passagemath-objects 10.6.44__cp314-cp314t-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (280) hide show
  1. passagemath_objects/.dylibs/libgmp.10.dylib +0 -0
  2. passagemath_objects/__init__.py +3 -0
  3. passagemath_objects-10.6.44.dist-info/METADATA +115 -0
  4. passagemath_objects-10.6.44.dist-info/RECORD +280 -0
  5. passagemath_objects-10.6.44.dist-info/WHEEL +6 -0
  6. passagemath_objects-10.6.44.dist-info/top_level.txt +3 -0
  7. sage/all__sagemath_objects.py +37 -0
  8. sage/arith/all__sagemath_objects.py +5 -0
  9. sage/arith/long.pxd +411 -0
  10. sage/arith/numerical_approx.cpython-314t-darwin.so +0 -0
  11. sage/arith/numerical_approx.pxd +35 -0
  12. sage/arith/numerical_approx.pyx +75 -0
  13. sage/arith/power.cpython-314t-darwin.so +0 -0
  14. sage/arith/power.pxd +31 -0
  15. sage/arith/power.pyx +127 -0
  16. sage/categories/action.cpython-314t-darwin.so +0 -0
  17. sage/categories/action.pxd +29 -0
  18. sage/categories/action.pyx +641 -0
  19. sage/categories/algebra_functor.py +745 -0
  20. sage/categories/all__sagemath_objects.py +33 -0
  21. sage/categories/basic.py +62 -0
  22. sage/categories/cartesian_product.py +295 -0
  23. sage/categories/category.py +3401 -0
  24. sage/categories/category_cy_helper.cpython-314t-darwin.so +0 -0
  25. sage/categories/category_cy_helper.pxd +8 -0
  26. sage/categories/category_cy_helper.pyx +322 -0
  27. sage/categories/category_singleton.cpython-314t-darwin.so +0 -0
  28. sage/categories/category_singleton.pxd +3 -0
  29. sage/categories/category_singleton.pyx +342 -0
  30. sage/categories/category_types.py +637 -0
  31. sage/categories/category_with_axiom.py +2876 -0
  32. sage/categories/covariant_functorial_construction.py +703 -0
  33. sage/categories/facade_sets.py +228 -0
  34. sage/categories/functor.cpython-314t-darwin.so +0 -0
  35. sage/categories/functor.pxd +7 -0
  36. sage/categories/functor.pyx +691 -0
  37. sage/categories/homset.py +1338 -0
  38. sage/categories/homsets.py +364 -0
  39. sage/categories/isomorphic_objects.py +73 -0
  40. sage/categories/map.cpython-314t-darwin.so +0 -0
  41. sage/categories/map.pxd +34 -0
  42. sage/categories/map.pyx +2106 -0
  43. sage/categories/morphism.cpython-314t-darwin.so +0 -0
  44. sage/categories/morphism.pxd +14 -0
  45. sage/categories/morphism.pyx +895 -0
  46. sage/categories/objects.py +167 -0
  47. sage/categories/primer.py +1696 -0
  48. sage/categories/pushout.py +4834 -0
  49. sage/categories/quotients.py +64 -0
  50. sage/categories/realizations.py +200 -0
  51. sage/categories/sets_cat.py +3290 -0
  52. sage/categories/sets_with_partial_maps.py +52 -0
  53. sage/categories/subobjects.py +64 -0
  54. sage/categories/subquotients.py +21 -0
  55. sage/categories/with_realizations.py +311 -0
  56. sage/cpython/__init__.py +19 -0
  57. sage/cpython/_py2_random.py +619 -0
  58. sage/cpython/all.py +3 -0
  59. sage/cpython/atexit.cpython-314t-darwin.so +0 -0
  60. sage/cpython/atexit.pyx +269 -0
  61. sage/cpython/builtin_types.cpython-314t-darwin.so +0 -0
  62. sage/cpython/builtin_types.pyx +7 -0
  63. sage/cpython/cython_metaclass.cpython-314t-darwin.so +0 -0
  64. sage/cpython/cython_metaclass.h +117 -0
  65. sage/cpython/cython_metaclass.pxd +3 -0
  66. sage/cpython/cython_metaclass.pyx +130 -0
  67. sage/cpython/debug.cpython-314t-darwin.so +0 -0
  68. sage/cpython/debug.pyx +302 -0
  69. sage/cpython/dict_del_by_value.cpython-314t-darwin.so +0 -0
  70. sage/cpython/dict_del_by_value.pxd +9 -0
  71. sage/cpython/dict_del_by_value.pyx +191 -0
  72. sage/cpython/dict_internal.h +245 -0
  73. sage/cpython/getattr.cpython-314t-darwin.so +0 -0
  74. sage/cpython/getattr.pxd +9 -0
  75. sage/cpython/getattr.pyx +439 -0
  76. sage/cpython/pycore_long.h +97 -0
  77. sage/cpython/pycore_long.pxd +10 -0
  78. sage/cpython/python_debug.h +44 -0
  79. sage/cpython/python_debug.pxd +47 -0
  80. sage/cpython/pyx_visit.h +13 -0
  81. sage/cpython/string.cpython-314t-darwin.so +0 -0
  82. sage/cpython/string.pxd +76 -0
  83. sage/cpython/string.pyx +34 -0
  84. sage/cpython/string_impl.h +60 -0
  85. sage/cpython/type.cpython-314t-darwin.so +0 -0
  86. sage/cpython/type.pxd +2 -0
  87. sage/cpython/type.pyx +40 -0
  88. sage/cpython/wrapperdescr.pxd +67 -0
  89. sage/ext/all__sagemath_objects.py +3 -0
  90. sage/ext/ccobject.h +64 -0
  91. sage/ext/cplusplus.pxd +17 -0
  92. sage/ext/mod_int.h +30 -0
  93. sage/ext/mod_int.pxd +24 -0
  94. sage/ext/stdsage.pxd +39 -0
  95. sage/groups/all__sagemath_objects.py +1 -0
  96. sage/groups/group.cpython-314t-darwin.so +0 -0
  97. sage/groups/group.pxd +14 -0
  98. sage/groups/group.pyx +322 -0
  99. sage/groups/old.cpython-314t-darwin.so +0 -0
  100. sage/groups/old.pxd +14 -0
  101. sage/groups/old.pyx +219 -0
  102. sage/libs/all__sagemath_objects.py +3 -0
  103. sage/libs/gmp/__init__.py +1 -0
  104. sage/libs/gmp/all.pxd +6 -0
  105. sage/libs/gmp/binop.pxd +23 -0
  106. sage/libs/gmp/misc.pxd +8 -0
  107. sage/libs/gmp/mpf.pxd +88 -0
  108. sage/libs/gmp/mpn.pxd +57 -0
  109. sage/libs/gmp/mpq.pxd +57 -0
  110. sage/libs/gmp/mpz.pxd +202 -0
  111. sage/libs/gmp/pylong.cpython-314t-darwin.so +0 -0
  112. sage/libs/gmp/pylong.pxd +12 -0
  113. sage/libs/gmp/pylong.pyx +150 -0
  114. sage/libs/gmp/random.pxd +25 -0
  115. sage/libs/gmp/randomize.pxd +59 -0
  116. sage/libs/gmp/types.pxd +53 -0
  117. sage/libs/gmpxx.pxd +19 -0
  118. sage/misc/abstract_method.py +276 -0
  119. sage/misc/all__sagemath_objects.py +43 -0
  120. sage/misc/bindable_class.py +253 -0
  121. sage/misc/c3_controlled.cpython-314t-darwin.so +0 -0
  122. sage/misc/c3_controlled.pxd +2 -0
  123. sage/misc/c3_controlled.pyx +1402 -0
  124. sage/misc/cachefunc.cpython-314t-darwin.so +0 -0
  125. sage/misc/cachefunc.pxd +43 -0
  126. sage/misc/cachefunc.pyx +3781 -0
  127. sage/misc/call.py +188 -0
  128. sage/misc/classcall_metaclass.cpython-314t-darwin.so +0 -0
  129. sage/misc/classcall_metaclass.pxd +14 -0
  130. sage/misc/classcall_metaclass.pyx +599 -0
  131. sage/misc/constant_function.cpython-314t-darwin.so +0 -0
  132. sage/misc/constant_function.pyx +130 -0
  133. sage/misc/decorators.py +747 -0
  134. sage/misc/fast_methods.cpython-314t-darwin.so +0 -0
  135. sage/misc/fast_methods.pxd +20 -0
  136. sage/misc/fast_methods.pyx +351 -0
  137. sage/misc/flatten.py +90 -0
  138. sage/misc/fpickle.cpython-314t-darwin.so +0 -0
  139. sage/misc/fpickle.pyx +177 -0
  140. sage/misc/function_mangling.cpython-314t-darwin.so +0 -0
  141. sage/misc/function_mangling.pxd +11 -0
  142. sage/misc/function_mangling.pyx +308 -0
  143. sage/misc/inherit_comparison.cpython-314t-darwin.so +0 -0
  144. sage/misc/inherit_comparison.pxd +5 -0
  145. sage/misc/inherit_comparison.pyx +105 -0
  146. sage/misc/instancedoc.cpython-314t-darwin.so +0 -0
  147. sage/misc/instancedoc.pyx +331 -0
  148. sage/misc/lazy_attribute.cpython-314t-darwin.so +0 -0
  149. sage/misc/lazy_attribute.pyx +607 -0
  150. sage/misc/lazy_format.py +135 -0
  151. sage/misc/lazy_import.cpython-314t-darwin.so +0 -0
  152. sage/misc/lazy_import.pyx +1299 -0
  153. sage/misc/lazy_import_cache.py +36 -0
  154. sage/misc/lazy_list.cpython-314t-darwin.so +0 -0
  155. sage/misc/lazy_list.pxd +19 -0
  156. sage/misc/lazy_list.pyx +1187 -0
  157. sage/misc/lazy_string.cpython-314t-darwin.so +0 -0
  158. sage/misc/lazy_string.pxd +7 -0
  159. sage/misc/lazy_string.pyx +546 -0
  160. sage/misc/misc.py +1066 -0
  161. sage/misc/misc_c.cpython-314t-darwin.so +0 -0
  162. sage/misc/misc_c.pxd +3 -0
  163. sage/misc/misc_c.pyx +766 -0
  164. sage/misc/namespace_package.py +37 -0
  165. sage/misc/nested_class.cpython-314t-darwin.so +0 -0
  166. sage/misc/nested_class.pxd +3 -0
  167. sage/misc/nested_class.pyx +394 -0
  168. sage/misc/persist.cpython-314t-darwin.so +0 -0
  169. sage/misc/persist.pyx +1251 -0
  170. sage/misc/prandom.py +418 -0
  171. sage/misc/randstate.cpython-314t-darwin.so +0 -0
  172. sage/misc/randstate.pxd +30 -0
  173. sage/misc/randstate.pyx +1059 -0
  174. sage/misc/repr.py +203 -0
  175. sage/misc/reset.cpython-314t-darwin.so +0 -0
  176. sage/misc/reset.pyx +196 -0
  177. sage/misc/sage_ostools.cpython-314t-darwin.so +0 -0
  178. sage/misc/sage_ostools.pyx +323 -0
  179. sage/misc/sage_timeit.py +275 -0
  180. sage/misc/sage_timeit_class.cpython-314t-darwin.so +0 -0
  181. sage/misc/sage_timeit_class.pyx +120 -0
  182. sage/misc/sage_unittest.py +637 -0
  183. sage/misc/sageinspect.py +2768 -0
  184. sage/misc/session.cpython-314t-darwin.so +0 -0
  185. sage/misc/session.pyx +392 -0
  186. sage/misc/superseded.py +557 -0
  187. sage/misc/test_nested_class.py +228 -0
  188. sage/misc/timing.py +264 -0
  189. sage/misc/unknown.py +222 -0
  190. sage/misc/verbose.py +253 -0
  191. sage/misc/weak_dict.cpython-314t-darwin.so +0 -0
  192. sage/misc/weak_dict.pxd +15 -0
  193. sage/misc/weak_dict.pyx +1231 -0
  194. sage/modules/all__sagemath_objects.py +1 -0
  195. sage/modules/module.cpython-314t-darwin.so +0 -0
  196. sage/modules/module.pxd +5 -0
  197. sage/modules/module.pyx +329 -0
  198. sage/rings/all__sagemath_objects.py +3 -0
  199. sage/rings/integer_fake.h +22 -0
  200. sage/rings/integer_fake.pxd +55 -0
  201. sage/sets/all__sagemath_objects.py +3 -0
  202. sage/sets/pythonclass.cpython-314t-darwin.so +0 -0
  203. sage/sets/pythonclass.pxd +9 -0
  204. sage/sets/pythonclass.pyx +247 -0
  205. sage/structure/__init__.py +4 -0
  206. sage/structure/all.py +30 -0
  207. sage/structure/category_object.cpython-314t-darwin.so +0 -0
  208. sage/structure/category_object.pxd +28 -0
  209. sage/structure/category_object.pyx +1087 -0
  210. sage/structure/coerce.cpython-314t-darwin.so +0 -0
  211. sage/structure/coerce.pxd +44 -0
  212. sage/structure/coerce.pyx +2107 -0
  213. sage/structure/coerce_actions.cpython-314t-darwin.so +0 -0
  214. sage/structure/coerce_actions.pxd +27 -0
  215. sage/structure/coerce_actions.pyx +988 -0
  216. sage/structure/coerce_dict.cpython-314t-darwin.so +0 -0
  217. sage/structure/coerce_dict.pxd +51 -0
  218. sage/structure/coerce_dict.pyx +1557 -0
  219. sage/structure/coerce_exceptions.py +23 -0
  220. sage/structure/coerce_maps.cpython-314t-darwin.so +0 -0
  221. sage/structure/coerce_maps.pxd +28 -0
  222. sage/structure/coerce_maps.pyx +718 -0
  223. sage/structure/debug_options.cpython-314t-darwin.so +0 -0
  224. sage/structure/debug_options.pxd +6 -0
  225. sage/structure/debug_options.pyx +54 -0
  226. sage/structure/dynamic_class.py +541 -0
  227. sage/structure/element.cpython-314t-darwin.so +0 -0
  228. sage/structure/element.pxd +272 -0
  229. sage/structure/element.pyx +4772 -0
  230. sage/structure/element_wrapper.cpython-314t-darwin.so +0 -0
  231. sage/structure/element_wrapper.pxd +12 -0
  232. sage/structure/element_wrapper.pyx +582 -0
  233. sage/structure/factorization.py +1422 -0
  234. sage/structure/factorization_integer.py +105 -0
  235. sage/structure/factory.cpython-314t-darwin.so +0 -0
  236. sage/structure/factory.pyx +786 -0
  237. sage/structure/formal_sum.py +489 -0
  238. sage/structure/gens_py.py +73 -0
  239. sage/structure/global_options.py +1743 -0
  240. sage/structure/indexed_generators.py +863 -0
  241. sage/structure/list_clone.cpython-314t-darwin.so +0 -0
  242. sage/structure/list_clone.pxd +65 -0
  243. sage/structure/list_clone.pyx +1867 -0
  244. sage/structure/list_clone_demo.cpython-314t-darwin.so +0 -0
  245. sage/structure/list_clone_demo.pyx +248 -0
  246. sage/structure/list_clone_timings.py +179 -0
  247. sage/structure/list_clone_timings_cy.cpython-314t-darwin.so +0 -0
  248. sage/structure/list_clone_timings_cy.pyx +86 -0
  249. sage/structure/mutability.cpython-314t-darwin.so +0 -0
  250. sage/structure/mutability.pxd +21 -0
  251. sage/structure/mutability.pyx +348 -0
  252. sage/structure/nonexact.py +69 -0
  253. sage/structure/parent.cpython-314t-darwin.so +0 -0
  254. sage/structure/parent.pxd +112 -0
  255. sage/structure/parent.pyx +3093 -0
  256. sage/structure/parent_base.cpython-314t-darwin.so +0 -0
  257. sage/structure/parent_base.pxd +13 -0
  258. sage/structure/parent_base.pyx +44 -0
  259. sage/structure/parent_gens.cpython-314t-darwin.so +0 -0
  260. sage/structure/parent_gens.pxd +22 -0
  261. sage/structure/parent_gens.pyx +377 -0
  262. sage/structure/parent_old.cpython-314t-darwin.so +0 -0
  263. sage/structure/parent_old.pxd +25 -0
  264. sage/structure/parent_old.pyx +294 -0
  265. sage/structure/proof/__init__.py +1 -0
  266. sage/structure/proof/all.py +243 -0
  267. sage/structure/proof/proof.py +300 -0
  268. sage/structure/richcmp.cpython-314t-darwin.so +0 -0
  269. sage/structure/richcmp.pxd +213 -0
  270. sage/structure/richcmp.pyx +495 -0
  271. sage/structure/sage_object.cpython-314t-darwin.so +0 -0
  272. sage/structure/sage_object.pxd +3 -0
  273. sage/structure/sage_object.pyx +988 -0
  274. sage/structure/sage_object_test.py +19 -0
  275. sage/structure/sequence.py +937 -0
  276. sage/structure/set_factories.py +1178 -0
  277. sage/structure/set_factories_example.py +527 -0
  278. sage/structure/support_view.py +179 -0
  279. sage/structure/test_factory.py +56 -0
  280. sage/structure/unique_representation.py +1359 -0
@@ -0,0 +1,619 @@
1
+ # sage_setup: distribution = sagemath-objects
2
+ """
3
+ Except from the `random` module from Python 2.7.14 used solely for consistency
4
+ in the doctest suite for random results that depend on the Python PRNG.
5
+
6
+ It should be made clear that the actual random data from the PRNG is consistent
7
+ between Python versions, but the difference lies in higher-level methods such
8
+ as `random.randint`.
9
+
10
+ See :issue:`24508`
11
+ """
12
+
13
+ # The following code was copied from
14
+ # https://github.com/python/cpython/blob/9b7ae96b98238627751e2f508ba5d600363555ef/Lib/random.py
15
+ # and was modified slightly for Python 3 compatibility.
16
+ #
17
+ # It has following copyrights; for the full Python license
18
+ # agreement see COPYING.txt at the root of Sage sources:
19
+ #
20
+ # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
21
+ # 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Python Software Foundation.
22
+ # All rights reserved.
23
+ #
24
+ # Copyright (c) 2000 BeOpen.com. All rights reserved.
25
+ #
26
+ # Copyright (c) 1995-2001 Corporation for National Research Initiatives. All
27
+ # rights reserved.
28
+ #
29
+ # Copyright (c) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.
30
+
31
+
32
+ from warnings import warn as _warn
33
+ from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
34
+ from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
35
+ from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
36
+ from os import urandom as _urandom
37
+ from binascii import hexlify as _hexlify
38
+ import hashlib as _hashlib
39
+
40
+ NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
41
+ TWOPI = 2.0*_pi
42
+ LOG4 = _log(4.0)
43
+ SG_MAGICCONST = 1.0 + _log(4.5)
44
+ BPF = 53 # Number of bits in a float
45
+
46
+ import _random
47
+
48
+
49
+ class Random(_random.Random):
50
+ """Random number generator base class used by bound module functions.
51
+
52
+ Used to instantiate instances of Random to get generators that don't
53
+ share state. Especially useful for multi-threaded programs, creating
54
+ a different instance of Random for each thread, and using the jumpahead()
55
+ method to ensure that the generated sequences seen by each thread don't
56
+ overlap.
57
+
58
+ Class Random can also be subclassed if you want to use a different basic
59
+ generator of your own devising: in that case, override the following
60
+ methods: random(), seed(), getstate(), setstate() and jumpahead().
61
+ Optionally, implement a getrandbits() method so that randrange() can cover
62
+ arbitrarily large ranges.
63
+ """
64
+
65
+ VERSION = 3 # used by getstate/setstate
66
+
67
+ def __init__(self, x=None):
68
+ """Initialize an instance.
69
+
70
+ Optional argument x controls seeding, as for Random.seed().
71
+ """
72
+
73
+ self.seed(x)
74
+ self.gauss_next = None
75
+
76
+ def seed(self, a=None):
77
+ """Initialize internal state of the random number generator.
78
+
79
+ None or no argument seeds from current time or from an operating
80
+ system specific randomness source if available.
81
+
82
+ If a is not None or is an int or long, hash(a) is used instead.
83
+ Hash values for some types are nondeterministic when the
84
+ PYTHONHASHSEED environment variable is enabled.
85
+ """
86
+
87
+ if a is None:
88
+ try:
89
+ # Seed with enough bytes to span the 19937 bit
90
+ # state space for the Mersenne Twister
91
+ a = int(_hexlify(_urandom(2500)), 16)
92
+ except NotImplementedError:
93
+ import time
94
+ a = int(time.time() * 256) # use fractional seconds
95
+
96
+ super().seed(a)
97
+ self.gauss_next = None
98
+
99
+ def getstate(self):
100
+ """Return internal state; can be passed to setstate() later."""
101
+ return self.VERSION, super().getstate(), self.gauss_next
102
+
103
+ def setstate(self, state):
104
+ """Restore internal state from object returned by getstate()."""
105
+ version = state[0]
106
+ if version == 3:
107
+ version, internalstate, self.gauss_next = state
108
+ super().setstate(internalstate)
109
+ elif version == 2:
110
+ version, internalstate, self.gauss_next = state
111
+ # In version 2, the state was saved as signed ints, which causes
112
+ # inconsistencies between 32/64-bit systems. The state is
113
+ # really unsigned 32-bit ints, so we convert negative ints from
114
+ # version 2 to positive longs for version 3.
115
+ try:
116
+ internalstate = tuple( int(x) % (2**32) for x in internalstate )
117
+ except ValueError as e:
118
+ raise TypeError(e)
119
+ super().setstate(internalstate)
120
+ else:
121
+ raise ValueError("state with version %s passed to "
122
+ "Random.setstate() of version %s" %
123
+ (version, self.VERSION))
124
+
125
+ def jumpahead(self, n):
126
+ """Change the internal state to one that is likely far away
127
+ from the current state. This method will not be in Py3.x,
128
+ so it is better to simply reseed.
129
+ """
130
+ # The super.jumpahead() method uses shuffling to change state,
131
+ # so it needs a large and "interesting" n to work with. Here,
132
+ # we use hashing to create a large n for the shuffle.
133
+ s = repr(n) + repr(self.getstate())
134
+ n = int(_hashlib.new('sha512', s).hexdigest(), 16)
135
+ super().jumpahead(n)
136
+
137
+ ## ---- Methods below this point do not need to be overridden when
138
+ ## ---- subclassing for the purpose of using a different core generator.
139
+
140
+ ## -------------------- pickle support -------------------
141
+
142
+ def __getstate__(self): # for pickle
143
+ return self.getstate()
144
+
145
+ def __setstate__(self, state): # for pickle
146
+ self.setstate(state)
147
+
148
+ def __reduce__(self):
149
+ return self.__class__, (), self.getstate()
150
+
151
+ ## -------------------- integer methods -------------------
152
+
153
+ def randrange(self, start, stop=None, step=1, _int=int, _maxwidth=1 << BPF):
154
+ """Choose a random item from range(start, stop[, step]).
155
+
156
+ This fixes the problem with randint() which includes the
157
+ endpoint; in Python this is usually not what you want.
158
+ """
159
+
160
+ # This code is a bit messy to make it fast for the
161
+ # common case while still doing adequate error checking.
162
+ istart = _int(start)
163
+ if istart != start:
164
+ raise ValueError("non-integer arg 1 for randrange()")
165
+ if stop is None:
166
+ if istart > 0:
167
+ if istart >= _maxwidth:
168
+ return self._randbelow(istart)
169
+ return _int(self.random() * istart)
170
+ raise ValueError("empty range for randrange()")
171
+
172
+ # stop argument supplied.
173
+ istop = _int(stop)
174
+ if istop != stop:
175
+ raise ValueError("non-integer stop for randrange()")
176
+ width = istop - istart
177
+ if step == 1 and width > 0:
178
+ # Note that
179
+ # int(istart + self.random()*width)
180
+ # instead would be incorrect. For example, consider istart
181
+ # = -2 and istop = 0. Then the guts would be in
182
+ # -2.0 to 0.0 exclusive on both ends (ignoring that random()
183
+ # might return 0.0), and because int() truncates toward 0, the
184
+ # final result would be -1 or 0 (instead of -2 or -1).
185
+ # istart + int(self.random()*width)
186
+ # would also be incorrect, for a subtler reason: the RHS
187
+ # can return a long, and then randrange() would also return
188
+ # a long, but we're supposed to return an int (for backward
189
+ # compatibility).
190
+
191
+ if width >= _maxwidth:
192
+ return _int(istart + self._randbelow(width))
193
+ return _int(istart + _int(self.random()*width))
194
+ if step == 1:
195
+ raise ValueError("empty range for randrange() (%d,%d, %d)" %
196
+ (istart, istop, width))
197
+
198
+ # Non-unit step argument supplied.
199
+ istep = _int(step)
200
+ if istep != step:
201
+ raise ValueError("non-integer step for randrange()")
202
+ if istep > 0:
203
+ n = (width + istep - 1) // istep
204
+ elif istep < 0:
205
+ n = (width + istep + 1) // istep
206
+ else:
207
+ raise ValueError("zero step for randrange()")
208
+
209
+ if n <= 0:
210
+ raise ValueError("empty range for randrange()")
211
+
212
+ if n >= _maxwidth:
213
+ return istart + istep*self._randbelow(n)
214
+ return istart + istep*_int(self.random() * n)
215
+
216
+ def randint(self, a, b):
217
+ """Return random integer in range [a, b], including both end points.
218
+ """
219
+ return self.randrange(a, b + 1)
220
+
221
+ def _randbelow(self, n, _log=_log, _int=int, _maxwidth=1 << BPF,
222
+ _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
223
+ """Return a random int in the range [0,n)
224
+
225
+ Handles the case where n has more bits than returned
226
+ by a single call to the underlying generator.
227
+ """
228
+
229
+ try:
230
+ getrandbits = self.getrandbits
231
+ except AttributeError:
232
+ pass
233
+ else:
234
+ # Only call self.getrandbits if the original random() builtin method
235
+ # has not been overridden or if a new getrandbits() was supplied.
236
+ # This assures that the two methods correspond.
237
+ if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
238
+ k = _int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
239
+ r = getrandbits(k)
240
+ while r >= n:
241
+ r = getrandbits(k)
242
+ return r
243
+ if n >= _maxwidth:
244
+ _warn("Underlying random() generator does not supply \n"
245
+ "enough bits to choose from a population range this large")
246
+ return _int(self.random() * n)
247
+
248
+ ## -------------------- sequence methods -------------------
249
+
250
+ def choice(self, seq):
251
+ """Choose a random element from a non-empty sequence."""
252
+ return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
253
+
254
+ def shuffle(self, x, random=None):
255
+ """x, random=random.random -> shuffle list x in place; return None.
256
+
257
+ Optional arg random is a 0-argument function returning a random
258
+ float in [0.0, 1.0); by default, the standard random.random.
259
+ """
260
+
261
+ if random is None:
262
+ random = self.random
263
+ _int = int
264
+ for i in reversed(range(1, len(x))):
265
+ # pick an element in x[:i+1] with which to exchange x[i]
266
+ j = _int(random() * (i+1))
267
+ x[i], x[j] = x[j], x[i]
268
+
269
+ def sample(self, population, k):
270
+ """
271
+ Choose k unique random elements from a population sequence.
272
+
273
+ Return a new list containing elements from the population while
274
+ leaving the original population unchanged. The resulting list is
275
+ in selection order so that all sub-slices will also be valid random
276
+ samples. This allows raffle winners (the sample) to be partitioned
277
+ into grand prize and second place winners (the subslices).
278
+
279
+ Members of the population need not be hashable or unique. If the
280
+ population contains repeats, then each occurrence is a possible
281
+ selection in the sample.
282
+
283
+ To choose a sample in a range of integers, use range as an argument.
284
+ This is especially fast and space efficient for sampling from a
285
+ large population: sample(range(10000000), 60)
286
+ """
287
+
288
+ # Sampling without replacement entails tracking either potential
289
+ # selections (the pool) in a list or previous selections in a set.
290
+
291
+ # When the number of selections is small compared to the
292
+ # population, then tracking selections is efficient, requiring
293
+ # only a small set and an occasional reselection. For
294
+ # a larger number of selections, the pool tracking method is
295
+ # preferred since the list takes less space than the
296
+ # set and it doesn't suffer from frequent reselections.
297
+
298
+ n = len(population)
299
+ if not 0 <= k <= n:
300
+ raise ValueError("sample larger than population")
301
+ random = self.random
302
+ _int = int
303
+ result = [None] * k
304
+ setsize = 21 # size of a small set minus size of an empty list
305
+ if k > 5:
306
+ setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
307
+ if n <= setsize or hasattr(population, "keys"):
308
+ # An n-length list is smaller than a k-length set, or this is a
309
+ # mapping type so the other algorithm wouldn't work.
310
+ pool = list(population)
311
+ for i in range(k): # invariant: non-selected at [0,n-i)
312
+ j = _int(random() * (n-i))
313
+ result[i] = pool[j]
314
+ pool[j] = pool[n-i-1] # move non-selected item into vacancy
315
+ else:
316
+ try:
317
+ selected = set()
318
+ selected_add = selected.add
319
+ for i in range(k):
320
+ j = _int(random() * n)
321
+ while j in selected:
322
+ j = _int(random() * n)
323
+ selected_add(j)
324
+ result[i] = population[j]
325
+ except (TypeError, KeyError): # handle (at least) sets
326
+ if isinstance(population, list):
327
+ raise
328
+ return self.sample(tuple(population), k)
329
+ return result
330
+
331
+ ## -------------------- real-valued distributions -------------------
332
+
333
+ ## -------------------- uniform distribution -------------------
334
+
335
+ def uniform(self, a, b):
336
+ "Get a random number in the range [a, b) or [a, b] depending on rounding."
337
+ return a + (b-a) * self.random()
338
+
339
+ ## -------------------- triangular --------------------
340
+
341
+ def triangular(self, low=0.0, high=1.0, mode=None):
342
+ """Triangular distribution.
343
+
344
+ Continuous distribution bounded by given lower and upper limits,
345
+ and having a given mode value in-between.
346
+
347
+ http://en.wikipedia.org/wiki/Triangular_distribution
348
+ """
349
+ u = self.random()
350
+ try:
351
+ c = 0.5 if mode is None else (mode - low) / (high - low)
352
+ except ZeroDivisionError:
353
+ return low
354
+ if u > c:
355
+ u = 1.0 - u
356
+ c = 1.0 - c
357
+ low, high = high, low
358
+ return low + (high - low) * (u * c) ** 0.5
359
+
360
+ ## -------------------- normal distribution --------------------
361
+
362
+ def normalvariate(self, mu, sigma):
363
+ """Normal distribution.
364
+
365
+ mu is the mean, and sigma is the standard deviation.
366
+ """
367
+ # mu = mean, sigma = standard deviation
368
+
369
+ # Uses Kinderman and Monahan method. Reference: Kinderman,
370
+ # A.J. and Monahan, J.F., "Computer generation of random
371
+ # variables using the ratio of uniform deviates", ACM Trans
372
+ # Math Software, 3, (1977), pp257-260.
373
+
374
+ random = self.random
375
+ while 1:
376
+ u1 = random()
377
+ u2 = 1.0 - random()
378
+ z = NV_MAGICCONST*(u1-0.5)/u2
379
+ zz = z*z/4.0
380
+ if zz <= -_log(u2):
381
+ break
382
+ return mu + z*sigma
383
+
384
+ ## -------------------- lognormal distribution --------------------
385
+
386
+ def lognormvariate(self, mu, sigma):
387
+ """Log normal distribution.
388
+
389
+ If you take the natural logarithm of this distribution, you'll get a
390
+ normal distribution with mean mu and standard deviation sigma.
391
+ mu can have any value, and sigma must be greater than zero.
392
+ """
393
+ return _exp(self.normalvariate(mu, sigma))
394
+
395
+ ## -------------------- exponential distribution --------------------
396
+
397
+ def expovariate(self, lambd):
398
+ """Exponential distribution.
399
+
400
+ lambd is 1.0 divided by the desired mean. It should be
401
+ nonzero. (The parameter would be called "lambda", but that is
402
+ a reserved word in Python.) Returned values range from 0 to
403
+ positive infinity if lambd is positive, and from negative
404
+ infinity to 0 if lambd is negative.
405
+ """
406
+ # lambd: rate lambd = 1/mean
407
+ # ('lambda' is a Python reserved word)
408
+
409
+ # we use 1-random() instead of random() to preclude the
410
+ # possibility of taking the log of zero.
411
+ return -_log(1.0 - self.random())/lambd
412
+
413
+ ## -------------------- von Mises distribution --------------------
414
+
415
+ def vonmisesvariate(self, mu, kappa):
416
+ """Circular data distribution.
417
+
418
+ mu is the mean angle, expressed in radians between 0 and 2*pi, and
419
+ kappa is the concentration parameter, which must be greater than or
420
+ equal to zero. If kappa is equal to zero, this distribution reduces
421
+ to a uniform random angle over the range 0 to 2*pi.
422
+ """
423
+ # mu: mean angle (in radians between 0 and 2*pi)
424
+ # kappa: concentration parameter kappa (>= 0)
425
+ # if kappa = 0 generate uniform random angle
426
+
427
+ # Based upon an algorithm published in: Fisher, N.I.,
428
+ # "Statistical Analysis of Circular Data", Cambridge
429
+ # University Press, 1993.
430
+
431
+ # Thanks to Magnus Kessler for a correction to the
432
+ # implementation of step 4.
433
+
434
+ random = self.random
435
+ if kappa <= 1e-6:
436
+ return TWOPI * random()
437
+
438
+ s = 0.5 / kappa
439
+ r = s + _sqrt(1.0 + s * s)
440
+
441
+ while 1:
442
+ u1 = random()
443
+ z = _cos(_pi * u1)
444
+
445
+ d = z / (r + z)
446
+ u2 = random()
447
+ if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
448
+ break
449
+
450
+ q = 1.0 / r
451
+ f = (q + z) / (1.0 + q * z)
452
+ u3 = random()
453
+ if u3 > 0.5:
454
+ theta = (mu + _acos(f)) % TWOPI
455
+ else:
456
+ theta = (mu - _acos(f)) % TWOPI
457
+
458
+ return theta
459
+
460
+ ## -------------------- gamma distribution --------------------
461
+
462
+ def gammavariate(self, alpha, beta):
463
+ """Gamma distribution. Not the gamma function!
464
+
465
+ Conditions on the parameters are alpha > 0 and beta > 0.
466
+
467
+ The probability distribution function is::
468
+
469
+ x ** (alpha - 1) * math.exp(-x / beta)
470
+ pdf(x) = --------------------------------------
471
+ math.gamma(alpha) * beta ** alpha
472
+ """
473
+
474
+ # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
475
+
476
+ # Warning: a few older sources define the gamma distribution in terms
477
+ # of alpha > -1.0
478
+ if alpha <= 0.0 or beta <= 0.0:
479
+ raise ValueError('gammavariate: alpha and beta must be > 0.0')
480
+
481
+ random = self.random
482
+ if alpha > 1.0:
483
+
484
+ # Uses R.C.H. Cheng, "The generation of Gamma
485
+ # variables with non-integral shape parameters",
486
+ # Applied Statistics, (1977), 26, No. 1, p71-74
487
+
488
+ ainv = _sqrt(2.0 * alpha - 1.0)
489
+ bbb = alpha - LOG4
490
+ ccc = alpha + ainv
491
+
492
+ while 1:
493
+ u1 = random()
494
+ if not 1e-7 < u1 < .9999999:
495
+ continue
496
+ u2 = 1.0 - random()
497
+ v = _log(u1/(1.0-u1))/ainv
498
+ x = alpha*_exp(v)
499
+ z = u1*u1*u2
500
+ r = bbb+ccc*v-x
501
+ if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
502
+ return x * beta
503
+
504
+ elif alpha == 1.0:
505
+ # expovariate(1)
506
+ u = random()
507
+ while u <= 1e-7:
508
+ u = random()
509
+ return -_log(u) * beta
510
+
511
+ else: # alpha is between 0 and 1 (exclusive)
512
+
513
+ # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
514
+
515
+ while 1:
516
+ u = random()
517
+ b = (_e + alpha)/_e
518
+ p = b*u
519
+ if p <= 1.0:
520
+ x = p ** (1.0/alpha)
521
+ else:
522
+ x = -_log((b-p)/alpha)
523
+ u1 = random()
524
+ if p > 1.0:
525
+ if u1 <= x ** (alpha - 1.0):
526
+ break
527
+ elif u1 <= _exp(-x):
528
+ break
529
+ return x * beta
530
+
531
+ ## -------------------- Gauss (faster alternative) --------------------
532
+
533
+ def gauss(self, mu, sigma):
534
+ """Gaussian distribution.
535
+
536
+ mu is the mean, and sigma is the standard deviation. This is
537
+ slightly faster than the normalvariate() function.
538
+
539
+ Not thread-safe without a lock around calls.
540
+ """
541
+
542
+ # When x and y are two variables from [0, 1), uniformly
543
+ # distributed, then
544
+ #
545
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
546
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
547
+ #
548
+ # are two *independent* variables with normal distribution
549
+ # (mu = 0, sigma = 1).
550
+ # (Lambert Meertens)
551
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
552
+
553
+ # Multithreading note: When two threads call this function
554
+ # simultaneously, it is possible that they will receive the
555
+ # same return value. The window is very small though. To
556
+ # avoid this, you have to use a lock around all calls. (I
557
+ # didn't want to slow this down in the serial case by using a
558
+ # lock here.)
559
+
560
+ random = self.random
561
+ z = self.gauss_next
562
+ self.gauss_next = None
563
+ if z is None:
564
+ x2pi = random() * TWOPI
565
+ g2rad = _sqrt(-2.0 * _log(1.0 - random()))
566
+ z = _cos(x2pi) * g2rad
567
+ self.gauss_next = _sin(x2pi) * g2rad
568
+
569
+ return mu + z*sigma
570
+
571
+ ## -------------------- beta --------------------
572
+ ## See
573
+ ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
574
+ ## for Ivan Frohne's insightful analysis of why the original implementation:
575
+ ##
576
+ ## def betavariate(self, alpha, beta):
577
+ ## # Discrete Event Simulation in C, pp 87-88.
578
+ ##
579
+ ## y = self.expovariate(alpha)
580
+ ## z = self.expovariate(1.0/beta)
581
+ ## return z/(y+z)
582
+ ##
583
+ ## was dead wrong, and how it probably got that way.
584
+
585
+ def betavariate(self, alpha, beta):
586
+ """Beta distribution.
587
+
588
+ Conditions on the parameters are alpha > 0 and beta > 0.
589
+ Returned values range between 0 and 1.
590
+ """
591
+
592
+ # This version due to Janne Sinkkonen, and matches all the std
593
+ # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
594
+ y = self.gammavariate(alpha, 1.)
595
+ if y == 0:
596
+ return 0.0
597
+ else:
598
+ return y / (y + self.gammavariate(beta, 1.))
599
+
600
+ ## -------------------- Pareto --------------------
601
+
602
+ def paretovariate(self, alpha):
603
+ """Pareto distribution. alpha is the shape parameter."""
604
+ # Jain, pg. 495
605
+
606
+ u = 1.0 - self.random()
607
+ return 1.0 / pow(u, 1.0/alpha)
608
+
609
+ ## -------------------- Weibull --------------------
610
+
611
+ def weibullvariate(self, alpha, beta):
612
+ """Weibull distribution.
613
+
614
+ alpha is the scale parameter and beta is the shape parameter.
615
+ """
616
+ # Jain, pg. 499; bug fix courtesy Bill Arms
617
+
618
+ u = 1.0 - self.random()
619
+ return alpha * pow(-_log(u), 1.0/beta)
sage/cpython/all.py ADDED
@@ -0,0 +1,3 @@
1
+ # sage_setup: distribution = sagemath-objects
2
+ from sage.cpython.debug import getattr_debug, type_debug
3
+ from sage.cpython.getattr import raw_getattr