = nested_cls_name[len(cls_name):]
1851
+ elif nested_cls_name.endswith(cls_name):
1852
+ axiom = nested_cls_name[:-len(cls_name)]
1853
+ else:
1854
+ raise ValueError("could not infer axiom for the nested class {} of {}".format(nested_cls, cls))
1855
+ assert axiom in all_axioms, \
1856
+ "Incorrect deduction ({}) for the name of the axiom for the nested class {} of {}".format(axiom, nested_cls, cls)
1857
+ assert axiom in cls.__dict__ and cls.__dict__[axiom] == nested_cls, \
1858
+ "{} not a nested axiom class of {} for axiom {}".format(nested_cls, cls, axiom)
1859
+ return axiom
1860
+
1861
+
1862
+ class CategoryWithAxiom(Category):
1863
+ r"""
1864
+ An abstract class for categories obtained by adding an axiom
1865
+ to a base category.
1866
+
1867
+ See the :mod:`category primer <sage.categories.primer>`, and in
1868
+ particular its :ref:`section about axioms <category-primer-axioms>`
1869
+ for an introduction to axioms, and :class:`CategoryWithAxiom` for
1870
+ how to implement axioms and the documentation of the axiom
1871
+ infrastructure.
1872
+
1873
+ .. automethod:: CategoryWithAxiom.__classcall__
1874
+ .. automethod:: CategoryWithAxiom.__classget__
1875
+ .. automethod:: CategoryWithAxiom.__init__
1876
+ .. automethod:: CategoryWithAxiom._repr_object_names
1877
+ .. automethod:: CategoryWithAxiom._repr_object_names_static
1878
+ .. automethod:: CategoryWithAxiom._test_category_with_axiom
1879
+ .. automethod:: CategoryWithAxiom._without_axioms
1880
+ """
1881
+
1882
+ @lazy_class_attribute
1883
+ def _base_category_class_and_axiom(cls):
1884
+ r"""
1885
+ The class of the base category and the axiom for this class.
1886
+
1887
+ By default, and when possible, this attribute is deduced from
1888
+ the name of this class (see
1889
+ :func:`base_category_class_and_axiom`). For a nested class,
1890
+ when the category is first created from its base category as
1891
+ in e.g. ``Sets().Infinite()``, this attribute is instead set
1892
+ explicitly by :meth:`__classget__`.
1893
+
1894
+ When this is not sufficient, that is when ``cls`` is not
1895
+ implemented as a nested class and the base category and the
1896
+ axiom cannot be deduced from the name of ``cls``, this
1897
+ attribute should be set explicitly by ``cls``.
1898
+
1899
+ The origin of the attribute is stored in the attribute
1900
+ ``_base_category_class_and_axiom_origin``.
1901
+
1902
+ .. SEEALSO:: :meth:`_axiom`
1903
+
1904
+ EXAMPLES:
1905
+
1906
+ ``CommutativeRings`` is not a nested class, but the name of
1907
+ the base category and the axiom can be deduced::
1908
+
1909
+ sage: CommutativeRings()._base_category_class_and_axiom
1910
+ (<class 'sage.categories.rings.Rings'>, 'Commutative')
1911
+ sage: CommutativeRings()._base_category_class_and_axiom_origin
1912
+ 'set by __classget__'
1913
+
1914
+ ``Sets.Infinite`` is a nested class, so the attribute is set
1915
+ by :meth:`CategoryWithAxiom.__classget__` the first time
1916
+ ``Sets().Infinite()`` is called::
1917
+
1918
+ sage: Sets().Infinite()
1919
+ Category of infinite sets
1920
+ sage: Sets.Infinite._base_category_class_and_axiom
1921
+ (<class 'sage.categories.sets_cat.Sets'>, 'Infinite')
1922
+ sage: Sets.Infinite._base_category_class_and_axiom_origin
1923
+ 'set by __classget__'
1924
+
1925
+ ``Fields`` is not a nested class, and the name of the base
1926
+ category and axioms cannot be deduced from the name
1927
+ ``Fields``; so this attributes needs to be set explicitly in
1928
+ the ``Fields`` class::
1929
+
1930
+ sage: Fields()._base_category_class_and_axiom
1931
+ (<class 'sage.categories.division_rings.DivisionRings'>, 'Commutative')
1932
+ sage: Fields()._base_category_class_and_axiom_origin
1933
+ 'hardcoded'
1934
+
1935
+ .. NOTE::
1936
+
1937
+ The base category class is often another category with
1938
+ axiom, therefore having a special ``__classget__`` method.
1939
+ Storing the base category class and the axiom in a single
1940
+ tuple attribute -- instead of two separate attributes --
1941
+ has the advantage of not triggering, for example,
1942
+ ``Semigroups.__classget__`` upon
1943
+ ``Monoids._base_category_class``.
1944
+ """
1945
+ base_category_class, axiom = base_category_class_and_axiom(cls)
1946
+ cls._base_category_class_and_axiom_origin = "deduced by base_category_class_and_axiom"
1947
+ return (base_category_class, axiom)
1948
+
1949
+ _base_category_class_and_axiom_origin = "hardcoded"
1950
+
1951
+ @lazy_class_attribute
1952
+ def _axiom(cls):
1953
+ r"""
1954
+ The axiom for this category with axiom.
1955
+
1956
+ .. SEEALSO:: :meth:`_base_category_class_and_axiom`
1957
+
1958
+ EXAMPLES::
1959
+
1960
+ sage: FiniteSets._axiom
1961
+ 'Finite'
1962
+ sage: Sets.Finite._axiom
1963
+ 'Finite'
1964
+ sage: Algebras.Commutative._axiom
1965
+ 'Commutative'
1966
+
1967
+ The result can be less obvious::
1968
+
1969
+ sage: Semigroups._axiom
1970
+ 'Associative'
1971
+ sage: Rings._axiom
1972
+ 'Unital'
1973
+ sage: Fields._axiom
1974
+ 'Commutative'
1975
+ """
1976
+ return cls._base_category_class_and_axiom[1]
1977
+
1978
+ @staticmethod
1979
+ def __classcall__(cls, *args, **options):
1980
+ """
1981
+ Make ``FoosBar(**)`` an alias for ``Foos(**)._with_axiom("Bar")``.
1982
+
1983
+ EXAMPLES::
1984
+
1985
+ sage: FiniteGroups()
1986
+ Category of finite groups
1987
+ sage: ModulesWithBasis(ZZ)
1988
+ Category of modules with basis over Integer Ring
1989
+ sage: AlgebrasWithBasis(QQ)
1990
+ Category of algebras with basis over Rational Field
1991
+
1992
+ This is relevant when e.g. ``Foos(**)`` does some non trivial
1993
+ transformations::
1994
+
1995
+ sage: Modules(QQ) is VectorSpaces(QQ)
1996
+ True
1997
+ sage: type(Modules(QQ))
1998
+ <class 'sage.categories.vector_spaces.VectorSpaces_with_category'>
1999
+
2000
+ sage: ModulesWithBasis(QQ) is VectorSpaces(QQ).WithBasis()
2001
+ True
2002
+ sage: type(ModulesWithBasis(QQ))
2003
+ <class 'sage.categories.vector_spaces.VectorSpaces.WithBasis_with_category'>
2004
+ """
2005
+ (base_category_class, axiom) = cls._base_category_class_and_axiom
2006
+ if len(args) == 1 and not options and isinstance(args[0], base_category_class):
2007
+ return super().__classcall__(cls, args[0])
2008
+ else:
2009
+ # The "obvious" idiom
2010
+ ## return cls(base_category_class(*args, **options))
2011
+ # fails with ModulesWithBasis(QQ) as follows: The
2012
+ # base_category_class is Modules, but Modules(QQ) is an instance
2013
+ # of VectorSpaces and not of Modules. Hence,
2014
+ # ModulesWithBasis.__classcall__ will not accept this instance as
2015
+ # the first argument. Instead, we apply the axiom to the instance:
2016
+ return base_category_class(*args, **options)._with_axiom(axiom)
2017
+
2018
+ @staticmethod
2019
+ def __classget__(cls, base_category, base_category_class):
2020
+ r"""
2021
+ Implement the binding behavior for categories with axioms.
2022
+
2023
+ This method implements a binding behavior on category with
2024
+ axioms so that, when a category ``Cs`` implements an axiom
2025
+ ``A`` with a nested class ``Cs.A``, the expression ``Cs().A``
2026
+ evaluates to the method defining the axiom ``A`` and not the
2027
+ nested class. See `those design notes
2028
+ <category-with-axiom-design>`_ for the rationale behind this
2029
+ behavior.
2030
+
2031
+ EXAMPLES::
2032
+
2033
+ sage: Sets().Infinite()
2034
+ Category of infinite sets
2035
+ sage: Sets().Infinite
2036
+ Cached version of <function ...Infinite at ...>
2037
+ sage: Sets().Infinite.f == Sets.SubcategoryMethods.Infinite.f
2038
+ True
2039
+
2040
+ We check that this also works when the class is implemented in
2041
+ a separate file, and lazy imported::
2042
+
2043
+ sage: Sets().Finite
2044
+ Cached version of <function ...Finite at ...>
2045
+
2046
+ There is no binding behavior when accessing ``Finite`` or
2047
+ ``Infinite`` from the class of the category instead of the
2048
+ category itself::
2049
+
2050
+ sage: Sets.Finite
2051
+ <class 'sage.categories.finite_sets.FiniteSets'>
2052
+ sage: Sets.Infinite
2053
+ <class 'sage.categories.sets_cat.Sets.Infinite'>
2054
+
2055
+ This method also initializes the attribute
2056
+ ``_base_category_class_and_axiom`` if not already set::
2057
+
2058
+ sage: Sets.Infinite._base_category_class_and_axiom
2059
+ (<class 'sage.categories.sets_cat.Sets'>, 'Infinite')
2060
+ sage: Sets.Infinite._base_category_class_and_axiom_origin
2061
+ 'set by __classget__'
2062
+ """
2063
+ # TODO: this is super paranoid; see if this can be simplified a bit
2064
+ if base_category is not None:
2065
+ assert base_category.__class__ is base_category_class
2066
+ assert isinstance(base_category_class, DynamicMetaclass)
2067
+ if isinstance(base_category_class, DynamicMetaclass):
2068
+ base_category_class = base_category_class.__base__
2069
+ if "_base_category_class_and_axiom" not in cls.__dict__:
2070
+ cls._base_category_class_and_axiom = (base_category_class, axiom_of_nested_class(base_category_class, cls))
2071
+ cls._base_category_class_and_axiom_origin = "set by __classget__"
2072
+ else:
2073
+ assert cls._base_category_class_and_axiom[0] is base_category_class, \
2074
+ "base category class for {} mismatch; expected {}, got {}".format(
2075
+ cls, cls._base_category_class_and_axiom[0], base_category_class)
2076
+
2077
+ # Workaround #15648: if Rings.Finite is a LazyImport object,
2078
+ # this forces the substitution of the object back into Rings
2079
+ # to avoid resolving the lazy import over and over
2080
+ if isinstance(base_category_class.__dict__[cls._axiom], LazyImport):
2081
+ setattr(base_category_class, cls._axiom, cls)
2082
+
2083
+ if base_category is None:
2084
+ return cls
2085
+ # For Rings().Finite, this returns the method
2086
+ # Sets.SubcategoryMethods.Finite, with its first argument bound to Rings()
2087
+ return getattr(super(base_category.__class__.__base__, base_category), cls._axiom)
2088
+
2089
+ def __init__(self, base_category):
2090
+ """
2091
+ TESTS::
2092
+
2093
+ sage: C = Sets.Finite(); C
2094
+ Category of finite sets
2095
+ sage: type(C)
2096
+ <class 'sage.categories.finite_sets.FiniteSets_with_category'>
2097
+ sage: type(C).__base__.__base__
2098
+ <class 'sage.categories.category_with_axiom.CategoryWithAxiom_singleton'>
2099
+
2100
+ sage: TestSuite(C).run()
2101
+ """
2102
+ # A hack to upgrade axiom categories of singleton categories
2103
+ # to be singleton categories themselves
2104
+ if isinstance(base_category, Category_singleton) and not isinstance(self, CategoryWithAxiom_singleton):
2105
+ cls = self.__class__
2106
+ assert cls.__base__ == CategoryWithAxiom
2107
+ cls.__bases__ = (CategoryWithAxiom_singleton,)+cls.__bases__[1:]
2108
+
2109
+ self._base_category = base_category
2110
+ Category.__init__(self)
2111
+
2112
+ def _test_category_with_axiom(self, **options):
2113
+ r"""
2114
+ Run generic tests on this category with axioms.
2115
+
2116
+ .. SEEALSO:: :class:`TestSuite`.
2117
+
2118
+ This check that an axiom category of a
2119
+ :class:`Category_singleton` is a singleton category, and
2120
+ similarwise for :class:`Category_over_base_ring`.
2121
+
2122
+ EXAMPLES::
2123
+
2124
+ sage: Sets().Finite()._test_category_with_axiom()
2125
+ sage: Modules(ZZ).FiniteDimensional()._test_category_with_axiom()
2126
+ """
2127
+ tester = self._tester(**options)
2128
+ base = self.base_category()
2129
+ if isinstance(base, Category_singleton):
2130
+ tester.assertIsInstance(self, CategoryWithAxiom_singleton)
2131
+ if isinstance(base, Category_over_base_ring):
2132
+ tester.assertIsInstance(self, CategoryWithAxiom_over_base_ring)
2133
+
2134
+ def extra_super_categories(self):
2135
+ """
2136
+ Return the extra super categories of a category with axiom.
2137
+
2138
+ Default implementation which returns ``[]``.
2139
+
2140
+ EXAMPLES::
2141
+
2142
+ sage: FiniteSets().extra_super_categories()
2143
+ []
2144
+ """
2145
+ return []
2146
+
2147
+ @cached_method
2148
+ def super_categories(self):
2149
+ """
2150
+ Return a list of the (immediate) super categories of
2151
+ ``self``, as per :meth:`Category.super_categories`.
2152
+
2153
+ This implements the property that if ``As`` is a subcategory
2154
+ of ``Bs``, then the intersection of ``As`` with ``FiniteSets()``
2155
+ is a subcategory of ``As`` and of the intersection of ``Bs``
2156
+ with ``FiniteSets()``.
2157
+
2158
+ EXAMPLES:
2159
+
2160
+ A finite magma is both a magma and a finite set::
2161
+
2162
+ sage: Magmas().Finite().super_categories()
2163
+ [Category of magmas, Category of finite sets]
2164
+
2165
+ Variants::
2166
+
2167
+ sage: Sets().Finite().super_categories()
2168
+ [Category of sets]
2169
+
2170
+ sage: Monoids().Finite().super_categories()
2171
+ [Category of monoids, Category of finite semigroups]
2172
+
2173
+ EXAMPLES:
2174
+
2175
+ TESTS::
2176
+
2177
+ sage: from sage.categories.category_with_axiom import TestObjects
2178
+ sage: C = TestObjects().FiniteDimensional().Unital().Commutative().Finite()
2179
+ sage: sorted(C.super_categories(), key=str)
2180
+ [Category of finite commutative test objects,
2181
+ Category of finite dimensional commutative unital test objects,
2182
+ Category of finite finite dimensional test objects]
2183
+ """
2184
+ base_category = self._base_category
2185
+ axiom = self._axiom
2186
+ return Category.join((base_category,) +
2187
+ tuple(cat
2188
+ for category in base_category._super_categories
2189
+ for cat in category._with_axiom_as_tuple(axiom)) +
2190
+ tuple(self.extra_super_categories()),
2191
+ ignore_axioms=((base_category, axiom),),
2192
+ as_list=True)
2193
+
2194
+ def additional_structure(self):
2195
+ r"""
2196
+ Return the additional structure defined by ``self``.
2197
+
2198
+ OUTPUT: ``None``
2199
+
2200
+ By default, a category with axiom defines no additional
2201
+ structure.
2202
+
2203
+ .. SEEALSO:: :meth:`Category.additional_structure`.
2204
+
2205
+ EXAMPLES::
2206
+
2207
+ sage: Sets().Finite().additional_structure()
2208
+ sage: Monoids().additional_structure()
2209
+
2210
+ TESTS::
2211
+
2212
+ sage: Sets().Finite().additional_structure.__module__
2213
+ 'sage.categories.category_with_axiom'
2214
+ """
2215
+ return None
2216
+
2217
+ @staticmethod
2218
+ def _repr_object_names_static(category, axioms):
2219
+ r"""
2220
+ INPUT:
2221
+
2222
+ - ``base_category`` -- a category
2223
+ - ``axioms`` -- list or iterable of strings
2224
+
2225
+ EXAMPLES::
2226
+
2227
+ sage: from sage.categories.category_with_axiom import CategoryWithAxiom
2228
+ sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), ["Flying", "Blue"])
2229
+ 'flying blue semigroups'
2230
+ sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ["Flying", "WithBasis", "Blue"])
2231
+ 'flying blue algebras with basis over Rational Field'
2232
+ sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ["WithBasis"])
2233
+ 'algebras with basis over Rational Field'
2234
+ sage: CategoryWithAxiom._repr_object_names_static(Sets().Finite().Subquotients(), ["Finite"])
2235
+ 'subquotients of finite sets'
2236
+ sage: CategoryWithAxiom._repr_object_names_static(Monoids(), ["Unital"])
2237
+ 'monoids'
2238
+ sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ['x']['y']), ["Flying", "WithBasis", "Blue"])
2239
+ 'flying blue algebras with basis over Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field'
2240
+
2241
+ If the axioms is a set or frozen set, then they are first
2242
+ sorted using :func:`canonicalize_axioms`::
2243
+
2244
+ sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), set(["Finite", "Commutative", "Facade"]))
2245
+ 'facade finite commutative semigroups'
2246
+
2247
+ .. SEEALSO:: :meth:`_repr_object_names`
2248
+
2249
+ .. NOTE::
2250
+
2251
+ The logic here is shared between :meth:`_repr_object_names`
2252
+ and :meth:`.category.JoinCategory._repr_object_names`
2253
+
2254
+ TESTS::
2255
+
2256
+ sage: from sage.categories.homsets import Homsets
2257
+ sage: CategoryWithAxiom._repr_object_names_static(Homsets(), ["Endset"])
2258
+ 'endsets'
2259
+ sage: CategoryWithAxiom._repr_object_names_static(PermutationGroups(), ["FinitelyGeneratedAsMagma"])
2260
+ 'finitely generated permutation groups'
2261
+ sage: CategoryWithAxiom._repr_object_names_static(Rings(), ["FinitelyGeneratedAsMagma"])
2262
+ 'finitely generated as magma rings'
2263
+ """
2264
+ from sage.categories.additive_magmas import AdditiveMagmas
2265
+ axioms = canonicalize_axioms(all_axioms,axioms)
2266
+ base_category = category._without_axioms(named=True)
2267
+ if isinstance(base_category, CategoryWithAxiom): # Smelly runtime type checking
2268
+ result = super(CategoryWithAxiom, base_category)._repr_object_names()
2269
+ else:
2270
+ result = base_category._repr_object_names()
2271
+ for axiom in reversed(axioms):
2272
+ # TODO: find a more generic way to handle the special cases below
2273
+ if axiom in base_category.axioms():
2274
+ # If the base category already has this axiom, we
2275
+ # need not repeat it here. See the example with
2276
+ # Sets().Finite().Subquotients() or Monoids()
2277
+ continue
2278
+ base_category = base_category._with_axiom(axiom)
2279
+ if axiom == "WithBasis":
2280
+ result = result.replace(" over ", " with basis over ", 1)
2281
+ elif axiom == "Connected" and "graded " in result:
2282
+ result = result.replace("graded ", "graded connected ", 1)
2283
+ elif axiom == "Connected" and "filtered " in result:
2284
+ result = result.replace("filtered ", "filtered connected ", 1)
2285
+ elif axiom == "Stratified" and "graded " in result:
2286
+ result = result.replace("graded ", "stratified ", 1)
2287
+ elif axiom == "Nilpotent" and "finite dimensional " in result:
2288
+ # We need to put nilpotent before finite dimensional in the
2289
+ # axioms ordering so we do not (unnecessarily) display
2290
+ # 'nilpotent' in 'finite dimensional nilpotent stratified'.
2291
+ # So we need to swap the order here.
2292
+ result = result.replace("finite dimensional ", "finite dimensional nilpotent ", 1)
2293
+ elif axiom == "Endset" and "homsets" in result:
2294
+ # Without the space at the end to handle Homsets().Endset()
2295
+ result = result.replace("homsets", "endsets", 1)
2296
+ elif axiom == "FinitelyGeneratedAsMagma" and \
2297
+ not base_category.is_subcategory(AdditiveMagmas()):
2298
+ result = "finitely generated " + result
2299
+ elif axiom == "FinitelyGeneratedAsLambdaBracketAlgebra":
2300
+ result = "finitely generated " + result
2301
+ else:
2302
+ result = uncamelcase(axiom) + " " + result
2303
+ return result
2304
+
2305
+ def _repr_object_names(self):
2306
+ r"""
2307
+ The names of the objects of this category, as used by ``_repr_``.
2308
+
2309
+ .. SEEALSO:: :meth:`Category._repr_object_names`
2310
+
2311
+ EXAMPLES::
2312
+
2313
+ sage: FiniteSets()._repr_object_names()
2314
+ 'finite sets'
2315
+ sage: AlgebrasWithBasis(QQ).FiniteDimensional()._repr_object_names()
2316
+ 'finite dimensional algebras with basis over Rational Field'
2317
+ sage: Monoids()._repr_object_names()
2318
+ 'monoids'
2319
+ sage: Semigroups().Unital().Finite()._repr_object_names()
2320
+ 'finite monoids'
2321
+ sage: Algebras(QQ).Commutative()._repr_object_names()
2322
+ 'commutative algebras over Rational Field'
2323
+
2324
+ .. NOTE::
2325
+
2326
+ This is implemented by taking _repr_object_names from
2327
+ self._without_axioms(named=True), and adding the names
2328
+ of the relevant axioms in appropriate order.
2329
+ """
2330
+ return CategoryWithAxiom._repr_object_names_static(self, self.axioms())
2331
+
2332
+ def base_category(self):
2333
+ r"""
2334
+ Return the base category of ``self``.
2335
+
2336
+ EXAMPLES::
2337
+
2338
+ sage: C = Sets.Finite(); C
2339
+ Category of finite sets
2340
+ sage: C.base_category()
2341
+ Category of sets
2342
+ sage: C._without_axioms()
2343
+ Category of sets
2344
+
2345
+ TESTS::
2346
+
2347
+ sage: from sage.categories.category_with_axiom import TestObjects, CategoryWithAxiom
2348
+ sage: C = TestObjects().Commutative().Facade()
2349
+ sage: assert isinstance(C, CategoryWithAxiom)
2350
+ sage: C._without_axioms()
2351
+ Category of test objects
2352
+ """
2353
+ return self._base_category
2354
+
2355
+ def __reduce__(self):
2356
+ r"""
2357
+ Implement the pickle protocol.
2358
+
2359
+ This overrides the implementation in
2360
+ :meth:`UniqueRepresentation.__reduce__` in order to not
2361
+ exposes the implementation detail that, for example, the
2362
+ category of magmas which distribute over an associative
2363
+ additive magma is implemented as
2364
+ ``MagmasAndAdditiveMagmas.Distributive.AdditiveAssociative.AdditiveCommutative``
2365
+ and not
2366
+ ``MagmasAndAdditiveMagmas.Distributive.AdditiveCommutative.AdditiveAssociative``.
2367
+
2368
+ EXAMPLES::
2369
+
2370
+ sage: C = Semigroups()
2371
+ sage: reduction = C.__reduce__(); reduction
2372
+ (<function call_method at ...>, (Category of magmas, '_with_axiom', 'Associative'))
2373
+ sage: loads(dumps(C)) is C
2374
+ True
2375
+ sage: FiniteSets().__reduce__()
2376
+ (<function call_method at ...>, (Category of sets, '_with_axiom', 'Finite'))
2377
+
2378
+ sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
2379
+ sage: C = MagmasAndAdditiveMagmas().Distributive().AdditiveAssociative().AdditiveCommutative()
2380
+ sage: C.__class__
2381
+ <class 'sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative_with_category'>
2382
+ sage: C.__reduce__()
2383
+ (<function call_method at ...>, (Category of additive associative distributive magmas and additive magmas, '_with_axiom', 'AdditiveCommutative'))
2384
+ """
2385
+ return (call_method, (self._base_category, "_with_axiom", self._axiom))
2386
+
2387
+ @cached_method
2388
+ def _without_axiom(self, axiom):
2389
+ r"""
2390
+ Return this category, with axiom ``axiom`` removed.
2391
+
2392
+ OUTPUT:
2393
+
2394
+ A category ``C`` which does not have axiom ``axiom`` and such
2395
+ that either ``C`` is ``self``, or adding back all the axioms
2396
+ of ``self`` gives back ``self``.
2397
+
2398
+ .. SEEALSO:: :meth:`Category._without_axiom`
2399
+
2400
+ .. WARNING:: This is not guaranteed to be robust.
2401
+
2402
+ EXAMPLES::
2403
+
2404
+ sage: Groups()._without_axiom("Unital")
2405
+ Category of semigroups
2406
+ sage: Groups()._without_axiom("Associative")
2407
+ Category of inverse unital magmas
2408
+ sage: Groups().Commutative()._without_axiom("Unital")
2409
+ Category of commutative semigroups
2410
+ """
2411
+ axioms = self.axioms().difference([axiom])
2412
+ return self._without_axioms()._with_axioms(axioms)
2413
+
2414
+ @cached_method
2415
+ def _without_axioms(self, named=False):
2416
+ """
2417
+ Return the category without the axioms that have been
2418
+ added to create it.
2419
+
2420
+ EXAMPLES::
2421
+
2422
+ sage: Sets().Finite()._without_axioms()
2423
+ Category of sets
2424
+ sage: Monoids().Finite()._without_axioms()
2425
+ Category of magmas
2426
+
2427
+ This is because::
2428
+
2429
+ sage: Semigroups().Unital() is Monoids()
2430
+ True
2431
+
2432
+ If ``named`` is ``True``, then ``_without_axioms`` stops at the
2433
+ first category that has an explicit name of its own::
2434
+
2435
+ sage: Sets().Finite()._without_axioms(named=True)
2436
+ Category of sets
2437
+ sage: Monoids().Finite()._without_axioms(named=True)
2438
+ Category of monoids
2439
+
2440
+ Technically we test this by checking if the class specifies
2441
+ explicitly the attribute ``_base_category_class_and_axiom``
2442
+ by looking up ``_base_category_class_and_axiom_origin``.
2443
+
2444
+ Some more examples::
2445
+
2446
+ sage: Algebras(QQ).Commutative()._without_axioms()
2447
+ Category of magmatic algebras over Rational Field
2448
+ sage: Algebras(QQ).Commutative()._without_axioms(named=True)
2449
+ Category of algebras over Rational Field
2450
+ """
2451
+ if named and self._base_category_class_and_axiom_origin == "hardcoded":
2452
+ return self
2453
+ return self._base_category._without_axioms(named=named)
2454
+
2455
+ @cached_method
2456
+ def axioms(self):
2457
+ r"""
2458
+ Return the axioms known to be satisfied by all the
2459
+ objects of ``self``.
2460
+
2461
+ .. SEEALSO:: :meth:`Category.axioms`
2462
+
2463
+ EXAMPLES::
2464
+
2465
+ sage: C = Sets.Finite(); C
2466
+ Category of finite sets
2467
+ sage: C.axioms()
2468
+ frozenset({'Finite'})
2469
+
2470
+ sage: C = Modules(GF(5)).FiniteDimensional(); C
2471
+ Category of finite dimensional vector spaces over Finite Field of size 5
2472
+ sage: sorted(C.axioms())
2473
+ ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
2474
+ 'AdditiveUnital', 'Finite', 'FiniteDimensional']
2475
+
2476
+ sage: sorted(FiniteMonoids().Algebras(QQ).axioms())
2477
+ ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
2478
+ 'AdditiveUnital', 'Associative', 'Distributive',
2479
+ 'FiniteDimensional', 'Unital', 'WithBasis']
2480
+ sage: sorted(FiniteMonoids().Algebras(GF(3)).axioms())
2481
+ ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
2482
+ 'AdditiveUnital', 'Associative', 'Distributive', 'Finite',
2483
+ 'FiniteDimensional', 'Unital', 'WithBasis']
2484
+
2485
+ sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
2486
+ sage: MagmasAndAdditiveMagmas().Distributive().Unital().axioms()
2487
+ frozenset({'Distributive', 'Unital'})
2488
+
2489
+ sage: D = MagmasAndAdditiveMagmas().Distributive()
2490
+ sage: X = D.AdditiveAssociative().AdditiveCommutative().Associative()
2491
+ sage: X.Unital().super_categories()[1]
2492
+ Category of monoids
2493
+ sage: X.Unital().super_categories()[1] is Monoids()
2494
+ True
2495
+ """
2496
+ # We would want to write the following line:
2497
+ # return super(CategoryWithAxiom, self).axioms() | {self._axiom}
2498
+ # However one currently can't use super to call a cached
2499
+ # method in a super class. So we dup the code from there ...
2500
+ return frozenset(axiom
2501
+ for category in self._super_categories
2502
+ for axiom in category.axioms()) | {self._axiom}
2503
+
2504
+ def _lean_init_(self):
2505
+ """
2506
+
2507
+ EXAMPLES::
2508
+
2509
+ sage: Rings().Commutative().Finite()
2510
+ Category of finite commutative rings
2511
+ sage: _._lean_init_()
2512
+ 'finite comm_ring'
2513
+ """
2514
+ # adapted from _repr_object_names_static
2515
+ category = self
2516
+ axioms = self.axioms()
2517
+
2518
+ axioms = canonicalize_axioms(all_axioms, axioms)
2519
+
2520
+ base_category = category
2521
+ while True:
2522
+ try:
2523
+ result = base_category.__lean_init__()
2524
+ except (AttributeError, NotImplementedError):
2525
+ base_category = base_category.base_category()
2526
+ else:
2527
+ break
2528
+
2529
+ for axiom in reversed(axioms):
2530
+ if axiom in base_category.axioms():
2531
+ # If the base category already has this axiom, we
2532
+ # need not repeat it here. See the example with
2533
+ # Sets().Finite().Subquotients() or Monoids()
2534
+ continue
2535
+ base_category = base_category._with_axiom(axiom)
2536
+
2537
+ if axiom == "Finite":
2538
+ result = "finite" + " " + result
2539
+ elif axiom == "Commutative":
2540
+ result = "is_commutative" + " " + result
2541
+
2542
+ # TODO: Handle more of all_axioms here.
2543
+
2544
+ return result
2545
+
2546
+
2547
+ class CategoryWithAxiom_over_base_ring(CategoryWithAxiom, Category_over_base_ring):
2548
+
2549
+ def __init__(self, base_category):
2550
+ """
2551
+ TESTS::
2552
+
2553
+ sage: C = Modules(ZZ).FiniteDimensional(); C
2554
+ Category of finite dimensional modules over Integer Ring
2555
+ sage: type(C)
2556
+ <class 'sage.categories.modules.Modules.FiniteDimensional_with_category'>
2557
+ sage: type(C).__base__.__base__
2558
+ <class 'sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring'>
2559
+
2560
+ sage: TestSuite(C).run()
2561
+ """
2562
+ # FIXME: this basically duplicates the code from
2563
+ # CategoryWithAxiom.__init__; but we can't call the latter without
2564
+ # calling Category.__init__ twice. One could instead set
2565
+ # "self.__base", which is done in Category_over_base_ring.__init__,
2566
+ # but then one has to take into account Python's name mangling.
2567
+ self._base_category = base_category
2568
+ Category_over_base_ring.__init__(self, base_category.base_ring())
2569
+
2570
+
2571
+ class CategoryWithAxiom_singleton(Category_singleton, CategoryWithAxiom): # Category_singleton, FastHashable_class):
2572
+ pass
2573
+
2574
+
2575
+ """
2576
+ The following workaround is needed until any :class:`CategoryWithAxiom` of a
2577
+ :class:`Category_over_base_ring` becomes automatically a
2578
+ :class:`CategoryWithAxiom_over_base_ring`::
2579
+
2580
+ sage: from sage.categories.category_with_axiom import TestObjectsOverBaseRing, Category_over_base_ring
2581
+ sage: from sage.categories.category import JoinCategory
2582
+ sage: isinstance(TestObjectsOverBaseRing(QQ), Category_over_base_ring)
2583
+ True
2584
+ sage: C = TestObjectsOverBaseRing(QQ).Commutative()
2585
+ sage: isinstance(C, Category_over_base_ring) # todo: not implemented
2586
+ True
2587
+ sage: C.FiniteDimensional()
2588
+ Category of finite dimensional commutative test objects over base ring over Rational Field
2589
+ sage: C.Commutative()
2590
+ Category of commutative test objects over base ring over Rational Field
2591
+ sage: C.Unital()
2592
+ Category of commutative unital test objects over base ring over Rational Field
2593
+
2594
+ sage: C = TestObjectsOverBaseRing(IntegerModRing(2)).Connected()
2595
+ sage: isinstance(C, JoinCategory)
2596
+ True
2597
+ sage: isinstance(C, Category_over_base_ring) # todo: not implemented
2598
+ True
2599
+ sage: C.FiniteDimensional()
2600
+ Category of finite dimensional connected test objects
2601
+ over base ring over Ring of integers modulo 2
2602
+ sage: C.Connected()
2603
+ Category of connected test objects over base ring over Ring of integers modulo 2
2604
+ """
2605
+
2606
+ ##############################################################################
2607
+ # Utilities and tests tools
2608
+
2609
+
2610
+ def axiom(axiom):
2611
+ """
2612
+ Return a function/method ``self -> self._with_axiom(axiom)``.
2613
+
2614
+ This can used as a shorthand to define axioms, in particular in
2615
+ the tests below. Usually one will want to attach documentation to
2616
+ an axiom, so the need for such a shorthand in real life might not
2617
+ be that clear, unless we start creating lots of axioms.
2618
+
2619
+ In the long run maybe this could evolve into an ``@axiom`` decorator.
2620
+
2621
+ EXAMPLES::
2622
+
2623
+ sage: from sage.categories.category_with_axiom import axiom
2624
+ sage: axiom("Finite")(Semigroups())
2625
+ Category of finite semigroups
2626
+
2627
+ Upon assigning the result to a class this becomes a method::
2628
+
2629
+ sage: class As:
2630
+ ....: def _with_axiom(self, axiom): return self, axiom
2631
+ ....: Finite = axiom("Finite")
2632
+ sage: As().Finite()
2633
+ (<__main__.As ... at ...>, 'Finite')
2634
+ """
2635
+ def with_axiom(self):
2636
+ return self._with_axiom(axiom)
2637
+ with_axiom.__name__ = axiom
2638
+ return with_axiom
2639
+
2640
+
2641
+ class Blahs(Category_singleton):
2642
+ r"""
2643
+ A toy singleton category, for testing purposes.
2644
+
2645
+ This is the root of a hierarchy of mathematically meaningless
2646
+ categories, used for testing Sage's category framework:
2647
+
2648
+ - :class:`Bars`
2649
+ - :class:`TestObjects`
2650
+ - :class:`TestObjectsOverBaseRing`
2651
+ """
2652
+
2653
+ def super_categories(self):
2654
+ """
2655
+ TESTS::
2656
+
2657
+ sage: from sage.categories.category_with_axiom import Blahs
2658
+ sage: Blahs().super_categories()
2659
+ [Category of sets]
2660
+ sage: TestSuite(Blahs()).run()
2661
+ """
2662
+ from sage.categories.sets_cat import Sets
2663
+ return [Sets()]
2664
+
2665
+ class SubcategoryMethods:
2666
+ FiniteDimensional = axiom("FiniteDimensional")
2667
+ Commutative = axiom("Commutative")
2668
+ Unital = axiom("Unital")
2669
+ Connected = axiom("Connected")
2670
+ Flying = axiom("Flying")
2671
+ Blue = axiom("Blue")
2672
+
2673
+ class FiniteDimensional(CategoryWithAxiom):
2674
+ pass
2675
+
2676
+ class Commutative(CategoryWithAxiom):
2677
+ pass
2678
+
2679
+ class Connected(CategoryWithAxiom):
2680
+ pass
2681
+
2682
+ class Unital(CategoryWithAxiom):
2683
+ class Blue(CategoryWithAxiom):
2684
+ pass
2685
+
2686
+ class Flying(CategoryWithAxiom):
2687
+ def extra_super_categories(self):
2688
+ """
2689
+ This illustrates a way to have an axiom imply another one.
2690
+
2691
+ Here, we want ``Flying`` to imply ``Unital``, and to put
2692
+ the class for the category of unital flying blahs in
2693
+ ``Blahs.Flying`` rather than ``Blahs.Unital.Flying``.
2694
+
2695
+ TESTS::
2696
+
2697
+ sage: from sage.categories.category_with_axiom import Blahs, TestObjects, Bars
2698
+ sage: Blahs().Flying().extra_super_categories()
2699
+ [Category of unital blahs]
2700
+ sage: Blahs().Flying()
2701
+ Category of flying unital blahs
2702
+ """
2703
+ return [Blahs().Unital()]
2704
+
2705
+ def Blue_extra_super_categories(self):
2706
+ """
2707
+ Illustrates a current limitation in the way to have an axiom
2708
+ imply another one.
2709
+
2710
+ Here, we would want ``Blue`` to imply ``Unital``, and to put
2711
+ the class for the category of unital blue blahs in
2712
+ ``Blahs.Unital.Blue`` rather than ``Blahs.Blue``.
2713
+
2714
+ This currently fails because ``Blahs`` is the category where
2715
+ the axiom ``Blue`` is defined, and the specifications
2716
+ currently impose that a category defining an axiom should also
2717
+ implement it (here in a category with axiom
2718
+ ``Blahs.Blue``). In practice, due to this violation of the
2719
+ specifications, the axiom is lost during the join calculation.
2720
+
2721
+ .. TODO::
2722
+
2723
+ Decide whether we care about this feature. In such a
2724
+ situation, we are not really defining a new axiom, but
2725
+ just defining an axiom as an alias for a couple others,
2726
+ which might not be that useful.
2727
+
2728
+ .. TODO::
2729
+
2730
+ Improve the infrastructure to detect and report this
2731
+ violation of the specifications, if this is
2732
+ easy. Otherwise, it's not so bad: when defining an axiom A
2733
+ in a category ``Cs`` the first thing one is supposed to
2734
+ doctest is that ``Cs().A()`` works. So the problem should
2735
+ not go unnoticed.
2736
+
2737
+ TESTS::
2738
+
2739
+ sage: from sage.categories.category_with_axiom import Blahs, TestObjects, Bars
2740
+ sage: Blahs().Blue_extra_super_categories()
2741
+ [Category of unital blahs]
2742
+ sage: Blahs().Blue() # todo: not implemented
2743
+ Category of blue unital blahs
2744
+ """
2745
+ return [Blahs().Unital()]
2746
+
2747
+
2748
+ class Bars(Category_singleton):
2749
+ r"""
2750
+ A toy singleton category, for testing purposes.
2751
+
2752
+ .. SEEALSO:: :class:`Blahs`
2753
+ """
2754
+
2755
+ def super_categories(self):
2756
+ """
2757
+ TESTS::
2758
+
2759
+ sage: from sage.categories.category_with_axiom import Bars
2760
+ sage: Bars().super_categories()
2761
+ [Category of blahs]
2762
+ sage: TestSuite(Bars()).run()
2763
+ """
2764
+ return [Blahs()]
2765
+
2766
+ def Unital_extra_super_categories(self):
2767
+ """
2768
+ Return extraneous super categories for the unital objects of ``self``.
2769
+
2770
+ This method specifies that a unital bar is a test object.
2771
+ Thus, the categories of unital bars and of unital test objects
2772
+ coincide.
2773
+
2774
+ EXAMPLES::
2775
+
2776
+ sage: from sage.categories.category_with_axiom import Bars, TestObjects
2777
+ sage: Bars().Unital_extra_super_categories()
2778
+ [Category of test objects]
2779
+ sage: Bars().Unital()
2780
+ Category of unital test objects
2781
+ sage: TestObjects().Unital().all_super_categories()
2782
+ [Category of unital test objects,
2783
+ Category of unital blahs,
2784
+ Category of test objects,
2785
+ Category of bars,
2786
+ Category of blahs,
2787
+ Category of sets,
2788
+ Category of sets with partial maps,
2789
+ Category of objects]
2790
+ """
2791
+ return [TestObjects()]
2792
+
2793
+
2794
+ class TestObjects(Category_singleton):
2795
+ r"""
2796
+ A toy singleton category, for testing purposes.
2797
+
2798
+ .. SEEALSO:: :class:`Blahs`
2799
+ """
2800
+
2801
+ def super_categories(self):
2802
+ """
2803
+ TESTS::
2804
+
2805
+ sage: from sage.categories.category_with_axiom import TestObjects
2806
+ sage: TestObjects().super_categories()
2807
+ [Category of bars]
2808
+ sage: TestSuite(TestObjects()).run()
2809
+ """
2810
+ return [Bars()]
2811
+
2812
+ class FiniteDimensional(CategoryWithAxiom):
2813
+ class Finite(CategoryWithAxiom):
2814
+ pass
2815
+
2816
+ class Unital(CategoryWithAxiom):
2817
+ class Commutative(CategoryWithAxiom):
2818
+ pass
2819
+
2820
+ class Commutative(CategoryWithAxiom):
2821
+ class Facade(CategoryWithAxiom):
2822
+ pass
2823
+
2824
+ class FiniteDimensional(CategoryWithAxiom):
2825
+ pass
2826
+
2827
+ class Finite(CategoryWithAxiom):
2828
+ pass
2829
+
2830
+ class Unital(CategoryWithAxiom):
2831
+ pass
2832
+
2833
+
2834
+ class TestObjectsOverBaseRing(Category_over_base_ring):
2835
+ r"""
2836
+ A toy singleton category, for testing purposes.
2837
+
2838
+ .. SEEALSO:: :class:`Blahs`
2839
+ """
2840
+
2841
+ def super_categories(self):
2842
+ """
2843
+ TESTS::
2844
+
2845
+ sage: from sage.categories.category_with_axiom import TestObjectsOverBaseRing
2846
+ sage: TestObjectsOverBaseRing(QQ).super_categories()
2847
+ [Category of test objects]
2848
+ sage: TestObjectsOverBaseRing.Unital.an_instance()
2849
+ Category of unital test objects over base ring over Rational Field
2850
+ sage: TestObjectsOverBaseRing.FiniteDimensional.Unital.an_instance()
2851
+ Category of finite dimensional unital test objects over base ring over Rational Field
2852
+ sage: C = TestObjectsOverBaseRing(QQ).FiniteDimensional().Unital().Commutative()
2853
+ sage: TestSuite(C).run()
2854
+ """
2855
+ return [TestObjects()]
2856
+
2857
+ class FiniteDimensional(CategoryWithAxiom_over_base_ring):
2858
+ class Finite(CategoryWithAxiom_over_base_ring):
2859
+ pass
2860
+
2861
+ class Unital(CategoryWithAxiom_over_base_ring):
2862
+ class Commutative(CategoryWithAxiom_over_base_ring):
2863
+ pass
2864
+
2865
+ class Commutative(CategoryWithAxiom_over_base_ring):
2866
+ class Facade(CategoryWithAxiom_over_base_ring):
2867
+ pass
2868
+
2869
+ class FiniteDimensional(CategoryWithAxiom_over_base_ring):
2870
+ pass
2871
+
2872
+ class Finite(CategoryWithAxiom_over_base_ring):
2873
+ pass
2874
+
2875
+ class Unital(CategoryWithAxiom_over_base_ring):
2876
+ pass