passagemath-objects 10.6.44__cp314-cp314t-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_objects/.dylibs/libgmp.10.dylib +0 -0
- passagemath_objects/__init__.py +3 -0
- passagemath_objects-10.6.44.dist-info/METADATA +115 -0
- passagemath_objects-10.6.44.dist-info/RECORD +280 -0
- passagemath_objects-10.6.44.dist-info/WHEEL +6 -0
- passagemath_objects-10.6.44.dist-info/top_level.txt +3 -0
- sage/all__sagemath_objects.py +37 -0
- sage/arith/all__sagemath_objects.py +5 -0
- sage/arith/long.pxd +411 -0
- sage/arith/numerical_approx.cpython-314t-darwin.so +0 -0
- sage/arith/numerical_approx.pxd +35 -0
- sage/arith/numerical_approx.pyx +75 -0
- sage/arith/power.cpython-314t-darwin.so +0 -0
- sage/arith/power.pxd +31 -0
- sage/arith/power.pyx +127 -0
- sage/categories/action.cpython-314t-darwin.so +0 -0
- sage/categories/action.pxd +29 -0
- sage/categories/action.pyx +641 -0
- sage/categories/algebra_functor.py +745 -0
- sage/categories/all__sagemath_objects.py +33 -0
- sage/categories/basic.py +62 -0
- sage/categories/cartesian_product.py +295 -0
- sage/categories/category.py +3401 -0
- sage/categories/category_cy_helper.cpython-314t-darwin.so +0 -0
- sage/categories/category_cy_helper.pxd +8 -0
- sage/categories/category_cy_helper.pyx +322 -0
- sage/categories/category_singleton.cpython-314t-darwin.so +0 -0
- sage/categories/category_singleton.pxd +3 -0
- sage/categories/category_singleton.pyx +342 -0
- sage/categories/category_types.py +637 -0
- sage/categories/category_with_axiom.py +2876 -0
- sage/categories/covariant_functorial_construction.py +703 -0
- sage/categories/facade_sets.py +228 -0
- sage/categories/functor.cpython-314t-darwin.so +0 -0
- sage/categories/functor.pxd +7 -0
- sage/categories/functor.pyx +691 -0
- sage/categories/homset.py +1338 -0
- sage/categories/homsets.py +364 -0
- sage/categories/isomorphic_objects.py +73 -0
- sage/categories/map.cpython-314t-darwin.so +0 -0
- sage/categories/map.pxd +34 -0
- sage/categories/map.pyx +2106 -0
- sage/categories/morphism.cpython-314t-darwin.so +0 -0
- sage/categories/morphism.pxd +14 -0
- sage/categories/morphism.pyx +895 -0
- sage/categories/objects.py +167 -0
- sage/categories/primer.py +1696 -0
- sage/categories/pushout.py +4834 -0
- sage/categories/quotients.py +64 -0
- sage/categories/realizations.py +200 -0
- sage/categories/sets_cat.py +3290 -0
- sage/categories/sets_with_partial_maps.py +52 -0
- sage/categories/subobjects.py +64 -0
- sage/categories/subquotients.py +21 -0
- sage/categories/with_realizations.py +311 -0
- sage/cpython/__init__.py +19 -0
- sage/cpython/_py2_random.py +619 -0
- sage/cpython/all.py +3 -0
- sage/cpython/atexit.cpython-314t-darwin.so +0 -0
- sage/cpython/atexit.pyx +269 -0
- sage/cpython/builtin_types.cpython-314t-darwin.so +0 -0
- sage/cpython/builtin_types.pyx +7 -0
- sage/cpython/cython_metaclass.cpython-314t-darwin.so +0 -0
- sage/cpython/cython_metaclass.h +117 -0
- sage/cpython/cython_metaclass.pxd +3 -0
- sage/cpython/cython_metaclass.pyx +130 -0
- sage/cpython/debug.cpython-314t-darwin.so +0 -0
- sage/cpython/debug.pyx +302 -0
- sage/cpython/dict_del_by_value.cpython-314t-darwin.so +0 -0
- sage/cpython/dict_del_by_value.pxd +9 -0
- sage/cpython/dict_del_by_value.pyx +191 -0
- sage/cpython/dict_internal.h +245 -0
- sage/cpython/getattr.cpython-314t-darwin.so +0 -0
- sage/cpython/getattr.pxd +9 -0
- sage/cpython/getattr.pyx +439 -0
- sage/cpython/pycore_long.h +97 -0
- sage/cpython/pycore_long.pxd +10 -0
- sage/cpython/python_debug.h +44 -0
- sage/cpython/python_debug.pxd +47 -0
- sage/cpython/pyx_visit.h +13 -0
- sage/cpython/string.cpython-314t-darwin.so +0 -0
- sage/cpython/string.pxd +76 -0
- sage/cpython/string.pyx +34 -0
- sage/cpython/string_impl.h +60 -0
- sage/cpython/type.cpython-314t-darwin.so +0 -0
- sage/cpython/type.pxd +2 -0
- sage/cpython/type.pyx +40 -0
- sage/cpython/wrapperdescr.pxd +67 -0
- sage/ext/all__sagemath_objects.py +3 -0
- sage/ext/ccobject.h +64 -0
- sage/ext/cplusplus.pxd +17 -0
- sage/ext/mod_int.h +30 -0
- sage/ext/mod_int.pxd +24 -0
- sage/ext/stdsage.pxd +39 -0
- sage/groups/all__sagemath_objects.py +1 -0
- sage/groups/group.cpython-314t-darwin.so +0 -0
- sage/groups/group.pxd +14 -0
- sage/groups/group.pyx +322 -0
- sage/groups/old.cpython-314t-darwin.so +0 -0
- sage/groups/old.pxd +14 -0
- sage/groups/old.pyx +219 -0
- sage/libs/all__sagemath_objects.py +3 -0
- sage/libs/gmp/__init__.py +1 -0
- sage/libs/gmp/all.pxd +6 -0
- sage/libs/gmp/binop.pxd +23 -0
- sage/libs/gmp/misc.pxd +8 -0
- sage/libs/gmp/mpf.pxd +88 -0
- sage/libs/gmp/mpn.pxd +57 -0
- sage/libs/gmp/mpq.pxd +57 -0
- sage/libs/gmp/mpz.pxd +202 -0
- sage/libs/gmp/pylong.cpython-314t-darwin.so +0 -0
- sage/libs/gmp/pylong.pxd +12 -0
- sage/libs/gmp/pylong.pyx +150 -0
- sage/libs/gmp/random.pxd +25 -0
- sage/libs/gmp/randomize.pxd +59 -0
- sage/libs/gmp/types.pxd +53 -0
- sage/libs/gmpxx.pxd +19 -0
- sage/misc/abstract_method.py +276 -0
- sage/misc/all__sagemath_objects.py +43 -0
- sage/misc/bindable_class.py +253 -0
- sage/misc/c3_controlled.cpython-314t-darwin.so +0 -0
- sage/misc/c3_controlled.pxd +2 -0
- sage/misc/c3_controlled.pyx +1402 -0
- sage/misc/cachefunc.cpython-314t-darwin.so +0 -0
- sage/misc/cachefunc.pxd +43 -0
- sage/misc/cachefunc.pyx +3781 -0
- sage/misc/call.py +188 -0
- sage/misc/classcall_metaclass.cpython-314t-darwin.so +0 -0
- sage/misc/classcall_metaclass.pxd +14 -0
- sage/misc/classcall_metaclass.pyx +599 -0
- sage/misc/constant_function.cpython-314t-darwin.so +0 -0
- sage/misc/constant_function.pyx +130 -0
- sage/misc/decorators.py +747 -0
- sage/misc/fast_methods.cpython-314t-darwin.so +0 -0
- sage/misc/fast_methods.pxd +20 -0
- sage/misc/fast_methods.pyx +351 -0
- sage/misc/flatten.py +90 -0
- sage/misc/fpickle.cpython-314t-darwin.so +0 -0
- sage/misc/fpickle.pyx +177 -0
- sage/misc/function_mangling.cpython-314t-darwin.so +0 -0
- sage/misc/function_mangling.pxd +11 -0
- sage/misc/function_mangling.pyx +308 -0
- sage/misc/inherit_comparison.cpython-314t-darwin.so +0 -0
- sage/misc/inherit_comparison.pxd +5 -0
- sage/misc/inherit_comparison.pyx +105 -0
- sage/misc/instancedoc.cpython-314t-darwin.so +0 -0
- sage/misc/instancedoc.pyx +331 -0
- sage/misc/lazy_attribute.cpython-314t-darwin.so +0 -0
- sage/misc/lazy_attribute.pyx +607 -0
- sage/misc/lazy_format.py +135 -0
- sage/misc/lazy_import.cpython-314t-darwin.so +0 -0
- sage/misc/lazy_import.pyx +1299 -0
- sage/misc/lazy_import_cache.py +36 -0
- sage/misc/lazy_list.cpython-314t-darwin.so +0 -0
- sage/misc/lazy_list.pxd +19 -0
- sage/misc/lazy_list.pyx +1187 -0
- sage/misc/lazy_string.cpython-314t-darwin.so +0 -0
- sage/misc/lazy_string.pxd +7 -0
- sage/misc/lazy_string.pyx +546 -0
- sage/misc/misc.py +1066 -0
- sage/misc/misc_c.cpython-314t-darwin.so +0 -0
- sage/misc/misc_c.pxd +3 -0
- sage/misc/misc_c.pyx +766 -0
- sage/misc/namespace_package.py +37 -0
- sage/misc/nested_class.cpython-314t-darwin.so +0 -0
- sage/misc/nested_class.pxd +3 -0
- sage/misc/nested_class.pyx +394 -0
- sage/misc/persist.cpython-314t-darwin.so +0 -0
- sage/misc/persist.pyx +1251 -0
- sage/misc/prandom.py +418 -0
- sage/misc/randstate.cpython-314t-darwin.so +0 -0
- sage/misc/randstate.pxd +30 -0
- sage/misc/randstate.pyx +1059 -0
- sage/misc/repr.py +203 -0
- sage/misc/reset.cpython-314t-darwin.so +0 -0
- sage/misc/reset.pyx +196 -0
- sage/misc/sage_ostools.cpython-314t-darwin.so +0 -0
- sage/misc/sage_ostools.pyx +323 -0
- sage/misc/sage_timeit.py +275 -0
- sage/misc/sage_timeit_class.cpython-314t-darwin.so +0 -0
- sage/misc/sage_timeit_class.pyx +120 -0
- sage/misc/sage_unittest.py +637 -0
- sage/misc/sageinspect.py +2768 -0
- sage/misc/session.cpython-314t-darwin.so +0 -0
- sage/misc/session.pyx +392 -0
- sage/misc/superseded.py +557 -0
- sage/misc/test_nested_class.py +228 -0
- sage/misc/timing.py +264 -0
- sage/misc/unknown.py +222 -0
- sage/misc/verbose.py +253 -0
- sage/misc/weak_dict.cpython-314t-darwin.so +0 -0
- sage/misc/weak_dict.pxd +15 -0
- sage/misc/weak_dict.pyx +1231 -0
- sage/modules/all__sagemath_objects.py +1 -0
- sage/modules/module.cpython-314t-darwin.so +0 -0
- sage/modules/module.pxd +5 -0
- sage/modules/module.pyx +329 -0
- sage/rings/all__sagemath_objects.py +3 -0
- sage/rings/integer_fake.h +22 -0
- sage/rings/integer_fake.pxd +55 -0
- sage/sets/all__sagemath_objects.py +3 -0
- sage/sets/pythonclass.cpython-314t-darwin.so +0 -0
- sage/sets/pythonclass.pxd +9 -0
- sage/sets/pythonclass.pyx +247 -0
- sage/structure/__init__.py +4 -0
- sage/structure/all.py +30 -0
- sage/structure/category_object.cpython-314t-darwin.so +0 -0
- sage/structure/category_object.pxd +28 -0
- sage/structure/category_object.pyx +1087 -0
- sage/structure/coerce.cpython-314t-darwin.so +0 -0
- sage/structure/coerce.pxd +44 -0
- sage/structure/coerce.pyx +2107 -0
- sage/structure/coerce_actions.cpython-314t-darwin.so +0 -0
- sage/structure/coerce_actions.pxd +27 -0
- sage/structure/coerce_actions.pyx +988 -0
- sage/structure/coerce_dict.cpython-314t-darwin.so +0 -0
- sage/structure/coerce_dict.pxd +51 -0
- sage/structure/coerce_dict.pyx +1557 -0
- sage/structure/coerce_exceptions.py +23 -0
- sage/structure/coerce_maps.cpython-314t-darwin.so +0 -0
- sage/structure/coerce_maps.pxd +28 -0
- sage/structure/coerce_maps.pyx +718 -0
- sage/structure/debug_options.cpython-314t-darwin.so +0 -0
- sage/structure/debug_options.pxd +6 -0
- sage/structure/debug_options.pyx +54 -0
- sage/structure/dynamic_class.py +541 -0
- sage/structure/element.cpython-314t-darwin.so +0 -0
- sage/structure/element.pxd +272 -0
- sage/structure/element.pyx +4772 -0
- sage/structure/element_wrapper.cpython-314t-darwin.so +0 -0
- sage/structure/element_wrapper.pxd +12 -0
- sage/structure/element_wrapper.pyx +582 -0
- sage/structure/factorization.py +1422 -0
- sage/structure/factorization_integer.py +105 -0
- sage/structure/factory.cpython-314t-darwin.so +0 -0
- sage/structure/factory.pyx +786 -0
- sage/structure/formal_sum.py +489 -0
- sage/structure/gens_py.py +73 -0
- sage/structure/global_options.py +1743 -0
- sage/structure/indexed_generators.py +863 -0
- sage/structure/list_clone.cpython-314t-darwin.so +0 -0
- sage/structure/list_clone.pxd +65 -0
- sage/structure/list_clone.pyx +1867 -0
- sage/structure/list_clone_demo.cpython-314t-darwin.so +0 -0
- sage/structure/list_clone_demo.pyx +248 -0
- sage/structure/list_clone_timings.py +179 -0
- sage/structure/list_clone_timings_cy.cpython-314t-darwin.so +0 -0
- sage/structure/list_clone_timings_cy.pyx +86 -0
- sage/structure/mutability.cpython-314t-darwin.so +0 -0
- sage/structure/mutability.pxd +21 -0
- sage/structure/mutability.pyx +348 -0
- sage/structure/nonexact.py +69 -0
- sage/structure/parent.cpython-314t-darwin.so +0 -0
- sage/structure/parent.pxd +112 -0
- sage/structure/parent.pyx +3093 -0
- sage/structure/parent_base.cpython-314t-darwin.so +0 -0
- sage/structure/parent_base.pxd +13 -0
- sage/structure/parent_base.pyx +44 -0
- sage/structure/parent_gens.cpython-314t-darwin.so +0 -0
- sage/structure/parent_gens.pxd +22 -0
- sage/structure/parent_gens.pyx +377 -0
- sage/structure/parent_old.cpython-314t-darwin.so +0 -0
- sage/structure/parent_old.pxd +25 -0
- sage/structure/parent_old.pyx +294 -0
- sage/structure/proof/__init__.py +1 -0
- sage/structure/proof/all.py +243 -0
- sage/structure/proof/proof.py +300 -0
- sage/structure/richcmp.cpython-314t-darwin.so +0 -0
- sage/structure/richcmp.pxd +213 -0
- sage/structure/richcmp.pyx +495 -0
- sage/structure/sage_object.cpython-314t-darwin.so +0 -0
- sage/structure/sage_object.pxd +3 -0
- sage/structure/sage_object.pyx +988 -0
- sage/structure/sage_object_test.py +19 -0
- sage/structure/sequence.py +937 -0
- sage/structure/set_factories.py +1178 -0
- sage/structure/set_factories_example.py +527 -0
- sage/structure/support_view.py +179 -0
- sage/structure/test_factory.py +56 -0
- sage/structure/unique_representation.py +1359 -0
|
@@ -0,0 +1,745 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-objects
|
|
2
|
+
# sage.doctest: needs sage.groups sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Group algebras and beyond: the Algebra functorial construction
|
|
5
|
+
|
|
6
|
+
Introduction: group algebras
|
|
7
|
+
============================
|
|
8
|
+
|
|
9
|
+
Let `G` be a group and `R` be a ring. For example::
|
|
10
|
+
|
|
11
|
+
sage: G = DihedralGroup(3)
|
|
12
|
+
sage: R = QQ
|
|
13
|
+
|
|
14
|
+
The *group algebra* `A = RG` of `G` over `R` is the space of formal
|
|
15
|
+
linear combinations of elements of `group` with coefficients in `R`::
|
|
16
|
+
|
|
17
|
+
sage: A = G.algebra(R); A
|
|
18
|
+
Algebra of Dihedral group of order 6 as a permutation group
|
|
19
|
+
over Rational Field
|
|
20
|
+
sage: a = A.an_element(); a
|
|
21
|
+
() + (1,2) + 3*(1,2,3) + 2*(1,3,2)
|
|
22
|
+
|
|
23
|
+
This space is endowed with an algebra structure, obtained by extending
|
|
24
|
+
by bilinearity the multiplication of `G` to a multiplication on `RG`::
|
|
25
|
+
|
|
26
|
+
sage: A in Algebras
|
|
27
|
+
True
|
|
28
|
+
sage: a * a
|
|
29
|
+
14*() + 5*(2,3) + 2*(1,2) + 10*(1,2,3) + 13*(1,3,2) + 5*(1,3)
|
|
30
|
+
|
|
31
|
+
In particular, the product of two basis elements is induced by the
|
|
32
|
+
product of the corresponding elements of the group, and the unit of
|
|
33
|
+
the group algebra is indexed by the unit of the group::
|
|
34
|
+
|
|
35
|
+
sage: (s, t) = A.algebra_generators()
|
|
36
|
+
sage: s*t
|
|
37
|
+
(1,2)
|
|
38
|
+
sage: A.one_basis()
|
|
39
|
+
()
|
|
40
|
+
sage: A.one()
|
|
41
|
+
()
|
|
42
|
+
|
|
43
|
+
For the user convenience and backward compatibility, the group algebra
|
|
44
|
+
can also be constructed with::
|
|
45
|
+
|
|
46
|
+
sage: GroupAlgebra(G, R)
|
|
47
|
+
Algebra of Dihedral group of order 6 as a permutation group
|
|
48
|
+
over Rational Field
|
|
49
|
+
|
|
50
|
+
Since :issue:`18700`, both constructions are strictly equivalent::
|
|
51
|
+
|
|
52
|
+
sage: GroupAlgebra(G, R) is G.algebra(R)
|
|
53
|
+
True
|
|
54
|
+
|
|
55
|
+
Group algebras are further endowed with a Hopf algebra structure; see
|
|
56
|
+
below.
|
|
57
|
+
|
|
58
|
+
Generalizations
|
|
59
|
+
===============
|
|
60
|
+
|
|
61
|
+
The above construction extends to weaker multiplicative structures
|
|
62
|
+
than groups: magmas, semigroups, monoids. For a monoid `S`, we obtain
|
|
63
|
+
the monoid algebra `RS`, which is defined exactly as above::
|
|
64
|
+
|
|
65
|
+
sage: S = Monoids().example(); S
|
|
66
|
+
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
|
|
67
|
+
sage: A = S.algebra(QQ); A
|
|
68
|
+
Algebra of An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
|
|
69
|
+
over Rational Field
|
|
70
|
+
sage: A.category()
|
|
71
|
+
Category of monoid algebras over Rational Field
|
|
72
|
+
|
|
73
|
+
This construction also extends to additive structures: magmas,
|
|
74
|
+
semigroups, monoids, or groups::
|
|
75
|
+
|
|
76
|
+
sage: S = CommutativeAdditiveMonoids().example(); S
|
|
77
|
+
An example of a commutative monoid:
|
|
78
|
+
the free commutative monoid generated by ('a', 'b', 'c', 'd')
|
|
79
|
+
sage: U = S.algebra(QQ); U
|
|
80
|
+
Algebra of An example of a commutative monoid:
|
|
81
|
+
the free commutative monoid generated by ('a', 'b', 'c', 'd')
|
|
82
|
+
over Rational Field
|
|
83
|
+
|
|
84
|
+
Despite saying "free module", this is really an algebra, whose
|
|
85
|
+
multiplication is induced by the addition of elements of `S`::
|
|
86
|
+
|
|
87
|
+
sage: U in Algebras(QQ)
|
|
88
|
+
True
|
|
89
|
+
sage: (a,b,c,d) = S.additive_semigroup_generators()
|
|
90
|
+
sage: U(a) * U(b)
|
|
91
|
+
B[a + b]
|
|
92
|
+
|
|
93
|
+
To catter uniformly for the use cases above and some others, for `S` a
|
|
94
|
+
set and `K` a ring, we define in Sage the *algebra of `S`* as the
|
|
95
|
+
`K`-free module with basis indexed by `S`, endowed with whatever
|
|
96
|
+
algebraic structure can be induced from that of `S`.
|
|
97
|
+
|
|
98
|
+
.. WARNING::
|
|
99
|
+
|
|
100
|
+
In most use cases, the result is actually an algebra, hence the
|
|
101
|
+
name of this construction. In other cases this name is
|
|
102
|
+
misleading::
|
|
103
|
+
|
|
104
|
+
sage: A = Sets().example().algebra(QQ); A
|
|
105
|
+
Algebra of Set of prime numbers (basic implementation)
|
|
106
|
+
over Rational Field
|
|
107
|
+
sage: A.category()
|
|
108
|
+
Category of set algebras over Rational Field
|
|
109
|
+
sage: A in Algebras(QQ)
|
|
110
|
+
False
|
|
111
|
+
|
|
112
|
+
Suggestions for a uniform, meaningful, and non misleading name are
|
|
113
|
+
welcome!
|
|
114
|
+
|
|
115
|
+
To achieve this flexibility, the features are implemented as a
|
|
116
|
+
:ref:`sage.categories.covariant_functorial_construction` that is
|
|
117
|
+
essentially a hierarchy of categories each providing the relevant
|
|
118
|
+
additional features::
|
|
119
|
+
|
|
120
|
+
sage: A = DihedralGroup(3).algebra(QQ)
|
|
121
|
+
sage: A.categories()
|
|
122
|
+
[Category of finite group algebras over Rational Field,
|
|
123
|
+
...
|
|
124
|
+
Category of group algebras over Rational Field,
|
|
125
|
+
...
|
|
126
|
+
Category of monoid algebras over Rational Field,
|
|
127
|
+
...
|
|
128
|
+
Category of semigroup algebras over Rational Field,
|
|
129
|
+
...
|
|
130
|
+
Category of unital magma algebras over Rational Field,
|
|
131
|
+
Category of magma algebras over Rational Field,
|
|
132
|
+
...
|
|
133
|
+
Category of set algebras over Rational Field,
|
|
134
|
+
...]
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
Specifying the algebraic structure
|
|
138
|
+
==================================
|
|
139
|
+
|
|
140
|
+
Constructing the algebra of a set endowed with both an
|
|
141
|
+
additive and a multiplicative structure is ambiguous::
|
|
142
|
+
|
|
143
|
+
sage: Z3 = IntegerModRing(3)
|
|
144
|
+
sage: A = Z3.algebra(QQ)
|
|
145
|
+
Traceback (most recent call last):
|
|
146
|
+
...
|
|
147
|
+
TypeError: `S = Ring of integers modulo 3` is both
|
|
148
|
+
an additive and a multiplicative semigroup.
|
|
149
|
+
Constructing its algebra is ambiguous.
|
|
150
|
+
Please use, e.g., S.algebra(QQ, category=Semigroups())
|
|
151
|
+
|
|
152
|
+
This ambiguity can be resolved using the ``category`` argument
|
|
153
|
+
of the construction::
|
|
154
|
+
|
|
155
|
+
sage: A = Z3.algebra(QQ, category=Monoids()); A
|
|
156
|
+
Algebra of Ring of integers modulo 3 over Rational Field
|
|
157
|
+
sage: A.category()
|
|
158
|
+
Category of finite dimensional monoid algebras over Rational Field
|
|
159
|
+
|
|
160
|
+
sage: A = Z3.algebra(QQ, category=CommutativeAdditiveGroups()); A
|
|
161
|
+
Algebra of Ring of integers modulo 3 over Rational Field
|
|
162
|
+
sage: A.category()
|
|
163
|
+
Category of finite dimensional commutative additive group algebras
|
|
164
|
+
over Rational Field
|
|
165
|
+
|
|
166
|
+
In general, the ``category`` argument can be used to specify which
|
|
167
|
+
structure of `S` shall be extended to `KS`.
|
|
168
|
+
|
|
169
|
+
Group algebras, continued
|
|
170
|
+
=========================
|
|
171
|
+
|
|
172
|
+
Let us come back to the case of a group algebra `A=RG`. It is endowed
|
|
173
|
+
with more structure and in particular that of a *Hopf algebra*::
|
|
174
|
+
|
|
175
|
+
sage: G = DihedralGroup(3)
|
|
176
|
+
sage: A = G.algebra(R); A
|
|
177
|
+
Algebra of Dihedral group of order 6 as a permutation group
|
|
178
|
+
over Rational Field
|
|
179
|
+
sage: A in HopfAlgebras(R).FiniteDimensional().WithBasis()
|
|
180
|
+
True
|
|
181
|
+
|
|
182
|
+
The basis elements are *group-like* for the coproduct:
|
|
183
|
+
`\Delta(g) = g \otimes g`::
|
|
184
|
+
|
|
185
|
+
sage: s
|
|
186
|
+
(1,2,3)
|
|
187
|
+
sage: s.coproduct()
|
|
188
|
+
(1,2,3) # (1,2,3)
|
|
189
|
+
|
|
190
|
+
The counit is the constant function `1` on the basis elements::
|
|
191
|
+
|
|
192
|
+
sage: A = GroupAlgebra(DihedralGroup(6), QQ)
|
|
193
|
+
sage: [A.counit(g) for g in A.basis()]
|
|
194
|
+
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
|
195
|
+
|
|
196
|
+
The antipode is given on basis elements by `\chi(g) = g^{-1}`::
|
|
197
|
+
|
|
198
|
+
sage: A = GroupAlgebra(DihedralGroup(3), QQ)
|
|
199
|
+
sage: s
|
|
200
|
+
(1,2,3)
|
|
201
|
+
sage: s.antipode()
|
|
202
|
+
(1,3,2)
|
|
203
|
+
|
|
204
|
+
By Maschke's theorem, for a finite group whose cardinality does not
|
|
205
|
+
divide the characteristic of the base field, the algebra is
|
|
206
|
+
semisimple::
|
|
207
|
+
|
|
208
|
+
sage: SymmetricGroup(5).algebra(QQ) in Algebras(QQ).Semisimple() # needs sage.combinat
|
|
209
|
+
True
|
|
210
|
+
sage: CyclicPermutationGroup(10).algebra(FiniteField(7)) in Algebras.Semisimple
|
|
211
|
+
True
|
|
212
|
+
sage: CyclicPermutationGroup(10).algebra(FiniteField(5)) in Algebras.Semisimple
|
|
213
|
+
False
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
Coercions
|
|
217
|
+
=========
|
|
218
|
+
|
|
219
|
+
Let `RS` be the algebra of some structure `S`. Then `RS` admits the
|
|
220
|
+
natural coercion from any other algebra `R'S'` of some structure `S'`,
|
|
221
|
+
as long as `R'` coerces into `R` and `S'` coerces into `S`.
|
|
222
|
+
|
|
223
|
+
For example, since there is a natural inclusion from the dihedral
|
|
224
|
+
group `D_2` of order 4 into the symmetric group `S_4` of order 4!, and
|
|
225
|
+
since there is a natural map from the integers to the rationals, there
|
|
226
|
+
is a natural map from `\ZZ[D_2]` to `\QQ[S_4]`::
|
|
227
|
+
|
|
228
|
+
sage: # needs sage.combinat
|
|
229
|
+
sage: A = DihedralGroup(2).algebra(ZZ)
|
|
230
|
+
sage: B = SymmetricGroup(4).algebra(QQ)
|
|
231
|
+
sage: a = A.an_element(); a
|
|
232
|
+
() + 2*(3,4) + 3*(1,2) + (1,2)(3,4)
|
|
233
|
+
sage: b = B.an_element(); b
|
|
234
|
+
() + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3)
|
|
235
|
+
sage: B(a)
|
|
236
|
+
() + 2*(3,4) + 3*(1,2) + (1,2)(3,4)
|
|
237
|
+
sage: a * b # a is automatically converted to an element of B
|
|
238
|
+
() + 2*(3,4) + 2*(2,3) + (2,3,4) + 3*(1,2) + (1,2)(3,4) + (1,3,2)
|
|
239
|
+
+ 3*(1,3,4,2) + 5*(1,3)(2,4) + 13*(1,3,2,4) + 12*(1,4,2,3) + 5*(1,4)(2,3)
|
|
240
|
+
sage: parent(a * b)
|
|
241
|
+
Symmetric group algebra of order 4 over Rational Field
|
|
242
|
+
|
|
243
|
+
There is no obvious map in the other direction, though::
|
|
244
|
+
|
|
245
|
+
sage: A(b)
|
|
246
|
+
Traceback (most recent call last):
|
|
247
|
+
...
|
|
248
|
+
TypeError: do not know how to make x (= () + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3))
|
|
249
|
+
an element of self
|
|
250
|
+
(=Algebra of Dihedral group of order 4 as a permutation group over Integer Ring)
|
|
251
|
+
|
|
252
|
+
If `S` is a unital (additive) magma, then `RS` is a unital algebra,
|
|
253
|
+
and thus admits a coercion from its base ring `R` and any ring that
|
|
254
|
+
coerces into `R`. ::
|
|
255
|
+
|
|
256
|
+
sage: G = DihedralGroup(2)
|
|
257
|
+
sage: A = G.algebra(ZZ)
|
|
258
|
+
sage: A(2)
|
|
259
|
+
2*()
|
|
260
|
+
|
|
261
|
+
If `S` is a multiplicative group, then `RS` admits a coercion from `S`
|
|
262
|
+
and from any group which coerce into `S`::
|
|
263
|
+
|
|
264
|
+
sage: g = DihedralGroup(2).gen(0); g
|
|
265
|
+
(3,4)
|
|
266
|
+
sage: A(g)
|
|
267
|
+
(3,4)
|
|
268
|
+
sage: A(2) * g
|
|
269
|
+
2*(3,4)
|
|
270
|
+
|
|
271
|
+
Note that there is an ambiguity if `S'` is a group which coerces into
|
|
272
|
+
both `R` and `S`. For example) if `S` is the additive group `(\ZZ,+)`,
|
|
273
|
+
and `A = RS` is its group algebra, then the integer `2` can be coerced
|
|
274
|
+
into `A` in two ways -- via `S`, or via the base ring `R` -- and *the
|
|
275
|
+
answers are different*. It that case the coercion to `R` takes
|
|
276
|
+
precedence. In particular, if `\ZZ` is the ring (or group) of
|
|
277
|
+
integers, then `\ZZ` will coerce to any `RS`, by sending `\ZZ` to `R`.
|
|
278
|
+
In generic code, it is therefore recommended to always explicitly use
|
|
279
|
+
``A.monomial(g)`` to convert an element of the group into `A`.
|
|
280
|
+
|
|
281
|
+
TESTS:
|
|
282
|
+
|
|
283
|
+
Given a group and a base ring, the corresponding group algebra is
|
|
284
|
+
unique::
|
|
285
|
+
|
|
286
|
+
sage: A = GL(3, QQ).algebra(ZZ)
|
|
287
|
+
sage: B = GL(3, QQ).algebra(ZZ)
|
|
288
|
+
sage: A is B
|
|
289
|
+
True
|
|
290
|
+
sage: C = GL(3, QQ).algebra(QQ)
|
|
291
|
+
sage: A == C
|
|
292
|
+
False
|
|
293
|
+
|
|
294
|
+
Equality tests::
|
|
295
|
+
|
|
296
|
+
sage: AbelianGroup(1).algebra(QQ) == AbelianGroup(1).algebra(QQ)
|
|
297
|
+
True
|
|
298
|
+
sage: AbelianGroup(1).algebra(QQ) == AbelianGroup(1).algebra(ZZ)
|
|
299
|
+
False
|
|
300
|
+
sage: AbelianGroup(2).algebra(QQ) == AbelianGroup(1).algebra(QQ)
|
|
301
|
+
False
|
|
302
|
+
|
|
303
|
+
sage: A = KleinFourGroup().algebra(ZZ)
|
|
304
|
+
sage: B = KleinFourGroup().algebra(QQ)
|
|
305
|
+
sage: A == B
|
|
306
|
+
False
|
|
307
|
+
sage: A == A
|
|
308
|
+
True
|
|
309
|
+
|
|
310
|
+
Properties of group algebras::
|
|
311
|
+
|
|
312
|
+
sage: SU(2, GF(4, 'a')).algebra(IntegerModRing(12)).category() # needs sage.rings.finite_rings
|
|
313
|
+
Category of finite group algebras over Ring of integers modulo 12
|
|
314
|
+
|
|
315
|
+
sage: SymmetricGroup(2).algebra(QQ).is_commutative() # needs sage.combinat
|
|
316
|
+
True
|
|
317
|
+
sage: SymmetricGroup(3).algebra(QQ).is_commutative() # needs sage.combinat
|
|
318
|
+
False
|
|
319
|
+
|
|
320
|
+
sage: G = DihedralGroup(4)
|
|
321
|
+
sage: A = G.algebra(QQ['x'])
|
|
322
|
+
sage: A(1)
|
|
323
|
+
()
|
|
324
|
+
sage: A(2)
|
|
325
|
+
2*()
|
|
326
|
+
sage: A(0)
|
|
327
|
+
0
|
|
328
|
+
sage: A(int(2)).coefficients()
|
|
329
|
+
[2]
|
|
330
|
+
sage: A(int(2)).coefficients()[0].parent()
|
|
331
|
+
Univariate Polynomial Ring in x over Rational Field
|
|
332
|
+
sage: g = G.an_element()
|
|
333
|
+
sage: A(g)
|
|
334
|
+
(1,3)
|
|
335
|
+
|
|
336
|
+
Hopf algebra structure::
|
|
337
|
+
|
|
338
|
+
sage: D4 = DihedralGroup(4)
|
|
339
|
+
sage: kD4 = D4.algebra(GF(7))
|
|
340
|
+
sage: kD4 in HopfAlgebras
|
|
341
|
+
True
|
|
342
|
+
sage: a = kD4.an_element(); a
|
|
343
|
+
() + (1,3) + 2*(1,3)(2,4) + 3*(1,4,3,2)
|
|
344
|
+
sage: a.antipode()
|
|
345
|
+
() + 3*(1,2,3,4) + (1,3) + 2*(1,3)(2,4)
|
|
346
|
+
sage: a.coproduct()
|
|
347
|
+
() # () + (1,3) # (1,3) + 2*(1,3)(2,4) # (1,3)(2,4) + 3*(1,4,3,2) # (1,4,3,2)
|
|
348
|
+
|
|
349
|
+
Coercions from the base ring::
|
|
350
|
+
|
|
351
|
+
sage: A = GL(3, GF(7)).algebra(ZZ); A
|
|
352
|
+
Algebra of General Linear Group of degree 3 over Finite Field of size 7
|
|
353
|
+
over Integer Ring
|
|
354
|
+
sage: A.has_coerce_map_from(GL(3, GF(7)))
|
|
355
|
+
True
|
|
356
|
+
|
|
357
|
+
Coercion from the group::
|
|
358
|
+
|
|
359
|
+
sage: G = GL(3, GF(7))
|
|
360
|
+
sage: ZG = G.algebra(ZZ)
|
|
361
|
+
sage: c, d = G.random_element(), G.random_element()
|
|
362
|
+
sage: zc, zd = ZG(c), ZG(d)
|
|
363
|
+
sage: zc * d == zc * zd # d is automatically converted to an element of ZG
|
|
364
|
+
True
|
|
365
|
+
|
|
366
|
+
sage: G = SymmetricGroup(5)
|
|
367
|
+
sage: x,y = G.gens()
|
|
368
|
+
sage: A = G.algebra(QQ) # needs sage.combinat
|
|
369
|
+
sage: A( A(x) )
|
|
370
|
+
(1,2,3,4,5)
|
|
371
|
+
|
|
372
|
+
sage: G = KleinFourGroup()
|
|
373
|
+
sage: f = G.gen(0)
|
|
374
|
+
sage: ZG = GroupAlgebra(G)
|
|
375
|
+
sage: ZG(f) # indirect doctest
|
|
376
|
+
(3,4)
|
|
377
|
+
sage: ZG(1) == ZG(G(1))
|
|
378
|
+
True
|
|
379
|
+
|
|
380
|
+
Coercion from the base ring takes precedences over coercion from the
|
|
381
|
+
group::
|
|
382
|
+
|
|
383
|
+
sage: # needs sage.rings.number_field
|
|
384
|
+
sage: G = GL(2,7)
|
|
385
|
+
sage: OG = GroupAlgebra(G, ZZ[AA(5).sqrt()])
|
|
386
|
+
sage: OG(2)
|
|
387
|
+
2*[1 0]
|
|
388
|
+
[0 1]
|
|
389
|
+
sage: OG(G(2))
|
|
390
|
+
[2 0]
|
|
391
|
+
[0 2]
|
|
392
|
+
sage: OG(FormalSum([ (1, G(2)), (2, RR(0.77)) ]) )
|
|
393
|
+
Traceback (most recent call last):
|
|
394
|
+
...
|
|
395
|
+
TypeError: Attempt to coerce non-integral RealNumber to Integer
|
|
396
|
+
sage: OG(OG.base_ring().basis()[1])
|
|
397
|
+
a*[1 0]
|
|
398
|
+
[0 1]
|
|
399
|
+
|
|
400
|
+
Coercions from other group algebras::
|
|
401
|
+
|
|
402
|
+
sage: P = RootSystem(['A',2,1]).weight_lattice()
|
|
403
|
+
sage: W = RootSystem(['A',2,1]).weight_space()
|
|
404
|
+
sage: PA = P.algebra(QQ)
|
|
405
|
+
sage: WA = W.algebra(QQ)
|
|
406
|
+
sage: WA.coerce_map_from(PA)
|
|
407
|
+
Generic morphism:
|
|
408
|
+
From: Algebra of the Weight lattice of the Root system of type ['A', 2, 1] over Rational Field
|
|
409
|
+
To: Algebra of the Weight space over the Rational Field of the Root system of type ['A', 2, 1] over Rational Field
|
|
410
|
+
|
|
411
|
+
Using the functor `R \mapsto RG` to build the base ring extension
|
|
412
|
+
morphism::
|
|
413
|
+
|
|
414
|
+
sage: G = SymmetricGroup(3)
|
|
415
|
+
sage: A = G.algebra(ZZ) # needs sage.combinat
|
|
416
|
+
sage: h = GF(5).coerce_map_from(ZZ)
|
|
417
|
+
|
|
418
|
+
sage: functor = A.construction()[0]; functor
|
|
419
|
+
GroupAlgebraFunctor
|
|
420
|
+
sage: hh = functor(h)
|
|
421
|
+
sage: hh
|
|
422
|
+
Generic morphism:
|
|
423
|
+
From: Symmetric group algebra of order 3 over Integer Ring
|
|
424
|
+
To: Symmetric group algebra of order 3 over Finite Field of size 5
|
|
425
|
+
sage: a = 2 * A.an_element(); a
|
|
426
|
+
2*() + 2*(2,3) + 6*(1,2,3) + 4*(1,3,2)
|
|
427
|
+
|
|
428
|
+
sage: hh(a)
|
|
429
|
+
2*() + 2*(2,3) + (1,2,3) + 4*(1,3,2)
|
|
430
|
+
|
|
431
|
+
Conversion from a formal sum::
|
|
432
|
+
|
|
433
|
+
sage: G = AbelianGroup(1)
|
|
434
|
+
sage: ZG = G.algebra(ZZ)
|
|
435
|
+
sage: f = G.gen()
|
|
436
|
+
sage: ZG(FormalSum([(1,f), (2, f**2)]))
|
|
437
|
+
f + 2*f^2
|
|
438
|
+
|
|
439
|
+
|
|
440
|
+
AUTHORS:
|
|
441
|
+
|
|
442
|
+
- David Loeffler (2008-08-24): initial version
|
|
443
|
+
- Martin Raum (2009-08): update to use new coercion model -- see
|
|
444
|
+
:issue:`6670`.
|
|
445
|
+
- John Palmieri (2011-07): more updates to coercion, categories, etc.,
|
|
446
|
+
group algebras constructed using CombinatorialFreeModule -- see
|
|
447
|
+
:issue:`6670`.
|
|
448
|
+
- Nicolas M. Thiéry (2010-2017), Travis Scrimshaw (2017):
|
|
449
|
+
generalization to a covariant functorial construction for
|
|
450
|
+
monoid algebras, and beyond -- see e.g. :issue:`18700`.
|
|
451
|
+
"""
|
|
452
|
+
# ****************************************************************************
|
|
453
|
+
# Copyright (C) 2010-2017 Nicolas M. Thiéry <nthiery at users.sf.net>
|
|
454
|
+
#
|
|
455
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
456
|
+
# https://www.gnu.org/licenses/
|
|
457
|
+
# ****************************************************************************
|
|
458
|
+
|
|
459
|
+
from sage.categories.pushout import ConstructionFunctor
|
|
460
|
+
from sage.categories.morphism import SetMorphism
|
|
461
|
+
|
|
462
|
+
from sage.categories.covariant_functorial_construction import CovariantFunctorialConstruction, CovariantConstructionCategory, FunctorialConstructionCategory
|
|
463
|
+
from sage.categories.category_types import Category_over_base_ring
|
|
464
|
+
|
|
465
|
+
# TODO: merge the two univariate functors below into a bivariate one
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+
class AlgebraFunctor(CovariantFunctorialConstruction):
|
|
469
|
+
r"""
|
|
470
|
+
For a fixed ring, a functor sending a group/... to the
|
|
471
|
+
corresponding group/... algebra.
|
|
472
|
+
|
|
473
|
+
EXAMPLES::
|
|
474
|
+
|
|
475
|
+
sage: from sage.categories.algebra_functor import AlgebraFunctor
|
|
476
|
+
sage: F = AlgebraFunctor(QQ); F
|
|
477
|
+
The algebra functorial construction
|
|
478
|
+
sage: F(DihedralGroup(3))
|
|
479
|
+
Algebra of Dihedral group of order 6 as a permutation group
|
|
480
|
+
over Rational Field
|
|
481
|
+
"""
|
|
482
|
+
_functor_name = "algebra"
|
|
483
|
+
_functor_category = "Algebras"
|
|
484
|
+
|
|
485
|
+
def __init__(self, base_ring):
|
|
486
|
+
"""
|
|
487
|
+
EXAMPLES::
|
|
488
|
+
|
|
489
|
+
sage: from sage.categories.algebra_functor import AlgebraFunctor
|
|
490
|
+
sage: F = AlgebraFunctor(QQ); F
|
|
491
|
+
The algebra functorial construction
|
|
492
|
+
sage: TestSuite(F).run()
|
|
493
|
+
"""
|
|
494
|
+
from sage.categories.rings import Rings
|
|
495
|
+
assert base_ring in Rings()
|
|
496
|
+
self._base_ring = base_ring
|
|
497
|
+
|
|
498
|
+
def base_ring(self):
|
|
499
|
+
"""
|
|
500
|
+
Return the base ring for this functor.
|
|
501
|
+
|
|
502
|
+
EXAMPLES::
|
|
503
|
+
|
|
504
|
+
sage: from sage.categories.algebra_functor import AlgebraFunctor
|
|
505
|
+
sage: AlgebraFunctor(QQ).base_ring()
|
|
506
|
+
Rational Field
|
|
507
|
+
"""
|
|
508
|
+
return self._base_ring
|
|
509
|
+
|
|
510
|
+
def __call__(self, G, category=None):
|
|
511
|
+
"""
|
|
512
|
+
Return the algebra of ``G``.
|
|
513
|
+
|
|
514
|
+
See :ref:`sage.categories.algebra_functor` for details.
|
|
515
|
+
|
|
516
|
+
INPUT:
|
|
517
|
+
|
|
518
|
+
- ``G`` -- a group
|
|
519
|
+
- ``category`` -- a category, or ``None``
|
|
520
|
+
|
|
521
|
+
EXAMPLES::
|
|
522
|
+
|
|
523
|
+
sage: from sage.categories.algebra_functor import AlgebraFunctor
|
|
524
|
+
sage: F = AlgebraFunctor(QQ)
|
|
525
|
+
sage: G = DihedralGroup(3)
|
|
526
|
+
sage: A = F(G, category=Monoids()); A
|
|
527
|
+
Algebra of Dihedral group of order 6 as a permutation group
|
|
528
|
+
over Rational Field
|
|
529
|
+
sage: A.category()
|
|
530
|
+
Category of finite dimensional monoid algebras over Rational Field
|
|
531
|
+
"""
|
|
532
|
+
return G.algebra(self._base_ring, category=category)
|
|
533
|
+
|
|
534
|
+
|
|
535
|
+
class GroupAlgebraFunctor(ConstructionFunctor):
|
|
536
|
+
r"""
|
|
537
|
+
For a fixed group, a functor sending a commutative ring to the
|
|
538
|
+
corresponding group algebra.
|
|
539
|
+
|
|
540
|
+
INPUT:
|
|
541
|
+
|
|
542
|
+
- ``group`` -- the group associated to each group algebra under
|
|
543
|
+
consideration
|
|
544
|
+
|
|
545
|
+
EXAMPLES::
|
|
546
|
+
|
|
547
|
+
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
|
|
548
|
+
sage: F = GroupAlgebraFunctor(KleinFourGroup()); F
|
|
549
|
+
GroupAlgebraFunctor
|
|
550
|
+
sage: A = F(QQ); A
|
|
551
|
+
Algebra of The Klein 4 group of order 4, as a permutation group over Rational Field
|
|
552
|
+
|
|
553
|
+
TESTS::
|
|
554
|
+
|
|
555
|
+
sage: loads(dumps(F)) == F
|
|
556
|
+
True
|
|
557
|
+
sage: A is KleinFourGroup().algebra(QQ)
|
|
558
|
+
True
|
|
559
|
+
"""
|
|
560
|
+
def __init__(self, group):
|
|
561
|
+
r"""
|
|
562
|
+
See :class:`GroupAlgebraFunctor` for full documentation.
|
|
563
|
+
|
|
564
|
+
EXAMPLES::
|
|
565
|
+
|
|
566
|
+
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
|
|
567
|
+
sage: GroupAlgebra(SU(2, GF(4, 'a')), IntegerModRing(12)).category() # needs sage.rings.finite_rings
|
|
568
|
+
Category of finite group algebras over Ring of integers modulo 12
|
|
569
|
+
"""
|
|
570
|
+
self.__group = group
|
|
571
|
+
from sage.categories.rings import Rings
|
|
572
|
+
ConstructionFunctor.__init__(self, Rings(), Rings())
|
|
573
|
+
|
|
574
|
+
def group(self):
|
|
575
|
+
r"""
|
|
576
|
+
Return the group which is associated to this functor.
|
|
577
|
+
|
|
578
|
+
EXAMPLES::
|
|
579
|
+
|
|
580
|
+
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
|
|
581
|
+
sage: GroupAlgebraFunctor(CyclicPermutationGroup(17)).group() == CyclicPermutationGroup(17)
|
|
582
|
+
True
|
|
583
|
+
"""
|
|
584
|
+
return self.__group
|
|
585
|
+
|
|
586
|
+
def _apply_functor(self, base_ring):
|
|
587
|
+
r"""
|
|
588
|
+
Create the group algebra with given base ring over ``self.group()``.
|
|
589
|
+
|
|
590
|
+
INPUT:
|
|
591
|
+
|
|
592
|
+
- ``base_ring`` -- the base ring of the group algebra
|
|
593
|
+
|
|
594
|
+
OUTPUT: a group algebra
|
|
595
|
+
|
|
596
|
+
EXAMPLES::
|
|
597
|
+
|
|
598
|
+
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
|
|
599
|
+
sage: F = GroupAlgebraFunctor(CyclicPermutationGroup(17))
|
|
600
|
+
sage: F(QQ)
|
|
601
|
+
Algebra of Cyclic group of order 17 as a permutation group
|
|
602
|
+
over Rational Field
|
|
603
|
+
"""
|
|
604
|
+
return self.__group.algebra(base_ring)
|
|
605
|
+
|
|
606
|
+
def _apply_functor_to_morphism(self, f):
|
|
607
|
+
r"""
|
|
608
|
+
Lift a homomorphism of rings to the corresponding homomorphism
|
|
609
|
+
of the group algebras of ``self.group()``.
|
|
610
|
+
|
|
611
|
+
INPUT:
|
|
612
|
+
|
|
613
|
+
- ``f`` -- a morphism of rings
|
|
614
|
+
|
|
615
|
+
OUTPUT: a morphism of group algebras
|
|
616
|
+
|
|
617
|
+
EXAMPLES::
|
|
618
|
+
|
|
619
|
+
sage: # needs sage.combinat
|
|
620
|
+
sage: G = SymmetricGroup(3)
|
|
621
|
+
sage: A = GroupAlgebra(G, ZZ)
|
|
622
|
+
sage: h = GF(5).coerce_map_from(ZZ)
|
|
623
|
+
sage: hh = A.construction()[0](h); hh
|
|
624
|
+
Generic morphism:
|
|
625
|
+
From: Symmetric group algebra of order 3 over Integer Ring
|
|
626
|
+
To: Symmetric group algebra of order 3 over Finite Field of size 5
|
|
627
|
+
sage: a = 2 * A.an_element(); a
|
|
628
|
+
2*() + 2*(2,3) + 6*(1,2,3) + 4*(1,3,2)
|
|
629
|
+
sage: hh(a)
|
|
630
|
+
2*() + 2*(2,3) + (1,2,3) + 4*(1,3,2)
|
|
631
|
+
"""
|
|
632
|
+
from sage.categories.rings import Rings
|
|
633
|
+
domain = self(f.domain())
|
|
634
|
+
codomain = self(f.codomain())
|
|
635
|
+
# we would want to use something like:
|
|
636
|
+
# domain.module_morphism(on_coefficients=h, codomain=codomain, category=Rings())
|
|
637
|
+
return SetMorphism(domain.Hom(codomain, category=Rings()),
|
|
638
|
+
lambda x: codomain.sum_of_terms((g, f(c)) for (g, c) in x))
|
|
639
|
+
|
|
640
|
+
|
|
641
|
+
class AlgebrasCategory(CovariantConstructionCategory, Category_over_base_ring):
|
|
642
|
+
r"""
|
|
643
|
+
An abstract base class for categories of monoid algebras,
|
|
644
|
+
groups algebras, and the like.
|
|
645
|
+
|
|
646
|
+
.. SEEALSO::
|
|
647
|
+
|
|
648
|
+
- :meth:`Sets.ParentMethods.algebra`
|
|
649
|
+
- :meth:`Sets.SubcategoryMethods.Algebras`
|
|
650
|
+
- :class:`~sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction`
|
|
651
|
+
|
|
652
|
+
INPUT:
|
|
653
|
+
|
|
654
|
+
- ``base_ring`` -- a ring
|
|
655
|
+
|
|
656
|
+
EXAMPLES::
|
|
657
|
+
|
|
658
|
+
sage: C = Groups().Algebras(QQ); C
|
|
659
|
+
Category of group algebras over Rational Field
|
|
660
|
+
sage: C = Monoids().Algebras(QQ); C
|
|
661
|
+
Category of monoid algebras over Rational Field
|
|
662
|
+
|
|
663
|
+
sage: C._short_name()
|
|
664
|
+
'Algebras'
|
|
665
|
+
sage: latex(C) # todo: improve that
|
|
666
|
+
\mathbf{Algebras}(\mathbf{Monoids})
|
|
667
|
+
"""
|
|
668
|
+
|
|
669
|
+
_functor_category = "Algebras"
|
|
670
|
+
|
|
671
|
+
def _repr_object_names(self):
|
|
672
|
+
"""
|
|
673
|
+
EXAMPLES::
|
|
674
|
+
|
|
675
|
+
sage: Semigroups().Algebras(QQ) # indirect doctest
|
|
676
|
+
Category of semigroup algebras over Rational Field
|
|
677
|
+
"""
|
|
678
|
+
return "{} algebras over {}".format(self.base_category()._repr_object_names()[:-1],
|
|
679
|
+
self.base_ring())
|
|
680
|
+
|
|
681
|
+
@staticmethod
|
|
682
|
+
def __classcall__(cls, category=None, R=None):
|
|
683
|
+
"""
|
|
684
|
+
Make ``CatAlgebras(**)`` a shorthand for ``Cat().Algebras(**)``.
|
|
685
|
+
|
|
686
|
+
EXAMPLES::
|
|
687
|
+
|
|
688
|
+
sage: GradedModules(ZZ) # indirect doctest
|
|
689
|
+
Category of graded modules over Integer Ring
|
|
690
|
+
sage: Modules(ZZ).Graded()
|
|
691
|
+
Category of graded modules over Integer Ring
|
|
692
|
+
sage: Modules.Graded(ZZ)
|
|
693
|
+
Category of graded modules over Integer Ring
|
|
694
|
+
sage: GradedModules(ZZ) is Modules(ZZ).Graded()
|
|
695
|
+
True
|
|
696
|
+
|
|
697
|
+
.. SEEALSO:: :meth:`_base_category_class`
|
|
698
|
+
|
|
699
|
+
.. TODO::
|
|
700
|
+
|
|
701
|
+
The logic is very similar to the default implementation
|
|
702
|
+
:class:`FunctorialConstructionCategory.__classcall__`;
|
|
703
|
+
the only difference is whether the additional arguments
|
|
704
|
+
should be passed to ``Cat`` or to the construction.
|
|
705
|
+
|
|
706
|
+
Find a way to refactor this to avoid the duplication.
|
|
707
|
+
"""
|
|
708
|
+
base_category_class = cls._base_category_class[0]
|
|
709
|
+
if isinstance(category, base_category_class):
|
|
710
|
+
return super(FunctorialConstructionCategory, cls).__classcall__(cls, category, R)
|
|
711
|
+
else:
|
|
712
|
+
# category should now be the base ring ...
|
|
713
|
+
return cls.category_of(base_category_class(), category)
|
|
714
|
+
|
|
715
|
+
class ParentMethods:
|
|
716
|
+
|
|
717
|
+
# coalgebra structure
|
|
718
|
+
|
|
719
|
+
def coproduct_on_basis(self, g):
|
|
720
|
+
r"""
|
|
721
|
+
Return the coproduct of the element ``g`` of the basis.
|
|
722
|
+
|
|
723
|
+
Each basis element ``g`` is group-like. This method is
|
|
724
|
+
used to compute the coproduct of any element.
|
|
725
|
+
|
|
726
|
+
EXAMPLES::
|
|
727
|
+
|
|
728
|
+
sage: # needs sage.combinat
|
|
729
|
+
sage: PF = NonDecreasingParkingFunctions(4)
|
|
730
|
+
sage: A = PF.algebra(ZZ); A
|
|
731
|
+
Algebra of Non-decreasing parking functions of size 4 over Integer Ring
|
|
732
|
+
sage: g = PF.an_element(); g
|
|
733
|
+
[1, 1, 1, 1]
|
|
734
|
+
sage: A.coproduct_on_basis(g)
|
|
735
|
+
B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]]
|
|
736
|
+
sage: a = A.an_element(); a
|
|
737
|
+
2*B[[1, 1, 1, 1]] + 2*B[[1, 1, 1, 2]] + 3*B[[1, 1, 1, 3]]
|
|
738
|
+
sage: a.coproduct()
|
|
739
|
+
2*B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]] +
|
|
740
|
+
2*B[[1, 1, 1, 2]] # B[[1, 1, 1, 2]] +
|
|
741
|
+
3*B[[1, 1, 1, 3]] # B[[1, 1, 1, 3]]
|
|
742
|
+
"""
|
|
743
|
+
from sage.categories.tensor import tensor
|
|
744
|
+
g = self.term(g)
|
|
745
|
+
return tensor([g, g])
|