passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-pc-linux-musl-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1068 -0
- gap/pkg/semigroups/config.status +1133 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-f0b7066b.so.2.0.0 +0 -0
- passagemath_gap_pkg_semigroups.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,1091 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W extreme/semirms.tst
|
|
4
|
+
#Y Copyright (C) 2016 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local A, D, G, H, M, R, S, T, U, UU, V, a, acting, an, comps, d, e, eV, f, f1
|
|
12
|
+
#@local f2, f3, f4, f5, f6, f7, f8, first_occurrence, g, gens, h, i, id, idems
|
|
13
|
+
#@local inj, inv, iso, l, map, mat, reps, t1, t2, x, y, z, zero
|
|
14
|
+
gap> START_TEST("Semigroups package: extreme/semirms.tst");
|
|
15
|
+
gap> LoadPackage("semigroups", false);;
|
|
16
|
+
|
|
17
|
+
# Set info levels and user preferences
|
|
18
|
+
gap> SEMIGROUPS.StartTest();
|
|
19
|
+
gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
|
|
20
|
+
|
|
21
|
+
# ReesMatTest2
|
|
22
|
+
# Some semigroups to which the methods in Semigroups should not apply
|
|
23
|
+
gap> R := ReesZeroMatrixSemigroup(POI(5), [[0, 0, 0], [0, 0, 0]]);
|
|
24
|
+
<Rees 0-matrix semigroup 3x2 over <inverse partial perm monoid of size 252,
|
|
25
|
+
rank 5 with 5 generators>>
|
|
26
|
+
gap> R := Semigroup(Generators(R));
|
|
27
|
+
<subsemigroup of 3x2 Rees 0-matrix semigroup with 1512 generators>
|
|
28
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[0, 0, 0], [0, 0, 0]]);
|
|
29
|
+
<Rees 0-matrix semigroup 3x2 over Group(())>
|
|
30
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[0, 0, 0], [0, 0, 0]]);
|
|
31
|
+
<Rees 0-matrix semigroup 3x2 over Group(())>
|
|
32
|
+
gap> R := Semigroup(Generators(R));
|
|
33
|
+
<subsemigroup of 3x2 Rees 0-matrix semigroup with 6 generators>
|
|
34
|
+
gap> R := ReesZeroMatrixSemigroup(POI(5), [[PartialPerm([], []), 0],
|
|
35
|
+
> [0, PartialPerm([], [])]]);
|
|
36
|
+
<Rees 0-matrix semigroup 2x2 over <inverse partial perm monoid of size 252,
|
|
37
|
+
rank 5 with 5 generators>>
|
|
38
|
+
gap> R := Semigroup(Generators(R));
|
|
39
|
+
<subsemigroup of 2x2 Rees 0-matrix semigroup with 1008 generators>
|
|
40
|
+
|
|
41
|
+
# ReesMatTest3
|
|
42
|
+
# Find a source of interesting subsemigroups of Rees 0-matrix semigroups
|
|
43
|
+
gap> S := Semigroup(
|
|
44
|
+
> Transformation([1, 1, 2, 7, 9, 8, 5, 9, 6]),
|
|
45
|
+
> Transformation([1, 1, 7, 2, 8, 9, 9, 5, 6]),
|
|
46
|
+
> Transformation([1, 2, 2, 3, 6, 5, 5, 7]),
|
|
47
|
+
> Transformation([1, 2, 2, 3, 6, 9, 9, 7, 5]),
|
|
48
|
+
> Transformation([1, 2, 2, 3, 7, 5, 5, 7]),
|
|
49
|
+
> Transformation([1, 2, 2, 3, 7, 9, 9, 7, 5]),
|
|
50
|
+
> Transformation([1, 2, 3, 1]), Transformation([1, 2, 3, 3]),
|
|
51
|
+
> Transformation([1, 2, 3, 6, 5, 6]),
|
|
52
|
+
> Transformation([1, 2, 3, 9, 5, 6, 7, 8, 9]),
|
|
53
|
+
> Transformation([1, 2, 7, 8, 9, 5, 5, 9, 6]),
|
|
54
|
+
> Transformation([1, 2, 8, 2, 7, 9, 9, 6, 5]),
|
|
55
|
+
> Transformation([1, 2, 8, 2, 9, 7, 6, 9, 5]),
|
|
56
|
+
> Transformation([2, 1, 1, 3, 6, 5, 5, 7]),
|
|
57
|
+
> Transformation([2, 1, 1, 3, 6, 9, 9, 7, 5]),
|
|
58
|
+
> Transformation([2, 1, 1, 3, 7, 5, 5, 7]),
|
|
59
|
+
> Transformation([2, 1, 1, 3, 7, 9, 9, 7, 5]),
|
|
60
|
+
> Transformation([2, 1, 1, 6, 9, 7, 6, 9, 5]),
|
|
61
|
+
> Transformation([2, 1, 1, 8, 9, 6, 7, 9, 5]),
|
|
62
|
+
> Transformation([2, 1, 1, 8, 9, 7, 6, 9, 5]),
|
|
63
|
+
> Transformation([2, 1, 8, 1, 7, 9, 9, 6, 5]),
|
|
64
|
+
> Transformation([2, 1, 8, 6, 9, 7, 6, 9, 5]),
|
|
65
|
+
> Transformation([5, 5, 8, 1, 7, 2, 1, 6]),
|
|
66
|
+
> Transformation([5, 8, 2, 3, 6, 9, 9, 7, 1]),
|
|
67
|
+
> Transformation([5, 8, 7, 2, 9, 1, 1, 9, 6]),
|
|
68
|
+
> Transformation([6, 6, 9, 4, 8, 1, 1, 8, 9]),
|
|
69
|
+
> Transformation([6, 7, 1, 8, 9, 5, 5, 9, 2]),
|
|
70
|
+
> Transformation([6, 7, 6, 4, 5, 1, 2]),
|
|
71
|
+
> Transformation([6, 7, 7, 8, 9, 1, 2, 9, 5]),
|
|
72
|
+
> Transformation([6, 7, 7, 8, 9, 2, 1, 9, 5]),
|
|
73
|
+
> Transformation([6, 7, 8, 1, 9, 2, 1, 9, 5]),
|
|
74
|
+
> Transformation([6, 7, 9, 4, 5, 1, 2, 8, 9]),
|
|
75
|
+
> Transformation([7, 6, 8, 2, 9, 1, 1, 9, 5]),
|
|
76
|
+
> Transformation([7, 6, 8, 6, 9, 2, 1, 9, 5]),
|
|
77
|
+
> Transformation([8, 5, 2, 7, 9, 6, 6, 9, 1]),
|
|
78
|
+
> Transformation([9, 9, 2, 7, 8, 6, 6, 5, 1]),
|
|
79
|
+
> Transformation([9, 9, 3, 2, 6, 5, 8, 7, 1]),
|
|
80
|
+
> Transformation([9, 9, 3, 4, 5, 6, 7, 8, 1]),
|
|
81
|
+
> Transformation([9, 9, 8, 7, 2, 6, 6, 1, 5]));;
|
|
82
|
+
gap> R := PrincipalFactor(DClasses(S)[40]);
|
|
83
|
+
<Rees 0-matrix semigroup 26x5 over Group([ (5,8)(6,9), (1,6,9), (1,6) ])>
|
|
84
|
+
gap> U := MaximalSubsemigroups(R){[31 .. 36]};
|
|
85
|
+
[ <subsemigroup of 26x5 Rees 0-matrix semigroup with 47 generators>,
|
|
86
|
+
<subsemigroup of 26x5 Rees 0-matrix semigroup with 51 generators>,
|
|
87
|
+
<subsemigroup of 26x5 Rees 0-matrix semigroup with 39 generators>,
|
|
88
|
+
<subsemigroup of 26x5 Rees 0-matrix semigroup with 53 generators>,
|
|
89
|
+
<subsemigroup of 26x5 Rees 0-matrix semigroup with 41 generators>,
|
|
90
|
+
<subsemigroup of 26x5 Rees 0-matrix semigroup with 45 generators> ]
|
|
91
|
+
gap> V := Semigroup(MultiplicativeZero(R),
|
|
92
|
+
> RMSElement(R, 13, (1, 6)(5, 8), 3),
|
|
93
|
+
> RMSElement(R, 1, (1, 6), 3),
|
|
94
|
+
> RMSElement(R, 7, (1, 6)(5, 8), 3),
|
|
95
|
+
> RMSElement(R, 23, (5, 8), 2),
|
|
96
|
+
> RMSElement(R, 22, (1, 6), 1),
|
|
97
|
+
> RMSElement(R, 11, (1, 9), 5),
|
|
98
|
+
> RMSElement(R, 2, (1, 6), 5),
|
|
99
|
+
> RMSElement(R, 24, (1, 6)(5, 8), 4),
|
|
100
|
+
> RMSElement(R, 6, (1, 9)(5, 8), 1),
|
|
101
|
+
> RMSElement(R, 15, (1, 9)(5, 8), 2),
|
|
102
|
+
> RMSElement(R, 22, (1, 9), 1));;
|
|
103
|
+
|
|
104
|
+
# ReesMatTest4: from attributes.xml...
|
|
105
|
+
|
|
106
|
+
# ReesMatTest5: StuctureDescriptionMaximalSubgroups
|
|
107
|
+
gap> StructureDescriptionMaximalSubgroups(U[1]);
|
|
108
|
+
[ "1", "D12" ]
|
|
109
|
+
gap> StructureDescriptionMaximalSubgroups(V);
|
|
110
|
+
[ "1", "D12" ]
|
|
111
|
+
|
|
112
|
+
# ReesMatTest6: StructureDescriptionSchutzenbergerGroups
|
|
113
|
+
gap> StructureDescriptionSchutzenbergerGroups(U[5]);
|
|
114
|
+
[ "1", "D12" ]
|
|
115
|
+
|
|
116
|
+
# ReesMatTest7: MinimalDClass
|
|
117
|
+
gap> List(U, MinimalDClass);
|
|
118
|
+
[ <Green's D-class: 0>, <Green's D-class: 0>, <Green's D-class: 0>,
|
|
119
|
+
<Green's D-class: 0>, <Green's D-class: 0>, <Green's D-class: 0> ]
|
|
120
|
+
gap> MinimalDClass(V);
|
|
121
|
+
<Green's D-class: 0>
|
|
122
|
+
|
|
123
|
+
# ReesMatTest8: MaximalDClasses
|
|
124
|
+
gap> MaximalDClasses(V);
|
|
125
|
+
[ <Green's D-class: (13,(1,6)(5,8),3)>, <Green's D-class: (22,(1,6),1)> ]
|
|
126
|
+
gap> MaximalDClasses(U[4]);
|
|
127
|
+
[ <Green's D-class: (2,(5,8)(6,9),4)>, <Green's D-class: (1,(5,8)(6,9),1)> ]
|
|
128
|
+
gap> V := Semigroup(MultiplicativeZero(R),
|
|
129
|
+
> RMSElement(R, 13, (1, 6)(5, 8), 3),
|
|
130
|
+
> RMSElement(R, 1, (1, 6), 3),
|
|
131
|
+
> RMSElement(R, 7, (1, 6)(5, 8), 3),
|
|
132
|
+
> RMSElement(R, 23, (5, 8), 2),
|
|
133
|
+
> RMSElement(R, 22, (1, 6), 1),
|
|
134
|
+
> RMSElement(R, 11, (1, 9), 5),
|
|
135
|
+
> RMSElement(R, 2, (1, 6), 5),
|
|
136
|
+
> RMSElement(R, 24, (1, 6)(5, 8), 4),
|
|
137
|
+
> RMSElement(R, 6, (1, 9)(5, 8), 1),
|
|
138
|
+
> RMSElement(R, 15, (1, 9)(5, 8), 2),
|
|
139
|
+
> RMSElement(R, 22, (1, 9), 1));;
|
|
140
|
+
|
|
141
|
+
# ReesMatTest9: PrincipalFactor
|
|
142
|
+
gap> D := Filtered(DClasses(V), IsRegularGreensClass)[2];
|
|
143
|
+
<Green's D-class: (13,(1,6)(5,8),3)>
|
|
144
|
+
gap> inj := InjectionPrincipalFactor(D);; inv := InverseGeneralMapping(inj);;
|
|
145
|
+
gap> ForAll(D, x -> (x ^ inj) ^ inv = x);
|
|
146
|
+
true
|
|
147
|
+
gap> ForAll(D, x ->
|
|
148
|
+
> ForAll(D, y ->
|
|
149
|
+
> (not x * y in D) or (x * y) ^ inj = x ^ inj * y ^ inj));
|
|
150
|
+
true
|
|
151
|
+
|
|
152
|
+
# ReesMatTest10: SmallGeneratingSet
|
|
153
|
+
gap> Length(SmallGeneratingSet(V)) <= Length(Generators(V));
|
|
154
|
+
true
|
|
155
|
+
gap> Apply(U, x -> Semigroup(SmallGeneratingSet(x)));
|
|
156
|
+
|
|
157
|
+
# ReesMatTest11: MinimalIdeal
|
|
158
|
+
gap> MinimalIdeal(V);
|
|
159
|
+
<simple Rees 0-matrix semigroup ideal with 1 generator>
|
|
160
|
+
gap> List(U, MinimalIdeal);
|
|
161
|
+
[ <simple Rees 0-matrix semigroup ideal with 1 generator>,
|
|
162
|
+
<simple Rees 0-matrix semigroup ideal with 1 generator>,
|
|
163
|
+
<simple Rees 0-matrix semigroup ideal with 1 generator>,
|
|
164
|
+
<simple Rees 0-matrix semigroup ideal with 1 generator>,
|
|
165
|
+
<simple Rees 0-matrix semigroup ideal with 1 generator>,
|
|
166
|
+
<simple Rees 0-matrix semigroup ideal with 1 generator> ]
|
|
167
|
+
|
|
168
|
+
# ReesMatTest12: IsomorphismPermGroup
|
|
169
|
+
gap> R := ReesZeroMatrixSemigroup(QuaternionGroup(IsPermGroup, 8), [[()]]);;
|
|
170
|
+
gap> T := Semigroup(Filtered(Generators(R), x -> x![1] <> 0));;
|
|
171
|
+
gap> iso := IsomorphismPermGroup(T);;
|
|
172
|
+
gap> Source(iso) = T;
|
|
173
|
+
true
|
|
174
|
+
gap> Range(iso);
|
|
175
|
+
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ])
|
|
176
|
+
gap> inv := InverseGeneralMapping(iso);;
|
|
177
|
+
gap> Source(inv);
|
|
178
|
+
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ])
|
|
179
|
+
gap> Range(inv) = T;
|
|
180
|
+
true
|
|
181
|
+
gap> ForAll(T, x -> (x ^ iso) ^ inv = x);
|
|
182
|
+
true
|
|
183
|
+
gap> ForAll(T, x -> ForAll(T, y -> (x * y) ^ iso = x ^ iso * y ^ iso));
|
|
184
|
+
true
|
|
185
|
+
gap> iso := IsomorphismPermGroup(MinimalIdeal(V));;
|
|
186
|
+
gap> IsTrivial(Range(iso));
|
|
187
|
+
true
|
|
188
|
+
gap> inv := InverseGeneralMapping(iso);;
|
|
189
|
+
gap> ForAll(MinimalIdeal(V), x -> (x ^ iso) ^ inv = x);
|
|
190
|
+
true
|
|
191
|
+
gap> ForAll(MinimalIdeal(V), x ->
|
|
192
|
+
> ForAll(MinimalIdeal(V), y ->
|
|
193
|
+
> (x * y) ^ iso = x ^ iso * y ^ iso));
|
|
194
|
+
true
|
|
195
|
+
|
|
196
|
+
# ReesMatTest13: GroupOfUnits
|
|
197
|
+
gap> R := Semigroup(Generators(R));
|
|
198
|
+
<subsemigroup of 1x1 Rees 0-matrix semigroup with 3 generators>
|
|
199
|
+
gap> GroupOfUnits(R);
|
|
200
|
+
<subsemigroup of 1x1 Rees 0-matrix semigroup with 8 generators>
|
|
201
|
+
gap> GroupOfUnits(V);
|
|
202
|
+
fail
|
|
203
|
+
gap> GroupOfUnits(U[5]);
|
|
204
|
+
fail
|
|
205
|
+
|
|
206
|
+
# ReesMatTest14: IdempotentGeneratedSubsemigroup
|
|
207
|
+
gap> eV := IdempotentGeneratedSubsemigroup(V);;
|
|
208
|
+
gap> Size(eV);
|
|
209
|
+
16
|
|
210
|
+
gap> Size(V);
|
|
211
|
+
421
|
|
212
|
+
gap> List(U, IdempotentGeneratedSubsemigroup);;
|
|
213
|
+
gap> List(last, Size);
|
|
214
|
+
[ 47, 47, 47, 47, 47, 47 ]
|
|
215
|
+
gap> last2[1] = last2[2];
|
|
216
|
+
true
|
|
217
|
+
|
|
218
|
+
# ReesMatTest15: IrredundantGeneratingSubset
|
|
219
|
+
gap> a := RMSElement(ParentAttr(V), 1, (1, 6), 3);
|
|
220
|
+
(1,(1,6),3)
|
|
221
|
+
gap> a in IrredundantGeneratingSubset(V);
|
|
222
|
+
true
|
|
223
|
+
gap> Length(IrredundantGeneratingSubset(V));
|
|
224
|
+
10
|
|
225
|
+
gap> U[1] = Semigroup(IrredundantGeneratingSubset(U[1]));
|
|
226
|
+
true
|
|
227
|
+
|
|
228
|
+
# ReesMatTest17: MultiplicativeNeutralElement (for an H-class)
|
|
229
|
+
gap> H := First(HClasses(V), IsRegularGreensClass);
|
|
230
|
+
<Green's H-class: 0>
|
|
231
|
+
gap> MultiplicativeNeutralElement(H);
|
|
232
|
+
0
|
|
233
|
+
gap> H := First(HClasses(V), x -> not IsRegularGreensClass(x));
|
|
234
|
+
<Green's H-class: (1,(1,6),3)>
|
|
235
|
+
gap> MultiplicativeNeutralElement(H);
|
|
236
|
+
fail
|
|
237
|
+
gap> h := RMSElement(ParentAttr(U[5]), 17, (1, 9)(5, 8), 5);
|
|
238
|
+
(17,(1,9)(5,8),5)
|
|
239
|
+
gap> H := GreensHClassOfElement(U[5], h);
|
|
240
|
+
<Green's H-class: (17,(1,9)(5,8),5)>
|
|
241
|
+
gap> IsRegularGreensClass(H);
|
|
242
|
+
true
|
|
243
|
+
gap> e := MultiplicativeNeutralElement(H);
|
|
244
|
+
(17,(1,6),5)
|
|
245
|
+
gap> e ^ 2;
|
|
246
|
+
(17,(1,6),5)
|
|
247
|
+
gap> e = h;
|
|
248
|
+
false
|
|
249
|
+
gap> ForAll(H, x -> x * e = x and e * x = x);
|
|
250
|
+
true
|
|
251
|
+
gap> h := RMSElement(ParentAttr(U[5]), 21, (1, 9, 6)(5, 8), 5);
|
|
252
|
+
(21,(1,9,6)(5,8),5)
|
|
253
|
+
gap> H := GreensHClassOfElement(U[5], h);
|
|
254
|
+
Error, the element does not belong to the semigroup
|
|
255
|
+
gap> IsRegularGreensClass(H);
|
|
256
|
+
true
|
|
257
|
+
gap> MultiplicativeNeutralElement(H);
|
|
258
|
+
(17,(1,6),5)
|
|
259
|
+
|
|
260
|
+
# ReesMatTest18: StructureDescription (for an H-class)
|
|
261
|
+
gap> H := First(HClasses(U[5]), IsRegularGreensClass);;
|
|
262
|
+
gap> StructureDescription(H);
|
|
263
|
+
"D12"
|
|
264
|
+
|
|
265
|
+
# ReesMatTest19: Random
|
|
266
|
+
gap> Random(V);;
|
|
267
|
+
gap> List(U, Random);; # FIXME(later) no this is not expected
|
|
268
|
+
|
|
269
|
+
# ReesMatTest20: DClassOf.Class etc
|
|
270
|
+
gap> H := First(HClasses(V), x -> not IsRegularGreensClass(x));
|
|
271
|
+
<Green's H-class: (1,(1,6),3)>
|
|
272
|
+
gap> DClass(H);
|
|
273
|
+
<Green's D-class: (1,(1,6),3)>
|
|
274
|
+
gap> RClass(H);
|
|
275
|
+
<Green's R-class: (1,(1,6),3)>
|
|
276
|
+
gap> LClass(H);
|
|
277
|
+
<Green's L-class: (1,(1,6),3)>
|
|
278
|
+
gap> LClass(H) < LClass(V, Representative(V));
|
|
279
|
+
false
|
|
280
|
+
|
|
281
|
+
# ReesMatTest21: DClasses etc...
|
|
282
|
+
gap> RClasses(V);
|
|
283
|
+
[ <Green's R-class: 0>, <Green's R-class: (13,(1,6)(5,8),3)>,
|
|
284
|
+
<Green's R-class: (1,(1,6),3)>, <Green's R-class: (7,(1,6)(5,8),3)>,
|
|
285
|
+
<Green's R-class: (23,(5,8)(6,9),3)>, <Green's R-class: (22,(1,6),1)>,
|
|
286
|
+
<Green's R-class: (11,(1,9,6),1)>, <Green's R-class: (2,(),1)>,
|
|
287
|
+
<Green's R-class: (24,(5,8),1)>, <Green's R-class: (6,(1,9)(5,8),1)>,
|
|
288
|
+
<Green's R-class: (15,(1,6,9)(5,8),3)>, <Green's R-class: (22,(),3)>,
|
|
289
|
+
<Green's R-class: (6,(1,9,6)(5,8),3)>, <Green's R-class: (11,(1,9),3)>,
|
|
290
|
+
<Green's R-class: (2,(1,6),3)>, <Green's R-class: (24,(1,6)(5,8),3)> ]
|
|
291
|
+
gap> LClasses(V);
|
|
292
|
+
[ <Green's L-class: 0>, <Green's L-class: (13,(1,6)(5,8),3)>,
|
|
293
|
+
<Green's L-class: (13,(1,9,6)(5,8),2)>, <Green's L-class: (1,(1,6),3)>,
|
|
294
|
+
<Green's L-class: (1,(1,9,6),2)>, <Green's L-class: (1,(1,6,9),3)>,
|
|
295
|
+
<Green's L-class: (1,(1,9),2)>, <Green's L-class: (1,(5,8),3)>,
|
|
296
|
+
<Green's L-class: (1,(5,8)(6,9),2)>, <Green's L-class: (1,(1,6)(5,8),3)>,
|
|
297
|
+
<Green's L-class: (1,(1,9,6)(5,8),2)>, <Green's L-class: (1,(1,6,9)(5,8),3)>
|
|
298
|
+
, <Green's L-class: (1,(1,9)(5,8),2)>, <Green's L-class: (1,(),3)>,
|
|
299
|
+
<Green's L-class: (1,(6,9),2)>, <Green's L-class: (1,(1,9,6),3)>,
|
|
300
|
+
<Green's L-class: (1,(1,6),2)>, <Green's L-class: (1,(6,9),3)>,
|
|
301
|
+
<Green's L-class: (1,(),2)>, <Green's L-class: (1,(1,9)(5,8),3)>,
|
|
302
|
+
<Green's L-class: (1,(1,6,9)(5,8),2)>, <Green's L-class: (1,(1,9,6)(5,8),3)>
|
|
303
|
+
, <Green's L-class: (1,(1,6)(5,8),2)>, <Green's L-class: (1,(5,8)(6,9),3)>
|
|
304
|
+
, <Green's L-class: (1,(5,8),2)>, <Green's L-class: (1,(1,9),3)>,
|
|
305
|
+
<Green's L-class: (1,(1,6,9),2)>, <Green's L-class: (22,(1,6),1)>,
|
|
306
|
+
<Green's L-class: (22,(),5)>, <Green's L-class: (22,(),4)>,
|
|
307
|
+
<Green's L-class: (22,(),3)>, <Green's L-class: (22,(6,9),2)> ]
|
|
308
|
+
gap> DClasses(V);
|
|
309
|
+
[ <Green's D-class: 0>, <Green's D-class: (13,(1,6)(5,8),3)>,
|
|
310
|
+
<Green's D-class: (1,(1,6),3)>, <Green's D-class: (22,(1,6),1)>,
|
|
311
|
+
<Green's D-class: (22,(),3)> ]
|
|
312
|
+
gap> NrHClasses(V);
|
|
313
|
+
58
|
|
314
|
+
gap> NrLClasses(V);
|
|
315
|
+
32
|
|
316
|
+
gap> reps := ShallowCopy(RClassReps(U[2]));;
|
|
317
|
+
gap> Sort(reps);
|
|
318
|
+
gap> List(reps, RowOfReesZeroMatrixSemigroupElement) = [0 .. 26];
|
|
319
|
+
false
|
|
320
|
+
gap> LClassReps(R);
|
|
321
|
+
[ (1,(1,5,3,7)(2,8,4,6),1), 0 ]
|
|
322
|
+
gap> d := DClassReps(U[4]);;
|
|
323
|
+
gap> Length(d);
|
|
324
|
+
4
|
|
325
|
+
gap> IsDuplicateFreeList(d);
|
|
326
|
+
true
|
|
327
|
+
gap> ForAll(d, x -> x in U[4]);
|
|
328
|
+
true
|
|
329
|
+
gap> MultiplicativeZero(U[4]) in d;
|
|
330
|
+
true
|
|
331
|
+
|
|
332
|
+
# ReesMatTest22: MultiplicativeZero
|
|
333
|
+
gap> List(U, MultiplicativeZero);
|
|
334
|
+
[ 0, 0, 0, 0, 0, 0 ]
|
|
335
|
+
gap> ForAll(last, IsIdempotent);
|
|
336
|
+
true
|
|
337
|
+
|
|
338
|
+
# ReesMatTest23: GroupHClass
|
|
339
|
+
gap> D := Filtered(DClasses(U[1]), IsRegularGreensClass)[2];
|
|
340
|
+
<Green's D-class: (7,(5,8)(6,9),2)>
|
|
341
|
+
gap> GroupHClass(D);
|
|
342
|
+
<Green's H-class: (7,(),2)>
|
|
343
|
+
gap> StructureDescription(last);
|
|
344
|
+
"D12"
|
|
345
|
+
gap> D := First(DClasses(V), IsRegularGreensClass);
|
|
346
|
+
<Green's D-class: 0>
|
|
347
|
+
gap> GroupHClass(D);
|
|
348
|
+
<Green's H-class: 0>
|
|
349
|
+
gap> StructureDescription(last);
|
|
350
|
+
"1"
|
|
351
|
+
|
|
352
|
+
# ReesMatTest24: Idempotents
|
|
353
|
+
gap> Idempotents(V);
|
|
354
|
+
[ 0, (13,(1,9,6)(5,8),3), (13,(1,9,6)(5,8),2), (7,(),3), (7,(),2), (23,(),3),
|
|
355
|
+
(23,(),2), (22,(),5), (22,(),4), (11,(5,8)(6,9),1), (2,(),5), (2,(),4),
|
|
356
|
+
(24,(),1), (6,(1,6),1), (15,(1,6),3), (15,(1,6),2) ]
|
|
357
|
+
gap> ForAll(last, IsIdempotent);
|
|
358
|
+
true
|
|
359
|
+
gap> reps := ShallowCopy(Idempotents(U[2]));;
|
|
360
|
+
gap> Sort(reps);
|
|
361
|
+
gap> reps;
|
|
362
|
+
[ 0, (1,(),1), (2,(),4), (2,(),5), (3,(5,8)(6,9),4), (3,(5,8)(6,9),5),
|
|
363
|
+
(4,(5,8)(6,9),4), (4,(5,8)(6,9),5), (5,(5,8)(6,9),4), (5,(5,8)(6,9),5),
|
|
364
|
+
(6,(1,6),1), (7,(),2), (7,(),3), (8,(1,9)(5,8),2), (8,(1,9)(5,8),3),
|
|
365
|
+
(9,(1,9),2), (9,(1,9),3), (10,(),1), (11,(5,8)(6,9),1), (12,(1,9),1),
|
|
366
|
+
(13,(1,9,6)(5,8),2), (13,(1,9,6)(5,8),3), (14,(1,9,6),2), (14,(1,9,6),3),
|
|
367
|
+
(15,(1,6),2), (15,(1,6),3), (16,(1,6)(5,8),2), (16,(1,6)(5,8),3),
|
|
368
|
+
(17,(1,6),4), (17,(1,6),5), (18,(1,9)(5,8),4), (18,(1,9)(5,8),5),
|
|
369
|
+
(19,(1,9,6)(5,8),2), (19,(1,9,6)(5,8),3), (20,(1,9,6)(5,8),2),
|
|
370
|
+
(20,(1,9,6)(5,8),3), (21,(1,9,6)(5,8),2), (21,(1,9,6)(5,8),3), (22,(),4),
|
|
371
|
+
(22,(),5), (23,(),2), (23,(),3), (24,(),1), (25,(),4), (25,(),5),
|
|
372
|
+
(26,(1,9),2), (26,(1,9),3) ]
|
|
373
|
+
gap> ForAll(last, IsIdempotent);
|
|
374
|
+
true
|
|
375
|
+
|
|
376
|
+
# ReesMatTest25: IsRegularGreensClass
|
|
377
|
+
gap> Number(RClasses(V), IsRegularGreensClass);
|
|
378
|
+
10
|
|
379
|
+
gap> Number(DClasses(V), IsRegularGreensClass);
|
|
380
|
+
3
|
|
381
|
+
gap> NrRegularDClasses(V);
|
|
382
|
+
3
|
|
383
|
+
gap> Number(DClasses(U[4]), IsRegularGreensClass);
|
|
384
|
+
3
|
|
385
|
+
gap> NrRegularDClasses(U[4]);
|
|
386
|
+
3
|
|
387
|
+
gap> Number(LClasses(U[4]), IsRegularGreensClass);
|
|
388
|
+
6
|
|
389
|
+
|
|
390
|
+
# ReesMatTest26: NrIdempotents
|
|
391
|
+
gap> NrIdempotents(V) = Length(Idempotents(V));
|
|
392
|
+
true
|
|
393
|
+
gap> ForAll(U, x -> NrIdempotents(x) = Length(Idempotents(x)));
|
|
394
|
+
true
|
|
395
|
+
gap> List(DClasses(V), NrIdempotents);
|
|
396
|
+
[ 1, 8, 0, 7, 0 ]
|
|
397
|
+
gap> List(RClasses(V), NrIdempotents);
|
|
398
|
+
[ 1, 2, 0, 2, 2, 2, 1, 2, 1, 1, 2, 0, 0, 0, 0, 0 ]
|
|
399
|
+
gap> List(LClasses(R), NrIdempotents);
|
|
400
|
+
[ 1, 1 ]
|
|
401
|
+
|
|
402
|
+
# ReesMatTest27: PartialOrderOfDClasses
|
|
403
|
+
gap> PartialOrderOfDClasses(V);
|
|
404
|
+
<immutable digraph with 5 vertices, 7 edges>
|
|
405
|
+
gap> PartialOrderOfDClasses(U[1]);
|
|
406
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
407
|
+
gap> PartialOrderOfDClasses(U[2]);
|
|
408
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
409
|
+
|
|
410
|
+
# ReesMatTest28: from properties.xml...
|
|
411
|
+
gap> IsBand(V);
|
|
412
|
+
false
|
|
413
|
+
gap> List(U, IsBand);
|
|
414
|
+
[ false, false, false, false, false, false ]
|
|
415
|
+
gap> IsBlockGroup(V);
|
|
416
|
+
false
|
|
417
|
+
gap> List(U, IsBlockGroup);
|
|
418
|
+
[ false, false, false, false, false, false ]
|
|
419
|
+
gap> IsBrandtSemigroup(V);
|
|
420
|
+
false
|
|
421
|
+
gap> List(U, IsBrandtSemigroup);
|
|
422
|
+
[ false, false, false, false, false, false ]
|
|
423
|
+
gap> IsCliffordSemigroup(V);
|
|
424
|
+
false
|
|
425
|
+
gap> List(U, IsCliffordSemigroup);
|
|
426
|
+
[ false, false, false, false, false, false ]
|
|
427
|
+
gap> IsCommutativeSemigroup(V);
|
|
428
|
+
false
|
|
429
|
+
gap> List(U, IsCommutativeSemigroup);
|
|
430
|
+
[ false, false, false, false, false, false ]
|
|
431
|
+
gap> IsCompletelyRegularSemigroup(V);
|
|
432
|
+
false
|
|
433
|
+
gap> List(U, IsCompletelyRegularSemigroup);
|
|
434
|
+
[ false, false, false, false, false, false ]
|
|
435
|
+
gap> IsDTrivial(V);
|
|
436
|
+
false
|
|
437
|
+
gap> IsRTrivial(V);
|
|
438
|
+
false
|
|
439
|
+
gap> IsLTrivial(V);
|
|
440
|
+
false
|
|
441
|
+
gap> IsHTrivial(V);
|
|
442
|
+
false
|
|
443
|
+
gap> List(U, IsGroupAsSemigroup);
|
|
444
|
+
[ false, false, false, false, false, false ]
|
|
445
|
+
gap> List(U, IsIdempotentGenerated);
|
|
446
|
+
[ false, false, false, false, false, false ]
|
|
447
|
+
gap> List(U, IsInverseSemigroup);
|
|
448
|
+
[ false, false, false, false, false, false ]
|
|
449
|
+
gap> R := ReesZeroMatrixSemigroup(QuaternionGroup(IsPermGroup, 8),
|
|
450
|
+
> [[(), (), ()]]);;
|
|
451
|
+
gap> R := Semigroup(Difference(Generators(R), [MultiplicativeZero(R)]));
|
|
452
|
+
<subsemigroup of 3x1 Rees 0-matrix semigroup with 4 generators>
|
|
453
|
+
gap> IsRightSimple(R);
|
|
454
|
+
false
|
|
455
|
+
gap> IsLeftSimple(R);
|
|
456
|
+
true
|
|
457
|
+
gap> IsCompletelyRegularSemigroup(R);
|
|
458
|
+
true
|
|
459
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[(), (), (), (), ()]]);;
|
|
460
|
+
gap> R := Semigroup(Difference(Generators(R), [MultiplicativeZero(R)]));
|
|
461
|
+
<subsemigroup of 5x1 Rees 0-matrix semigroup with 5 generators>
|
|
462
|
+
gap> IsLeftZeroSemigroup(R);
|
|
463
|
+
true
|
|
464
|
+
gap> IsRightZeroSemigroup(R);
|
|
465
|
+
false
|
|
466
|
+
gap> IsMonogenicSemigroup(R);
|
|
467
|
+
false
|
|
468
|
+
gap> List(U, IsMonogenicSemigroup);
|
|
469
|
+
[ false, false, false, false, false, false ]
|
|
470
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);
|
|
471
|
+
<Rees 0-matrix semigroup 1x1 over Group(())>
|
|
472
|
+
gap> R := Semigroup(Generators(R));
|
|
473
|
+
<subsemigroup of 1x1 Rees 0-matrix semigroup with 2 generators>
|
|
474
|
+
gap> IsMonoidAsSemigroup(R);
|
|
475
|
+
true
|
|
476
|
+
gap> List(U, IsMonoidAsSemigroup);
|
|
477
|
+
[ false, false, false, false, false, false ]
|
|
478
|
+
gap> IsomorphismTransformationSemigroup(R);
|
|
479
|
+
<subsemigroup of 1x1 Rees 0-matrix semigroup with 2 generators> ->
|
|
480
|
+
<commutative transformation monoid of size 2, degree 2 with 1 generator>
|
|
481
|
+
gap> IsOrthodoxSemigroup(R);
|
|
482
|
+
true
|
|
483
|
+
gap> IsOrthodoxSemigroup(V);
|
|
484
|
+
false
|
|
485
|
+
gap> List(U, IsOrthodoxSemigroup);
|
|
486
|
+
[ false, false, false, false, false, false ]
|
|
487
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[(), (), ()], [(), (), ()]]);
|
|
488
|
+
<Rees 0-matrix semigroup 3x2 over Group(())>
|
|
489
|
+
gap> R := Semigroup(Difference(Generators(R), [MultiplicativeZero(R)]));
|
|
490
|
+
<subsemigroup of 3x2 Rees 0-matrix semigroup with 4 generators>
|
|
491
|
+
gap> IsRectangularBand(R);
|
|
492
|
+
true
|
|
493
|
+
gap> IsRectangularBand(V);
|
|
494
|
+
false
|
|
495
|
+
gap> List(U, IsRectangularBand);
|
|
496
|
+
[ false, false, false, false, false, false ]
|
|
497
|
+
gap> List(U, IsRegularSemigroup);
|
|
498
|
+
[ false, false, false, false, false, false ]
|
|
499
|
+
gap> IsRegularSemigroup(V);
|
|
500
|
+
false
|
|
501
|
+
gap> UU := IdempotentGeneratedSubsemigroup(R);;
|
|
502
|
+
gap> IsSemilattice(UU);
|
|
503
|
+
false
|
|
504
|
+
gap> IsSimpleSemigroup(V);
|
|
505
|
+
false
|
|
506
|
+
gap> List(U, IsSimpleSemigroup);
|
|
507
|
+
[ false, false, false, false, false, false ]
|
|
508
|
+
gap> R;
|
|
509
|
+
<subsemigroup of 3x2 Rees 0-matrix semigroup with 4 generators>
|
|
510
|
+
gap> IsSimpleSemigroup(V);
|
|
511
|
+
false
|
|
512
|
+
gap> IsSimpleSemigroup(R);
|
|
513
|
+
true
|
|
514
|
+
gap> f := IsomorphismReesMatrixSemigroup(R); g := InverseGeneralMapping(f);;
|
|
515
|
+
<subsemigroup of 3x2 Rees 0-matrix semigroup with 4 generators> ->
|
|
516
|
+
<Rees matrix semigroup 3x2 over Group(())>
|
|
517
|
+
gap> ForAll(R, x -> (x ^ f) ^ g = x);
|
|
518
|
+
true
|
|
519
|
+
gap> ForAll(R, x -> ForAll(R, y -> (x * y) ^ f = x ^ f * y ^ f));
|
|
520
|
+
true
|
|
521
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[(), (), ()], [(), (), ()]]);
|
|
522
|
+
<Rees 0-matrix semigroup 3x2 over Group(())>
|
|
523
|
+
gap> R := Semigroup(Generators(R));
|
|
524
|
+
<subsemigroup of 3x2 Rees 0-matrix semigroup with 5 generators>
|
|
525
|
+
gap> IsZeroGroup(R);
|
|
526
|
+
false
|
|
527
|
+
gap> IsZeroRectangularBand(R);
|
|
528
|
+
true
|
|
529
|
+
gap> IsZeroSimpleSemigroup(R);
|
|
530
|
+
true
|
|
531
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[(), (), ()],
|
|
532
|
+
> [(), 0, 0],
|
|
533
|
+
> [(), 0, 0]]);
|
|
534
|
+
<Rees 0-matrix semigroup 3x3 over Group(())>
|
|
535
|
+
gap> R := ReesZeroMatrixSubsemigroup(R, [2, 3], Group(()), [2, 3]);
|
|
536
|
+
<Rees 0-matrix semigroup 2x2 over Group(())>
|
|
537
|
+
gap> R := Semigroup(Generators(R));
|
|
538
|
+
<subsemigroup of 3x3 Rees 0-matrix semigroup with 4 generators>
|
|
539
|
+
gap> Size(R);
|
|
540
|
+
5
|
|
541
|
+
gap> IsZeroSemigroup(R);
|
|
542
|
+
true
|
|
543
|
+
gap> IsZeroSemigroup(V);
|
|
544
|
+
false
|
|
545
|
+
|
|
546
|
+
# ReesMatTest29: from semigroups.xml ...
|
|
547
|
+
gap> gens := Generators(V);;
|
|
548
|
+
gap> V := Semigroup(gens[1]);
|
|
549
|
+
<subsemigroup of 26x5 Rees 0-matrix semigroup with 1 generator>
|
|
550
|
+
gap> for i in [2 .. 12] do
|
|
551
|
+
> V := ClosureSemigroup(V, gens[i]);
|
|
552
|
+
> od;
|
|
553
|
+
gap> V;
|
|
554
|
+
<subsemigroup of 26x5 Rees 0-matrix semigroup with 11 generators>
|
|
555
|
+
gap> Size(V);
|
|
556
|
+
421
|
|
557
|
+
|
|
558
|
+
# ReesMatTest30: from slp.xml...
|
|
559
|
+
gap> x := RMSElement(V, 22, (1, 6, 9), 1);;
|
|
560
|
+
gap> Factorization(V, x);
|
|
561
|
+
[ 6, 7, 6, 9, 6 ]
|
|
562
|
+
gap> EvaluateWord(Generators(V), last);
|
|
563
|
+
(22,(1,6,9),1)
|
|
564
|
+
gap> x := MultiplicativeZero(R);;
|
|
565
|
+
gap> Factorization(R, x);
|
|
566
|
+
[ 1, 1 ]
|
|
567
|
+
gap> EvaluateWord(Generators(R), last);
|
|
568
|
+
0
|
|
569
|
+
gap> x := RMSElement(U[4], 26, (6, 9), 5);;
|
|
570
|
+
gap> Factorization(U[4], x);; # = [ 7, 24, 8, 5]
|
|
571
|
+
gap> EvaluateWord(Generators(U[4]), last);
|
|
572
|
+
(26,(6,9),5)
|
|
573
|
+
|
|
574
|
+
# ReesMatTest31: Issue 108:
|
|
575
|
+
# IsRegularSemigroup for a RZMS returned false negative
|
|
576
|
+
gap> t1 := Transformation([4, 3, 1, 3]);;
|
|
577
|
+
gap> t2 := Transformation([3, 3, 2, 2]);;
|
|
578
|
+
gap> T := Semigroup([t1, t2]);;
|
|
579
|
+
gap> IsRegularSemigroup(T);
|
|
580
|
+
true
|
|
581
|
+
gap> IsGroup(T);
|
|
582
|
+
false
|
|
583
|
+
gap> mat := [[t2, t1], [t1, t2]];;
|
|
584
|
+
gap> R := ReesZeroMatrixSemigroup(T, mat);;
|
|
585
|
+
gap> IsRegularSemigroup(R);
|
|
586
|
+
true
|
|
587
|
+
|
|
588
|
+
# AutomorphismGroup of a ReesMatrixSemigroup
|
|
589
|
+
gap> G := Group(());;
|
|
590
|
+
gap> mat := List([1 .. 5], x -> List([1 .. 5], y -> ()));;
|
|
591
|
+
gap> M := ReesMatrixSemigroup(G, mat);
|
|
592
|
+
<Rees matrix semigroup 5x5 over Group(())>
|
|
593
|
+
gap> AutomorphismGroup(M);
|
|
594
|
+
<automorphism group of <Rees matrix semigroup 5x5 over Group(())> with
|
|
595
|
+
5 generators>
|
|
596
|
+
gap> Size(last);
|
|
597
|
+
14400
|
|
598
|
+
gap> G := Group((1, 2, 3, 4, 5));;
|
|
599
|
+
gap> mat := [[(), (), (), (), ()],
|
|
600
|
+
> [(), (1, 4, 2, 5, 3), (1, 3, 5, 2, 4), (), (1, 4, 2, 5, 3)],
|
|
601
|
+
> [(), (1, 2, 3, 4, 5), (1, 2, 3, 4, 5), (), ()],
|
|
602
|
+
> [(), (1, 4, 2, 5, 3), (1, 5, 4, 3, 2), (1, 3, 5, 2, 4), ()],
|
|
603
|
+
> [(), (1, 2, 3, 4, 5), (1, 2, 3, 4, 5), (1, 5, 4, 3, 2), (1, 2, 3, 4, 5)]];;
|
|
604
|
+
gap> M := ReesMatrixSemigroup(G, mat);
|
|
605
|
+
<Rees matrix semigroup 5x5 over Group([ (1,2,3,4,5) ])>
|
|
606
|
+
gap> AutomorphismGroup(M);
|
|
607
|
+
<automorphism group of <Rees matrix semigroup 5x5 over Group([ (1,2,3,4,5) ])>
|
|
608
|
+
with 1 generator>
|
|
609
|
+
gap> Size(last);
|
|
610
|
+
1
|
|
611
|
+
gap> M := Semigroup(Transformation([3, 3, 2, 6, 2, 4, 4, 6]),
|
|
612
|
+
> Transformation([5, 1, 7, 8, 7, 5, 8, 1]));;
|
|
613
|
+
gap> R := Range(IsomorphismReesMatrixSemigroup(M));;
|
|
614
|
+
gap> AutomorphismGroup(R);
|
|
615
|
+
<automorphism group of <Rees matrix semigroup 2x2 over Group(
|
|
616
|
+
[ (2,3)(4,6), (2,3,4,6), (2,4,6,3) ])> with 5 generators>
|
|
617
|
+
gap> Size(last);
|
|
618
|
+
12
|
|
619
|
+
gap> G := SmallGroup(256, 4);;
|
|
620
|
+
gap> f1 := G.1;; f2 := G.2;; f3 := G.3;; f4 := G.4;;
|
|
621
|
+
gap> f5 := G.5;; f6 := G.6;; f7 := G.7;; f8 := G.8;;
|
|
622
|
+
gap> y := f2 * f3 * f4 * f5 * f6 * f7;;
|
|
623
|
+
gap> iso := IsomorphismPermGroup(G);;
|
|
624
|
+
gap> G := Range(iso);;
|
|
625
|
+
gap> y := y ^ iso;;
|
|
626
|
+
gap> mat := List([1 .. 3], x -> [One(G), y, One(G)]);;
|
|
627
|
+
gap> M := ReesMatrixSemigroup(G, mat);;
|
|
628
|
+
gap> AutomorphismGroup(M);;
|
|
629
|
+
gap> IsomorphismPermGroup(last);;
|
|
630
|
+
gap> Size(last2);
|
|
631
|
+
294912
|
|
632
|
+
gap> G := SymmetricGroup(7);; e := One(G);; mat := [[e], [e]];;
|
|
633
|
+
gap> R := ReesMatrixSemigroup(G, mat);
|
|
634
|
+
<Rees matrix semigroup 1x2 over Sym( [ 1 .. 7 ] )>
|
|
635
|
+
gap> AutomorphismGroup(R);
|
|
636
|
+
<automorphism group of <Rees matrix semigroup 1x2 over Sym( [ 1 .. 7 ] )>
|
|
637
|
+
with 5041 generators>
|
|
638
|
+
gap> G := Group((1, 4, 3, 5, 2));;
|
|
639
|
+
gap> mat := [[(), (), ()], [(), (1, 4, 3, 5, 2), ()], [(), (1, 3, 2, 4, 5), ()]];;
|
|
640
|
+
gap> R := ReesMatrixSemigroup(G, mat);;
|
|
641
|
+
gap> l := (4, 6);
|
|
642
|
+
(4,6)
|
|
643
|
+
gap> g := GroupHomomorphismByImages(G, G, [(1, 4, 3, 5, 2)], [(1, 2, 5, 3, 4)]);
|
|
644
|
+
[ (1,4,3,5,2) ] -> [ (1,2,5,3,4) ]
|
|
645
|
+
gap> map := [(), (1, 5, 4, 2, 3), (), (), (), ()];
|
|
646
|
+
[ (), (1,5,4,2,3), (), (), (), () ]
|
|
647
|
+
gap> RMSIsoByTriple(R, R, [l, g, map]);
|
|
648
|
+
((4,6), GroupHomomorphismByImages( Group( [ (1,4,3,5,2) ] ), Group(
|
|
649
|
+
[ (1,4,3,5,2) ] ), [ (1,4,3,5,2) ], [ (1,2,5,3,4) ] ),
|
|
650
|
+
[ (), (1,5,4,2,3), (), (), (), () ])
|
|
651
|
+
gap> G := Group([(2, 5)(3, 4)]);;
|
|
652
|
+
gap> mat := [[(), (), (), (), ()], [(), (), (2, 5)(3, 4), (2, 5)(3, 4), ()],
|
|
653
|
+
> [(), (), (), (2, 5)(3, 4), (2, 5)(3, 4)],
|
|
654
|
+
> [(), (2, 5)(3, 4), (), (2, 5)(3, 4), ()],
|
|
655
|
+
> [(), (2, 5)(3, 4), (), (2, 5)(3, 4), ()]];;
|
|
656
|
+
gap> R := ReesMatrixSemigroup(G, mat);;
|
|
657
|
+
gap> A := AutomorphismGroup(R);;
|
|
658
|
+
gap> Size(A);
|
|
659
|
+
12
|
|
660
|
+
|
|
661
|
+
# ReesMatTest100: IsInverseSemigroup (easy true examples)
|
|
662
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);
|
|
663
|
+
<Rees 0-matrix semigroup 1x1 over Group(())>
|
|
664
|
+
gap> IsInverseSemigroup(R);
|
|
665
|
+
true
|
|
666
|
+
gap> IsInverseSemigroup(AsSemigroup(IsTransformationSemigroup, R));
|
|
667
|
+
true
|
|
668
|
+
|
|
669
|
+
#
|
|
670
|
+
gap> T := Semigroup(Transformation([2, 1]));
|
|
671
|
+
<commutative transformation semigroup of degree 2 with 1 generator>
|
|
672
|
+
gap> IsGroupAsSemigroup(T);
|
|
673
|
+
true
|
|
674
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[Transformation([2, 1])]]);
|
|
675
|
+
<Rees 0-matrix semigroup 1x1 over <transformation group of size 2,
|
|
676
|
+
degree 2 with 1 generator>>
|
|
677
|
+
gap> IsInverseSemigroup(R);
|
|
678
|
+
true
|
|
679
|
+
gap> IsInverseSemigroup(AsSemigroup(IsTransformationSemigroup, R));
|
|
680
|
+
true
|
|
681
|
+
|
|
682
|
+
# ReesMatTest101: IsInverseSemigroup (false because of underlying semigroup)
|
|
683
|
+
gap> x := Transformation([1, 1, 2]);;
|
|
684
|
+
gap> T := Semigroup(x);;
|
|
685
|
+
gap> IsInverseSemigroup(T);
|
|
686
|
+
false
|
|
687
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[0, x], [0, x ^ 2]]);
|
|
688
|
+
<Rees 0-matrix semigroup 2x2 over <commutative non-regular transformation
|
|
689
|
+
semigroup of size 2, degree 3 with 1 generator>>
|
|
690
|
+
gap> IsInverseSemigroup(R);
|
|
691
|
+
false
|
|
692
|
+
gap> IsInverseSemigroup(AsSemigroup(IsTransformationSemigroup, R));
|
|
693
|
+
false
|
|
694
|
+
|
|
695
|
+
# T is known not to be regular
|
|
696
|
+
gap> T := Semigroup(x);;
|
|
697
|
+
gap> IsRegularSemigroup(T);
|
|
698
|
+
false
|
|
699
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[0, x], [0, x ^ 2]]);;
|
|
700
|
+
gap> IsInverseSemigroup(R);
|
|
701
|
+
false
|
|
702
|
+
gap> IsInverseSemigroup(AsSemigroup(IsTransformationSemigroup, R));
|
|
703
|
+
false
|
|
704
|
+
|
|
705
|
+
# T is known not to be a monoid
|
|
706
|
+
gap> T := Semigroup(x);;
|
|
707
|
+
gap> IsMonoidAsSemigroup(T);
|
|
708
|
+
false
|
|
709
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[0, x], [0, x ^ 2]]);;
|
|
710
|
+
gap> IsInverseSemigroup(R);
|
|
711
|
+
false
|
|
712
|
+
gap> IsInverseSemigroup(AsSemigroup(IsTransformationSemigroup, R));
|
|
713
|
+
false
|
|
714
|
+
|
|
715
|
+
# T is known not to have group of units
|
|
716
|
+
gap> T := Semigroup(x);;
|
|
717
|
+
gap> GroupOfUnits(T);
|
|
718
|
+
fail
|
|
719
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[0, x], [0, x ^ 2]]);;
|
|
720
|
+
gap> IsInverseSemigroup(R);
|
|
721
|
+
false
|
|
722
|
+
gap> IsInverseSemigroup(AsSemigroup(IsTransformationSemigroup, R));
|
|
723
|
+
false
|
|
724
|
+
|
|
725
|
+
# T does not have a group of units
|
|
726
|
+
gap> T := Semigroup(x);;
|
|
727
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[x, 0], [0, x ^ 2]]);;
|
|
728
|
+
gap> IsInverseSemigroup(R);
|
|
729
|
+
false
|
|
730
|
+
gap> IsInverseSemigroup(AsSemigroup(IsTransformationSemigroup, R));
|
|
731
|
+
false
|
|
732
|
+
|
|
733
|
+
# ReesMatTest102: IsInverseSemigroup (false because of matrix)
|
|
734
|
+
gap> S := Semigroup(SymmetricInverseMonoid(5));
|
|
735
|
+
<partial perm monoid of rank 5 with 4 generators>
|
|
736
|
+
gap> id := Identity(S);
|
|
737
|
+
<identity partial perm on [ 1, 2, 3, 4, 5 ]>
|
|
738
|
+
gap> zero := MultiplicativeZero(S);
|
|
739
|
+
<empty partial perm>
|
|
740
|
+
|
|
741
|
+
# Non-square matrix
|
|
742
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[zero, id]]);
|
|
743
|
+
<Rees 0-matrix semigroup 2x1 over <partial perm monoid of size 1546, rank 5
|
|
744
|
+
with 4 generators>>
|
|
745
|
+
gap> IsInverseSemigroup(R);
|
|
746
|
+
false
|
|
747
|
+
|
|
748
|
+
# Non-diagonal matrix: Rows or columns without precisely one non-zero entry
|
|
749
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[0, id, 0], [id, 0, 0], [0, 0, 0]]);;
|
|
750
|
+
gap> IsInverseSemigroup(R);
|
|
751
|
+
false
|
|
752
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[0, 0, 0], [id, 0, 0], [0, id, 0]]);;
|
|
753
|
+
gap> IsInverseSemigroup(R);
|
|
754
|
+
false
|
|
755
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[0, 0, id], [id, id, 0], [0, id, 0]]);;
|
|
756
|
+
gap> IsInverseSemigroup(R);
|
|
757
|
+
false
|
|
758
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[0, id, 0], [0, id, 0], [0, id, 0]]);;
|
|
759
|
+
gap> IsInverseSemigroup(R);
|
|
760
|
+
false
|
|
761
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[id, 0, 0], [id, id, 0], [0, id, 0]]);;
|
|
762
|
+
gap> IsInverseSemigroup(R);
|
|
763
|
+
false
|
|
764
|
+
|
|
765
|
+
# Matrix entries not in the group of units
|
|
766
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[id, 0, 0], [0, 0, id], [0, zero, 0]]);;
|
|
767
|
+
gap> IsInverseSemigroup(R);
|
|
768
|
+
false
|
|
769
|
+
gap> y := PartialPerm([1, 2, 3, 4, 0]);
|
|
770
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>
|
|
771
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[id, 0, 0], [0, 0, id], [0, y, 0]]);;
|
|
772
|
+
gap> IsInverseSemigroup(R);
|
|
773
|
+
false
|
|
774
|
+
|
|
775
|
+
# Semigroup is not an inverse monoid
|
|
776
|
+
gap> T := FullTransformationMonoid(5);;
|
|
777
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[Identity(T)]]);;
|
|
778
|
+
gap> IsInverseSemigroup(R);
|
|
779
|
+
false
|
|
780
|
+
|
|
781
|
+
# Example which returns true
|
|
782
|
+
gap> y := PartialPerm([4, 3, 5, 1, 2]);;
|
|
783
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[id, 0, 0], [0, id, 0], [0, 0, y]]);;
|
|
784
|
+
gap> IsInverseSemigroup(R);
|
|
785
|
+
true
|
|
786
|
+
|
|
787
|
+
# ReesMatTest103: NrIdempotents and Idempotents for an inverse RZMS
|
|
788
|
+
gap> S := SymmetricInverseMonoid(4);
|
|
789
|
+
<symmetric inverse monoid of degree 4>
|
|
790
|
+
gap> x := PartialPerm([2, 1, 4, 3]);;
|
|
791
|
+
gap> y := PartialPerm([2, 4, 3, 1]);;
|
|
792
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[0, x], [y, 0]]);
|
|
793
|
+
<Rees 0-matrix semigroup 2x2 over <symmetric inverse monoid of degree 4>>
|
|
794
|
+
gap> IsInverseSemigroup(R);
|
|
795
|
+
true
|
|
796
|
+
gap> NrIdempotents(R);
|
|
797
|
+
33
|
|
798
|
+
gap> NrIdempotents(R) = NrIdempotents(S) * Length(Rows(R)) + 1;
|
|
799
|
+
true
|
|
800
|
+
gap> idems := Idempotents(R);;
|
|
801
|
+
gap> IsDuplicateFreeList(idems);
|
|
802
|
+
true
|
|
803
|
+
gap> Length(idems) = NrIdempotents(R);
|
|
804
|
+
true
|
|
805
|
+
gap> ForAll(R, x -> x in R or not IsIdempotent(x));
|
|
806
|
+
true
|
|
807
|
+
|
|
808
|
+
# ReesMatTest104: NrIdempotents and Idempotents (for a RZMS over a group)
|
|
809
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);
|
|
810
|
+
<Rees 0-matrix semigroup 1x1 over Group(())>
|
|
811
|
+
gap> NrIdempotents(R);
|
|
812
|
+
2
|
|
813
|
+
gap> Set(Idempotents(R));
|
|
814
|
+
[ 0, (1,(),1) ]
|
|
815
|
+
gap> Set(Idempotents(R)) = Elements(R);
|
|
816
|
+
true
|
|
817
|
+
gap> IsBand(R);
|
|
818
|
+
true
|
|
819
|
+
|
|
820
|
+
#
|
|
821
|
+
gap> x := Transformation([2, 1]);;
|
|
822
|
+
gap> T := Semigroup(x);
|
|
823
|
+
<commutative transformation semigroup of degree 2 with 1 generator>
|
|
824
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[x, 0], [x, x ^ 2]]);
|
|
825
|
+
<Rees 0-matrix semigroup 2x2 over <transformation group of size 2,
|
|
826
|
+
degree 2 with 1 generator>>
|
|
827
|
+
gap> NrIdempotents(R);
|
|
828
|
+
4
|
|
829
|
+
gap> Set(Idempotents(R));
|
|
830
|
+
[ 0, (1,Transformation( [ 2, 1 ] ),1), (1,Transformation( [ 2, 1 ] ),2),
|
|
831
|
+
(2,IdentityTransformation,2) ]
|
|
832
|
+
gap> ForAll(Idempotents(R), x -> x * x = x);
|
|
833
|
+
true
|
|
834
|
+
gap> ForAll(R, x -> x in Idempotents(R) or not IsIdempotent(x));
|
|
835
|
+
true
|
|
836
|
+
|
|
837
|
+
#
|
|
838
|
+
gap> x := Transformation([1, 1, 2]);;
|
|
839
|
+
gap> T := Semigroup(x);
|
|
840
|
+
<commutative transformation semigroup of degree 3 with 1 generator>
|
|
841
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[x, 0], [0, x ^ 2]]);
|
|
842
|
+
<Rees 0-matrix semigroup 2x2 over <commutative transformation semigroup
|
|
843
|
+
of size 2, degree 3 with 1 generator>>
|
|
844
|
+
gap> NrIdempotents(R);
|
|
845
|
+
3
|
|
846
|
+
gap> Idempotents(R);
|
|
847
|
+
[ (1,Transformation( [ 1, 1, 1 ] ),1), (2,Transformation( [ 1, 1, 1 ] ),2), 0
|
|
848
|
+
]
|
|
849
|
+
gap> ForAll(Idempotents(R), x -> x * x = x);
|
|
850
|
+
true
|
|
851
|
+
gap> ForAll(R, x -> x in Idempotents(R) or not IsIdempotent(x));
|
|
852
|
+
true
|
|
853
|
+
|
|
854
|
+
# ReesMatTest105: IsInverseSemigroup and Idempotents using sub-RZMS
|
|
855
|
+
gap> S := SymmetricInverseMonoid(4);;
|
|
856
|
+
gap> x := PartialPerm([2, 1, 4, 3]);;
|
|
857
|
+
gap> y := PartialPerm([2, 4, 3, 1]);;
|
|
858
|
+
gap> z := PartialPerm([0, 0, 0, 0]);;
|
|
859
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[x, x, 0], [y, 0, 0], [0, 0, x]]);
|
|
860
|
+
<Rees 0-matrix semigroup 3x3 over <symmetric inverse monoid of degree 4>>
|
|
861
|
+
gap> IsInverseSemigroup(R);
|
|
862
|
+
false
|
|
863
|
+
|
|
864
|
+
#
|
|
865
|
+
gap> T := Semigroup(RMSElement(R, 1, x, 1));
|
|
866
|
+
<subsemigroup of 3x3 Rees 0-matrix semigroup with 1 generator>
|
|
867
|
+
gap> IsInverseSemigroup(T);
|
|
868
|
+
true
|
|
869
|
+
gap> IsReesZeroMatrixSemigroup(T);
|
|
870
|
+
false
|
|
871
|
+
gap> NrIdempotents(T);
|
|
872
|
+
1
|
|
873
|
+
gap> Idempotents(T);
|
|
874
|
+
[ (1,(1,2)(3,4),1) ]
|
|
875
|
+
gap> T := Semigroup(RMSElement(R, 1, x, 1));
|
|
876
|
+
<subsemigroup of 3x3 Rees 0-matrix semigroup with 1 generator>
|
|
877
|
+
gap> IsReesZeroMatrixSemigroup(T);
|
|
878
|
+
false
|
|
879
|
+
gap> NrIdempotents(T);
|
|
880
|
+
1
|
|
881
|
+
gap> Idempotents(T);
|
|
882
|
+
[ (1,(1,2)(3,4),1) ]
|
|
883
|
+
gap> T := Semigroup(RMSElement(R, 1, y ^ -1, 2));
|
|
884
|
+
<subsemigroup of 3x3 Rees 0-matrix semigroup with 1 generator>
|
|
885
|
+
gap> IsInverseSemigroup(T);
|
|
886
|
+
true
|
|
887
|
+
gap> NrIdempotents(T);
|
|
888
|
+
1
|
|
889
|
+
gap> T := Semigroup(RMSElement(R, 1, y ^ -1, 2));;
|
|
890
|
+
gap> IsInverseSemigroup(T);
|
|
891
|
+
true
|
|
892
|
+
gap> Idempotents(T);
|
|
893
|
+
[ (1,(1,4,2)(3),2) ]
|
|
894
|
+
gap> T := Semigroup(RMSElement(R, 1, y ^ -1, 2));;
|
|
895
|
+
gap> NrIdempotents(T);
|
|
896
|
+
1
|
|
897
|
+
gap> T := Semigroup(RMSElement(R, 1, y ^ -1, 2));;
|
|
898
|
+
gap> Idempotents(T);
|
|
899
|
+
[ (1,(1,4,2)(3),2) ]
|
|
900
|
+
gap> T := Semigroup(RMSElement(R, 1, y ^ -1, 2));;
|
|
901
|
+
gap> SetIsInverseSemigroup(T, true);
|
|
902
|
+
gap> Idempotents(T);
|
|
903
|
+
[ (1,(1,4,2)(3),2) ]
|
|
904
|
+
|
|
905
|
+
#
|
|
906
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], S, [1, 2, 3]);
|
|
907
|
+
<Rees 0-matrix semigroup 2x3 over <symmetric inverse monoid of degree 4>>
|
|
908
|
+
gap> IsInverseSemigroup(T);
|
|
909
|
+
false
|
|
910
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], S, [1, 2]);
|
|
911
|
+
<Rees 0-matrix semigroup 2x2 over <symmetric inverse monoid of degree 4>>
|
|
912
|
+
gap> IsInverseSemigroup(T);
|
|
913
|
+
false
|
|
914
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [1, 2], S, [2, 3]);
|
|
915
|
+
<Rees 0-matrix semigroup 2x2 over <symmetric inverse monoid of degree 4>>
|
|
916
|
+
gap> IsInverseSemigroup(T);
|
|
917
|
+
false
|
|
918
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], S, [1, 3]);
|
|
919
|
+
<Rees 0-matrix semigroup 2x2 over <symmetric inverse monoid of degree 4>>
|
|
920
|
+
gap> IsInverseSemigroup(T);
|
|
921
|
+
true
|
|
922
|
+
gap> NrIdempotents(T);
|
|
923
|
+
33
|
|
924
|
+
gap> idems := Idempotents(T);;
|
|
925
|
+
gap> ForAll(T, x -> x in idems or not IsIdempotent(x));
|
|
926
|
+
true
|
|
927
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[z, x, 0], [0, 0, y]]);;
|
|
928
|
+
gap> IsInverseSemigroup(R);
|
|
929
|
+
false
|
|
930
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], S, [1, 2]);;
|
|
931
|
+
gap> NrIdempotents(T);
|
|
932
|
+
33
|
|
933
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], S, [1, 2]);;
|
|
934
|
+
gap> idems := Idempotents(T);;
|
|
935
|
+
gap> ForAll(T, x -> IsIdempotent(x) and x in idems or not IsIdempotent(x));
|
|
936
|
+
true
|
|
937
|
+
gap> G := GroupOfUnits(S);;
|
|
938
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], G, [1, 2]);
|
|
939
|
+
<subsemigroup of 3x2 Rees 0-matrix semigroup with 96 generators>
|
|
940
|
+
gap> SetUnderlyingSemigroup(T, G);
|
|
941
|
+
gap> IsInverseSemigroup(T);
|
|
942
|
+
true
|
|
943
|
+
gap> NrIdempotents(T);
|
|
944
|
+
3
|
|
945
|
+
gap> Idempotents(T);
|
|
946
|
+
[ 0, (2,(1,2)(3,4),1), (3,(1,4,2)(3),2) ]
|
|
947
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], G, [1, 2]);;
|
|
948
|
+
gap> SetUnderlyingSemigroup(T, G);
|
|
949
|
+
gap> SetIsInverseSemigroup(T, true);
|
|
950
|
+
gap> NrIdempotents(T);
|
|
951
|
+
3
|
|
952
|
+
gap> Idempotents(T);
|
|
953
|
+
[ 0, (2,(1,2)(3,4),1), (3,(1,4,2)(3),2) ]
|
|
954
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [2, 3], G, [1, 2]);;
|
|
955
|
+
gap> SetUnderlyingSemigroup(T, G);
|
|
956
|
+
gap> NrIdempotents(T);
|
|
957
|
+
3
|
|
958
|
+
gap> Set(Idempotents(T));
|
|
959
|
+
[ 0, (2,(1,2)(3,4),1), (3,(1,4,2)(3),2) ]
|
|
960
|
+
|
|
961
|
+
# ReesMatTest106: Test for Issue #128
|
|
962
|
+
gap> S := SymmetricInverseMonoid(5);;
|
|
963
|
+
gap> G := GroupOfUnits(S);;
|
|
964
|
+
gap> id := Identity(S);;
|
|
965
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[id, 0], [0, id]]);;
|
|
966
|
+
gap> T := ReesZeroMatrixSubsemigroup(R, [1 .. 2], G, [1 .. 2]);
|
|
967
|
+
<subsemigroup of 2x2 Rees 0-matrix semigroup with 480 generators>
|
|
968
|
+
gap> IsReesZeroMatrixSemigroup(T);
|
|
969
|
+
true
|
|
970
|
+
gap> UnderlyingSemigroup(T);
|
|
971
|
+
<partial perm group of size 120, rank 5 with 73 generators>
|
|
972
|
+
|
|
973
|
+
# ReesMatTest107: RZMSNormalization, errors
|
|
974
|
+
gap> T := FullTransformationMonoid(4);
|
|
975
|
+
<full transformation monoid of degree 4>
|
|
976
|
+
gap> G := GroupOfUnits(T);
|
|
977
|
+
<transformation group of degree 4 with 2 generators>
|
|
978
|
+
gap> id := Identity(G);
|
|
979
|
+
IdentityTransformation
|
|
980
|
+
gap> R := ReesZeroMatrixSemigroup(T, [[id]]);
|
|
981
|
+
<Rees 0-matrix semigroup 1x1 over <full transformation monoid of degree 4>>
|
|
982
|
+
gap> RZMSNormalization(R);
|
|
983
|
+
<Rees 0-matrix semigroup 1x1 over <full transformation monoid of degree 4>>
|
|
984
|
+
-> <Rees 0-matrix semigroup 1x1 over <full transformation monoid of degree 4>>
|
|
985
|
+
gap> R := ReesZeroMatrixSemigroup(G, [[id]]);
|
|
986
|
+
<Rees 0-matrix semigroup 1x1 over <transformation group of size 24,
|
|
987
|
+
degree 4 with 2 generators>>
|
|
988
|
+
gap> iso := RZMSNormalization(R);;
|
|
989
|
+
gap> Range(iso);
|
|
990
|
+
<Rees 0-matrix semigroup 1x1 over <transformation group of size 24,
|
|
991
|
+
degree 4 with 2 generators>>
|
|
992
|
+
gap> Matrix(Range(iso));
|
|
993
|
+
[ [ IdentityTransformation ] ]
|
|
994
|
+
gap> inv := InverseGeneralMapping(iso);;
|
|
995
|
+
|
|
996
|
+
# ReesMatTest108: RZMSNormalization, example 1
|
|
997
|
+
gap> G := SymmetricGroup(5);;
|
|
998
|
+
gap> R := ReesZeroMatrixSemigroup(G,
|
|
999
|
+
> [[0, (1, 4)(2, 5, 3), 0], [0, 0, (4, 2, 3)], [(1, 5)(2, 4, 3), 0, 0]]);
|
|
1000
|
+
<Rees 0-matrix semigroup 3x3 over Sym( [ 1 .. 5 ] )>
|
|
1001
|
+
gap> IsInverseSemigroup(R);
|
|
1002
|
+
true
|
|
1003
|
+
gap> iso := RZMSNormalization(R);
|
|
1004
|
+
<Rees 0-matrix semigroup 3x3 over Sym( [ 1 .. 5 ] )> ->
|
|
1005
|
+
<Rees 0-matrix semigroup 3x3 over Sym( [ 1 .. 5 ] )>
|
|
1006
|
+
gap> S := Range(iso);
|
|
1007
|
+
<Rees 0-matrix semigroup 3x3 over Sym( [ 1 .. 5 ] )>
|
|
1008
|
+
gap> Matrix(S);
|
|
1009
|
+
[ [ (), 0, 0 ], [ 0, (), 0 ], [ 0, 0, () ] ]
|
|
1010
|
+
gap> inv := InverseGeneralMapping(iso);;
|
|
1011
|
+
gap> x := MultiplicativeZero(R) ^ iso;
|
|
1012
|
+
0
|
|
1013
|
+
gap> x ^ inv = MultiplicativeZero(R);
|
|
1014
|
+
true
|
|
1015
|
+
gap> x := RMSElement(R, 1, (), 1);
|
|
1016
|
+
(1,(),1)
|
|
1017
|
+
gap> x ^ iso;
|
|
1018
|
+
(1,(1,5)(2,4,3),2)
|
|
1019
|
+
gap> (x ^ iso) ^ inv = x;
|
|
1020
|
+
true
|
|
1021
|
+
|
|
1022
|
+
# ReesMatTest109: RZMSNormalization, example 2
|
|
1023
|
+
gap> G := SymmetricGroup(4);;
|
|
1024
|
+
gap> mat := [
|
|
1025
|
+
> [0, 0, (1, 3, 2), 0, (), 0, 0, (1, 2, 3)],
|
|
1026
|
+
> [(), 0, 0, 0, 0, (1, 3, 4, 2), 0, (2, 4)],
|
|
1027
|
+
> [0, 0, 0, (1, 2, 3), 0, 0, (1, 3, 2), 0],
|
|
1028
|
+
> [0, 0, 0, 0, 0, 0, (1, 4, 2, 3), 0],
|
|
1029
|
+
> [(), (1, 2, 3), (1, 2), 0, 0, 0, 0, 0],
|
|
1030
|
+
> [0, (), 0, 0, 0, (1, 2), 0, 0]];;
|
|
1031
|
+
gap> R := ReesZeroMatrixSemigroup(G, mat);
|
|
1032
|
+
<Rees 0-matrix semigroup 8x6 over Sym( [ 1 .. 4 ] )>
|
|
1033
|
+
gap> iso := RZMSNormalization(R);
|
|
1034
|
+
<Rees 0-matrix semigroup 8x6 over Sym( [ 1 .. 4 ] )> ->
|
|
1035
|
+
<Rees 0-matrix semigroup 8x6 over Sym( [ 1 .. 4 ] )>
|
|
1036
|
+
gap> S := Range(iso);
|
|
1037
|
+
<Rees 0-matrix semigroup 8x6 over Sym( [ 1 .. 4 ] )>
|
|
1038
|
+
|
|
1039
|
+
# check that mat is in the 'normal' form
|
|
1040
|
+
gap> mat := Matrix(S);
|
|
1041
|
+
[ [ (), (), (), 0, 0, 0, 0, 0 ], [ (), 0, 0, (), (), 0, 0, 0 ],
|
|
1042
|
+
[ 0, 0, (), (1,4,2), 0, (), 0, 0 ], [ 0, 0, 0, 0, (), (2,3,4), 0, 0 ],
|
|
1043
|
+
[ 0, 0, 0, 0, 0, 0, (), () ], [ 0, 0, 0, 0, 0, 0, 0, () ] ]
|
|
1044
|
+
gap> first_occurrence := l -> First([1 .. Length(l)], i -> l[i] <> 0);;
|
|
1045
|
+
gap> x := Length(mat);;
|
|
1046
|
+
gap> ForAll([1 .. x - 1],
|
|
1047
|
+
> i -> first_occurrence(mat[i]) <= first_occurrence(mat[i + 1]));
|
|
1048
|
+
true
|
|
1049
|
+
gap> ForAll([1 .. Length(mat[1]) - 1], i ->
|
|
1050
|
+
> first_occurrence(mat{[1 .. x]}[i]) <= first_occurrence(mat{[1 .. x]}[i + 1]));
|
|
1051
|
+
true
|
|
1052
|
+
|
|
1053
|
+
# check that the connected components are grouped together
|
|
1054
|
+
gap> comps := RZMSConnectedComponents(S);
|
|
1055
|
+
[ [ [ 1, 2, 3, 4, 5, 6 ], [ 1, 2, 3, 4 ] ], [ [ 7, 8 ], [ 5, 6 ] ] ]
|
|
1056
|
+
gap> Concatenation(List(comps, x -> x[1])) = Rows(R);
|
|
1057
|
+
true
|
|
1058
|
+
gap> Concatenation(List(comps, x -> x[2])) = Columns(R);
|
|
1059
|
+
true
|
|
1060
|
+
|
|
1061
|
+
# MatrixEntries: Test for Issue #164
|
|
1062
|
+
gap> mat := [
|
|
1063
|
+
> [Bipartition([[1, 2, 3, 4, -2, -3], [-1], [-4]]), 0, 0, 0],
|
|
1064
|
+
> [0, Bipartition([[1, 3, -1], [2, 4, -2, -3], [-4]]), 0,
|
|
1065
|
+
> Bipartition([[1, 4, -1], [2, 3], [-2], [-3, -4]])],
|
|
1066
|
+
> [0, 0, Bipartition([[1, 2, 3, -3], [4, -1, -4], [-2]]), 0]];;
|
|
1067
|
+
gap> R := ReesZeroMatrixSemigroup(PartitionMonoid(4), mat);;
|
|
1068
|
+
gap> MatrixEntries(R);
|
|
1069
|
+
[ 0, <bipartition: [ 1, 2, 3, 4, -2, -3 ], [ -1 ], [ -4 ]>,
|
|
1070
|
+
<bipartition: [ 1, 2, 3, -3 ], [ 4, -1, -4 ], [ -2 ]>,
|
|
1071
|
+
<bipartition: [ 1, 3, -1 ], [ 2, 4, -2, -3 ], [ -4 ]>,
|
|
1072
|
+
<bipartition: [ 1, 4, -1 ], [ 2, 3 ], [ -2 ], [ -3, -4 ]> ]
|
|
1073
|
+
gap> mat := [
|
|
1074
|
+
> [Bipartition([[1, 2, 4], [3, -1, -2], [-3], [-4]]),
|
|
1075
|
+
> Bipartition([[1, -2, -4], [2, 3, 4, -3], [-1]])],
|
|
1076
|
+
> [Bipartition([[1, 2, 4, -1, -4], [3], [-2, -3]]),
|
|
1077
|
+
> Bipartition([[1, 3, -1], [2, 4, -2, -3], [-4]])],
|
|
1078
|
+
> [Bipartition([[1, 2, -2, -3], [3, 4, -1], [-4]]),
|
|
1079
|
+
> Bipartition([[1, -1, -2], [2, 3, -3, -4], [4]])]];;
|
|
1080
|
+
gap> R := ReesZeroMatrixSemigroup(PartitionMonoid(4), mat);;
|
|
1081
|
+
gap> MatrixEntries(R);
|
|
1082
|
+
[ <bipartition: [ 1, 2, 4, -1, -4 ], [ 3 ], [ -2, -3 ]>,
|
|
1083
|
+
<bipartition: [ 1, 2, 4 ], [ 3, -1, -2 ], [ -3 ], [ -4 ]>,
|
|
1084
|
+
<bipartition: [ 1, 2, -2, -3 ], [ 3, 4, -1 ], [ -4 ]>,
|
|
1085
|
+
<bipartition: [ 1, 3, -1 ], [ 2, 4, -2, -3 ], [ -4 ]>,
|
|
1086
|
+
<bipartition: [ 1, -2, -4 ], [ 2, 3, 4, -3 ], [ -1 ]>,
|
|
1087
|
+
<bipartition: [ 1, -1, -2 ], [ 2, 3, -3, -4 ], [ 4 ]> ]
|
|
1088
|
+
|
|
1089
|
+
#
|
|
1090
|
+
gap> SEMIGROUPS.StopTest();
|
|
1091
|
+
gap> STOP_TEST("Semigroups package: extreme/semirms.tst");
|