passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-pc-linux-musl-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1068 -0
- gap/pkg/semigroups/config.status +1133 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-f0b7066b.so.2.0.0 +0 -0
- passagemath_gap_pkg_semigroups.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,995 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
##
|
|
3
|
+
## elements/bipart.gi
|
|
4
|
+
## Copyright (C) 2013-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#############################################################################
|
|
12
|
+
# Family and type.
|
|
13
|
+
#
|
|
14
|
+
# One per degree to avoid lists with bipartitions of different degrees
|
|
15
|
+
# belonging to IsAssociativeElementCollection.
|
|
16
|
+
#############################################################################
|
|
17
|
+
|
|
18
|
+
BindGlobal("TYPES_BIPART", []);
|
|
19
|
+
BindGlobal("TYPE_BIPART",
|
|
20
|
+
function(n)
|
|
21
|
+
local fam, type;
|
|
22
|
+
|
|
23
|
+
n := n + 1; # since the degree can be 0
|
|
24
|
+
|
|
25
|
+
if IsBound(TYPES_BIPART[n]) then
|
|
26
|
+
return TYPES_BIPART[n];
|
|
27
|
+
fi;
|
|
28
|
+
|
|
29
|
+
fam := NewFamily(Concatenation("BipartitionFamily", String(n - 1)),
|
|
30
|
+
IsBipartition,
|
|
31
|
+
CanEasilySortElements,
|
|
32
|
+
CanEasilySortElements);
|
|
33
|
+
|
|
34
|
+
type := NewType(fam,
|
|
35
|
+
IsBipartition and IsInternalRep);
|
|
36
|
+
TYPES_BIPART[n] := type;
|
|
37
|
+
return type;
|
|
38
|
+
end);
|
|
39
|
+
|
|
40
|
+
#############################################################################
|
|
41
|
+
# Pickler
|
|
42
|
+
#############################################################################
|
|
43
|
+
|
|
44
|
+
InstallMethod(IO_Pickle, "for a bipartition",
|
|
45
|
+
[IsFile, IsBipartition],
|
|
46
|
+
function(file, x)
|
|
47
|
+
if IO_Write(file, "BIPA") = fail then
|
|
48
|
+
return IO_Error;
|
|
49
|
+
fi;
|
|
50
|
+
return IO_Pickle(file, IntRepOfBipartition(x));
|
|
51
|
+
end);
|
|
52
|
+
|
|
53
|
+
IO_Unpicklers.BIPA := function(file)
|
|
54
|
+
local blocks;
|
|
55
|
+
|
|
56
|
+
blocks := IO_Unpickle(file);
|
|
57
|
+
if blocks = IO_Error then
|
|
58
|
+
return IO_Error;
|
|
59
|
+
fi;
|
|
60
|
+
return BIPART_NC(blocks);
|
|
61
|
+
end;
|
|
62
|
+
|
|
63
|
+
#############################################################################
|
|
64
|
+
# Implications
|
|
65
|
+
#############################################################################
|
|
66
|
+
|
|
67
|
+
InstallTrueMethod(IsPermBipartition, IsTransBipartition
|
|
68
|
+
and IsDualTransBipartition);
|
|
69
|
+
|
|
70
|
+
InstallTrueMethod(IsBlockBijection, IsPermBipartition);
|
|
71
|
+
|
|
72
|
+
#############################################################################
|
|
73
|
+
# GAP level - directly using interface to C/C++ level
|
|
74
|
+
#############################################################################
|
|
75
|
+
|
|
76
|
+
# Fundamental attributes
|
|
77
|
+
|
|
78
|
+
InstallMethod(DegreeOfBipartition, "for a bipartition",
|
|
79
|
+
[IsBipartition], BIPART_DEGREE);
|
|
80
|
+
|
|
81
|
+
InstallMethod(NrBlocks, "for a bipartition",
|
|
82
|
+
[IsBipartition], BIPART_NR_BLOCKS);
|
|
83
|
+
|
|
84
|
+
InstallMethod(NrLeftBlocks, "for a bipartition",
|
|
85
|
+
[IsBipartition], BIPART_NR_LEFT_BLOCKS);
|
|
86
|
+
|
|
87
|
+
InstallMethod(RankOfBipartition, "for a bipartition",
|
|
88
|
+
[IsBipartition], x -> BIPART_RANK(x, 0));
|
|
89
|
+
|
|
90
|
+
# Constructors
|
|
91
|
+
|
|
92
|
+
InstallGlobalFunction(Bipartition,
|
|
93
|
+
function(classes)
|
|
94
|
+
local n, copy, i, j;
|
|
95
|
+
|
|
96
|
+
if not IsList(classes)
|
|
97
|
+
or ForAny(classes, x -> not IsHomogeneousList(x)
|
|
98
|
+
or not IsDuplicateFree(x)) then
|
|
99
|
+
ErrorNoReturn("the argument does not consist of duplicate-free ",
|
|
100
|
+
"homogeneous lists");
|
|
101
|
+
fi;
|
|
102
|
+
|
|
103
|
+
n := Sum(classes, Length) / 2;
|
|
104
|
+
|
|
105
|
+
if n >= 2 ^ 29 then
|
|
106
|
+
ErrorNoReturn("the maximum degree of a bipartition is 2 ^ 29 - 1");
|
|
107
|
+
elif not ForAll(classes, x -> ForAll(x,
|
|
108
|
+
i -> (IsPosInt(i) or IsNegInt(i))
|
|
109
|
+
and AbsInt(i) <= n)) then
|
|
110
|
+
ErrorNoReturn("the argument does not consist of lists of ",
|
|
111
|
+
"integers from [-", n, " .. -1, 1 .. ", n, "]");
|
|
112
|
+
elif not IsEmpty(classes)
|
|
113
|
+
and Union(classes) <> Concatenation([-n .. -1], [1 .. n]) then
|
|
114
|
+
ErrorNoReturn("the union of the argument <classes> is not ",
|
|
115
|
+
"[-", n, " .. -1, 1 .. ", n, "]");
|
|
116
|
+
fi;
|
|
117
|
+
|
|
118
|
+
copy := List(classes, ShallowCopy);
|
|
119
|
+
for i in [1 .. Length(copy)] do
|
|
120
|
+
for j in [1 .. Length(copy[i])] do
|
|
121
|
+
if copy[i][j] < 0 then
|
|
122
|
+
copy[i][j] := AbsInt(copy[i][j]) + n;
|
|
123
|
+
fi;
|
|
124
|
+
od;
|
|
125
|
+
od;
|
|
126
|
+
|
|
127
|
+
Perform(copy, Sort);
|
|
128
|
+
Sort(copy);
|
|
129
|
+
|
|
130
|
+
for i in [1 .. Length(copy)] do
|
|
131
|
+
for j in [1 .. Length(copy[i])] do
|
|
132
|
+
if copy[i][j] > n then
|
|
133
|
+
copy[i][j] := -copy[i][j] + n;
|
|
134
|
+
fi;
|
|
135
|
+
od;
|
|
136
|
+
od;
|
|
137
|
+
return BIPART_NC(copy);
|
|
138
|
+
end);
|
|
139
|
+
|
|
140
|
+
InstallMethod(BipartitionByIntRep, "for a list", [IsHomogeneousList],
|
|
141
|
+
function(blocks)
|
|
142
|
+
local n, next, seen, i;
|
|
143
|
+
n := Length(blocks);
|
|
144
|
+
if not IsEvenInt(n) then
|
|
145
|
+
ErrorNoReturn("the degree of a bipartition must be even, found ", n);
|
|
146
|
+
elif n >= 2 ^ 30 then
|
|
147
|
+
ErrorNoReturn("the length of the argument (a list) exceeds ",
|
|
148
|
+
"2 ^ 30 - 1");
|
|
149
|
+
elif not (IsEmpty(blocks) or IsPosInt(blocks[1])) then
|
|
150
|
+
ErrorNoReturn("the items in the argument (a list) must be positive ",
|
|
151
|
+
"integers");
|
|
152
|
+
fi;
|
|
153
|
+
|
|
154
|
+
next := 0;
|
|
155
|
+
seen := BlistList([1 .. Maximum(blocks)], []);
|
|
156
|
+
|
|
157
|
+
for i in [1 .. n] do
|
|
158
|
+
if not seen[blocks[i]] then
|
|
159
|
+
next := next + 1;
|
|
160
|
+
if blocks[i] <> next then
|
|
161
|
+
ErrorNoReturn("expected ", next, " but found ", blocks[i],
|
|
162
|
+
", in position ", i);
|
|
163
|
+
fi;
|
|
164
|
+
seen[blocks[i]] := true;
|
|
165
|
+
fi;
|
|
166
|
+
od;
|
|
167
|
+
|
|
168
|
+
return BIPART_NC(blocks);
|
|
169
|
+
end);
|
|
170
|
+
|
|
171
|
+
InstallMethod(IdentityBipartition, "for zero", [IsZeroCyc],
|
|
172
|
+
_ -> Bipartition([]));
|
|
173
|
+
|
|
174
|
+
InstallMethod(IdentityBipartition, "for a positive integer", [IsPosInt],
|
|
175
|
+
function(n)
|
|
176
|
+
local blocks, i;
|
|
177
|
+
|
|
178
|
+
if n >= 2 ^ 29 then
|
|
179
|
+
ErrorNoReturn("the argument (a pos. int) must not exceed 2 ^ 29 - 1");
|
|
180
|
+
fi;
|
|
181
|
+
blocks := EmptyPlist(2 * n);
|
|
182
|
+
|
|
183
|
+
for i in [1 .. n] do
|
|
184
|
+
blocks[i] := i;
|
|
185
|
+
blocks[i + n] := i;
|
|
186
|
+
od;
|
|
187
|
+
|
|
188
|
+
return BIPART_NC(blocks);
|
|
189
|
+
end);
|
|
190
|
+
|
|
191
|
+
InstallMethod(RandomBipartition, "for a random source and pos int",
|
|
192
|
+
[IsRandomSource, IsPosInt],
|
|
193
|
+
function(rs, n)
|
|
194
|
+
local out, nrblocks, vals, j, i;
|
|
195
|
+
|
|
196
|
+
if n >= 2 ^ 29 then
|
|
197
|
+
ErrorNoReturn("the argument (a pos. int.) must not exceed 2 ^ 29 - 1");
|
|
198
|
+
fi;
|
|
199
|
+
out := EmptyPlist(2 * n);
|
|
200
|
+
nrblocks := 0;
|
|
201
|
+
vals := [1];
|
|
202
|
+
|
|
203
|
+
for i in [1 .. 2 * n] do
|
|
204
|
+
j := Random(rs, vals);
|
|
205
|
+
if j = nrblocks + 1 then
|
|
206
|
+
nrblocks := nrblocks + 1;
|
|
207
|
+
Add(vals, nrblocks + 1);
|
|
208
|
+
fi;
|
|
209
|
+
out[i] := j;
|
|
210
|
+
od;
|
|
211
|
+
|
|
212
|
+
return BIPART_NC(out);
|
|
213
|
+
end);
|
|
214
|
+
|
|
215
|
+
InstallMethod(RandomBipartition, "for a pos int", [IsPosInt],
|
|
216
|
+
n -> RandomBipartition(GlobalMersenneTwister, n));
|
|
217
|
+
|
|
218
|
+
InstallMethod(RandomBlockBijection, "for a random source and pos int",
|
|
219
|
+
[IsRandomSource, IsPosInt],
|
|
220
|
+
function(rs, n)
|
|
221
|
+
local out, nrblocks, j, free, i;
|
|
222
|
+
|
|
223
|
+
if n >= 2 ^ 29 then
|
|
224
|
+
ErrorNoReturn("the argument (a pos. int.) must not exceed 2 ^ 29 - 1");
|
|
225
|
+
fi;
|
|
226
|
+
|
|
227
|
+
out := EmptyPlist(2 * n);
|
|
228
|
+
out[1] := 1;
|
|
229
|
+
nrblocks := 1;
|
|
230
|
+
|
|
231
|
+
for i in [2 .. n] do
|
|
232
|
+
j := Random(rs, [1 .. nrblocks + 1]);
|
|
233
|
+
if j = nrblocks + 1 then
|
|
234
|
+
nrblocks := nrblocks + 1;
|
|
235
|
+
fi;
|
|
236
|
+
out[i] := j;
|
|
237
|
+
od;
|
|
238
|
+
|
|
239
|
+
free := [n + 1 .. 2 * n];
|
|
240
|
+
for i in [1 .. nrblocks] do
|
|
241
|
+
j := Random(rs, free);
|
|
242
|
+
out[j] := i;
|
|
243
|
+
RemoveSet(free, j);
|
|
244
|
+
od;
|
|
245
|
+
|
|
246
|
+
for i in free do
|
|
247
|
+
out[i] := Random(rs, [1 .. nrblocks]);
|
|
248
|
+
od;
|
|
249
|
+
|
|
250
|
+
return BIPART_NC(out);
|
|
251
|
+
end);
|
|
252
|
+
|
|
253
|
+
InstallMethod(RandomBlockBijection, "for a pos int", [IsPosInt],
|
|
254
|
+
n -> RandomBlockBijection(GlobalMersenneTwister, n));
|
|
255
|
+
|
|
256
|
+
# Operators
|
|
257
|
+
|
|
258
|
+
InstallMethod(PermLeftQuoBipartition, "for a bipartition and bipartition",
|
|
259
|
+
IsIdenticalObj, [IsBipartition, IsBipartition],
|
|
260
|
+
function(x, y)
|
|
261
|
+
|
|
262
|
+
if LeftBlocks(x) <> LeftBlocks(y) or RightBlocks(x) <> RightBlocks(y) then
|
|
263
|
+
ErrorNoReturn("the arguments (bipartitions) do not have equal left ",
|
|
264
|
+
"and right blocks");
|
|
265
|
+
fi;
|
|
266
|
+
return BIPART_PERM_LEFT_QUO(x, y);
|
|
267
|
+
end);
|
|
268
|
+
|
|
269
|
+
# Attributes
|
|
270
|
+
|
|
271
|
+
InstallMethod(DomainOfBipartition, "for a bipartition", [IsBipartition],
|
|
272
|
+
function(x)
|
|
273
|
+
local out;
|
|
274
|
+
out := [];
|
|
275
|
+
for x in ExtRepOfObj(LeftBlocks(x)) do
|
|
276
|
+
if IsPosInt(x[1]) then
|
|
277
|
+
Append(out, x);
|
|
278
|
+
fi;
|
|
279
|
+
od;
|
|
280
|
+
return out;
|
|
281
|
+
end);
|
|
282
|
+
|
|
283
|
+
InstallMethod(CodomainOfBipartition, "for a bipartition", [IsBipartition],
|
|
284
|
+
function(x)
|
|
285
|
+
local out;
|
|
286
|
+
out := [];
|
|
287
|
+
for x in ExtRepOfObj(RightBlocks(x)) do
|
|
288
|
+
if IsPosInt(x[1]) then
|
|
289
|
+
Append(out, -x);
|
|
290
|
+
fi;
|
|
291
|
+
od;
|
|
292
|
+
return out;
|
|
293
|
+
end);
|
|
294
|
+
|
|
295
|
+
InstallMethod(ExtRepOfObj, "for a bipartition", [IsBipartition],
|
|
296
|
+
BIPART_EXT_REP);
|
|
297
|
+
|
|
298
|
+
InstallMethod(IntRepOfBipartition, "for a bipartition", [IsBipartition],
|
|
299
|
+
BIPART_INT_REP);
|
|
300
|
+
|
|
301
|
+
# xx ^ * - linear - 2 * degree
|
|
302
|
+
|
|
303
|
+
InstallMethod(LeftProjection, "for a bipartition", [IsBipartition],
|
|
304
|
+
BIPART_LEFT_PROJ);
|
|
305
|
+
|
|
306
|
+
InstallMethod(RightProjection, "for a bipartition", [IsBipartition],
|
|
307
|
+
BIPART_RIGHT_PROJ);
|
|
308
|
+
|
|
309
|
+
# linear - 2 * degree
|
|
310
|
+
|
|
311
|
+
InstallMethod(StarOp, "for a bipartition", [IsBipartition], BIPART_STAR);
|
|
312
|
+
|
|
313
|
+
InstallMethod(ChooseHashFunction, "for a bipartition",
|
|
314
|
+
[IsBipartition, IsInt],
|
|
315
|
+
{_, hashlen} -> rec(func := BIPART_HASH, data := hashlen));
|
|
316
|
+
|
|
317
|
+
#############################################################################
|
|
318
|
+
# GAP level
|
|
319
|
+
#############################################################################
|
|
320
|
+
|
|
321
|
+
# Attributes
|
|
322
|
+
|
|
323
|
+
# not a synonym since NrTransverseBlocks also applies to blocks
|
|
324
|
+
|
|
325
|
+
InstallMethod(NrTransverseBlocks, "for a bipartition", [IsBipartition],
|
|
326
|
+
RankOfBipartition);
|
|
327
|
+
|
|
328
|
+
InstallMethod(NrRightBlocks, "for a bipartition", [IsBipartition],
|
|
329
|
+
x -> NrBlocks(x) - NrLeftBlocks(x) + NrTransverseBlocks(x));
|
|
330
|
+
|
|
331
|
+
InstallMethod(OneMutable, "for a bipartition",
|
|
332
|
+
[IsBipartition], x -> IdentityBipartition(DegreeOfBipartition(x)));
|
|
333
|
+
|
|
334
|
+
InstallMethod(OneMutable, "for a bipartition collection",
|
|
335
|
+
[IsBipartitionCollection], x ->
|
|
336
|
+
IdentityBipartition(DegreeOfBipartitionCollection(x)));
|
|
337
|
+
|
|
338
|
+
# the Other is to avoid warning on opening GAP
|
|
339
|
+
|
|
340
|
+
InstallOtherMethod(InverseMutable, "for a bipartition", [IsBipartition],
|
|
341
|
+
function(x)
|
|
342
|
+
if IsBlockBijection(x) or IsPartialPermBipartition(x) then
|
|
343
|
+
return Star(x);
|
|
344
|
+
fi;
|
|
345
|
+
return fail;
|
|
346
|
+
end);
|
|
347
|
+
|
|
348
|
+
# Properties
|
|
349
|
+
|
|
350
|
+
InstallMethod(IsBlockBijection, "for a bipartition",
|
|
351
|
+
[IsBipartition],
|
|
352
|
+
x -> NrBlocks(x) = NrLeftBlocks(x) and NrRightBlocks(x) = NrLeftBlocks(x));
|
|
353
|
+
|
|
354
|
+
InstallMethod(IsPartialPermBipartition, "for a bipartition",
|
|
355
|
+
[IsBipartition],
|
|
356
|
+
function(x)
|
|
357
|
+
return NrLeftBlocks(x) = DegreeOfBipartition(x)
|
|
358
|
+
and NrRightBlocks(x) = DegreeOfBipartition(x);
|
|
359
|
+
end);
|
|
360
|
+
|
|
361
|
+
# a bipartition is a transformation if and only if the second row is a
|
|
362
|
+
# permutation of [1 .. n], where n is the degree.
|
|
363
|
+
|
|
364
|
+
InstallMethod(IsTransBipartition, "for a bipartition",
|
|
365
|
+
[IsBipartition],
|
|
366
|
+
function(x)
|
|
367
|
+
return NrLeftBlocks(x) = NrTransverseBlocks(x)
|
|
368
|
+
and NrRightBlocks(x) = DegreeOfBipartition(x);
|
|
369
|
+
end);
|
|
370
|
+
|
|
371
|
+
InstallMethod(IsDualTransBipartition, "for a bipartition", [IsBipartition],
|
|
372
|
+
function(x)
|
|
373
|
+
return NrRightBlocks(x) = NrTransverseBlocks(x)
|
|
374
|
+
and NrLeftBlocks(x) = DegreeOfBipartition(x);
|
|
375
|
+
end);
|
|
376
|
+
|
|
377
|
+
InstallMethod(IsPermBipartition, "for a bipartition",
|
|
378
|
+
[IsBipartition],
|
|
379
|
+
function(x)
|
|
380
|
+
return IsPartialPermBipartition(x)
|
|
381
|
+
and NrTransverseBlocks(x) = DegreeOfBipartition(x);
|
|
382
|
+
end);
|
|
383
|
+
|
|
384
|
+
# Fundamental operators
|
|
385
|
+
|
|
386
|
+
InstallMethod(\*, "for a bipartition and a perm",
|
|
387
|
+
[IsBipartition, IsPerm],
|
|
388
|
+
function(x, p)
|
|
389
|
+
if LargestMovedPoint(p) <= DegreeOfBipartition(x) then
|
|
390
|
+
return x * AsBipartition(p, DegreeOfBipartition(x));
|
|
391
|
+
fi;
|
|
392
|
+
ErrorNoReturn("the largest moved point of the 2nd argument ",
|
|
393
|
+
"(a permutation) exceeds",
|
|
394
|
+
" the degree of the 1st argument (a bipartition)");
|
|
395
|
+
end);
|
|
396
|
+
|
|
397
|
+
InstallMethod(\*, "for a perm and a bipartition",
|
|
398
|
+
[IsPerm, IsBipartition],
|
|
399
|
+
function(p, x)
|
|
400
|
+
if LargestMovedPoint(p) <= DegreeOfBipartition(x) then
|
|
401
|
+
return AsBipartition(p, DegreeOfBipartition(x)) * x;
|
|
402
|
+
fi;
|
|
403
|
+
ErrorNoReturn("the largest moved point of the 1st argument ",
|
|
404
|
+
"(a permutation) exceeds",
|
|
405
|
+
" the degree of the 2nd argument (a bipartition)");
|
|
406
|
+
end);
|
|
407
|
+
|
|
408
|
+
InstallMethod(\*, "for a bipartition and a transformation",
|
|
409
|
+
[IsBipartition, IsTransformation],
|
|
410
|
+
function(x, f)
|
|
411
|
+
if DegreeOfTransformation(f) <= DegreeOfBipartition(x) then
|
|
412
|
+
return x * AsBipartition(f, DegreeOfBipartition(x));
|
|
413
|
+
fi;
|
|
414
|
+
ErrorNoReturn("the degree of the 2nd argument (a transformation)",
|
|
415
|
+
" exceeds the degree of the 1st argument",
|
|
416
|
+
" (a bipartition)");
|
|
417
|
+
end);
|
|
418
|
+
|
|
419
|
+
InstallMethod(\*, "for a transformation and a bipartition",
|
|
420
|
+
[IsTransformation, IsBipartition],
|
|
421
|
+
function(f, g)
|
|
422
|
+
if DegreeOfTransformation(f) <= DegreeOfBipartition(g) then
|
|
423
|
+
return AsBipartition(f, DegreeOfBipartition(g)) * g;
|
|
424
|
+
fi;
|
|
425
|
+
ErrorNoReturn("the degree of the 1st argument (a transformation)",
|
|
426
|
+
" exceeds the degree of the 2nd argument",
|
|
427
|
+
" (a bipartition)");
|
|
428
|
+
end);
|
|
429
|
+
|
|
430
|
+
InstallMethod(\*, "for a bipartition and a partial perm",
|
|
431
|
+
[IsBipartition, IsPartialPerm],
|
|
432
|
+
function(f, g)
|
|
433
|
+
local n;
|
|
434
|
+
n := DegreeOfBipartition(f);
|
|
435
|
+
if ForAll([1 .. n], i -> i ^ g <= n) then
|
|
436
|
+
return f * AsBipartition(g, DegreeOfBipartition(f));
|
|
437
|
+
fi;
|
|
438
|
+
ErrorNoReturn("the 2nd argument (a partial perm) does not map ",
|
|
439
|
+
"[1 .. ", String(n), "] into [1 .. ", String(n), "]");
|
|
440
|
+
end);
|
|
441
|
+
|
|
442
|
+
InstallMethod(\*, "for a partial perm and a bipartition",
|
|
443
|
+
[IsPartialPerm, IsBipartition],
|
|
444
|
+
function(f, g)
|
|
445
|
+
local n;
|
|
446
|
+
n := DegreeOfBipartition(g);
|
|
447
|
+
if ForAll([1 .. n], i -> i ^ f <= n) then
|
|
448
|
+
return AsBipartition(f, DegreeOfBipartition(g)) * g;
|
|
449
|
+
fi;
|
|
450
|
+
ErrorNoReturn("the 1st argument (a partial perm) does not map [1 .. ",
|
|
451
|
+
String(n), "] into [1 .. ", String(n), "]");
|
|
452
|
+
end);
|
|
453
|
+
|
|
454
|
+
InstallMethod(\^, "for a bipartition and permutation",
|
|
455
|
+
[IsBipartition, IsPerm],
|
|
456
|
+
{f, p} -> p ^ -1 * f * p);
|
|
457
|
+
|
|
458
|
+
# Other operators
|
|
459
|
+
|
|
460
|
+
InstallMethod(PartialPermLeqBipartition, "for a bipartition and a bipartition",
|
|
461
|
+
IsIdenticalObj, [IsBipartition, IsBipartition],
|
|
462
|
+
function(x, y)
|
|
463
|
+
if not (IsPartialPermBipartition(x) and IsPartialPermBipartition(y)) then
|
|
464
|
+
ErrorNoReturn("the arguments (bipartitions) do not both satisfy ",
|
|
465
|
+
"IsPartialPermBipartition");
|
|
466
|
+
fi;
|
|
467
|
+
|
|
468
|
+
return AsPartialPerm(x) < AsPartialPerm(y);
|
|
469
|
+
end);
|
|
470
|
+
|
|
471
|
+
# Changing representations
|
|
472
|
+
|
|
473
|
+
InstallMethod(AsBipartition, "for a permutation and zero",
|
|
474
|
+
[IsPerm, IsZeroCyc],
|
|
475
|
+
{f, n} -> Bipartition([]));
|
|
476
|
+
|
|
477
|
+
InstallMethod(AsBipartition, "for a permutation",
|
|
478
|
+
[IsPerm], x -> AsBipartition(x, LargestMovedPoint(x)));
|
|
479
|
+
|
|
480
|
+
InstallMethod(AsBipartition, "for a partial perm",
|
|
481
|
+
[IsPartialPerm],
|
|
482
|
+
function(x)
|
|
483
|
+
return AsBipartition(x, Maximum(DegreeOfPartialPerm(x),
|
|
484
|
+
CodegreeOfPartialPerm(x)));
|
|
485
|
+
end);
|
|
486
|
+
|
|
487
|
+
InstallMethod(AsBipartition, "for a partial perm and zero",
|
|
488
|
+
[IsPartialPerm, IsZeroCyc],
|
|
489
|
+
{f, n} -> Bipartition([]));
|
|
490
|
+
|
|
491
|
+
InstallMethod(AsBipartition, "for a transformation",
|
|
492
|
+
[IsTransformation], x -> AsBipartition(x, DegreeOfTransformation(x)));
|
|
493
|
+
|
|
494
|
+
InstallMethod(AsBipartition, "for a transformation and zero",
|
|
495
|
+
[IsTransformation, IsZeroCyc],
|
|
496
|
+
{f, n} -> Bipartition([]));
|
|
497
|
+
|
|
498
|
+
InstallMethod(AsBipartition, "for a bipartition", [IsBipartition], IdFunc);
|
|
499
|
+
|
|
500
|
+
InstallMethod(AsBipartition, "for a bipartition", [IsBipartition, IsZeroCyc],
|
|
501
|
+
{f, n} -> Bipartition([]));
|
|
502
|
+
|
|
503
|
+
InstallMethod(AsBipartition, "for a pbr and pos int",
|
|
504
|
+
[IsPBR, IsZeroCyc],
|
|
505
|
+
{x, deg} -> Bipartition([]));
|
|
506
|
+
|
|
507
|
+
InstallMethod(AsBipartition, "for a pbr and pos int",
|
|
508
|
+
[IsPBR, IsPosInt],
|
|
509
|
+
function(x, deg)
|
|
510
|
+
if not IsBipartitionPBR(x) then
|
|
511
|
+
ErrorNoReturn("the 1st argument (a pbr) does not satisfy",
|
|
512
|
+
" 'IsBipartitionPBR'");
|
|
513
|
+
fi;
|
|
514
|
+
|
|
515
|
+
return AsBipartition(AsBipartition(x), deg);
|
|
516
|
+
end);
|
|
517
|
+
|
|
518
|
+
InstallMethod(AsBipartition, "for a pbr",
|
|
519
|
+
[IsPBR],
|
|
520
|
+
function(x)
|
|
521
|
+
if not IsBipartitionPBR(x) then
|
|
522
|
+
ErrorNoReturn("the argument (a pbr) does not satisfy 'IsBipartitionPBR'");
|
|
523
|
+
fi;
|
|
524
|
+
return Bipartition(Union(ExtRepOfObj(x)));
|
|
525
|
+
end);
|
|
526
|
+
|
|
527
|
+
InstallMethod(AsBlockBijection, "for a partial perm",
|
|
528
|
+
[IsPartialPerm],
|
|
529
|
+
function(x)
|
|
530
|
+
return AsBlockBijection(x, Maximum(DegreeOfPartialPerm(x),
|
|
531
|
+
CodegreeOfPartialPerm(x)) + 1);
|
|
532
|
+
end);
|
|
533
|
+
|
|
534
|
+
# Viewing, printing etc
|
|
535
|
+
|
|
536
|
+
InstallMethod(ViewString, "for a bipartition",
|
|
537
|
+
[IsBipartition],
|
|
538
|
+
function(x)
|
|
539
|
+
local str, ext, i;
|
|
540
|
+
|
|
541
|
+
if DegreeOfBipartition(x) = 0 then
|
|
542
|
+
return "\><empty bipartition>\<";
|
|
543
|
+
elif IsBlockBijection(x) then
|
|
544
|
+
str := "\>\><block bijection:\< ";
|
|
545
|
+
else
|
|
546
|
+
str := "\>\><bipartition:\< ";
|
|
547
|
+
fi;
|
|
548
|
+
|
|
549
|
+
ext := ExtRepOfObj(x);
|
|
550
|
+
Append(str, "\>");
|
|
551
|
+
Append(str, String(ext[1]));
|
|
552
|
+
Append(str, "\<");
|
|
553
|
+
|
|
554
|
+
for i in [2 .. Length(ext)] do
|
|
555
|
+
Append(str, ", \>");
|
|
556
|
+
Append(str, String(ext[i]));
|
|
557
|
+
Append(str, "\<");
|
|
558
|
+
od;
|
|
559
|
+
Append(str, ">\<");
|
|
560
|
+
return str;
|
|
561
|
+
end);
|
|
562
|
+
|
|
563
|
+
InstallMethod(String, "for a bipartition", [IsBipartition],
|
|
564
|
+
x -> Concatenation("Bipartition(", String(ExtRepOfObj(x)), ")"));
|
|
565
|
+
|
|
566
|
+
InstallMethod(PrintString, "for a bipartition",
|
|
567
|
+
[IsBipartition],
|
|
568
|
+
function(x)
|
|
569
|
+
local ext, str, i;
|
|
570
|
+
if DegreeOfBipartition(x) = 0 then
|
|
571
|
+
return "\>\>Bipartition(\< \>[]\<)\<";
|
|
572
|
+
fi;
|
|
573
|
+
ext := ExtRepOfObj(x);
|
|
574
|
+
str := Concatenation("\>\>Bipartition(\< \>[ ", PrintString(ext[1]));
|
|
575
|
+
for i in [2 .. Length(ext)] do
|
|
576
|
+
Append(str, ",\< \>");
|
|
577
|
+
Append(str, PrintString(ext[i]));
|
|
578
|
+
od;
|
|
579
|
+
Append(str, " \<]");
|
|
580
|
+
Append(str, " )\<");
|
|
581
|
+
return str;
|
|
582
|
+
end);
|
|
583
|
+
|
|
584
|
+
InstallMethod(PrintString, "for a bipartition collection",
|
|
585
|
+
[IsBipartitionCollection],
|
|
586
|
+
function(coll)
|
|
587
|
+
local str, i;
|
|
588
|
+
|
|
589
|
+
if IsGreensClass(coll) or IsSemigroup(coll) then
|
|
590
|
+
TryNextMethod();
|
|
591
|
+
fi;
|
|
592
|
+
|
|
593
|
+
str := "\>[ ";
|
|
594
|
+
for i in [1 .. Length(coll)] do
|
|
595
|
+
if i <> 1 then
|
|
596
|
+
Append(str, " ");
|
|
597
|
+
fi;
|
|
598
|
+
Append(str, "\>");
|
|
599
|
+
Append(str, PrintString(coll[i]));
|
|
600
|
+
if i <> Length(coll) then
|
|
601
|
+
Append(str, ",\<\n");
|
|
602
|
+
else
|
|
603
|
+
Append(str, " ]\<\n");
|
|
604
|
+
fi;
|
|
605
|
+
od;
|
|
606
|
+
return str;
|
|
607
|
+
end);
|
|
608
|
+
|
|
609
|
+
# Bipartition collections
|
|
610
|
+
|
|
611
|
+
InstallMethod(DegreeOfBipartitionCollection, "for a bipartition semigroup",
|
|
612
|
+
[IsBipartitionSemigroup], DegreeOfBipartitionSemigroup);
|
|
613
|
+
|
|
614
|
+
InstallMethod(DegreeOfBipartitionCollection, "for a bipartition collection",
|
|
615
|
+
[IsBipartitionCollection],
|
|
616
|
+
{coll} -> DegreeOfBipartition(coll[1]));
|
|
617
|
+
|
|
618
|
+
#############################################################################
|
|
619
|
+
# All of the methods in this section could be done in C/C++
|
|
620
|
+
#############################################################################
|
|
621
|
+
|
|
622
|
+
# Change representations . . .
|
|
623
|
+
|
|
624
|
+
InstallMethod(AsBipartition, "for a permutation and pos int",
|
|
625
|
+
[IsPerm, IsPosInt],
|
|
626
|
+
function(x, n)
|
|
627
|
+
if n >= 2 ^ 29 then
|
|
628
|
+
ErrorNoReturn("the 2nd argument (a pos. int.) exceeds 2 ^ 29 - 1");
|
|
629
|
+
elif OnSets([1 .. n], x) <> [1 .. n] then
|
|
630
|
+
ErrorNoReturn("the 1st argument (a permutation) does not permute ",
|
|
631
|
+
"[1 .. ", String(n), "]");
|
|
632
|
+
fi;
|
|
633
|
+
return BIPART_NC(Concatenation([1 .. n], ListPerm(x ^ -1, n)));
|
|
634
|
+
end);
|
|
635
|
+
|
|
636
|
+
InstallMethod(AsPartialPerm, "for a bipartition", [IsBipartition],
|
|
637
|
+
function(x)
|
|
638
|
+
local n, blocks, nrleft, im, out, i;
|
|
639
|
+
|
|
640
|
+
if not IsPartialPermBipartition(x) then
|
|
641
|
+
ErrorNoReturn("the argument (a bipartition) does not define ",
|
|
642
|
+
"a partial perm");
|
|
643
|
+
fi;
|
|
644
|
+
|
|
645
|
+
n := DegreeOfBipartition(x);
|
|
646
|
+
blocks := IntRepOfBipartition(x);
|
|
647
|
+
nrleft := NrLeftBlocks(x);
|
|
648
|
+
im := [1 .. n] * 0;
|
|
649
|
+
|
|
650
|
+
for i in [n + 1 .. 2 * n] do
|
|
651
|
+
if blocks[i] <= nrleft then
|
|
652
|
+
im[blocks[i]] := i - n;
|
|
653
|
+
fi;
|
|
654
|
+
od;
|
|
655
|
+
|
|
656
|
+
out := EmptyPlist(n);
|
|
657
|
+
for i in [1 .. n] do
|
|
658
|
+
out[i] := im[blocks[i]];
|
|
659
|
+
od;
|
|
660
|
+
return PartialPermNC(out);
|
|
661
|
+
end);
|
|
662
|
+
|
|
663
|
+
InstallMethod(AsPermutation, "for a bipartition", [IsBipartition],
|
|
664
|
+
function(x)
|
|
665
|
+
local n, blocks, im, out, i;
|
|
666
|
+
|
|
667
|
+
if not IsPermBipartition(x) then
|
|
668
|
+
ErrorNoReturn("the argument (a bipartition) does not define a ",
|
|
669
|
+
"permutation");
|
|
670
|
+
fi;
|
|
671
|
+
|
|
672
|
+
n := DegreeOfBipartition(x);
|
|
673
|
+
blocks := IntRepOfBipartition(x);
|
|
674
|
+
im := EmptyPlist(n);
|
|
675
|
+
|
|
676
|
+
for i in [n + 1 .. 2 * n] do
|
|
677
|
+
im[blocks[i]] := i - n;
|
|
678
|
+
od;
|
|
679
|
+
|
|
680
|
+
out := EmptyPlist(n);
|
|
681
|
+
for i in [1 .. n] do
|
|
682
|
+
out[i] := im[blocks[i]];
|
|
683
|
+
od;
|
|
684
|
+
return PermList(out);
|
|
685
|
+
end);
|
|
686
|
+
|
|
687
|
+
InstallMethod(AsTransformation, "for a bipartition", [IsBipartition],
|
|
688
|
+
function(x)
|
|
689
|
+
local n, blocks, nr, im, out, i;
|
|
690
|
+
|
|
691
|
+
if not IsTransBipartition(x) then
|
|
692
|
+
ErrorNoReturn("the argument (a bipartition) does not define a ",
|
|
693
|
+
"transformation");
|
|
694
|
+
fi;
|
|
695
|
+
|
|
696
|
+
n := DegreeOfBipartition(x);
|
|
697
|
+
blocks := IntRepOfBipartition(x);
|
|
698
|
+
nr := NrLeftBlocks(x);
|
|
699
|
+
im := EmptyPlist(n);
|
|
700
|
+
|
|
701
|
+
for i in [n + 1 .. 2 * n] do
|
|
702
|
+
if blocks[i] <= nr then
|
|
703
|
+
im[blocks[i]] := i - n;
|
|
704
|
+
fi;
|
|
705
|
+
od;
|
|
706
|
+
|
|
707
|
+
out := EmptyPlist(n);
|
|
708
|
+
for i in [1 .. n] do
|
|
709
|
+
out[i] := im[blocks[i]];
|
|
710
|
+
od;
|
|
711
|
+
return TransformationNC(out);
|
|
712
|
+
end);
|
|
713
|
+
|
|
714
|
+
InstallMethod(AsBipartition, "for a partial perm and pos int",
|
|
715
|
+
[IsPartialPerm, IsPosInt],
|
|
716
|
+
function(x, n)
|
|
717
|
+
local r, out, y, j, i;
|
|
718
|
+
|
|
719
|
+
if n >= 2 ^ 29 then
|
|
720
|
+
ErrorNoReturn("the 2nd argument (a pos. int.) exceeds 2 ^ 29 - 1");
|
|
721
|
+
fi;
|
|
722
|
+
|
|
723
|
+
r := n;
|
|
724
|
+
out := EmptyPlist(2 * n);
|
|
725
|
+
y := x ^ -1;
|
|
726
|
+
|
|
727
|
+
for i in [1 .. n] do
|
|
728
|
+
out[i] := i;
|
|
729
|
+
j := i ^ y;
|
|
730
|
+
if j <> 0 then
|
|
731
|
+
out[n + i] := j;
|
|
732
|
+
else
|
|
733
|
+
r := r + 1;
|
|
734
|
+
out[n + i] := r;
|
|
735
|
+
fi;
|
|
736
|
+
od;
|
|
737
|
+
return BIPART_NC(out);
|
|
738
|
+
end);
|
|
739
|
+
|
|
740
|
+
InstallMethod(AsBipartition, "for a transformation and a positive integer",
|
|
741
|
+
[IsTransformation, IsPosInt],
|
|
742
|
+
function(f, n)
|
|
743
|
+
local r, ker, out, g, i;
|
|
744
|
+
|
|
745
|
+
if n >= 2 ^ 29 then
|
|
746
|
+
ErrorNoReturn("the 2nd argument (a pos. int.) exceeds 2 ^ 29 - 1");
|
|
747
|
+
elif n < DegreeOfTransformation(f) then
|
|
748
|
+
# Verify f is a transformation on [1 .. n].
|
|
749
|
+
for i in [1 .. n] do
|
|
750
|
+
if i ^ f > n then
|
|
751
|
+
ErrorNoReturn("the 1st argument (a transformation) does not map [1 .. ",
|
|
752
|
+
String(n), "] to itself");
|
|
753
|
+
fi;
|
|
754
|
+
od;
|
|
755
|
+
fi;
|
|
756
|
+
|
|
757
|
+
r := RankOfTransformation(f, n);
|
|
758
|
+
ker := FlatKernelOfTransformation(f, n);
|
|
759
|
+
|
|
760
|
+
out := EmptyPlist(2 * n);
|
|
761
|
+
g := List([1 .. n], x -> 0);
|
|
762
|
+
|
|
763
|
+
# The inverse of f.
|
|
764
|
+
for i in [1 .. n] do
|
|
765
|
+
g[i ^ f] := i;
|
|
766
|
+
od;
|
|
767
|
+
|
|
768
|
+
for i in [1 .. n] do
|
|
769
|
+
out[i] := ker[i];
|
|
770
|
+
if g[i] <> 0 then
|
|
771
|
+
out[n + i] := ker[g[i]];
|
|
772
|
+
else
|
|
773
|
+
r := r + 1;
|
|
774
|
+
out[n + i] := r;
|
|
775
|
+
fi;
|
|
776
|
+
od;
|
|
777
|
+
return BIPART_NC(out);
|
|
778
|
+
end);
|
|
779
|
+
|
|
780
|
+
InstallMethod(AsBipartition, "for a bipartition and pos int",
|
|
781
|
+
[IsBipartition, IsPosInt],
|
|
782
|
+
function(f, n)
|
|
783
|
+
local deg, blocks, out, nrblocks, nrleft, lookup, j, i;
|
|
784
|
+
|
|
785
|
+
if n >= 2 ^ 29 then
|
|
786
|
+
ErrorNoReturn("the 2nd argument (a pos. int.) exceeds 2 ^ 29 - 1");
|
|
787
|
+
fi;
|
|
788
|
+
deg := DegreeOfBipartition(f);
|
|
789
|
+
if n = deg then
|
|
790
|
+
return f;
|
|
791
|
+
fi;
|
|
792
|
+
blocks := IntRepOfBipartition(f);
|
|
793
|
+
out := [];
|
|
794
|
+
nrblocks := 0;
|
|
795
|
+
|
|
796
|
+
if n < deg then
|
|
797
|
+
for i in [1 .. n] do
|
|
798
|
+
out[i] := blocks[i];
|
|
799
|
+
if out[i] > nrblocks then
|
|
800
|
+
nrblocks := nrblocks + 1;
|
|
801
|
+
fi;
|
|
802
|
+
od;
|
|
803
|
+
nrleft := nrblocks;
|
|
804
|
+
lookup := EmptyPlist(NrBlocks(f));
|
|
805
|
+
for i in [n + 1 .. 2 * n] do
|
|
806
|
+
j := blocks[i + deg - n];
|
|
807
|
+
if j > nrleft then
|
|
808
|
+
if not IsBound(lookup[j]) then
|
|
809
|
+
nrblocks := nrblocks + 1;
|
|
810
|
+
lookup[j] := nrblocks;
|
|
811
|
+
fi;
|
|
812
|
+
j := lookup[j];
|
|
813
|
+
fi;
|
|
814
|
+
out[i] := j;
|
|
815
|
+
od;
|
|
816
|
+
else # n > deg
|
|
817
|
+
for i in [1 .. deg] do
|
|
818
|
+
out[i] := blocks[i];
|
|
819
|
+
od;
|
|
820
|
+
nrblocks := NrLeftBlocks(f);
|
|
821
|
+
for i in [deg + 1 .. n] do
|
|
822
|
+
nrblocks := nrblocks + 1;
|
|
823
|
+
out[i] := nrblocks;
|
|
824
|
+
od;
|
|
825
|
+
nrleft := nrblocks; # = n - deg + NrLeftBlocks(f)
|
|
826
|
+
for i in [n + 1 .. n + deg] do
|
|
827
|
+
if blocks[i - n + deg] <= nrleft - n + deg then # it's a left block
|
|
828
|
+
out[i] := blocks[i - n + deg];
|
|
829
|
+
else
|
|
830
|
+
out[i] := blocks[i - n + deg] + n - deg;
|
|
831
|
+
fi;
|
|
832
|
+
od;
|
|
833
|
+
nrblocks := NrBlocks(f) + n - deg;
|
|
834
|
+
for i in [n + deg + 1 .. 2 * n] do
|
|
835
|
+
nrblocks := nrblocks + 1;
|
|
836
|
+
out[i] := nrblocks;
|
|
837
|
+
od;
|
|
838
|
+
fi;
|
|
839
|
+
return BIPART_NC(out);
|
|
840
|
+
end);
|
|
841
|
+
|
|
842
|
+
# same as AsBipartition except that all undefined points are in a single block
|
|
843
|
+
# together with an extra (pair of) points.
|
|
844
|
+
|
|
845
|
+
InstallMethod(AsBlockBijection, "for a partial perm and pos int",
|
|
846
|
+
[IsPartialPerm, IsPosInt],
|
|
847
|
+
function(f, n)
|
|
848
|
+
local bigblock, nr, out, i;
|
|
849
|
+
|
|
850
|
+
if n >= 2 ^ 29 then
|
|
851
|
+
ErrorNoReturn("the 2nd argument (a pos. int.) exceeds 2 ^ 29 - 1");
|
|
852
|
+
elif n <= Maximum(DegreeOfPartialPerm(f), CodegreeOfPartialPerm(f)) then
|
|
853
|
+
ErrorNoReturn("the 2nd argument (a pos. int.) is less than or equal to ",
|
|
854
|
+
"the maximum of the degree and codegree of the ",
|
|
855
|
+
"1st argument (a partial perm)");
|
|
856
|
+
fi;
|
|
857
|
+
|
|
858
|
+
nr := 0;
|
|
859
|
+
out := [1 .. 2 * n] * 0;
|
|
860
|
+
bigblock := n;
|
|
861
|
+
|
|
862
|
+
for i in [1 .. n - 1] do
|
|
863
|
+
if i ^ f = 0 then
|
|
864
|
+
if bigblock = n then
|
|
865
|
+
nr := nr + 1;
|
|
866
|
+
bigblock := nr;
|
|
867
|
+
fi;
|
|
868
|
+
out[i] := bigblock;
|
|
869
|
+
else
|
|
870
|
+
nr := nr + 1;
|
|
871
|
+
out[i] := nr;
|
|
872
|
+
out[n + i ^ f] := nr;
|
|
873
|
+
fi;
|
|
874
|
+
od;
|
|
875
|
+
|
|
876
|
+
out[n] := bigblock;
|
|
877
|
+
out[2 * n] := bigblock;
|
|
878
|
+
|
|
879
|
+
for i in [n + 1 .. 2 * n - 1] do
|
|
880
|
+
if out[i] = 0 then
|
|
881
|
+
out[i] := bigblock;
|
|
882
|
+
fi;
|
|
883
|
+
od;
|
|
884
|
+
|
|
885
|
+
return BIPART_NC(out);
|
|
886
|
+
end);
|
|
887
|
+
|
|
888
|
+
InstallMethod(AsBlockBijection, "for a bipartition and pos int",
|
|
889
|
+
[IsBipartition, IsPosInt],
|
|
890
|
+
function(x, n)
|
|
891
|
+
if not IsPartialPermBipartition(x) then
|
|
892
|
+
ErrorNoReturn("the 1st argument (a bipartition) is not a ",
|
|
893
|
+
"partial perm bipartition");
|
|
894
|
+
fi;
|
|
895
|
+
return AsBlockBijection(AsPartialPerm(x), n);
|
|
896
|
+
end);
|
|
897
|
+
|
|
898
|
+
InstallMethod(AsBlockBijection, "for a bipartition",
|
|
899
|
+
[IsBipartition],
|
|
900
|
+
function(x)
|
|
901
|
+
if not IsPartialPermBipartition(x) then
|
|
902
|
+
ErrorNoReturn("the argument (a bipartion) does not satisfy ",
|
|
903
|
+
"IsPartialPermBipartition");
|
|
904
|
+
fi;
|
|
905
|
+
return AsBlockBijection(AsPartialPerm(x));
|
|
906
|
+
end);
|
|
907
|
+
|
|
908
|
+
InstallMethod(NaturalLeqBlockBijection, "for a bipartition and bipartition",
|
|
909
|
+
IsIdenticalObj, [IsBipartition, IsBipartition],
|
|
910
|
+
function(x, y)
|
|
911
|
+
local xblocks, yblocks, n, lookup, i;
|
|
912
|
+
|
|
913
|
+
if not IsBlockBijection(x) or not IsBlockBijection(y) then
|
|
914
|
+
ErrorNoReturn("the arguments (bipartitions) are not block bijections");
|
|
915
|
+
elif NrBlocks(x) > NrBlocks(y) then
|
|
916
|
+
return false;
|
|
917
|
+
fi;
|
|
918
|
+
|
|
919
|
+
xblocks := IntRepOfBipartition(x);
|
|
920
|
+
yblocks := IntRepOfBipartition(y);
|
|
921
|
+
n := DegreeOfBipartition(x);
|
|
922
|
+
|
|
923
|
+
lookup := [];
|
|
924
|
+
for i in [1 .. n] do
|
|
925
|
+
if IsBound(lookup[yblocks[i]]) and lookup[yblocks[i]] <> xblocks[i] then
|
|
926
|
+
return false;
|
|
927
|
+
else
|
|
928
|
+
lookup[yblocks[i]] := xblocks[i];
|
|
929
|
+
fi;
|
|
930
|
+
od;
|
|
931
|
+
for i in [n + 1 .. 2 * n] do
|
|
932
|
+
if lookup[yblocks[i]] <> xblocks[i] then
|
|
933
|
+
return false;
|
|
934
|
+
fi;
|
|
935
|
+
od;
|
|
936
|
+
return true;
|
|
937
|
+
end);
|
|
938
|
+
|
|
939
|
+
InstallMethod(NaturalLeqPartialPermBipartition,
|
|
940
|
+
"for a bipartition and bipartition",
|
|
941
|
+
IsIdenticalObj, [IsBipartition, IsBipartition],
|
|
942
|
+
function(x, y)
|
|
943
|
+
local n, xblocks, yblocks, val, i;
|
|
944
|
+
|
|
945
|
+
if not IsPartialPermBipartition(x) or not IsPartialPermBipartition(y) then
|
|
946
|
+
ErrorNoReturn("the arguments (bipartitions) are not partial perm ",
|
|
947
|
+
"bipartitions");
|
|
948
|
+
fi;
|
|
949
|
+
|
|
950
|
+
n := DegreeOfBipartition(x);
|
|
951
|
+
|
|
952
|
+
xblocks := IntRepOfBipartition(x);
|
|
953
|
+
yblocks := IntRepOfBipartition(y);
|
|
954
|
+
|
|
955
|
+
for i in [n + 1 .. 2 * n] do
|
|
956
|
+
val := xblocks[i];
|
|
957
|
+
if val <= n and val <> yblocks[i] then
|
|
958
|
+
return false;
|
|
959
|
+
fi;
|
|
960
|
+
od;
|
|
961
|
+
return true;
|
|
962
|
+
end);
|
|
963
|
+
|
|
964
|
+
InstallMethod(IsUniformBlockBijection, "for a bipartition",
|
|
965
|
+
[IsBipartition],
|
|
966
|
+
function(x)
|
|
967
|
+
local blocks, n, sizesleft, sizesright, i;
|
|
968
|
+
|
|
969
|
+
if not IsBlockBijection(x) then
|
|
970
|
+
return false;
|
|
971
|
+
fi;
|
|
972
|
+
|
|
973
|
+
blocks := IntRepOfBipartition(x);
|
|
974
|
+
n := DegreeOfBipartition(x);
|
|
975
|
+
sizesleft := [1 .. NrBlocks(x)] * 0;
|
|
976
|
+
sizesright := [1 .. NrBlocks(x)] * 0;
|
|
977
|
+
|
|
978
|
+
for i in [1 .. n] do
|
|
979
|
+
sizesleft[blocks[i]] := sizesleft[blocks[i]] + 1;
|
|
980
|
+
od;
|
|
981
|
+
for i in [n + 1 .. 2 * n] do
|
|
982
|
+
sizesright[blocks[i]] := sizesright[blocks[i]] + 1;
|
|
983
|
+
od;
|
|
984
|
+
for i in [1 .. NrBlocks(x)] do
|
|
985
|
+
if sizesright[i] <> sizesleft[i] then
|
|
986
|
+
return false;
|
|
987
|
+
fi;
|
|
988
|
+
od;
|
|
989
|
+
|
|
990
|
+
return true;
|
|
991
|
+
end);
|
|
992
|
+
|
|
993
|
+
InstallMethod(IndexPeriodOfSemigroupElement, "for a bipartition",
|
|
994
|
+
[IsBipartition],
|
|
995
|
+
x -> SEMIGROUPS.IndexPeriodByRank(x, RankOfBipartition));
|