passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-pc-linux-musl-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1068 -0
- gap/pkg/semigroups/config.status +1133 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-f0b7066b.so.2.0.0 +0 -0
- passagemath_gap_pkg_semigroups.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,1144 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/main/setup.tst
|
|
4
|
+
#Y Copyright (C) 2016-2022 James D. Mitchell
|
|
5
|
+
## Wilf A. Wilson
|
|
6
|
+
##
|
|
7
|
+
## Licensing information can be found in the README file of this package.
|
|
8
|
+
##
|
|
9
|
+
#############################################################################
|
|
10
|
+
##
|
|
11
|
+
|
|
12
|
+
#@local G, M, R, S, acting, b, data, forflatplainlists, func, o, r, rank, s
|
|
13
|
+
#@local schutz, x, y
|
|
14
|
+
gap> START_TEST("Semigroups package: standard/main/setup.tst");
|
|
15
|
+
gap> LoadPackage("semigroups", false);;
|
|
16
|
+
|
|
17
|
+
#
|
|
18
|
+
gap> SEMIGROUPS.StartTest();
|
|
19
|
+
gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
|
|
20
|
+
|
|
21
|
+
# IsGeneratorsOfActingSemigroup
|
|
22
|
+
gap> IsGeneratorsOfActingSemigroup([Transformation([2, 2])]);
|
|
23
|
+
true
|
|
24
|
+
gap> IsGeneratorsOfActingSemigroup([PartialPerm([1])]);
|
|
25
|
+
true
|
|
26
|
+
gap> IsGeneratorsOfActingSemigroup([Bipartition([[1, -1]])]);
|
|
27
|
+
true
|
|
28
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
|
|
29
|
+
gap> IsGeneratorsOfActingSemigroup(R);
|
|
30
|
+
true
|
|
31
|
+
gap> IsGeneratorsOfActingSemigroup(Elements(R));
|
|
32
|
+
true
|
|
33
|
+
gap> IsGeneratorsOfActingSemigroup(SLM(2, 2));
|
|
34
|
+
true
|
|
35
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
|
|
36
|
+
gap> IsGeneratorsOfActingSemigroup(M);
|
|
37
|
+
true
|
|
38
|
+
|
|
39
|
+
# ActionDegree
|
|
40
|
+
|
|
41
|
+
# ActionDegree, for a partial perm
|
|
42
|
+
gap> ActionDegree(PartialPerm([]));
|
|
43
|
+
0
|
|
44
|
+
gap> ActionDegree(PartialPerm([2]));
|
|
45
|
+
2
|
|
46
|
+
gap> ActionDegree(PartialPerm([0, 1]));
|
|
47
|
+
2
|
|
48
|
+
|
|
49
|
+
# ActionDegree, for a bipartition
|
|
50
|
+
gap> ActionDegree(Bipartition([[1, 3], [2, 4, -2], [5, -1, -3, -4], [-5]]));
|
|
51
|
+
5
|
|
52
|
+
|
|
53
|
+
# ActionDegree, for an RZMS element
|
|
54
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
|
|
55
|
+
> [(), (), ()]]);;
|
|
56
|
+
gap> ActionDegree(R.1);
|
|
57
|
+
1
|
|
58
|
+
gap> ActionDegree(MultiplicativeZero(R));
|
|
59
|
+
0
|
|
60
|
+
gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[()]]);;
|
|
61
|
+
gap> Set(R, ActionDegree);
|
|
62
|
+
[ 0, 1, 3, 4 ]
|
|
63
|
+
|
|
64
|
+
# ActionDegree, for a MTS element
|
|
65
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
|
|
66
|
+
gap> ActionDegree(M.1);
|
|
67
|
+
0
|
|
68
|
+
|
|
69
|
+
# ActionDegree, for a matrix over finite field object
|
|
70
|
+
gap> ActionDegree(Matrix(GF(2 ^ 2),
|
|
71
|
+
> [[Z(2) ^ 0, 0 * Z(2)], [0 * Z(2), 0 * Z(2)]]));
|
|
72
|
+
2
|
|
73
|
+
|
|
74
|
+
# ActionDegree, for a transformation collection
|
|
75
|
+
gap> ActionDegree(FullTransformationMonoid(3));
|
|
76
|
+
3
|
|
77
|
+
gap> ActionDegree([IdentityTransformation]);
|
|
78
|
+
0
|
|
79
|
+
|
|
80
|
+
# ActionDegree, for a partial perm collection
|
|
81
|
+
gap> ActionDegree([PartialPerm([2, 3]), PartialPerm([2, 1, 3])]);
|
|
82
|
+
3
|
|
83
|
+
gap> ActionDegree([PartialPerm([])]);
|
|
84
|
+
0
|
|
85
|
+
|
|
86
|
+
# ActionDegree, for a bipartition collection
|
|
87
|
+
gap> ActionDegree([Bipartition([[1, 2, -2], [-1]]),
|
|
88
|
+
> Bipartition([[1], [2, -2], [-1]])]);
|
|
89
|
+
2
|
|
90
|
+
|
|
91
|
+
# ActionDegree, for an RZMS element collection
|
|
92
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
|
|
93
|
+
> [(), (), ()]]);;
|
|
94
|
+
gap> ActionDegree([R.1, MultiplicativeZero(R)]);
|
|
95
|
+
1
|
|
96
|
+
gap> ActionDegree([MultiplicativeZero(R)]);
|
|
97
|
+
0
|
|
98
|
+
|
|
99
|
+
# ActionDegree, for an MTS element collection
|
|
100
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]),
|
|
101
|
+
> Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
|
|
102
|
+
gap> ActionDegree(Generators(M));
|
|
103
|
+
0
|
|
104
|
+
|
|
105
|
+
# ActionDegree for MatrixOverFiniteFieldSemigroup
|
|
106
|
+
gap> ActionDegree(SLM(2, 2));
|
|
107
|
+
2
|
|
108
|
+
|
|
109
|
+
# ActionDegree, for a transformation semigroup
|
|
110
|
+
gap> ActionDegree(FullTransformationSemigroup(2));
|
|
111
|
+
2
|
|
112
|
+
|
|
113
|
+
# ActionDegree, for a partial perm semigroup
|
|
114
|
+
gap> ActionDegree(MonogenicSemigroup(IsPartialPermSemigroup, 3, 3));
|
|
115
|
+
6
|
|
116
|
+
|
|
117
|
+
# ActionDegree, for a partial perm inverse semigroup
|
|
118
|
+
gap> ActionDegree(SymmetricInverseMonoid(4));
|
|
119
|
+
4
|
|
120
|
+
|
|
121
|
+
# ActionDegree, for a bipartition semigroup
|
|
122
|
+
gap> ActionDegree(PartitionMonoid(10));
|
|
123
|
+
10
|
|
124
|
+
|
|
125
|
+
# ActionDegree, for a Rees 0-matrix subsemigroup with generators
|
|
126
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[()]]);;
|
|
127
|
+
gap> GeneratorsOfSemigroup(R);;
|
|
128
|
+
gap> ActionDegree(R);
|
|
129
|
+
3
|
|
130
|
+
gap> ActionDegree(Semigroup(MultiplicativeZero(R)));
|
|
131
|
+
0
|
|
132
|
+
|
|
133
|
+
# ActionDegree, for an MTS subsemigroup
|
|
134
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
|
|
135
|
+
gap> ActionDegree(Semigroup(Representative(M)));
|
|
136
|
+
0
|
|
137
|
+
|
|
138
|
+
# ActionDegree, for a matrix over finite field semigroup
|
|
139
|
+
gap> ActionDegree(GLM(2, 2));
|
|
140
|
+
2
|
|
141
|
+
gap> ActionDegree(SLM(2, 2));
|
|
142
|
+
2
|
|
143
|
+
|
|
144
|
+
# ActionRank
|
|
145
|
+
|
|
146
|
+
# ActionRank, for a transformation and integer
|
|
147
|
+
gap> ActionRank(Transformation([2, 3, 4, 5, 5, 6]), 5);
|
|
148
|
+
4
|
|
149
|
+
gap> ActionRank(Transformation([2, 3, 4, 5, 5, 6]), 6);
|
|
150
|
+
5
|
|
151
|
+
|
|
152
|
+
# ActionRank, for a transformation semigroup
|
|
153
|
+
gap> rank := ActionRank(FullTransformationMonoid(4));;
|
|
154
|
+
gap> rank(IdentityTransformation);
|
|
155
|
+
4
|
|
156
|
+
|
|
157
|
+
# ActionRank, for a partial perm and integer
|
|
158
|
+
gap> ActionRank(PartialPerm([0, 3, 0, 6]), 8);
|
|
159
|
+
2
|
|
160
|
+
|
|
161
|
+
# ActionRank, for a partial perm semigroup
|
|
162
|
+
gap> rank := ActionRank(SymmetricInverseSemigroup(2));;
|
|
163
|
+
gap> rank(PartialPerm([]));
|
|
164
|
+
0
|
|
165
|
+
gap> rank(PartialPerm([2, 1]));
|
|
166
|
+
2
|
|
167
|
+
|
|
168
|
+
# ActionRank, for a bipartition and integer
|
|
169
|
+
gap> ActionRank(Bipartition([[1, 3], [2, -1], [-2, -3]]), 3);
|
|
170
|
+
1
|
|
171
|
+
|
|
172
|
+
# ActionRank, for a bipartition semigroup
|
|
173
|
+
gap> rank := ActionRank(PartitionMonoid(3));;
|
|
174
|
+
gap> rank(Bipartition([[1, 3], [2, -1], [-2, -3]]));
|
|
175
|
+
1
|
|
176
|
+
|
|
177
|
+
# ActionRank, for an RZMS element and integer
|
|
178
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
|
|
179
|
+
> [(), (), ()]]);;
|
|
180
|
+
gap> ActionRank(R.1, 10);
|
|
181
|
+
1
|
|
182
|
+
gap> ActionRank(MultiplicativeZero(R), 10);
|
|
183
|
+
0
|
|
184
|
+
|
|
185
|
+
# ActionRank, for a Rees 0-matrix subsemigroup
|
|
186
|
+
gap> R := ReesZeroMatrixSemigroup(Group([(2, 3)]), [[()]]);;
|
|
187
|
+
gap> rank := ActionRank(R);;
|
|
188
|
+
gap> rank(RMSElement(R, 1, (2, 3), 1));
|
|
189
|
+
3
|
|
190
|
+
gap> rank(MultiplicativeZero(R));
|
|
191
|
+
0
|
|
192
|
+
|
|
193
|
+
# ActionRank, for an MTS semigroup and subsemigroup
|
|
194
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
|
|
195
|
+
gap> rank := ActionRank(M);;
|
|
196
|
+
gap> rank(Representative(M));
|
|
197
|
+
0
|
|
198
|
+
gap> S := Semigroup(Representative(M));;
|
|
199
|
+
gap> rank := ActionRank(S);;
|
|
200
|
+
gap> rank(Representative(S));
|
|
201
|
+
0
|
|
202
|
+
|
|
203
|
+
# ActionRank, for a matrix over FF
|
|
204
|
+
gap> x := Matrix(GF(2), [[0 * Z(2), 0 * Z(2)], [0 * Z(2), Z(2) ^ 0]]);;
|
|
205
|
+
gap> ActionRank(x, 10);
|
|
206
|
+
1
|
|
207
|
+
|
|
208
|
+
# ActionRank, for a matrix over FF semigroup
|
|
209
|
+
gap> rank := ActionRank(GLM(2, 2));;
|
|
210
|
+
gap> rank(Matrix(GF(2), [[0 * Z(2), 0 * Z(2)], [0 * Z(2), 0 * Z(2)]]));
|
|
211
|
+
0
|
|
212
|
+
gap> rank(Matrix(GF(2), [[Z(2) ^ 0, 0 * Z(2)], [0 * Z(2), 0 * Z(2)]]));
|
|
213
|
+
1
|
|
214
|
+
|
|
215
|
+
# MinActionRank
|
|
216
|
+
|
|
217
|
+
# MinActionRank, for a transformation semigroup
|
|
218
|
+
gap> MinActionRank(FullTransformationMonoid(2));
|
|
219
|
+
1
|
|
220
|
+
|
|
221
|
+
# MinActionRank, for a partial perm semigroup
|
|
222
|
+
gap> MinActionRank(SymmetricInverseSemigroup(2));
|
|
223
|
+
0
|
|
224
|
+
|
|
225
|
+
# MinActionRank, for a bipartition semigroup
|
|
226
|
+
gap> MinActionRank(PartitionMonoid(2));
|
|
227
|
+
0
|
|
228
|
+
|
|
229
|
+
# MinActionRank, for a RZMS
|
|
230
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
|
|
231
|
+
> [(), (), ()]]);;
|
|
232
|
+
gap> MinActionRank(R);
|
|
233
|
+
0
|
|
234
|
+
|
|
235
|
+
# MinActionRank, for a MTS
|
|
236
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
237
|
+
gap> MinActionRank(M);
|
|
238
|
+
1
|
|
239
|
+
|
|
240
|
+
# MinActionRank for a matrix over FF semigroup
|
|
241
|
+
gap> MinActionRank(GLM(2, 2));
|
|
242
|
+
0
|
|
243
|
+
|
|
244
|
+
# Rho/LambdaOrbOpts
|
|
245
|
+
|
|
246
|
+
# Rho/LambdaOrbOpts, for a transformation semigroup
|
|
247
|
+
gap> LambdaOrbOpts(FullTransformationMonoid(2));
|
|
248
|
+
rec( forflatplainlists := true )
|
|
249
|
+
gap> RhoOrbOpts(FullTransformationMonoid(2));
|
|
250
|
+
rec( forflatplainlists := true )
|
|
251
|
+
|
|
252
|
+
# Rho/LambdaOrbOpts, for a partial perm semigroup
|
|
253
|
+
gap> LambdaOrbOpts(SymmetricInverseSemigroup(2));
|
|
254
|
+
rec( forflatplainlists := true )
|
|
255
|
+
gap> RhoOrbOpts(SymmetricInverseSemigroup(2));
|
|
256
|
+
rec( forflatplainlists := true )
|
|
257
|
+
|
|
258
|
+
# Rho/LambdaOrbOpts, for a bipartition semigroup
|
|
259
|
+
gap> LambdaOrbOpts(PartitionMonoid(2));
|
|
260
|
+
rec( )
|
|
261
|
+
gap> RhoOrbOpts(PartitionMonoid(2));
|
|
262
|
+
rec( )
|
|
263
|
+
|
|
264
|
+
# Rho/LambdaOrbOpts, for a RZMS
|
|
265
|
+
gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
|
|
266
|
+
> [(), (), ()]]);;
|
|
267
|
+
gap> LambdaOrbOpts(R);
|
|
268
|
+
rec( )
|
|
269
|
+
gap> RhoOrbOpts(R);
|
|
270
|
+
rec( )
|
|
271
|
+
|
|
272
|
+
# Rho/lambdaOrbOpts, for a MTS
|
|
273
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
274
|
+
gap> LambdaOrbOpts(M);
|
|
275
|
+
rec( )
|
|
276
|
+
gap> RhoOrbOpts(M);
|
|
277
|
+
rec( )
|
|
278
|
+
|
|
279
|
+
# Rho/LambdaOrbOpts for a matrix over FF semigroup
|
|
280
|
+
gap> LambdaOrbOpts(GLM(2, 2));
|
|
281
|
+
rec( )
|
|
282
|
+
gap> RhoOrbOpts(GLM(2, 2));
|
|
283
|
+
rec( )
|
|
284
|
+
|
|
285
|
+
# Rho/LambdaAct
|
|
286
|
+
|
|
287
|
+
# Rho/LambdaAct, for a transformation semigroup
|
|
288
|
+
gap> x := LambdaAct(FullTransformationMonoid(10));;
|
|
289
|
+
gap> x([2, 4, 7], Transformation([4, 2, 6, 6, 3, 1, 6, 5, 3, 7]));
|
|
290
|
+
[ 2, 6 ]
|
|
291
|
+
gap> x := RhoAct(FullTransformationMonoid(5));;
|
|
292
|
+
gap> x([1, 2, 1, 1, 3], Transformation([3, 2, 4, 3, 2]));
|
|
293
|
+
[ 1, 2, 1, 1, 2 ]
|
|
294
|
+
|
|
295
|
+
# Rho/LambdaAct, for a partial perm semigroup
|
|
296
|
+
gap> x := LambdaAct(SymmetricInverseMonoid(3));;
|
|
297
|
+
gap> x([2, 4], PartialPerm([4, 3, 2, 0]));
|
|
298
|
+
[ 3 ]
|
|
299
|
+
gap> x := RhoAct(SymmetricInverseMonoid(3));;
|
|
300
|
+
gap> x([2, 4], PartialPerm([4, 3, 2, 0]));
|
|
301
|
+
[ 1, 3 ]
|
|
302
|
+
|
|
303
|
+
# Rho/LambdaAct, for a bipartition semigroup
|
|
304
|
+
gap> S := PartitionMonoid(3);;
|
|
305
|
+
gap> r := BLOCKS_NC([[1, 2], [-3]]);;
|
|
306
|
+
gap> s := Bipartition([[1], [2, -1, -2], [3, -3]]);;
|
|
307
|
+
gap> x := LambdaAct(S);;
|
|
308
|
+
gap> x(r, s);
|
|
309
|
+
<blocks: [ 1*, 2* ], [ 3 ]>
|
|
310
|
+
gap> x := RhoAct(S);;
|
|
311
|
+
gap> x(r, s);
|
|
312
|
+
<blocks: [ 1 ], [ 2* ], [ 3 ]>
|
|
313
|
+
|
|
314
|
+
# Rho/LambdaAct, for an RZMS
|
|
315
|
+
gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), 0], [0, ()]]);;
|
|
316
|
+
gap> r := RMSElement(R, 1, (1, 3, 2), 1);;
|
|
317
|
+
gap> s := RMSElement(R, 1, (2, 3), 2);;
|
|
318
|
+
gap> x := LambdaAct(R);;
|
|
319
|
+
gap> x(1, MultiplicativeZero(R));
|
|
320
|
+
0
|
|
321
|
+
gap> x(0, r);
|
|
322
|
+
0
|
|
323
|
+
gap> x(-1, r);
|
|
324
|
+
1
|
|
325
|
+
gap> x(1, r);
|
|
326
|
+
1
|
|
327
|
+
gap> x(2, r);
|
|
328
|
+
0
|
|
329
|
+
gap> x(1, s);
|
|
330
|
+
2
|
|
331
|
+
gap> x(2, s);
|
|
332
|
+
0
|
|
333
|
+
gap> x := RhoAct(R);;
|
|
334
|
+
gap> x(1, MultiplicativeZero(R));
|
|
335
|
+
0
|
|
336
|
+
gap> x(0, r);
|
|
337
|
+
0
|
|
338
|
+
gap> x(-1, r);
|
|
339
|
+
1
|
|
340
|
+
gap> x(1, r);
|
|
341
|
+
1
|
|
342
|
+
gap> x(2, r);
|
|
343
|
+
0
|
|
344
|
+
gap> x(1, s);
|
|
345
|
+
0
|
|
346
|
+
gap> x(2, s);
|
|
347
|
+
1
|
|
348
|
+
|
|
349
|
+
# Rho/LambdaAct, for a MTS
|
|
350
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
351
|
+
gap> r := MTSE(M, 1, (3, 4));;
|
|
352
|
+
gap> s := MTSE(M, 3, (2, 3));;
|
|
353
|
+
gap> x := LambdaAct(M);;
|
|
354
|
+
gap> x(3, s);
|
|
355
|
+
2
|
|
356
|
+
gap> x(2, s);
|
|
357
|
+
1
|
|
358
|
+
gap> x(2, r);
|
|
359
|
+
1
|
|
360
|
+
gap> x(3, r);
|
|
361
|
+
1
|
|
362
|
+
gap> x(1, r);
|
|
363
|
+
1
|
|
364
|
+
gap> x(0, r);
|
|
365
|
+
1
|
|
366
|
+
gap> x := RhoAct(M);;
|
|
367
|
+
gap> x(3, s);
|
|
368
|
+
1
|
|
369
|
+
gap> x(2, s);
|
|
370
|
+
3
|
|
371
|
+
gap> x(2, r);
|
|
372
|
+
1
|
|
373
|
+
gap> x(3, r);
|
|
374
|
+
1
|
|
375
|
+
gap> x(1, r);
|
|
376
|
+
1
|
|
377
|
+
gap> x(0, r);
|
|
378
|
+
1
|
|
379
|
+
|
|
380
|
+
# Rho/LambdaAct, for a matrix over FF semigroup
|
|
381
|
+
gap> r := Matrix(GF(2), [[Z(2) ^ 0, Z(2) ^ 0], [Z(2) ^ 0, 0 * Z(2)]]);;
|
|
382
|
+
gap> s := Matrix(GF(2), [[Z(2) ^ 0, Z(2) ^ 0], [0 * Z(2), 0 * Z(2)]]);;
|
|
383
|
+
gap> b := NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep,
|
|
384
|
+
> GF(2),
|
|
385
|
+
> [[Z(2) ^ 0, 0 * Z(2)],
|
|
386
|
+
> [0 * Z(2), Z(2) ^ 0]]);
|
|
387
|
+
<rowbasis of rank 2 over GF(2)>
|
|
388
|
+
gap> x := LambdaAct(GLM(2, 2));;
|
|
389
|
+
gap> x(b, r);
|
|
390
|
+
<rowbasis of rank 2 over GF(2)>
|
|
391
|
+
gap> x := RhoAct(GLM(2, 2));;
|
|
392
|
+
gap> x(b, s);
|
|
393
|
+
<rowbasis of rank 1 over GF(2)>
|
|
394
|
+
|
|
395
|
+
# Rho/LambdaOrbSeed
|
|
396
|
+
|
|
397
|
+
# Rho/LambdaOrbSeed, for a transformation semigroup
|
|
398
|
+
gap> LambdaOrbSeed(FullTransformationMonoid(4));
|
|
399
|
+
[ 0 ]
|
|
400
|
+
gap> RhoOrbSeed(FullTransformationMonoid(4));
|
|
401
|
+
[ 0 ]
|
|
402
|
+
|
|
403
|
+
# Rho/LambdaOrbSeed, for a partial perm semigroup
|
|
404
|
+
gap> LambdaOrbSeed(SymmetricInverseSemigroup(3));
|
|
405
|
+
[ 0 ]
|
|
406
|
+
gap> RhoOrbSeed(SymmetricInverseSemigroup(3));
|
|
407
|
+
[ 0 ]
|
|
408
|
+
|
|
409
|
+
# Rho/LambdaOrbSeed, for a bipartition semigroup
|
|
410
|
+
gap> LambdaOrbSeed(PartitionMonoid(3));
|
|
411
|
+
<blocks: [ 1*, 2*, 3*, 4* ]>
|
|
412
|
+
gap> RhoOrbSeed(PartitionMonoid(3));
|
|
413
|
+
<blocks: [ 1*, 2*, 3*, 4* ]>
|
|
414
|
+
|
|
415
|
+
# Rho/LambdaOrbSeed, for an RZMS
|
|
416
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
|
|
417
|
+
gap> LambdaOrbSeed(R);
|
|
418
|
+
-1
|
|
419
|
+
gap> RhoOrbSeed(R);
|
|
420
|
+
-1
|
|
421
|
+
|
|
422
|
+
# Rho/LambdaOrbSeed, for an MTS
|
|
423
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
424
|
+
gap> LambdaOrbSeed(M);
|
|
425
|
+
0
|
|
426
|
+
gap> RhoOrbSeed(M);
|
|
427
|
+
0
|
|
428
|
+
|
|
429
|
+
# Rho/LambdaOrbSeed, for a matrix over FF semigroup
|
|
430
|
+
gap> LambdaOrbSeed(GLM(2, 2));
|
|
431
|
+
<rowbasis of rank 4 over GF(2)>
|
|
432
|
+
gap> RhoOrbSeed(SLM(2, 2));
|
|
433
|
+
<rowbasis of rank 4 over GF(2)>
|
|
434
|
+
|
|
435
|
+
# Rho/LambdaFunc
|
|
436
|
+
|
|
437
|
+
# Rho/LambdaFunc, for a transformation semigroup
|
|
438
|
+
gap> S := FullTransformationMonoid(3);;
|
|
439
|
+
gap> x := LambdaFunc(S);;
|
|
440
|
+
gap> x(Transformation([2, 3, 3]));
|
|
441
|
+
[ 2, 3 ]
|
|
442
|
+
gap> x(IdentityTransformation);
|
|
443
|
+
[ 1, 2, 3 ]
|
|
444
|
+
gap> x := RhoFunc(S);;
|
|
445
|
+
gap> x(Transformation([2, 3, 3]));
|
|
446
|
+
[ 1, 2, 2 ]
|
|
447
|
+
gap> x(IdentityTransformation);
|
|
448
|
+
[ 1, 2, 3 ]
|
|
449
|
+
|
|
450
|
+
# Rho/LambdaFunc, for a partial perm semigroup
|
|
451
|
+
gap> S := SymmetricInverseMonoid(3);;
|
|
452
|
+
gap> x := LambdaFunc(S);;
|
|
453
|
+
gap> x(PartialPerm([1, 2], [1, 3]));
|
|
454
|
+
[ 1, 3 ]
|
|
455
|
+
gap> x := RhoFunc(S);;
|
|
456
|
+
gap> x(PartialPerm([1, 2], [1, 3]));
|
|
457
|
+
[ 1, 2 ]
|
|
458
|
+
|
|
459
|
+
# Rho/LambdaFunc, for a bipartition semigroup
|
|
460
|
+
gap> S := PartitionMonoid(3);;
|
|
461
|
+
gap> x := LambdaFunc(S);;
|
|
462
|
+
gap> x(Bipartition([[1], [2], [3, -1, -2, -3]]));
|
|
463
|
+
<blocks: [ 1*, 2*, 3* ]>
|
|
464
|
+
gap> x := RhoFunc(S);;
|
|
465
|
+
gap> x(Bipartition([[1], [2], [3, -1, -2, -3]]));
|
|
466
|
+
<blocks: [ 1 ], [ 2 ], [ 3* ]>
|
|
467
|
+
|
|
468
|
+
# Rho/LambdaFunc, for an RZMS
|
|
469
|
+
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), 0], [0, ()]]);;
|
|
470
|
+
gap> x := LambdaFunc(S);;
|
|
471
|
+
gap> x(MultiplicativeZero(S));
|
|
472
|
+
0
|
|
473
|
+
gap> x(RMSElement(S, 1, (1, 3), 2));
|
|
474
|
+
2
|
|
475
|
+
gap> x := RhoFunc(S);;
|
|
476
|
+
gap> x(MultiplicativeZero(S));
|
|
477
|
+
0
|
|
478
|
+
gap> x(RMSElement(S, 1, (1, 3), 2));
|
|
479
|
+
1
|
|
480
|
+
|
|
481
|
+
# Rho/LambdaFunc, for a MTS
|
|
482
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
483
|
+
gap> x := LambdaFunc(M);;
|
|
484
|
+
gap> x(MTSE(M, 1, ()));
|
|
485
|
+
1
|
|
486
|
+
gap> x(MTSE(M, 2, (2, 3)));
|
|
487
|
+
3
|
|
488
|
+
gap> x := RhoFunc(M);;
|
|
489
|
+
gap> x(MTSE(M, 1, ()));
|
|
490
|
+
1
|
|
491
|
+
gap> x(MTSE(M, 2, (2, 3)));
|
|
492
|
+
2
|
|
493
|
+
|
|
494
|
+
# Rho/LambdaFunc, for a matrix over FF semigroup
|
|
495
|
+
gap> S := GLM(2, 3);;
|
|
496
|
+
gap> x := LambdaFunc(S);;
|
|
497
|
+
gap> x(Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3)]]));
|
|
498
|
+
<rowbasis of rank 2 over GF(3)>
|
|
499
|
+
gap> x := RhoFunc(S);;
|
|
500
|
+
gap> x(Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3)]]));
|
|
501
|
+
<rowbasis of rank 2 over GF(3)>
|
|
502
|
+
|
|
503
|
+
# Rho/LambdaRank
|
|
504
|
+
|
|
505
|
+
# Rho/LambdaRank, for a transformation semigroup
|
|
506
|
+
gap> S := FullTransformationMonoid(6);;
|
|
507
|
+
gap> x := LambdaRank(S);;
|
|
508
|
+
gap> x([]);
|
|
509
|
+
0
|
|
510
|
+
gap> x([2, 4]);
|
|
511
|
+
2
|
|
512
|
+
gap> x := RhoRank(S);;
|
|
513
|
+
gap> x([]);
|
|
514
|
+
0
|
|
515
|
+
gap> x([2, 3, 1, 2, 3, 2]);
|
|
516
|
+
3
|
|
517
|
+
|
|
518
|
+
# Rho/LambdaRank, for a partial perm semigroup
|
|
519
|
+
gap> S := SymmetricInverseMonoid(5);;
|
|
520
|
+
gap> x := LambdaRank(S);;
|
|
521
|
+
gap> x([2, 4]);
|
|
522
|
+
2
|
|
523
|
+
gap> x([]);
|
|
524
|
+
0
|
|
525
|
+
gap> x := RhoRank(S);;
|
|
526
|
+
gap> x([4]);
|
|
527
|
+
1
|
|
528
|
+
gap> x([]);
|
|
529
|
+
0
|
|
530
|
+
|
|
531
|
+
# Rho/LambdaRank, for a bipartition semigroup
|
|
532
|
+
gap> S := PartitionMonoid(3);;
|
|
533
|
+
gap> x := LambdaRank(S);;
|
|
534
|
+
gap> x := RhoRank(S);;
|
|
535
|
+
|
|
536
|
+
# Rho/LambdaRank, for an RZMS
|
|
537
|
+
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), 0], [0, ()]]);;
|
|
538
|
+
gap> x := LambdaRank(S);;
|
|
539
|
+
gap> x(0);
|
|
540
|
+
0
|
|
541
|
+
gap> x(2);
|
|
542
|
+
4
|
|
543
|
+
gap> x := RhoRank(S);;
|
|
544
|
+
gap> x(0);
|
|
545
|
+
0
|
|
546
|
+
gap> x(1);
|
|
547
|
+
4
|
|
548
|
+
|
|
549
|
+
# Rho/LambdaRank, for a MTS
|
|
550
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
551
|
+
gap> x := LambdaRank(M);;
|
|
552
|
+
gap> x(1);
|
|
553
|
+
1
|
|
554
|
+
gap> x(2);
|
|
555
|
+
2
|
|
556
|
+
gap> x(0);
|
|
557
|
+
0
|
|
558
|
+
gap> x := RhoRank(M);;
|
|
559
|
+
gap> x(1);
|
|
560
|
+
1
|
|
561
|
+
gap> x(2);
|
|
562
|
+
2
|
|
563
|
+
gap> x(0);
|
|
564
|
+
0
|
|
565
|
+
|
|
566
|
+
# Rho/LambdaRank, for a matrix over FF semigroup
|
|
567
|
+
gap> S := GLM(2, 3);;
|
|
568
|
+
gap> b := NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep,
|
|
569
|
+
> GF(3),
|
|
570
|
+
> [[Z(3) ^ 0, Z(3)]]);
|
|
571
|
+
<rowbasis of rank 1 over GF(3)>
|
|
572
|
+
gap> x := LambdaRank(S);;
|
|
573
|
+
gap> x(b);
|
|
574
|
+
1
|
|
575
|
+
gap> x := RhoRank(S);;
|
|
576
|
+
gap> x(b);
|
|
577
|
+
1
|
|
578
|
+
|
|
579
|
+
# Rho/LambdaInverse
|
|
580
|
+
|
|
581
|
+
# Rho/LambdaInverse, for a transformation semigroup
|
|
582
|
+
gap> S := FullTransformationMonoid(4);;
|
|
583
|
+
gap> x := LambdaInverse(S);;
|
|
584
|
+
gap> x([2, 3], Transformation([1, 4, 1, 1]));
|
|
585
|
+
Transformation( [ 3, 2, 3, 2 ] )
|
|
586
|
+
gap> x := RhoInverse(S);;
|
|
587
|
+
gap> x([1, 2, 2, 1], Transformation([3, 2, 2, 1]));
|
|
588
|
+
Transformation( [ 4, 3, 3, 4 ] )
|
|
589
|
+
|
|
590
|
+
# Rho/LambdaInverse, for a partial perm semigroup
|
|
591
|
+
gap> S := SymmetricInverseMonoid(4);;
|
|
592
|
+
gap> x := LambdaInverse(S);;
|
|
593
|
+
gap> x([1, 4], PartialPerm([1, 2, 4], [4, 1, 2]));
|
|
594
|
+
(1,2,4)
|
|
595
|
+
gap> x := RhoInverse(S);;
|
|
596
|
+
gap> x([2, 3], PartialPerm([2, 3], [3, 2]));
|
|
597
|
+
(2,3)
|
|
598
|
+
|
|
599
|
+
# Rho/LambdaInverse, for a bipartition semigroup
|
|
600
|
+
gap> S := PartitionMonoid(4);;
|
|
601
|
+
gap> x := LambdaInverse(S);;
|
|
602
|
+
gap> x(BLOCKS_NC([[1, 2], [3], [4]]),
|
|
603
|
+
> Bipartition([[1], [2, -1, -2], [3, -3], [4, -4]]));
|
|
604
|
+
<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>
|
|
605
|
+
gap> x := RhoInverse(S);;
|
|
606
|
+
gap> x(BLOCKS_NC([[1, 2], [3], [4]]),
|
|
607
|
+
> Bipartition([[1], [2, -1, -2], [3, -3], [4, -4]]));
|
|
608
|
+
<bipartition: [ 1, 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ -1 ]>
|
|
609
|
+
|
|
610
|
+
# Rho/LambdaInverse, for an RZMS
|
|
611
|
+
gap> S := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0],
|
|
612
|
+
> [(), (), ()],
|
|
613
|
+
> [(), (), ()]]);;
|
|
614
|
+
gap> x := LambdaInverse(S);;
|
|
615
|
+
gap> x(2, MultiplicativeZero(S));
|
|
616
|
+
0
|
|
617
|
+
gap> x(0, S.1);
|
|
618
|
+
(1,(),1)
|
|
619
|
+
gap> x(2, S.1);
|
|
620
|
+
(1,(),2)
|
|
621
|
+
gap> x := RhoInverse(S);;
|
|
622
|
+
gap> x(2, MultiplicativeZero(S));
|
|
623
|
+
0
|
|
624
|
+
gap> x(0, S.1);
|
|
625
|
+
(1,(),1)
|
|
626
|
+
gap> x(2, S.1);
|
|
627
|
+
(2,(),1)
|
|
628
|
+
|
|
629
|
+
# Rho/LambdaInverse, for a MTS
|
|
630
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
631
|
+
gap> x := LambdaInverse(M);;
|
|
632
|
+
gap> x(2, MTSE(M, 1, ()));
|
|
633
|
+
(1, ())
|
|
634
|
+
gap> x(2, MTSE(M, 2, (2, 3)));
|
|
635
|
+
(3, (2,3))
|
|
636
|
+
gap> x := RhoInverse(M);;
|
|
637
|
+
gap> x(2, MTSE(M, 1, ()));
|
|
638
|
+
(1, ())
|
|
639
|
+
gap> x(2, MTSE(M, 2, (2, 3)));
|
|
640
|
+
(3, (2,3))
|
|
641
|
+
|
|
642
|
+
# Rho/LambdaInverse, for a matrix over FF semigroup
|
|
643
|
+
gap> S := GLM(2, 2);;
|
|
644
|
+
gap> x := LambdaInverse(S);;
|
|
645
|
+
gap> x(RowSpaceBasis(S.2), S.2);
|
|
646
|
+
<a 2x2 matrix over GF2>
|
|
647
|
+
gap> x := RhoInverse(S);;
|
|
648
|
+
gap> x(RowSpaceBasis(S.2), S.2);
|
|
649
|
+
<an immutable 2x2 matrix over GF2>
|
|
650
|
+
|
|
651
|
+
# Rho/LambdaBound
|
|
652
|
+
|
|
653
|
+
# Rho/LambdaBound, for a transformation semigroup
|
|
654
|
+
gap> S := FullTransformationMonoid(4);;
|
|
655
|
+
gap> LambdaBound(S)(1000);
|
|
656
|
+
infinity
|
|
657
|
+
gap> LambdaBound(S)(6);
|
|
658
|
+
720
|
|
659
|
+
gap> RhoBound(S)(1000);
|
|
660
|
+
infinity
|
|
661
|
+
gap> RhoBound(S)(6);
|
|
662
|
+
720
|
|
663
|
+
|
|
664
|
+
# Rho/LambdaBound, for a partial perm semigroup
|
|
665
|
+
gap> S := SymmetricInverseMonoid(4);;
|
|
666
|
+
gap> LambdaBound(S)(1000);
|
|
667
|
+
infinity
|
|
668
|
+
gap> LambdaBound(S)(6);
|
|
669
|
+
720
|
|
670
|
+
gap> RhoBound(S)(1000);
|
|
671
|
+
infinity
|
|
672
|
+
gap> RhoBound(S)(6);
|
|
673
|
+
720
|
|
674
|
+
|
|
675
|
+
# Rho/LambdaBound, for a bipartition semigroup
|
|
676
|
+
gap> S := PartitionMonoid(5);;
|
|
677
|
+
gap> LambdaBound(S)(1000);
|
|
678
|
+
infinity
|
|
679
|
+
gap> LambdaBound(S)(6);
|
|
680
|
+
720
|
|
681
|
+
gap> RhoBound(S)(1000);
|
|
682
|
+
infinity
|
|
683
|
+
gap> RhoBound(S)(6);
|
|
684
|
+
720
|
|
685
|
+
|
|
686
|
+
# Rho/LambdaBound, for an RZMS
|
|
687
|
+
gap> S := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
|
|
688
|
+
> [(), (), ()]]);;
|
|
689
|
+
gap> LambdaBound(S)(1000);
|
|
690
|
+
infinity
|
|
691
|
+
gap> LambdaBound(S)(5);
|
|
692
|
+
120
|
|
693
|
+
gap> RhoBound(S)(1000);
|
|
694
|
+
infinity
|
|
695
|
+
gap> RhoBound(S)(5);
|
|
696
|
+
120
|
|
697
|
+
|
|
698
|
+
# Rho/LambdaBound, for a MTS
|
|
699
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
700
|
+
gap> LambdaBound(M)(5);
|
|
701
|
+
6
|
|
702
|
+
gap> LambdaBound(M)(10000);
|
|
703
|
+
6
|
|
704
|
+
gap> RhoBound(M)(5);
|
|
705
|
+
6
|
|
706
|
+
gap> RhoBound(M)(10000);
|
|
707
|
+
6
|
|
708
|
+
|
|
709
|
+
# Rho/LambdaBound, for a matrix over FF semigroup
|
|
710
|
+
gap> S := GLM(2, 2);;
|
|
711
|
+
gap> LambdaBound(S)(1000);
|
|
712
|
+
infinity
|
|
713
|
+
gap> LambdaBound(S)(2);
|
|
714
|
+
6
|
|
715
|
+
gap> LambdaBound(S)(0);
|
|
716
|
+
1
|
|
717
|
+
gap> RhoBound(S)(1000);
|
|
718
|
+
infinity
|
|
719
|
+
gap> RhoBound(S)(2);
|
|
720
|
+
6
|
|
721
|
+
gap> RhoBound(S)(0);
|
|
722
|
+
1
|
|
723
|
+
|
|
724
|
+
# Rho/LambdaIdentity
|
|
725
|
+
|
|
726
|
+
# Rho/LambdaIdentity, for a transformation semigroup
|
|
727
|
+
gap> S := FullTransformationMonoid(2);;
|
|
728
|
+
gap> LambdaIdentity(S)(2);
|
|
729
|
+
()
|
|
730
|
+
gap> RhoIdentity(S)(2);
|
|
731
|
+
()
|
|
732
|
+
|
|
733
|
+
# Rho/LambdaIdentity, for a partial perm semigroup
|
|
734
|
+
gap> S := SymmetricInverseMonoid(2);;
|
|
735
|
+
gap> LambdaIdentity(S)(2);
|
|
736
|
+
()
|
|
737
|
+
gap> RhoIdentity(S)(2);
|
|
738
|
+
()
|
|
739
|
+
|
|
740
|
+
# Rho/LambdaIdentity, for a bipartition semigroup
|
|
741
|
+
gap> S := PartitionMonoid(1);;
|
|
742
|
+
gap> LambdaIdentity(S)(1);
|
|
743
|
+
()
|
|
744
|
+
gap> RhoIdentity(S)(1);
|
|
745
|
+
()
|
|
746
|
+
|
|
747
|
+
# Rho/LambdaIdentity, for an RZMS
|
|
748
|
+
gap> S := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
|
|
749
|
+
gap> LambdaIdentity(S)(2);
|
|
750
|
+
()
|
|
751
|
+
gap> RhoIdentity(S)(2);
|
|
752
|
+
()
|
|
753
|
+
|
|
754
|
+
# Rho/LambdaIdentity, for a MTS
|
|
755
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
756
|
+
gap> LambdaIdentity(M)(2);
|
|
757
|
+
()
|
|
758
|
+
gap> RhoIdentity(M)(2);
|
|
759
|
+
()
|
|
760
|
+
|
|
761
|
+
# Rho/LambdaIdentity, for a matrix over FF semigroup
|
|
762
|
+
gap> S := SLM(2, 2);;
|
|
763
|
+
gap> LambdaIdentity(S)(2);
|
|
764
|
+
[ <a GF2 vector of length 2>, <a GF2 vector of length 2> ]
|
|
765
|
+
gap> RhoIdentity(S)(2);
|
|
766
|
+
[ <a GF2 vector of length 2>, <a GF2 vector of length 2> ]
|
|
767
|
+
|
|
768
|
+
# LambdaPerm
|
|
769
|
+
|
|
770
|
+
# LambdaPerm, for a transformation semigroup
|
|
771
|
+
gap> x := LambdaPerm(FullTransformationMonoid(3));;
|
|
772
|
+
gap> x(Transformation([2, 2]), Transformation([3, 3, 2]));
|
|
773
|
+
(2,3)
|
|
774
|
+
|
|
775
|
+
# LambdaPerm, for a partial perm semigroup
|
|
776
|
+
gap> x := LambdaPerm(SymmetricInverseMonoid(3));;
|
|
777
|
+
gap> x(PartialPerm([2, 0, 3]), PartialPerm([3, 0, 2]));
|
|
778
|
+
(2,3)
|
|
779
|
+
|
|
780
|
+
# LambdaPerm, for a bipartition semigroup
|
|
781
|
+
gap> x := LambdaPerm(PartitionMonoid(3));;
|
|
782
|
+
gap> x(Bipartition([[1, -2], [2], [3, -3], [-1]]),
|
|
783
|
+
> Bipartition([[1, -3], [2], [3, -2], [-1]]));
|
|
784
|
+
(2,3)
|
|
785
|
+
|
|
786
|
+
# LambdaPerm, for an RZMS
|
|
787
|
+
gap> R := ReesZeroMatrixSemigroup(Group((1, 2, 3)), [[()]]);;
|
|
788
|
+
gap> x := LambdaPerm(R);;
|
|
789
|
+
gap> x(RMSElement(R, 1, (1, 3, 2), 1), RMSElement(R, 1, (1, 2, 3), 1));
|
|
790
|
+
(1,3,2)
|
|
791
|
+
gap> x(MultiplicativeZero(R), MultiplicativeZero(R));
|
|
792
|
+
()
|
|
793
|
+
|
|
794
|
+
# LambdaPerm, for a MTS
|
|
795
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
796
|
+
gap> x := LambdaPerm(M);;
|
|
797
|
+
gap> x(MTSE(M, 1, (2, 3, 4)), MTSE(M, 2, (2, 3)));
|
|
798
|
+
(2,4)
|
|
799
|
+
gap> x(MTSE(M, 2, ()), MTSE(M, 2, (2, 3)));
|
|
800
|
+
(2,3)
|
|
801
|
+
|
|
802
|
+
# LambdaPerm, for a matrix over FF semigroup
|
|
803
|
+
gap> x := LambdaPerm(GLM(2, 3));;
|
|
804
|
+
gap> x(Matrix(GF(3), [[Z(3) ^ 0, Z(3) ^ 0], [0 * Z(3), 0 * Z(3)]]),
|
|
805
|
+
> Matrix(GF(3), [[Z(3), Z(3)], [0 * Z(3), 0 * Z(3)]]));
|
|
806
|
+
[ [ Z(3) ] ]
|
|
807
|
+
|
|
808
|
+
# LambdaConjugator
|
|
809
|
+
|
|
810
|
+
# LambdaConjugator, for a transformation semigroup
|
|
811
|
+
gap> x := LambdaConjugator(FullTransformationMonoid(3));;
|
|
812
|
+
gap> x(Transformation([3, 1, 1]), Transformation([2, 3, 3]));
|
|
813
|
+
(1,3,2)
|
|
814
|
+
|
|
815
|
+
# LambdaConjugator, for a partial perm semigroup
|
|
816
|
+
gap> x := LambdaConjugator(SymmetricInverseMonoid(3));;
|
|
817
|
+
gap> x(PartialPerm([2]), PartialPerm([3]));
|
|
818
|
+
(2,3)
|
|
819
|
+
|
|
820
|
+
# LambdaConjugator, for a bipartition semigroup
|
|
821
|
+
gap> x := LambdaConjugator(PartitionMonoid(3));;
|
|
822
|
+
gap> x(Bipartition([[1, -1, -2], [2], [3, -3]]),
|
|
823
|
+
> Bipartition([[1, -1], [2], [3, -2], [-3]]));
|
|
824
|
+
()
|
|
825
|
+
|
|
826
|
+
# LambdaConjugator, for an RZMS
|
|
827
|
+
gap> R := ReesZeroMatrixSemigroup(Group((1, 2, 3)), [[(), 0], [0, ()]]);;
|
|
828
|
+
gap> x := LambdaConjugator(R);;
|
|
829
|
+
gap> x(RMSElement(R, 1, (1, 3, 2), 1), RMSElement(R, 1, (1, 2, 3), 2));
|
|
830
|
+
()
|
|
831
|
+
|
|
832
|
+
# LambdaConjugator, for an MTS
|
|
833
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
834
|
+
gap> x := LambdaConjugator(M);;
|
|
835
|
+
gap> x(MTSE(M, 1, (2, 3, 4)), MTSE(M, 2, (2, 3)));
|
|
836
|
+
fail
|
|
837
|
+
gap> x(MTSE(M, 2, ()), MTSE(M, 2, (2, 3)));
|
|
838
|
+
(2,3)
|
|
839
|
+
gap> x(MTSE(M, 3, ()), MTSE(M, 2, (2, 3)));
|
|
840
|
+
()
|
|
841
|
+
|
|
842
|
+
# LambdaConjugator, for a matrix over FF semigroup
|
|
843
|
+
gap> x := LambdaConjugator(GLM(2, 3));;
|
|
844
|
+
gap> x(Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3) ^ 0]]),
|
|
845
|
+
> Matrix(GF(3), [[Z(3), 0 * Z(3)], [Z(3), Z(3)]]));
|
|
846
|
+
[ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
|
|
847
|
+
|
|
848
|
+
# IdempotentTester and IdempotentCreator
|
|
849
|
+
|
|
850
|
+
# IdempotentTester and IdempotentCreator, for a transformation semigroup
|
|
851
|
+
gap> S := FullTransformationMonoid(3);;
|
|
852
|
+
gap> x := IdempotentTester(S);;
|
|
853
|
+
gap> y := IdempotentCreator(S);;
|
|
854
|
+
gap> x([], [1]);
|
|
855
|
+
false
|
|
856
|
+
gap> x([1, 2], [1]);
|
|
857
|
+
false
|
|
858
|
+
gap> x([], []);
|
|
859
|
+
true
|
|
860
|
+
gap> y([], []);
|
|
861
|
+
IdentityTransformation
|
|
862
|
+
gap> x([1, 2], [1, 1]);
|
|
863
|
+
false
|
|
864
|
+
gap> x([1, 2], [1, 2, 1]);
|
|
865
|
+
true
|
|
866
|
+
gap> y([1, 2], [1, 2, 1]);
|
|
867
|
+
Transformation( [ 1, 2, 1 ] )
|
|
868
|
+
gap> x([1], [1, 2]);
|
|
869
|
+
false
|
|
870
|
+
|
|
871
|
+
# IdempotentTester and IdempotentCreator, for a partial perm semigroup
|
|
872
|
+
gap> S := SymmetricInverseMonoid(3);;
|
|
873
|
+
gap> x := IdempotentTester(S);;
|
|
874
|
+
gap> y := IdempotentCreator(S);;
|
|
875
|
+
gap> x([], []);
|
|
876
|
+
true
|
|
877
|
+
gap> y([], []);
|
|
878
|
+
<empty partial perm>
|
|
879
|
+
gap> x([], [1]);
|
|
880
|
+
false
|
|
881
|
+
gap> x([2, 3], [2, 3]);
|
|
882
|
+
true
|
|
883
|
+
gap> y([2, 3], [2, 3]);
|
|
884
|
+
<identity partial perm on [ 2, 3 ]>
|
|
885
|
+
|
|
886
|
+
# IdempotentTester and IdempotentCreator, for a bipartition semigroup
|
|
887
|
+
gap> S := PartitionMonoid(3);;
|
|
888
|
+
gap> x := IdempotentTester(S);;
|
|
889
|
+
gap> y := IdempotentCreator(S);;
|
|
890
|
+
gap> x(BLOCKS_NC([[1, 2], [-3]]), BLOCKS_NC([[1, 2, 3, 4]]));
|
|
891
|
+
true
|
|
892
|
+
gap> y(BLOCKS_NC([[1, 2], [-3]]), BLOCKS_NC([[1, 2, 3, 4]]));
|
|
893
|
+
<bipartition: [ 1, 2, 3, -1, -2 ], [ -3 ]>
|
|
894
|
+
gap> x(BLOCKS_NC([[1, 2], [3]]), BLOCKS_NC([[1, 2, 3]]));
|
|
895
|
+
false
|
|
896
|
+
|
|
897
|
+
# IdempotentTester and IdempotentCreator, for an RZMS
|
|
898
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[(), 0], [0, (1, 2)]]);;
|
|
899
|
+
gap> x := IdempotentTester(S);;
|
|
900
|
+
gap> y := IdempotentCreator(S);;
|
|
901
|
+
gap> x(0, 0);
|
|
902
|
+
true
|
|
903
|
+
gap> y(0, 0);
|
|
904
|
+
0
|
|
905
|
+
gap> x(1, 1);
|
|
906
|
+
true
|
|
907
|
+
gap> y(1, 1);
|
|
908
|
+
(1,(),1)
|
|
909
|
+
gap> x(1, 2);
|
|
910
|
+
false
|
|
911
|
+
gap> x(2, 1);
|
|
912
|
+
false
|
|
913
|
+
gap> x(2, 2);
|
|
914
|
+
true
|
|
915
|
+
gap> y(2, 2);
|
|
916
|
+
(2,(1,2),2)
|
|
917
|
+
|
|
918
|
+
# IdempotentTester and IdempotentCreator, for an MTS
|
|
919
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
920
|
+
gap> x := IdempotentTester(M);;
|
|
921
|
+
gap> y := IdempotentCreator(M);;
|
|
922
|
+
gap> x(1, 1);
|
|
923
|
+
true
|
|
924
|
+
gap> x(2, 1);
|
|
925
|
+
false
|
|
926
|
+
gap> x(2, 2);
|
|
927
|
+
true
|
|
928
|
+
gap> x(3, 2);
|
|
929
|
+
false
|
|
930
|
+
gap> x(3, 3);
|
|
931
|
+
true
|
|
932
|
+
gap> y(2, 2);
|
|
933
|
+
(2, ())
|
|
934
|
+
gap> y(1, 2);
|
|
935
|
+
(1, ())
|
|
936
|
+
gap> y(1, 1);
|
|
937
|
+
(1, ())
|
|
938
|
+
gap> y(3, 2);
|
|
939
|
+
(3, ())
|
|
940
|
+
gap> y(3, 3);
|
|
941
|
+
(3, ())
|
|
942
|
+
|
|
943
|
+
# IdempotentTester and IdempotentCreator, for a matrix over FF semigroup
|
|
944
|
+
gap> S := GLM(2, 3);;
|
|
945
|
+
gap> x := IdempotentTester(S);;
|
|
946
|
+
gap> y := IdempotentCreator(S);;
|
|
947
|
+
gap> x(NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
|
|
948
|
+
> [[Z(3) ^ 0, 0 * Z(3)]]),
|
|
949
|
+
> NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
|
|
950
|
+
> [[0 * Z(3), 0 * Z(3), 0 * Z(3)],
|
|
951
|
+
> [0 * Z(3), 0 * Z(3), 0 * Z(3)],
|
|
952
|
+
> [0 * Z(3), 0 * Z(3), 0 * Z(3)]]));
|
|
953
|
+
Error, Assertion failure
|
|
954
|
+
gap> x(NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
|
|
955
|
+
> [[0 * Z(3), Z(3) ^ 0]]),
|
|
956
|
+
> NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
|
|
957
|
+
> [[0 * Z(3), Z(3) ^ 0]]));
|
|
958
|
+
true
|
|
959
|
+
gap> y(NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
|
|
960
|
+
> [[0 * Z(3), Z(3) ^ 0]]),
|
|
961
|
+
> NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
|
|
962
|
+
> [[0 * Z(3), Z(3) ^ 0]]));
|
|
963
|
+
[ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
|
|
964
|
+
|
|
965
|
+
# StabilizerAction
|
|
966
|
+
|
|
967
|
+
# StabilizerAction, for a transformation semigroup
|
|
968
|
+
gap> x := StabilizerAction(FullTransformationMonoid(2));;
|
|
969
|
+
gap> x(Transformation([2, 2]), (1, 2));
|
|
970
|
+
Transformation( [ 1, 1 ] )
|
|
971
|
+
|
|
972
|
+
# StabilizerAction, for a partial perm semigroup
|
|
973
|
+
gap> x := StabilizerAction(SymmetricInverseMonoid(2));;
|
|
974
|
+
gap> x(PartialPerm([0, 2]), (2, 1));
|
|
975
|
+
[2,1]
|
|
976
|
+
|
|
977
|
+
# StabilizerAction, for a bipartition semigroup
|
|
978
|
+
gap> x := StabilizerAction(PartitionMonoid(3));;
|
|
979
|
+
gap> x(Bipartition([[1, 3], [2, -1], [-2, -3]]), ());
|
|
980
|
+
<bipartition: [ 1, 3 ], [ 2, -1 ], [ -2, -3 ]>
|
|
981
|
+
|
|
982
|
+
# StabilizerAction, for an RZMS
|
|
983
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
|
|
984
|
+
gap> x := StabilizerAction(R);;
|
|
985
|
+
gap> x(MultiplicativeZero(R), ());
|
|
986
|
+
0
|
|
987
|
+
gap> x(RMSElement(R, 1, (), 1), ());
|
|
988
|
+
(1,(),1)
|
|
989
|
+
|
|
990
|
+
# StabilizerAction, for a MTS
|
|
991
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
992
|
+
gap> x := StabilizerAction(M);;
|
|
993
|
+
gap> x(MTSE(M, 1, ()), ());
|
|
994
|
+
(1, ())
|
|
995
|
+
gap> x(MTSE(M, 2, (2, 3)), (2, 3));
|
|
996
|
+
(2, ())
|
|
997
|
+
gap> x(MTSE(M, 3, ()), (2, 4, 3));
|
|
998
|
+
(3, (2,4,3))
|
|
999
|
+
|
|
1000
|
+
# StabilizerAction, for a matrix over FF semigroup
|
|
1001
|
+
gap> S := GLM(2, 3);;
|
|
1002
|
+
gap> x := StabilizerAction(S);;
|
|
1003
|
+
gap> x(One(S), Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3) ^ 0]]));
|
|
1004
|
+
[ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
|
|
1005
|
+
|
|
1006
|
+
# IsActingSemigroupWithFixedDegreeMultiplication
|
|
1007
|
+
|
|
1008
|
+
# IsActingSemigroupWithFixedDegreeMultiplication, for a transformation semigroup
|
|
1009
|
+
gap> IsActingSemigroupWithFixedDegreeMultiplication(
|
|
1010
|
+
> FullTransformationMonoid(4));
|
|
1011
|
+
false
|
|
1012
|
+
|
|
1013
|
+
# IsActingSemigroupWithFixedDegreeMultiplication, for a partial perm semigroup
|
|
1014
|
+
gap> IsActingSemigroupWithFixedDegreeMultiplication(
|
|
1015
|
+
> SymmetricInverseMonoid(3));
|
|
1016
|
+
false
|
|
1017
|
+
|
|
1018
|
+
# IsActingSemigroupWithFixedDegreeMultiplication, for a bipartition semigroup
|
|
1019
|
+
gap> IsActingSemigroupWithFixedDegreeMultiplication(
|
|
1020
|
+
> PartitionMonoid(5));
|
|
1021
|
+
true
|
|
1022
|
+
|
|
1023
|
+
# IsActingSemigroupWithFixedDegreeMultiplication, for an RZMS
|
|
1024
|
+
gap> S := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
|
|
1025
|
+
gap> IsActingSemigroupWithFixedDegreeMultiplication(Semigroup(S));
|
|
1026
|
+
false
|
|
1027
|
+
|
|
1028
|
+
# IsActingSemigroupWithFixedDegreeMultiplication, for a MTS
|
|
1029
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
1030
|
+
gap> IsActingSemigroupWithFixedDegreeMultiplication(Semigroup(M));
|
|
1031
|
+
false
|
|
1032
|
+
|
|
1033
|
+
# IsActingSemigroupWithFixedDegreeMultiplication, for a matrix over FF semigroup
|
|
1034
|
+
gap> IsActingSemigroupWithFixedDegreeMultiplication(
|
|
1035
|
+
> GLM(2, 2));
|
|
1036
|
+
true
|
|
1037
|
+
|
|
1038
|
+
# SchutzGpMembership
|
|
1039
|
+
|
|
1040
|
+
# SchutzGpMembership, for a transformation semigroup
|
|
1041
|
+
gap> S := Semigroup([Transformation([1, 2, 1]), Transformation([2, 3, 1])]);;
|
|
1042
|
+
gap> o := LambdaOrb(S);; Enumerate(o);;
|
|
1043
|
+
gap> schutz := LambdaOrbStabChain(o, 3);;
|
|
1044
|
+
gap> SchutzGpMembership(S)(schutz, (1, 2, 3));
|
|
1045
|
+
true
|
|
1046
|
+
|
|
1047
|
+
# SchutzGpMembership, for a partial perm semigroup
|
|
1048
|
+
gap> S := InverseMonoid([PartialPerm([1, 3, 2]),
|
|
1049
|
+
> PartialPerm([2, 3], [1, 2])]);;
|
|
1050
|
+
gap> o := LambdaOrb(S);; Enumerate(o);;
|
|
1051
|
+
gap> schutz := LambdaOrbStabChain(o, 2);;
|
|
1052
|
+
gap> SchutzGpMembership(S)(schutz, (2, 3));
|
|
1053
|
+
true
|
|
1054
|
+
|
|
1055
|
+
# SchutzGpMembership, for a bipartition semigroup
|
|
1056
|
+
gap> S := Monoid([
|
|
1057
|
+
> Bipartition([[1, -1], [2, -3], [3, -2]]),
|
|
1058
|
+
> Bipartition([[1, -2], [2, -3], [3], [-1]]),
|
|
1059
|
+
> Bipartition([[1, 2, -1, -2], [3, -3]]),
|
|
1060
|
+
> Bipartition([[1], [2, -1], [3, -2, -3]]),
|
|
1061
|
+
> Bipartition([[1, -3], [2, 3, -2], [-1]]),
|
|
1062
|
+
> Bipartition([[1], [2, -1], [3, -2], [-3]])]);;
|
|
1063
|
+
gap> o := LambdaOrb(S);; Enumerate(o);;
|
|
1064
|
+
gap> schutz := LambdaOrbStabChain(o, 2);;
|
|
1065
|
+
gap> SchutzGpMembership(S)(schutz, (2, 3));
|
|
1066
|
+
true
|
|
1067
|
+
|
|
1068
|
+
# SchutzGpMembership, for an RZMS
|
|
1069
|
+
gap> R := ReesZeroMatrixSemigroup(Group((1, 2, 3)), [[()]]);;
|
|
1070
|
+
gap> R := Semigroup(Elements(R));;
|
|
1071
|
+
gap> o := LambdaOrb(R);; Enumerate(o);;
|
|
1072
|
+
gap> schutz := LambdaOrbStabChain(o, 3);;
|
|
1073
|
+
gap> SchutzGpMembership(R)(schutz, ());
|
|
1074
|
+
true
|
|
1075
|
+
|
|
1076
|
+
# SchutzGpMembership, for an MTS
|
|
1077
|
+
gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]),
|
|
1078
|
+
> Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
|
|
1079
|
+
gap> M := Semigroup(MTSE(M, 2, (2, 3)), MTSE(M, 3, (2, 3)));;
|
|
1080
|
+
gap> o := LambdaOrb(M);; Enumerate(o);;
|
|
1081
|
+
gap> schutz := LambdaOrbStabChain(o, 3);;
|
|
1082
|
+
gap> SchutzGpMembership(M)(schutz, ());
|
|
1083
|
+
true
|
|
1084
|
+
|
|
1085
|
+
# SchutzGpMembership, for a matrix over FF semigroup
|
|
1086
|
+
gap> S := Monoid([
|
|
1087
|
+
> Matrix(GF(2), [[0 * Z(2), Z(2) ^ 0], [0 * Z(2), 0 * Z(2)]]),
|
|
1088
|
+
> Matrix(GF(2), [[Z(2) ^ 0, 0 * Z(2)], [Z(2) ^ 0, 0 * Z(2)]]),
|
|
1089
|
+
> Matrix(GF(2), [[Z(2) ^ 0, Z(2) ^ 0], [0 * Z(2), Z(2) ^ 0]])]);;
|
|
1090
|
+
gap> o := Enumerate(LambdaOrb(S));;
|
|
1091
|
+
gap> schutz := LambdaOrbStabChain(o, 2);;
|
|
1092
|
+
gap> SchutzGpMembership(S)(schutz, LambdaIdentity(S)(3));
|
|
1093
|
+
true
|
|
1094
|
+
|
|
1095
|
+
# FakeOne
|
|
1096
|
+
|
|
1097
|
+
# FakeOne, for a transformation semigroup
|
|
1098
|
+
gap> FakeOne(FullTransformationMonoid(1));
|
|
1099
|
+
IdentityTransformation
|
|
1100
|
+
|
|
1101
|
+
# FakeOne, for a partial perm semigroup
|
|
1102
|
+
gap> FakeOne(SymmetricInverseMonoid(1));
|
|
1103
|
+
<identity partial perm on [ 1 ]>
|
|
1104
|
+
|
|
1105
|
+
# FakeOne, for a bipartition semigroup
|
|
1106
|
+
gap> FakeOne(PartitionMonoid(1));
|
|
1107
|
+
<block bijection: [ 1, -1 ]>
|
|
1108
|
+
|
|
1109
|
+
# FakeOne, for an RZMS
|
|
1110
|
+
gap> FakeOne(ReesZeroMatrixSemigroup(Group(()), [[()]]));
|
|
1111
|
+
<universal fake one>
|
|
1112
|
+
|
|
1113
|
+
# FakeOne, for a MTS
|
|
1114
|
+
gap> FakeOne(McAlisterTripleSemigroup(Group(()), Digraph([[1]]), [1]));
|
|
1115
|
+
<universal fake one>
|
|
1116
|
+
|
|
1117
|
+
# FakeOne, for a matrix over FF semigroup
|
|
1118
|
+
gap> FakeOne(GLM(2, 2));
|
|
1119
|
+
<an immutable 2x2 matrix over GF2>
|
|
1120
|
+
|
|
1121
|
+
# ChooseHashFunction
|
|
1122
|
+
|
|
1123
|
+
# ChooseHashFunction, for an RZMS element and integer
|
|
1124
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
|
|
1125
|
+
gap> ChooseHashFunction(MultiplicativeZero(R), 0);
|
|
1126
|
+
rec( data := 0, func := function( x, hashlen ) ... end )
|
|
1127
|
+
gap> G := SymmetricGroup(IsPcGroup, 3);;
|
|
1128
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[Identity(G)]]);;
|
|
1129
|
+
gap> x := ChooseHashFunction(MultiplicativeNeutralElement(R), 1000);
|
|
1130
|
+
rec( data := [ 101, 1000 ], func := function( x, hashlen ) ... end )
|
|
1131
|
+
gap> G := FullPBRMonoid(1);;
|
|
1132
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[One(G)]]);;
|
|
1133
|
+
gap> x := ChooseHashFunction(RMSElement(R, 1, One(G), 1), 1);
|
|
1134
|
+
rec( data := 1, func := function( x, hashlen ) ... end )
|
|
1135
|
+
|
|
1136
|
+
# ChooseHashFunction, for an object and integer
|
|
1137
|
+
gap> x := ChooseHashFunction(fail, 0);
|
|
1138
|
+
rec( data := fail, func := function( v, data ) ... end )
|
|
1139
|
+
gap> x.func(fail, fail);
|
|
1140
|
+
1
|
|
1141
|
+
|
|
1142
|
+
#
|
|
1143
|
+
gap> SEMIGROUPS.StopTest();
|
|
1144
|
+
gap> STOP_TEST("Semigroups package: standard/main/setup.tst");
|