passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-pc-linux-musl-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1068 -0
- gap/pkg/semigroups/config.status +1133 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-f0b7066b.so.2.0.0 +0 -0
- passagemath_gap_pkg_semigroups.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,1521 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/attributes/inverse.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 Wilf A. Wilson
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
#
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local D, I, S, T, W, acting, an, elts, es, f, foo, gens, h, iso, jid, n, reps
|
|
12
|
+
#@local small, x
|
|
13
|
+
gap> START_TEST("Semigroups package: standard/attributes/inverse.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
#
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
|
|
19
|
+
# attrinv: VagnerPrestonRepresentation, symmetric inv monoid 4 1/1
|
|
20
|
+
gap> S := InverseSemigroup([
|
|
21
|
+
> PartialPerm([2, 3, 4, 1]),
|
|
22
|
+
> PartialPerm([2, 1, 3, 4]),
|
|
23
|
+
> PartialPerm([1, 2, 3, 0])]);;
|
|
24
|
+
gap> Size(S);
|
|
25
|
+
209
|
|
26
|
+
gap> Size(S) = Size(SymmetricInverseMonoid(4));
|
|
27
|
+
true
|
|
28
|
+
gap> iso := VagnerPrestonRepresentation(S);;
|
|
29
|
+
gap> DegreeOfPartialPermSemigroup(Range(iso));
|
|
30
|
+
209
|
|
31
|
+
|
|
32
|
+
# attrinv: SameMinorantsSubgroup, symmetric inv monoid 5 1/2
|
|
33
|
+
gap> S := SymmetricInverseSemigroup(5);;
|
|
34
|
+
gap> h := HClass(S, One(S));
|
|
35
|
+
<Green's H-class: <identity partial perm on [ 1, 2, 3, 4, 5 ]>>
|
|
36
|
+
gap> SameMinorantsSubgroup(h);
|
|
37
|
+
[ <identity partial perm on [ 1, 2, 3, 4, 5 ]> ]
|
|
38
|
+
gap> h := HClass(S, PartialPerm([1, 2, 0, 0, 0]));
|
|
39
|
+
<Green's H-class: <identity partial perm on [ 1, 2 ]>>
|
|
40
|
+
gap> SameMinorantsSubgroup(h);
|
|
41
|
+
[ <identity partial perm on [ 1, 2 ]> ]
|
|
42
|
+
gap> h := HClass(S, MultiplicativeZero(S));
|
|
43
|
+
<Green's H-class: <empty partial perm>>
|
|
44
|
+
gap> SameMinorantsSubgroup(h);
|
|
45
|
+
[ <empty partial perm> ]
|
|
46
|
+
|
|
47
|
+
# attrinv: SameMinorantsSubgroup, error 2/2
|
|
48
|
+
gap> S := FullTransformationMonoid(5);;
|
|
49
|
+
gap> h := HClass(S, One(S));
|
|
50
|
+
<Green's H-class: IdentityTransformation>
|
|
51
|
+
gap> SameMinorantsSubgroup(h);
|
|
52
|
+
Error, the parent of the argument (a group H-class) must be an inverse semigro\
|
|
53
|
+
up
|
|
54
|
+
|
|
55
|
+
# attrinv: Minorants, error, 1
|
|
56
|
+
gap> S := SymmetricInverseMonoid(3);;
|
|
57
|
+
gap> f := PartialPerm([1, 2, 3, 4]);;
|
|
58
|
+
gap> Minorants(S, f);
|
|
59
|
+
Error, the 2nd argument (a mult. elt.) is not an element of the 1st argument (\
|
|
60
|
+
an inverse semigroup)
|
|
61
|
+
gap> f := PartialPerm([1, 2, 3]);;
|
|
62
|
+
gap> Set(Minorants(S, f));
|
|
63
|
+
[ <empty partial perm>, <identity partial perm on [ 1 ]>,
|
|
64
|
+
<identity partial perm on [ 2 ]>, <identity partial perm on [ 1, 2 ]>,
|
|
65
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 2, 3 ]>,
|
|
66
|
+
<identity partial perm on [ 1, 3 ]> ]
|
|
67
|
+
gap> NaturalPartialOrder(S);;
|
|
68
|
+
gap> Minorants(S, f);
|
|
69
|
+
[ <empty partial perm>, <identity partial perm on [ 1 ]>,
|
|
70
|
+
<identity partial perm on [ 2 ]>, <identity partial perm on [ 1, 2 ]>,
|
|
71
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 2, 3 ]>,
|
|
72
|
+
<identity partial perm on [ 1, 3 ]> ]
|
|
73
|
+
gap> f := PartialPerm([1, 3, 2]);;
|
|
74
|
+
|
|
75
|
+
# attrinv: Minorants, not idempotent, 2
|
|
76
|
+
gap> S := Semigroup([
|
|
77
|
+
> PartialPerm([1, 2, 3, 4], [1, 2, 3, 4]),
|
|
78
|
+
> PartialPerm([1, 2, 3], [2, 3, 1])]);;
|
|
79
|
+
gap> IsInverseSemigroup(S);
|
|
80
|
+
true
|
|
81
|
+
gap> Minorants(S, GeneratorsOfSemigroup(S)[2]);
|
|
82
|
+
[ ]
|
|
83
|
+
gap> S := Semigroup(S, rec(acting := false));;
|
|
84
|
+
gap> IsInverseSemigroup(S);
|
|
85
|
+
true
|
|
86
|
+
gap> Minorants(S, GeneratorsOfSemigroup(S)[1]);
|
|
87
|
+
[ <identity partial perm on [ 1, 2, 3 ]> ]
|
|
88
|
+
|
|
89
|
+
# attrinv: character tables of inverse acting semigroups
|
|
90
|
+
# Some random examples to test consistency of old code with new
|
|
91
|
+
gap> gens := [
|
|
92
|
+
> [PartialPerm([1, 2, 3, 4, 6, 8, 9], [1, 5, 3, 8, 9, 4, 10])],
|
|
93
|
+
> [PartialPerm([1, 2, 3, 4, 5, 6], [3, 8, 4, 6, 5, 7]),
|
|
94
|
+
> PartialPerm([1, 2, 3, 4, 5, 7], [1, 4, 3, 2, 7, 6]),
|
|
95
|
+
> PartialPerm([1, 2, 3, 5, 6, 8], [5, 7, 1, 4, 2, 6])],
|
|
96
|
+
> [PartialPerm([1, 2, 3, 5], [2, 1, 7, 3]),
|
|
97
|
+
> PartialPerm([1, 2, 4, 5, 6], [7, 3, 1, 4, 2]),
|
|
98
|
+
> PartialPerm([1, 2, 3, 4, 6], [7, 6, 5, 1, 2]),
|
|
99
|
+
> PartialPerm([1, 3, 6, 7], [6, 3, 1, 4])],
|
|
100
|
+
> [PartialPerm([1, 2, 3, 5], [1, 6, 4, 7]),
|
|
101
|
+
> PartialPerm([1, 2, 3, 6], [1, 6, 5, 2]),
|
|
102
|
+
> PartialPerm([1, 2, 3, 5, 6, 7], [4, 3, 5, 7, 1, 6]),
|
|
103
|
+
> PartialPerm([1, 2, 3, 4, 7], [6, 4, 2, 3, 1])],
|
|
104
|
+
> [PartialPerm([1, 2, 3, 5, 6], [5, 3, 7, 4, 1]),
|
|
105
|
+
> PartialPerm([1, 2, 3, 4, 5, 7], [3, 1, 5, 7, 6, 2])],
|
|
106
|
+
> [PartialPerm([1, 2, 3, 4, 5, 6, 9], [1, 5, 9, 2, 6, 10, 7]),
|
|
107
|
+
> PartialPerm([1, 3, 4, 7, 8, 9], [9, 4, 1, 6, 2, 8]),
|
|
108
|
+
> PartialPerm([1, 2, 3, 4, 5, 9], [9, 3, 8, 2, 10, 7])],
|
|
109
|
+
> [PartialPerm([1, 2, 3, 4, 5], [6, 4, 1, 2, 7]),
|
|
110
|
+
> PartialPerm([1, 2, 3, 6], [3, 5, 7, 4]),
|
|
111
|
+
> PartialPerm([1, 2, 3, 4, 5, 6, 7], [1, 7, 9, 5, 2, 8, 4])],
|
|
112
|
+
> [PartialPerm([1, 2, 4], [3, 6, 2]),
|
|
113
|
+
> PartialPerm([1, 2, 3, 4], [6, 3, 2, 1]),
|
|
114
|
+
> PartialPerm([1, 2, 3, 6], [4, 6, 3, 1]),
|
|
115
|
+
> PartialPerm([1, 2, 3, 5, 6], [5, 6, 3, 2, 4])],
|
|
116
|
+
> [PartialPerm([1, 2, 3, 4], [3, 5, 1, 2]),
|
|
117
|
+
> PartialPerm([1, 2, 3, 4], [5, 4, 2, 1]),
|
|
118
|
+
> PartialPerm([1, 2, 4, 5], [3, 5, 1, 2])],
|
|
119
|
+
> [PartialPerm([1, 2, 3, 5], [4, 1, 2, 3])]];;
|
|
120
|
+
gap> S := List(gens, x -> InverseSemigroup(x, rec(acting := true)));
|
|
121
|
+
[ <inverse partial perm semigroup of rank 9 with 1 generator>,
|
|
122
|
+
<inverse partial perm semigroup of rank 8 with 3 generators>,
|
|
123
|
+
<inverse partial perm semigroup of rank 7 with 4 generators>,
|
|
124
|
+
<inverse partial perm semigroup of rank 7 with 4 generators>,
|
|
125
|
+
<inverse partial perm semigroup of rank 7 with 2 generators>,
|
|
126
|
+
<inverse partial perm semigroup of rank 10 with 3 generators>,
|
|
127
|
+
<inverse partial perm semigroup of rank 9 with 3 generators>,
|
|
128
|
+
<inverse partial perm semigroup of rank 6 with 4 generators>,
|
|
129
|
+
<inverse partial perm semigroup of rank 5 with 3 generators>,
|
|
130
|
+
<inverse partial perm semigroup of rank 5 with 1 generator> ]
|
|
131
|
+
|
|
132
|
+
#@if CompareVersionNumbers(ReplacedString(GAPInfo.Version, "dev", ""), "4.15")
|
|
133
|
+
gap> CharacterTableOfInverseSemigroup(S[1]);
|
|
134
|
+
[ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
|
|
135
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
|
|
136
|
+
<identity partial perm on [ 1, 3, 4, 6, 8 ]>,
|
|
137
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
|
|
138
|
+
gap> CharacterTableOfInverseSemigroup(S[2]);
|
|
139
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
140
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
141
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
142
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
143
|
+
[ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
144
|
+
[ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
145
|
+
[ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
146
|
+
[ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
147
|
+
[ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
148
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
149
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
150
|
+
], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0,
|
|
151
|
+
0, 0, 0 ],
|
|
152
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
153
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
154
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
|
|
155
|
+
, [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
|
|
156
|
+
0, 0 ],
|
|
157
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
158
|
+
[ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
|
|
159
|
+
], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
|
|
160
|
+
0, 0 ],
|
|
161
|
+
[ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
|
|
162
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
163
|
+
[ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
|
|
164
|
+
<identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
|
|
165
|
+
<identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
|
|
166
|
+
<identity partial perm on [ 1, 3, 5, 6, 8 ]>,
|
|
167
|
+
<identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
168
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>,
|
|
169
|
+
<identity partial perm on [ 1, 3, 6, 8 ]>,
|
|
170
|
+
<identity partial perm on [ 1, 3, 4, 7 ]>,
|
|
171
|
+
<identity partial perm on [ 2, 3, 5, 7 ]>,
|
|
172
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
|
|
173
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
|
|
174
|
+
<identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
|
|
175
|
+
<identity partial perm on [ 2, 5 ]>, (2,5),
|
|
176
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
177
|
+
gap> CharacterTableOfInverseSemigroup(S[3]);
|
|
178
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
179
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
180
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
181
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
182
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
183
|
+
[ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
184
|
+
[ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
185
|
+
[ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
186
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
187
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
188
|
+
[ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
189
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
190
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
191
|
+
[ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
192
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
193
|
+
[ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
194
|
+
<identity partial perm on [ 1, 2, 5, 6, 7 ]>,
|
|
195
|
+
<identity partial perm on [ 1, 2, 3, 7 ]>,
|
|
196
|
+
<identity partial perm on [ 1, 3, 6, 7 ]>,
|
|
197
|
+
<identity partial perm on [ 1, 5, 6, 7 ]>,
|
|
198
|
+
<identity partial perm on [ 2, 3, 4, 6 ]>,
|
|
199
|
+
<identity partial perm on [ 3, 6, 7 ]>,
|
|
200
|
+
<identity partial perm on [ 5, 6, 7 ]>,
|
|
201
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
|
|
202
|
+
<identity partial perm on [ 1, 5, 6 ]>,
|
|
203
|
+
<identity partial perm on [ 3, 7 ]>, (3,7),
|
|
204
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
205
|
+
gap> CharacterTableOfInverseSemigroup(S[4]);
|
|
206
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
207
|
+
[ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
208
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
209
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
210
|
+
[ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
211
|
+
[ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
212
|
+
[ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
213
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
214
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
215
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
216
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
217
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
218
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
219
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
220
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
|
|
221
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
|
|
222
|
+
[ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
|
|
223
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
224
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
|
|
225
|
+
<identity partial perm on [ 2, 3, 5, 6, 7 ]>,
|
|
226
|
+
<identity partial perm on [ 1, 2, 3, 4, 6 ]>,
|
|
227
|
+
<identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
228
|
+
<identity partial perm on [ 1, 4, 6, 7 ]>,
|
|
229
|
+
<identity partial perm on [ 2, 3, 4, 7 ]>,
|
|
230
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>,
|
|
231
|
+
<identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
|
|
232
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
|
|
233
|
+
<identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
|
|
234
|
+
<identity partial perm on [ 1, 2 ]>, (1,2),
|
|
235
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
236
|
+
gap> CharacterTableOfInverseSemigroup(S[5]);
|
|
237
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
238
|
+
[ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
|
|
239
|
+
, [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
|
|
240
|
+
[ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
241
|
+
[ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
242
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
|
|
243
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
|
|
244
|
+
[ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
|
|
245
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
246
|
+
[ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
|
|
247
|
+
<identity partial perm on [ 1, 3, 4, 5, 7 ]>,
|
|
248
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
249
|
+
<identity partial perm on [ 1, 3, 5, 6 ]>,
|
|
250
|
+
<identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
|
|
251
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
252
|
+
<identity partial perm on [ 4 ]>, <empty partial perm> ] ]
|
|
253
|
+
gap> CharacterTableOfInverseSemigroup(S[6]);
|
|
254
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
255
|
+
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
256
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
257
|
+
[ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
258
|
+
[ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
259
|
+
[ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
260
|
+
[ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
261
|
+
[ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
262
|
+
[ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
263
|
+
[ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
264
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
265
|
+
[ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
266
|
+
[ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
267
|
+
[ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
268
|
+
[ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
269
|
+
[ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
270
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
|
|
271
|
+
, [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
|
|
272
|
+
0, 0 ],
|
|
273
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
274
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
|
|
275
|
+
0, 0 ],
|
|
276
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
|
|
277
|
+
0, 0 ],
|
|
278
|
+
[ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
|
|
279
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
|
|
280
|
+
],
|
|
281
|
+
[ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
|
|
282
|
+
<identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
|
|
283
|
+
<identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
|
|
284
|
+
<identity partial perm on [ 1, 5, 6, 7, 10 ]>,
|
|
285
|
+
<identity partial perm on [ 1, 3, 4, 7, 8 ]>,
|
|
286
|
+
<identity partial perm on [ 3, 7, 9, 10 ]>,
|
|
287
|
+
<identity partial perm on [ 1, 4, 8, 9 ]>,
|
|
288
|
+
<identity partial perm on [ 3, 4, 6, 9 ]>,
|
|
289
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>,
|
|
290
|
+
<identity partial perm on [ 1, 4, 7, 8 ]>,
|
|
291
|
+
<identity partial perm on [ 2, 4, 6, 8 ]>,
|
|
292
|
+
<identity partial perm on [ 3, 6, 9 ]>,
|
|
293
|
+
<identity partial perm on [ 6, 8, 9 ]>,
|
|
294
|
+
<identity partial perm on [ 1, 3, 7 ]>,
|
|
295
|
+
<identity partial perm on [ 3, 4, 6 ]>,
|
|
296
|
+
<identity partial perm on [ 1, 2, 4 ]>,
|
|
297
|
+
<identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
|
|
298
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
299
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
300
|
+
gap> CharacterTableOfInverseSemigroup(S[7]);
|
|
301
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
302
|
+
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
303
|
+
[ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
304
|
+
[ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
305
|
+
[ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
306
|
+
[ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
307
|
+
[ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
308
|
+
[ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
309
|
+
[ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
310
|
+
[ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
311
|
+
[ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
312
|
+
[ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
313
|
+
[ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
314
|
+
[ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
315
|
+
[ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
316
|
+
[ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
317
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
318
|
+
[ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
|
|
319
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
|
|
320
|
+
(1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
|
|
321
|
+
, <identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
322
|
+
<identity partial perm on [ 3, 4, 5, 7 ]>,
|
|
323
|
+
<identity partial perm on [ 2, 5, 7 ]>,
|
|
324
|
+
<identity partial perm on [ 3, 5, 7 ]>,
|
|
325
|
+
<identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
|
|
326
|
+
<identity partial perm on [ 3, 4, 5 ]>,
|
|
327
|
+
<identity partial perm on [ 2, 4 ]>, (2,4),
|
|
328
|
+
<identity partial perm on [ 7 ]>, <empty partial perm> ] ]
|
|
329
|
+
gap> CharacterTableOfInverseSemigroup(S[8]);
|
|
330
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
331
|
+
[ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
|
|
332
|
+
[ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
|
|
333
|
+
[ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
|
|
334
|
+
[ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
335
|
+
[ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
|
|
336
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
337
|
+
<identity partial perm on [ 1, 2, 3, 5 ]>,
|
|
338
|
+
<identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
|
|
339
|
+
<identity partial perm on [ 2, 3 ]>, (2,3),
|
|
340
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
341
|
+
gap> CharacterTableOfInverseSemigroup(S[9]);
|
|
342
|
+
[ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
343
|
+
[ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
|
|
344
|
+
[ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
345
|
+
[ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
|
|
346
|
+
[ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
347
|
+
[ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
|
|
348
|
+
<identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
|
|
349
|
+
<identity partial perm on [ 3, 4 ]>, (3,4),
|
|
350
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
351
|
+
<identity partial perm on [ 3 ]>, <empty partial perm> ] ]
|
|
352
|
+
gap> CharacterTableOfInverseSemigroup(S[10]);
|
|
353
|
+
[ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
|
|
354
|
+
[ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
|
|
355
|
+
[ <identity partial perm on [ 1, 2, 3, 4 ]>,
|
|
356
|
+
<identity partial perm on [ 2, 3, 5 ]>,
|
|
357
|
+
<identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
|
|
358
|
+
<empty partial perm> ] ]
|
|
359
|
+
gap> CharacterTableOfInverseSemigroup(S[1]);
|
|
360
|
+
[ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
|
|
361
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
|
|
362
|
+
<identity partial perm on [ 1, 3, 4, 6, 8 ]>,
|
|
363
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
|
|
364
|
+
gap> CharacterTableOfInverseSemigroup(S[2]);
|
|
365
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
366
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
367
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
368
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
369
|
+
[ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
370
|
+
[ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
371
|
+
[ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
372
|
+
[ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
373
|
+
[ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
374
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
375
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
376
|
+
], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0,
|
|
377
|
+
0, 0, 0 ],
|
|
378
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
379
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
380
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
|
|
381
|
+
, [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
|
|
382
|
+
0, 0 ],
|
|
383
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
384
|
+
[ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
|
|
385
|
+
], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
|
|
386
|
+
0, 0 ],
|
|
387
|
+
[ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
|
|
388
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
389
|
+
[ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
|
|
390
|
+
<identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
|
|
391
|
+
<identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
|
|
392
|
+
<identity partial perm on [ 1, 3, 5, 6, 8 ]>,
|
|
393
|
+
<identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
394
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>,
|
|
395
|
+
<identity partial perm on [ 1, 3, 6, 8 ]>,
|
|
396
|
+
<identity partial perm on [ 1, 3, 4, 7 ]>,
|
|
397
|
+
<identity partial perm on [ 2, 3, 5, 7 ]>,
|
|
398
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
|
|
399
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
|
|
400
|
+
<identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
|
|
401
|
+
<identity partial perm on [ 2, 5 ]>, (2,5),
|
|
402
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
403
|
+
gap> CharacterTableOfInverseSemigroup(S[3]);
|
|
404
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
405
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
406
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
407
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
408
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
409
|
+
[ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
410
|
+
[ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
411
|
+
[ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
412
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
413
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
414
|
+
[ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
415
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
416
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
417
|
+
[ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
418
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
419
|
+
[ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
420
|
+
<identity partial perm on [ 1, 2, 5, 6, 7 ]>,
|
|
421
|
+
<identity partial perm on [ 1, 2, 3, 7 ]>,
|
|
422
|
+
<identity partial perm on [ 1, 3, 6, 7 ]>,
|
|
423
|
+
<identity partial perm on [ 1, 5, 6, 7 ]>,
|
|
424
|
+
<identity partial perm on [ 2, 3, 4, 6 ]>,
|
|
425
|
+
<identity partial perm on [ 3, 6, 7 ]>,
|
|
426
|
+
<identity partial perm on [ 5, 6, 7 ]>,
|
|
427
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
|
|
428
|
+
<identity partial perm on [ 1, 5, 6 ]>,
|
|
429
|
+
<identity partial perm on [ 3, 7 ]>, (3,7),
|
|
430
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
431
|
+
gap> CharacterTableOfInverseSemigroup(S[4]);
|
|
432
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
433
|
+
[ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
434
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
435
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
436
|
+
[ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
437
|
+
[ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
438
|
+
[ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
439
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
440
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
441
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
442
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
443
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
444
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
445
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
446
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
|
|
447
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
|
|
448
|
+
[ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
|
|
449
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
450
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
|
|
451
|
+
<identity partial perm on [ 2, 3, 5, 6, 7 ]>,
|
|
452
|
+
<identity partial perm on [ 1, 2, 3, 4, 6 ]>,
|
|
453
|
+
<identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
454
|
+
<identity partial perm on [ 1, 4, 6, 7 ]>,
|
|
455
|
+
<identity partial perm on [ 2, 3, 4, 7 ]>,
|
|
456
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>,
|
|
457
|
+
<identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
|
|
458
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
|
|
459
|
+
<identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
|
|
460
|
+
<identity partial perm on [ 1, 2 ]>, (1,2),
|
|
461
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
462
|
+
gap> CharacterTableOfInverseSemigroup(S[5]);
|
|
463
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
464
|
+
[ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
|
|
465
|
+
, [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
|
|
466
|
+
[ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
467
|
+
[ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
468
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
|
|
469
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
|
|
470
|
+
[ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
|
|
471
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
472
|
+
[ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
|
|
473
|
+
<identity partial perm on [ 1, 3, 4, 5, 7 ]>,
|
|
474
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
475
|
+
<identity partial perm on [ 1, 3, 5, 6 ]>,
|
|
476
|
+
<identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
|
|
477
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
478
|
+
<identity partial perm on [ 4 ]>, <empty partial perm> ] ]
|
|
479
|
+
gap> CharacterTableOfInverseSemigroup(S[6]);
|
|
480
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
481
|
+
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
482
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
483
|
+
[ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
484
|
+
[ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
485
|
+
[ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
486
|
+
[ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
487
|
+
[ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
488
|
+
[ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
489
|
+
[ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
490
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
491
|
+
[ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
492
|
+
[ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
493
|
+
[ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
494
|
+
[ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
495
|
+
[ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
496
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
|
|
497
|
+
, [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
|
|
498
|
+
0, 0 ],
|
|
499
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
500
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
|
|
501
|
+
0, 0 ],
|
|
502
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
|
|
503
|
+
0, 0 ],
|
|
504
|
+
[ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
|
|
505
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
|
|
506
|
+
],
|
|
507
|
+
[ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
|
|
508
|
+
<identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
|
|
509
|
+
<identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
|
|
510
|
+
<identity partial perm on [ 1, 5, 6, 7, 10 ]>,
|
|
511
|
+
<identity partial perm on [ 1, 3, 4, 7, 8 ]>,
|
|
512
|
+
<identity partial perm on [ 3, 7, 9, 10 ]>,
|
|
513
|
+
<identity partial perm on [ 1, 4, 8, 9 ]>,
|
|
514
|
+
<identity partial perm on [ 3, 4, 6, 9 ]>,
|
|
515
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>,
|
|
516
|
+
<identity partial perm on [ 1, 4, 7, 8 ]>,
|
|
517
|
+
<identity partial perm on [ 2, 4, 6, 8 ]>,
|
|
518
|
+
<identity partial perm on [ 3, 6, 9 ]>,
|
|
519
|
+
<identity partial perm on [ 6, 8, 9 ]>,
|
|
520
|
+
<identity partial perm on [ 1, 3, 7 ]>,
|
|
521
|
+
<identity partial perm on [ 3, 4, 6 ]>,
|
|
522
|
+
<identity partial perm on [ 1, 2, 4 ]>,
|
|
523
|
+
<identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
|
|
524
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
525
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
526
|
+
gap> CharacterTableOfInverseSemigroup(S[7]);
|
|
527
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
528
|
+
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
529
|
+
[ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
530
|
+
[ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
531
|
+
[ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
532
|
+
[ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
533
|
+
[ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
534
|
+
[ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
535
|
+
[ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
536
|
+
[ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
537
|
+
[ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
538
|
+
[ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
539
|
+
[ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
540
|
+
[ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
541
|
+
[ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
542
|
+
[ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
543
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
544
|
+
[ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
|
|
545
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
|
|
546
|
+
(1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
|
|
547
|
+
, <identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
548
|
+
<identity partial perm on [ 3, 4, 5, 7 ]>,
|
|
549
|
+
<identity partial perm on [ 2, 5, 7 ]>,
|
|
550
|
+
<identity partial perm on [ 3, 5, 7 ]>,
|
|
551
|
+
<identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
|
|
552
|
+
<identity partial perm on [ 3, 4, 5 ]>,
|
|
553
|
+
<identity partial perm on [ 2, 4 ]>, (2,4),
|
|
554
|
+
<identity partial perm on [ 7 ]>, <empty partial perm> ] ]
|
|
555
|
+
gap> CharacterTableOfInverseSemigroup(S[8]);
|
|
556
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
557
|
+
[ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
|
|
558
|
+
[ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
|
|
559
|
+
[ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
|
|
560
|
+
[ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
561
|
+
[ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
|
|
562
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
563
|
+
<identity partial perm on [ 1, 2, 3, 5 ]>,
|
|
564
|
+
<identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
|
|
565
|
+
<identity partial perm on [ 2, 3 ]>, (2,3),
|
|
566
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
567
|
+
gap> CharacterTableOfInverseSemigroup(S[9]);
|
|
568
|
+
[ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
569
|
+
[ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
|
|
570
|
+
[ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
571
|
+
[ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
|
|
572
|
+
[ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
573
|
+
[ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
|
|
574
|
+
<identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
|
|
575
|
+
<identity partial perm on [ 3, 4 ]>, (3,4),
|
|
576
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
577
|
+
<identity partial perm on [ 3 ]>, <empty partial perm> ] ]
|
|
578
|
+
gap> CharacterTableOfInverseSemigroup(S[10]);
|
|
579
|
+
[ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
|
|
580
|
+
[ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
|
|
581
|
+
[ <identity partial perm on [ 1, 2, 3, 4 ]>,
|
|
582
|
+
<identity partial perm on [ 2, 3, 5 ]>,
|
|
583
|
+
<identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
|
|
584
|
+
<empty partial perm> ] ]
|
|
585
|
+
#@else
|
|
586
|
+
gap> CharacterTableOfInverseSemigroup(S[1]);
|
|
587
|
+
[ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
|
|
588
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
|
|
589
|
+
<identity partial perm on [ 1, 3, 4, 6, 8 ]>,
|
|
590
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
|
|
591
|
+
gap> CharacterTableOfInverseSemigroup(S[2]);
|
|
592
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
593
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
594
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
595
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
596
|
+
[ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
597
|
+
[ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
598
|
+
[ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
599
|
+
[ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
600
|
+
[ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
601
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
602
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
603
|
+
], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0,
|
|
604
|
+
0, 0, 0 ],
|
|
605
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
606
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
607
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
|
|
608
|
+
, [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
|
|
609
|
+
0, 0 ],
|
|
610
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
611
|
+
[ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
|
|
612
|
+
], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
|
|
613
|
+
0, 0 ],
|
|
614
|
+
[ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
|
|
615
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
616
|
+
[ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
|
|
617
|
+
<identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
|
|
618
|
+
<identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
|
|
619
|
+
<identity partial perm on [ 1, 3, 5, 6, 8 ]>,
|
|
620
|
+
<identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
621
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>,
|
|
622
|
+
<identity partial perm on [ 1, 3, 6, 8 ]>,
|
|
623
|
+
<identity partial perm on [ 1, 3, 4, 7 ]>,
|
|
624
|
+
<identity partial perm on [ 2, 3, 5, 7 ]>,
|
|
625
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
|
|
626
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
|
|
627
|
+
<identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
|
|
628
|
+
<identity partial perm on [ 2, 5 ]>, (2,5),
|
|
629
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
630
|
+
gap> CharacterTableOfInverseSemigroup(S[3]);
|
|
631
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
632
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
633
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
634
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
635
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
636
|
+
[ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
637
|
+
[ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
638
|
+
[ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
639
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
640
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
641
|
+
[ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
642
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
643
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
644
|
+
[ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
645
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
646
|
+
[ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
647
|
+
<identity partial perm on [ 1, 2, 5, 6, 7 ]>,
|
|
648
|
+
<identity partial perm on [ 1, 2, 3, 7 ]>,
|
|
649
|
+
<identity partial perm on [ 1, 3, 6, 7 ]>,
|
|
650
|
+
<identity partial perm on [ 1, 5, 6, 7 ]>,
|
|
651
|
+
<identity partial perm on [ 2, 3, 4, 6 ]>,
|
|
652
|
+
<identity partial perm on [ 3, 6, 7 ]>,
|
|
653
|
+
<identity partial perm on [ 5, 6, 7 ]>,
|
|
654
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
|
|
655
|
+
<identity partial perm on [ 1, 5, 6 ]>,
|
|
656
|
+
<identity partial perm on [ 3, 7 ]>, (3,7),
|
|
657
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
658
|
+
gap> CharacterTableOfInverseSemigroup(S[4]);
|
|
659
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
660
|
+
[ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
661
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
662
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
663
|
+
[ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
664
|
+
[ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
665
|
+
[ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
666
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
667
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
668
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
669
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
670
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
671
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
672
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
673
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
|
|
674
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
|
|
675
|
+
[ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
|
|
676
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
677
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
|
|
678
|
+
<identity partial perm on [ 2, 3, 5, 6, 7 ]>,
|
|
679
|
+
<identity partial perm on [ 1, 2, 3, 4, 6 ]>,
|
|
680
|
+
<identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
681
|
+
<identity partial perm on [ 1, 4, 6, 7 ]>,
|
|
682
|
+
<identity partial perm on [ 2, 3, 4, 7 ]>,
|
|
683
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>,
|
|
684
|
+
<identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
|
|
685
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
|
|
686
|
+
<identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
|
|
687
|
+
<identity partial perm on [ 1, 2 ]>, (1,2),
|
|
688
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
689
|
+
gap> CharacterTableOfInverseSemigroup(S[5]);
|
|
690
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
691
|
+
[ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
|
|
692
|
+
, [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
|
|
693
|
+
[ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
694
|
+
[ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
695
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
|
|
696
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
|
|
697
|
+
[ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
|
|
698
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
699
|
+
[ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
|
|
700
|
+
<identity partial perm on [ 1, 3, 4, 5, 7 ]>,
|
|
701
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
702
|
+
<identity partial perm on [ 1, 3, 5, 6 ]>,
|
|
703
|
+
<identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
|
|
704
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
705
|
+
<identity partial perm on [ 4 ]>, <empty partial perm> ] ]
|
|
706
|
+
gap> CharacterTableOfInverseSemigroup(S[6]);
|
|
707
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
708
|
+
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
709
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
710
|
+
[ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
711
|
+
[ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
712
|
+
[ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
713
|
+
[ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
714
|
+
[ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
715
|
+
[ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
716
|
+
[ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
717
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
718
|
+
[ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
719
|
+
[ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
720
|
+
[ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
721
|
+
[ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
722
|
+
[ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
723
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
|
|
724
|
+
, [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
|
|
725
|
+
0, 0 ],
|
|
726
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
727
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
|
|
728
|
+
0, 0 ],
|
|
729
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
|
|
730
|
+
0, 0 ],
|
|
731
|
+
[ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
|
|
732
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
|
|
733
|
+
],
|
|
734
|
+
[ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
|
|
735
|
+
<identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
|
|
736
|
+
<identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
|
|
737
|
+
<identity partial perm on [ 1, 5, 6, 7, 10 ]>,
|
|
738
|
+
<identity partial perm on [ 1, 3, 4, 7, 8 ]>,
|
|
739
|
+
<identity partial perm on [ 3, 7, 9, 10 ]>,
|
|
740
|
+
<identity partial perm on [ 1, 4, 8, 9 ]>,
|
|
741
|
+
<identity partial perm on [ 3, 4, 6, 9 ]>,
|
|
742
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>,
|
|
743
|
+
<identity partial perm on [ 1, 4, 7, 8 ]>,
|
|
744
|
+
<identity partial perm on [ 2, 4, 6, 8 ]>,
|
|
745
|
+
<identity partial perm on [ 3, 6, 9 ]>,
|
|
746
|
+
<identity partial perm on [ 6, 8, 9 ]>,
|
|
747
|
+
<identity partial perm on [ 1, 3, 7 ]>,
|
|
748
|
+
<identity partial perm on [ 3, 4, 6 ]>,
|
|
749
|
+
<identity partial perm on [ 1, 2, 4 ]>,
|
|
750
|
+
<identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
|
|
751
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
752
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
753
|
+
gap> CharacterTableOfInverseSemigroup(S[7]);
|
|
754
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
755
|
+
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
756
|
+
[ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
757
|
+
[ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
758
|
+
[ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
759
|
+
[ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
760
|
+
[ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
761
|
+
[ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
762
|
+
[ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
763
|
+
[ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
764
|
+
[ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
765
|
+
[ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
766
|
+
[ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
767
|
+
[ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
768
|
+
[ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
769
|
+
[ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
770
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
771
|
+
[ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
|
|
772
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
|
|
773
|
+
(1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
|
|
774
|
+
, <identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
775
|
+
<identity partial perm on [ 3, 4, 5, 7 ]>,
|
|
776
|
+
<identity partial perm on [ 2, 5, 7 ]>,
|
|
777
|
+
<identity partial perm on [ 3, 5, 7 ]>,
|
|
778
|
+
<identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
|
|
779
|
+
<identity partial perm on [ 3, 4, 5 ]>,
|
|
780
|
+
<identity partial perm on [ 2, 4 ]>, (2,4),
|
|
781
|
+
<identity partial perm on [ 7 ]>, <empty partial perm> ] ]
|
|
782
|
+
gap> CharacterTableOfInverseSemigroup(S[8]);
|
|
783
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
784
|
+
[ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
|
|
785
|
+
[ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
|
|
786
|
+
[ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
|
|
787
|
+
[ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
788
|
+
[ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
|
|
789
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
790
|
+
<identity partial perm on [ 1, 2, 3, 5 ]>,
|
|
791
|
+
<identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
|
|
792
|
+
<identity partial perm on [ 2, 3 ]>, (2,3),
|
|
793
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
794
|
+
gap> CharacterTableOfInverseSemigroup(S[9]);
|
|
795
|
+
[ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
796
|
+
[ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
|
|
797
|
+
[ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
798
|
+
[ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
|
|
799
|
+
[ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
800
|
+
[ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
|
|
801
|
+
<identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
|
|
802
|
+
<identity partial perm on [ 3, 4 ]>, (3,4),
|
|
803
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
804
|
+
<identity partial perm on [ 3 ]>, <empty partial perm> ] ]
|
|
805
|
+
gap> CharacterTableOfInverseSemigroup(S[10]);
|
|
806
|
+
[ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
|
|
807
|
+
[ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
|
|
808
|
+
[ <identity partial perm on [ 1, 2, 3, 4 ]>,
|
|
809
|
+
<identity partial perm on [ 2, 3, 5 ]>,
|
|
810
|
+
<identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
|
|
811
|
+
<empty partial perm> ] ]
|
|
812
|
+
gap> CharacterTableOfInverseSemigroup(S[1]);
|
|
813
|
+
[ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
|
|
814
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
|
|
815
|
+
<identity partial perm on [ 1, 3, 4, 6, 8 ]>,
|
|
816
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
|
|
817
|
+
gap> CharacterTableOfInverseSemigroup(S[2]);
|
|
818
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
819
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
820
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
821
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
822
|
+
[ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
823
|
+
[ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
824
|
+
[ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
825
|
+
[ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
826
|
+
[ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
827
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
828
|
+
[ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
829
|
+
], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0,
|
|
830
|
+
0, 0, 0 ],
|
|
831
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
832
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
833
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
|
|
834
|
+
, [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
|
|
835
|
+
0, 0 ],
|
|
836
|
+
[ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
837
|
+
[ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
|
|
838
|
+
], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
|
|
839
|
+
0, 0 ],
|
|
840
|
+
[ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
|
|
841
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
842
|
+
[ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
|
|
843
|
+
<identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
|
|
844
|
+
<identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
|
|
845
|
+
<identity partial perm on [ 1, 3, 5, 6, 8 ]>,
|
|
846
|
+
<identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
847
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>,
|
|
848
|
+
<identity partial perm on [ 1, 3, 6, 8 ]>,
|
|
849
|
+
<identity partial perm on [ 1, 3, 4, 7 ]>,
|
|
850
|
+
<identity partial perm on [ 2, 3, 5, 7 ]>,
|
|
851
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
|
|
852
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
|
|
853
|
+
<identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
|
|
854
|
+
<identity partial perm on [ 2, 5 ]>, (2,5),
|
|
855
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
856
|
+
gap> CharacterTableOfInverseSemigroup(S[3]);
|
|
857
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
858
|
+
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
859
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
860
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
861
|
+
[ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
862
|
+
[ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
863
|
+
[ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
864
|
+
[ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
865
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
866
|
+
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
867
|
+
[ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
868
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
869
|
+
[ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
870
|
+
[ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
871
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
872
|
+
[ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
|
|
873
|
+
<identity partial perm on [ 1, 2, 5, 6, 7 ]>,
|
|
874
|
+
<identity partial perm on [ 1, 2, 3, 7 ]>,
|
|
875
|
+
<identity partial perm on [ 1, 3, 6, 7 ]>,
|
|
876
|
+
<identity partial perm on [ 1, 5, 6, 7 ]>,
|
|
877
|
+
<identity partial perm on [ 2, 3, 4, 6 ]>,
|
|
878
|
+
<identity partial perm on [ 3, 6, 7 ]>,
|
|
879
|
+
<identity partial perm on [ 5, 6, 7 ]>,
|
|
880
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
|
|
881
|
+
<identity partial perm on [ 1, 5, 6 ]>,
|
|
882
|
+
<identity partial perm on [ 3, 7 ]>, (3,7),
|
|
883
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
884
|
+
gap> CharacterTableOfInverseSemigroup(S[4]);
|
|
885
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
886
|
+
[ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
887
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
888
|
+
[ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
889
|
+
[ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
890
|
+
[ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
891
|
+
[ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
892
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
893
|
+
[ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
894
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
895
|
+
[ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
896
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
897
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
898
|
+
[ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
899
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
|
|
900
|
+
[ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
|
|
901
|
+
[ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
|
|
902
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
903
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
|
|
904
|
+
<identity partial perm on [ 2, 3, 5, 6, 7 ]>,
|
|
905
|
+
<identity partial perm on [ 1, 2, 3, 4, 6 ]>,
|
|
906
|
+
<identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
907
|
+
<identity partial perm on [ 1, 4, 6, 7 ]>,
|
|
908
|
+
<identity partial perm on [ 2, 3, 4, 7 ]>,
|
|
909
|
+
<identity partial perm on [ 1, 2, 4, 6 ]>,
|
|
910
|
+
<identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
|
|
911
|
+
<identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
|
|
912
|
+
<identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
|
|
913
|
+
<identity partial perm on [ 1, 2 ]>, (1,2),
|
|
914
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
915
|
+
gap> CharacterTableOfInverseSemigroup(S[5]);
|
|
916
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
917
|
+
[ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
|
|
918
|
+
, [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
|
|
919
|
+
[ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
|
|
920
|
+
[ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
|
|
921
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
|
|
922
|
+
[ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
|
|
923
|
+
[ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
|
|
924
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
925
|
+
[ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
|
|
926
|
+
<identity partial perm on [ 1, 3, 4, 5, 7 ]>,
|
|
927
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
928
|
+
<identity partial perm on [ 1, 3, 5, 6 ]>,
|
|
929
|
+
<identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
|
|
930
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
931
|
+
<identity partial perm on [ 4 ]>, <empty partial perm> ] ]
|
|
932
|
+
gap> CharacterTableOfInverseSemigroup(S[6]);
|
|
933
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
934
|
+
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
935
|
+
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
936
|
+
[ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
937
|
+
[ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
938
|
+
[ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
939
|
+
[ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
940
|
+
[ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
941
|
+
[ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
942
|
+
[ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
943
|
+
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
944
|
+
[ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
945
|
+
[ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
946
|
+
[ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
947
|
+
[ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
948
|
+
[ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
949
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
|
|
950
|
+
, [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
|
|
951
|
+
0, 0 ],
|
|
952
|
+
[ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
|
|
953
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
|
|
954
|
+
0, 0 ],
|
|
955
|
+
[ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
|
|
956
|
+
0, 0 ],
|
|
957
|
+
[ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
|
|
958
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
|
|
959
|
+
],
|
|
960
|
+
[ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
|
|
961
|
+
<identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
|
|
962
|
+
<identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
|
|
963
|
+
<identity partial perm on [ 1, 5, 6, 7, 10 ]>,
|
|
964
|
+
<identity partial perm on [ 1, 3, 4, 7, 8 ]>,
|
|
965
|
+
<identity partial perm on [ 3, 7, 9, 10 ]>,
|
|
966
|
+
<identity partial perm on [ 1, 4, 8, 9 ]>,
|
|
967
|
+
<identity partial perm on [ 3, 4, 6, 9 ]>,
|
|
968
|
+
<identity partial perm on [ 1, 3, 4, 8 ]>,
|
|
969
|
+
<identity partial perm on [ 1, 4, 7, 8 ]>,
|
|
970
|
+
<identity partial perm on [ 2, 4, 6, 8 ]>,
|
|
971
|
+
<identity partial perm on [ 3, 6, 9 ]>,
|
|
972
|
+
<identity partial perm on [ 6, 8, 9 ]>,
|
|
973
|
+
<identity partial perm on [ 1, 3, 7 ]>,
|
|
974
|
+
<identity partial perm on [ 3, 4, 6 ]>,
|
|
975
|
+
<identity partial perm on [ 1, 2, 4 ]>,
|
|
976
|
+
<identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
|
|
977
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
978
|
+
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]
|
|
979
|
+
gap> CharacterTableOfInverseSemigroup(S[7]);
|
|
980
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
981
|
+
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
982
|
+
[ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
983
|
+
[ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
984
|
+
[ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
985
|
+
[ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
986
|
+
[ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
987
|
+
[ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
988
|
+
[ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
989
|
+
[ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
|
|
990
|
+
[ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
|
|
991
|
+
[ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
|
|
992
|
+
[ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
|
|
993
|
+
[ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
|
|
994
|
+
[ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
|
|
995
|
+
[ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
|
|
996
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
997
|
+
[ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
|
|
998
|
+
<identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
|
|
999
|
+
(1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
|
|
1000
|
+
, <identity partial perm on [ 1, 2, 4, 7 ]>,
|
|
1001
|
+
<identity partial perm on [ 3, 4, 5, 7 ]>,
|
|
1002
|
+
<identity partial perm on [ 2, 5, 7 ]>,
|
|
1003
|
+
<identity partial perm on [ 3, 5, 7 ]>,
|
|
1004
|
+
<identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
|
|
1005
|
+
<identity partial perm on [ 3, 4, 5 ]>,
|
|
1006
|
+
<identity partial perm on [ 2, 4 ]>, (2,4),
|
|
1007
|
+
<identity partial perm on [ 7 ]>, <empty partial perm> ] ]
|
|
1008
|
+
gap> CharacterTableOfInverseSemigroup(S[8]);
|
|
1009
|
+
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
1010
|
+
[ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
|
|
1011
|
+
[ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
|
|
1012
|
+
[ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
|
|
1013
|
+
[ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
1014
|
+
[ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
|
|
1015
|
+
<identity partial perm on [ 1, 2, 3, 6 ]>,
|
|
1016
|
+
<identity partial perm on [ 1, 2, 3, 5 ]>,
|
|
1017
|
+
<identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
|
|
1018
|
+
<identity partial perm on [ 2, 3 ]>, (2,3),
|
|
1019
|
+
<identity partial perm on [ 6 ]>, <empty partial perm> ] ]
|
|
1020
|
+
gap> CharacterTableOfInverseSemigroup(S[9]);
|
|
1021
|
+
[ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
|
|
1022
|
+
[ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
|
|
1023
|
+
[ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
|
|
1024
|
+
[ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
|
|
1025
|
+
[ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
|
|
1026
|
+
[ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
|
|
1027
|
+
<identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
|
|
1028
|
+
<identity partial perm on [ 3, 4 ]>, (3,4),
|
|
1029
|
+
<identity partial perm on [ 1, 3 ]>, (1,3),
|
|
1030
|
+
<identity partial perm on [ 3 ]>, <empty partial perm> ] ]
|
|
1031
|
+
gap> CharacterTableOfInverseSemigroup(S[10]);
|
|
1032
|
+
[ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
|
|
1033
|
+
[ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
|
|
1034
|
+
[ <identity partial perm on [ 1, 2, 3, 4 ]>,
|
|
1035
|
+
<identity partial perm on [ 2, 3, 5 ]>,
|
|
1036
|
+
<identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
|
|
1037
|
+
<empty partial perm> ] ]
|
|
1038
|
+
#@fi
|
|
1039
|
+
|
|
1040
|
+
# attrinv: NaturalPartialOrder (for a semigroup), works, 1/1
|
|
1041
|
+
gap> S := InverseSemigroup([Bipartition([[1, -3], [2, -1], [3, 4, -2, -4]]),
|
|
1042
|
+
> Bipartition([[1, -1], [2, -3], [3, -2], [4, -4]])]);
|
|
1043
|
+
<inverse block bijection semigroup of degree 4 with 2 generators>
|
|
1044
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, S);
|
|
1045
|
+
<transformation semigroup of size 20, degree 20 with 3 generators>
|
|
1046
|
+
gap> n := Size(S);;
|
|
1047
|
+
gap> elts := Elements(S);;
|
|
1048
|
+
gap> NaturalPartialOrder(S);
|
|
1049
|
+
[ [ 2, 8, 9, 15, 16, 19 ], [ 9, 16, 19 ], [ 4, 9, 11 ], [ 9 ], [ 9, 16, 18 ],
|
|
1050
|
+
[ 5, 9, 10, 14, 16, 18 ], [ 9, 13, 20 ], [ 9 ], [ ], [ 9 ], [ 9 ],
|
|
1051
|
+
[ 9, 11, 13 ], [ 9 ], [ 9, 10, 16 ], [ 8, 9, 16 ], [ 9 ], [ 4, 9, 20 ],
|
|
1052
|
+
[ 9 ], [ 9 ], [ 9 ] ]
|
|
1053
|
+
gap> List([1 .. n],
|
|
1054
|
+
> i -> Filtered([1 .. n],
|
|
1055
|
+
> j -> i <> j and ForAny(Idempotents(S),
|
|
1056
|
+
> e -> e * elts[i] = elts[j])));
|
|
1057
|
+
[ [ 2, 8, 9, 15, 16, 19 ], [ 9, 16, 19 ], [ 4, 9, 11 ], [ 9 ], [ 9, 16, 18 ],
|
|
1058
|
+
[ 5, 9, 10, 14, 16, 18 ], [ 9, 13, 20 ], [ 9 ], [ ], [ 9 ], [ 9 ],
|
|
1059
|
+
[ 9, 11, 13 ], [ 9 ], [ 9, 10, 16 ], [ 8, 9, 16 ], [ 9 ], [ 4, 9, 20 ],
|
|
1060
|
+
[ 9 ], [ 9 ], [ 9 ] ]
|
|
1061
|
+
gap> last = last2;
|
|
1062
|
+
true
|
|
1063
|
+
|
|
1064
|
+
# attrinv: NaturalPartialOrder (for a semigroup), works, 2
|
|
1065
|
+
gap> S := Semigroup(SymmetricInverseMonoid(3), rec(acting := true));;
|
|
1066
|
+
gap> es := IdempotentGeneratedSubsemigroup(S);;
|
|
1067
|
+
gap> n := Size(es);;
|
|
1068
|
+
gap> elts := Elements(es);
|
|
1069
|
+
[ <empty partial perm>, <identity partial perm on [ 1 ]>,
|
|
1070
|
+
<identity partial perm on [ 2 ]>, <identity partial perm on [ 1, 2 ]>,
|
|
1071
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 2, 3 ]>,
|
|
1072
|
+
<identity partial perm on [ 1, 3 ]>, <identity partial perm on [ 1, 2, 3 ]>
|
|
1073
|
+
]
|
|
1074
|
+
gap> NaturalPartialOrder(es);
|
|
1075
|
+
[ [ ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1 ], [ 1, 3, 5 ], [ 1, 2, 5 ],
|
|
1076
|
+
[ 1, 2, 3, 4, 5, 6, 7 ] ]
|
|
1077
|
+
gap> List([1 .. n],
|
|
1078
|
+
> i -> Filtered([1 .. n], j -> elts[j] = elts[j] * elts[i] and i <> j));
|
|
1079
|
+
[ [ ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1 ], [ 1, 3, 5 ], [ 1, 2, 5 ],
|
|
1080
|
+
[ 1, 2, 3, 4, 5, 6, 7 ] ]
|
|
1081
|
+
gap> last = last2;
|
|
1082
|
+
true
|
|
1083
|
+
|
|
1084
|
+
# attrinv: NaturalPartialOrder (for a semigroup), works, 3
|
|
1085
|
+
gap> S := Semigroup(SymmetricInverseMonoid(3), rec(acting := true));;
|
|
1086
|
+
gap> es := IdempotentGeneratedSubsemigroup(S);;
|
|
1087
|
+
gap> es := AsSemigroup(IsBlockBijectionSemigroup, es);;
|
|
1088
|
+
gap> n := Size(es);;
|
|
1089
|
+
gap> elts := Elements(es);;
|
|
1090
|
+
gap> NaturalPartialOrder(es);
|
|
1091
|
+
[ [ ], [ 1 ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 4 ],
|
|
1092
|
+
[ 1, 2, 3, 4, 5, 6, 7 ] ]
|
|
1093
|
+
gap> List([1 .. n],
|
|
1094
|
+
> i -> Filtered([1 .. n], j -> elts[j] = elts[j] * elts[i] and i <> j));
|
|
1095
|
+
[ [ ], [ 1 ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 4 ],
|
|
1096
|
+
[ 1, 2, 3, 4, 5, 6, 7 ] ]
|
|
1097
|
+
gap> last = last2;
|
|
1098
|
+
true
|
|
1099
|
+
|
|
1100
|
+
# attrinv: NaturalPartialOrder (for a semigroup), error, 1/2
|
|
1101
|
+
gap> S := Semigroup(
|
|
1102
|
+
> [Matrix(IsTropicalMinPlusMatrix,
|
|
1103
|
+
> [[infinity, 0, infinity, 1, 1, infinity, 3, 2, 3],
|
|
1104
|
+
> [3, 1, 1, infinity, 1, 1, 1, 1, 1], [0, 3, 0, 1, 1, 3, 0, infinity, 1],
|
|
1105
|
+
> [0, 0, 1, infinity, infinity, 3, 3, 2, 1], [1, 1, 0, 3, 0, 3, 0, 0, 3],
|
|
1106
|
+
> [0, 2, 3, 1, 0, 0, infinity, 3, infinity],
|
|
1107
|
+
> [1, 2, 3, 3, 1, 2, infinity, infinity, 3],
|
|
1108
|
+
> [1, 1, infinity, 3, 3, 1, 1, 1, 1], [1, 2, 0, infinity, 0, 0, 1, 1, 2]],
|
|
1109
|
+
> 3)]);
|
|
1110
|
+
<commutative semigroup of 9x9 tropical min-plus matrices with 1 generator>
|
|
1111
|
+
gap> NaturalPartialOrder(S);
|
|
1112
|
+
Error, the argument (a semigroup) is not an inverse semigroup
|
|
1113
|
+
|
|
1114
|
+
# attrinv: NaturalPartialOrder (for a semigroup), error, 2/2
|
|
1115
|
+
gap> NaturalPartialOrder(FreeInverseSemigroup(2));
|
|
1116
|
+
Error, the argument (a semigroup) is not finite
|
|
1117
|
+
|
|
1118
|
+
# attrinv: NaturalLeqInverseSemigroup (for a semigroup), error, 1/2
|
|
1119
|
+
gap> S := Semigroup([
|
|
1120
|
+
> PBR(
|
|
1121
|
+
> [[-4, -3, -2, -1, 1, 4, 5, 6], [-6, -5, -4, -3, -2, 2, 6],
|
|
1122
|
+
> [-6, -4, -3, -1, 1, 2, 4, 5, 6], [-6, 2, 3, 4], [-4, -2, 3, 6],
|
|
1123
|
+
> [-6, -3, 1, 3, 4, 6]],
|
|
1124
|
+
> [[-5, -2, -1, 3, 4], [-5, -2, 1, 3, 5],
|
|
1125
|
+
> [-6, -4, -2, 2, 3, 4, 6], [-5, -3, -1, 2, 4, 6], [-6, -3, 1, 2, 3, 4, 6],
|
|
1126
|
+
> [-6, -3, 2, 6]]),
|
|
1127
|
+
> PBR(
|
|
1128
|
+
> [[-6, -5, -3, -2, -1, 3, 6], [-6, -2, 1, 2, 5], [-6, -5, -4, -1, 1, 6],
|
|
1129
|
+
> [-6, -5, -4, -2, -1, 2, 5], [-6, -2, -1, 1, 2, 4, 5], [-6, -5, 3, 4, 6]],
|
|
1130
|
+
> [[-2, 1, 2, 3, 5, 6], [-6, -5, -4, -3, -2, 1, 3, 5],
|
|
1131
|
+
> [-6, -4, -3, -1, 2, 5, 6], [-5, -2, 3, 4, 5],
|
|
1132
|
+
> [-6, -5, -4, -3, -2, 1, 2, 3, 5, 6], [-4, 2, 3, 4, 5, 6]])]);
|
|
1133
|
+
<pbr semigroup of degree 6 with 2 generators>
|
|
1134
|
+
gap> NaturalLeqInverseSemigroup(S);
|
|
1135
|
+
Error, the argument (a semigroup) is not an inverse semigroup
|
|
1136
|
+
|
|
1137
|
+
# attrinv: NaturalLeqInverseSemigroup (for a semigroup), error, 2/2
|
|
1138
|
+
gap> NaturalLeqInverseSemigroup(FreeInverseSemigroup(2));
|
|
1139
|
+
Error, the argument (a semigroup) is not finite
|
|
1140
|
+
|
|
1141
|
+
# attrinv: IsGreensDGreaterThanFunc (for an inverse op acting semigroup), 1/1
|
|
1142
|
+
gap> S := InverseSemigroup(
|
|
1143
|
+
> [Bipartition([[1, -3], [2, -1], [3, 4, 5, -2, -4, -5]]),
|
|
1144
|
+
> Bipartition([[1, -1], [2, -3], [3, -4], [4, 5, -2, -5]])]);
|
|
1145
|
+
<inverse block bijection semigroup of degree 5 with 2 generators>
|
|
1146
|
+
gap> Size(S);
|
|
1147
|
+
39
|
|
1148
|
+
gap> foo := IsGreensDGreaterThanFunc(S);;
|
|
1149
|
+
gap> foo(S.1, S.2);
|
|
1150
|
+
false
|
|
1151
|
+
gap> foo(S.2, S.1);
|
|
1152
|
+
true
|
|
1153
|
+
gap> foo(S.1, S.1);
|
|
1154
|
+
false
|
|
1155
|
+
|
|
1156
|
+
# attrinv: PrimitiveIdempotents, inverse, 1/2
|
|
1157
|
+
gap> S := InverseSemigroup([PartialPerm([1, 2], [3, 1]),
|
|
1158
|
+
> PartialPerm([1, 2, 3], [1, 3, 4])]);;
|
|
1159
|
+
gap> Set(PrimitiveIdempotents(S));
|
|
1160
|
+
[ <identity partial perm on [ 1 ]>, <identity partial perm on [ 2 ]>,
|
|
1161
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]> ]
|
|
1162
|
+
|
|
1163
|
+
# attrinv: PrimitiveIdempotents, inverse, 2/2
|
|
1164
|
+
gap> S := InverseSemigroup(
|
|
1165
|
+
> [PartialPerm([1, 2, 3, 5, 6, 11, 12], [4, 3, 7, 5, 1, 11, 12]),
|
|
1166
|
+
> PartialPerm([1, 3, 4, 5, 6, 7, 11, 12], [6, 7, 5, 3, 1, 4, 11, 12]),
|
|
1167
|
+
> PartialPerm([11, 12], [12, 11])]);;
|
|
1168
|
+
gap> PrimitiveIdempotents(S);
|
|
1169
|
+
[ <identity partial perm on [ 11, 12 ]> ]
|
|
1170
|
+
|
|
1171
|
+
# attrinv: PrimitiveIdempotents, semigroup, error, 1/2
|
|
1172
|
+
gap> PrimitiveIdempotents(FreeSemigroup(2));
|
|
1173
|
+
Error, the argument (a semigroup) is not finite
|
|
1174
|
+
|
|
1175
|
+
# attrinv: PrimitiveIdempotents, semigroup, error, 2/2
|
|
1176
|
+
gap> PrimitiveIdempotents(FreeBand(2));
|
|
1177
|
+
Error, the argument (a semigroup) is not an inverse semigroup
|
|
1178
|
+
|
|
1179
|
+
# attrinv: PrimitiveIdempotents, transformation semigroups
|
|
1180
|
+
gap> S := InverseSemigroup([
|
|
1181
|
+
> Bipartition([[1, -1, -2], [2, 3, -3], [4, -4]]),
|
|
1182
|
+
> Bipartition([[1, 2, 3, -4], [4, -1, -2, -3]])]);
|
|
1183
|
+
<inverse block bijection semigroup of degree 4 with 2 generators>
|
|
1184
|
+
gap> PrimitiveIdempotents(S);
|
|
1185
|
+
[ <block bijection: [ 1, 2, 3, -1, -2, -3 ], [ 4, -4 ]> ]
|
|
1186
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, S);
|
|
1187
|
+
<transformation semigroup of size 6, degree 7 with 3 generators>
|
|
1188
|
+
gap> PrimitiveIdempotents(S);
|
|
1189
|
+
[ Transformation( [ 4, 2, 4, 4, 4, 4, 4 ] ) ]
|
|
1190
|
+
|
|
1191
|
+
#
|
|
1192
|
+
gap> S := InverseSemigroup([
|
|
1193
|
+
> PartialPerm([1, 2, 3, 5], [2, 5, 4, 1]),
|
|
1194
|
+
> PartialPerm([1, 2, 4], [3, 4, 2]),
|
|
1195
|
+
> PartialPerm([1, 2, 3, 5], [1, 4, 3, 2])]);
|
|
1196
|
+
<inverse partial perm semigroup of rank 5 with 3 generators>
|
|
1197
|
+
gap> x := ShallowCopy(PrimitiveIdempotents(S));;
|
|
1198
|
+
gap> Sort(x);
|
|
1199
|
+
gap> x;
|
|
1200
|
+
[ <identity partial perm on [ 1 ]>, <identity partial perm on [ 2 ]>,
|
|
1201
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]>,
|
|
1202
|
+
<identity partial perm on [ 5 ]> ]
|
|
1203
|
+
gap> T := AsSemigroup(IsBlockBijectionSemigroup, S);
|
|
1204
|
+
<inverse block bijection semigroup of degree 6 with 3 generators>
|
|
1205
|
+
gap> x := ShallowCopy(PrimitiveIdempotents(T));;
|
|
1206
|
+
gap> Sort(x);
|
|
1207
|
+
gap> x;
|
|
1208
|
+
[ <block bijection: [ 1, 2, 3, 4, 6, -1, -2, -3, -4, -6 ], [ 5, -5 ]>,
|
|
1209
|
+
<block bijection: [ 1, 2, 3, 5, 6, -1, -2, -3, -5, -6 ], [ 4, -4 ]>,
|
|
1210
|
+
<block bijection: [ 1, 2, 4, 5, 6, -1, -2, -4, -5, -6 ], [ 3, -3 ]>,
|
|
1211
|
+
<block bijection: [ 1, 3, 4, 5, 6, -1, -3, -4, -5, -6 ], [ 2, -2 ]>,
|
|
1212
|
+
<block bijection: [ 1, -1 ], [ 2, 3, 4, 5, 6, -2, -3, -4, -5, -6 ]> ]
|
|
1213
|
+
gap> T := AsSemigroup(IsTransformationSemigroup, S);
|
|
1214
|
+
<transformation semigroup of degree 6 with 6 generators>
|
|
1215
|
+
gap> x := ShallowCopy(PrimitiveIdempotents(T));;
|
|
1216
|
+
gap> Sort(x);
|
|
1217
|
+
gap> x;
|
|
1218
|
+
[ Transformation( [ 1, 6, 6, 6, 6, 6 ] ),
|
|
1219
|
+
Transformation( [ 6, 2, 6, 6, 6, 6 ] ),
|
|
1220
|
+
Transformation( [ 6, 6, 3, 6, 6, 6 ] ),
|
|
1221
|
+
Transformation( [ 6, 6, 6, 4, 6, 6 ] ),
|
|
1222
|
+
Transformation( [ 6, 6, 6, 6, 5, 6 ] ) ]
|
|
1223
|
+
|
|
1224
|
+
# attrinv: IsJoinIrreducible, 1/4
|
|
1225
|
+
gap> S := InverseSemigroup([
|
|
1226
|
+
> PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
|
|
1227
|
+
> PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
|
|
1228
|
+
> PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
|
|
1229
|
+
> PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
|
|
1230
|
+
> PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
|
|
1231
|
+
gap> I := SemigroupIdeal(S,
|
|
1232
|
+
> PartialPerm([1, 3, 4, 5, 7], [1, 3, 4, 5, 7]));;
|
|
1233
|
+
gap> x := PartialPerm([1, 2, 4, 6], [2, 3, 1, 4]);;
|
|
1234
|
+
gap> x in S;
|
|
1235
|
+
true
|
|
1236
|
+
gap> IsJoinIrreducible(S, x);
|
|
1237
|
+
false
|
|
1238
|
+
gap> x in I;
|
|
1239
|
+
true
|
|
1240
|
+
gap> IsJoinIrreducible(S, RandomBipartition(1));
|
|
1241
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (an\
|
|
1242
|
+
inverse semigroup)
|
|
1243
|
+
gap> IsJoinIrreducible(S, MultiplicativeZero(S));
|
|
1244
|
+
false
|
|
1245
|
+
|
|
1246
|
+
# attrinv: IsJoinIrreducible, 2/4
|
|
1247
|
+
gap> S := InverseSemigroup(
|
|
1248
|
+
> [PartialPerm([1, 2, 3, 5, 6, 11, 12], [4, 3, 7, 5, 1, 11, 12]),
|
|
1249
|
+
> PartialPerm([1, 3, 4, 5, 6, 7, 11, 12], [6, 7, 5, 3, 1, 4, 11, 12]),
|
|
1250
|
+
> PartialPerm([11, 12], [12, 11])]);;
|
|
1251
|
+
gap> IsJoinIrreducible(S, PrimitiveIdempotents(S)[1]);
|
|
1252
|
+
true
|
|
1253
|
+
|
|
1254
|
+
# attrinv: IsJoinIrreducible, 3/4
|
|
1255
|
+
gap> S := DualSymmetricInverseMonoid(3);
|
|
1256
|
+
<inverse block bijection monoid of degree 3 with 3 generators>
|
|
1257
|
+
gap> x := Bipartition([[1, 2, -1, -2], [3, -3]]);;
|
|
1258
|
+
gap> IsJoinIrreducible(S, x);
|
|
1259
|
+
true
|
|
1260
|
+
|
|
1261
|
+
# attrinv: IsJoinIrreducible, 4/4
|
|
1262
|
+
gap> S := InverseSemigroup([
|
|
1263
|
+
> PartialPerm([1, 2, 4, 6], [2, 1, 4, 6]),
|
|
1264
|
+
> PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
|
|
1265
|
+
> PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
|
|
1266
|
+
> PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
|
|
1267
|
+
> PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
|
|
1268
|
+
> PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
|
|
1269
|
+
gap> x := PartialPerm([1, 2, 4, 6], [2, 3, 1, 4]);;
|
|
1270
|
+
gap> IsJoinIrreducible(S, x);
|
|
1271
|
+
false
|
|
1272
|
+
|
|
1273
|
+
# attrinv: IsMajorantlyClosed, 1/1
|
|
1274
|
+
gap> S := DualSymmetricInverseMonoid(3);
|
|
1275
|
+
<inverse block bijection monoid of degree 3 with 3 generators>
|
|
1276
|
+
gap> Size(S);
|
|
1277
|
+
25
|
|
1278
|
+
gap> T := InverseMonoid([Bipartition([[1, -1], [2, 3, -2, -3]]),
|
|
1279
|
+
> Bipartition([[1, -2], [2, 3, -1, -3]])]);
|
|
1280
|
+
<inverse block bijection monoid of degree 3 with 2 generators>
|
|
1281
|
+
gap> IsMajorantlyClosed(S, T);
|
|
1282
|
+
false
|
|
1283
|
+
gap> IsMajorantlyClosed(S, S);
|
|
1284
|
+
true
|
|
1285
|
+
gap> IsMajorantlyClosed(T, S);
|
|
1286
|
+
Error, the 2nd argument (an inverse semigroup) is not a subsemigroup of the 1s\
|
|
1287
|
+
t argument (an inverse semigroup)
|
|
1288
|
+
gap> IsMajorantlyClosed(S, Elements(T));
|
|
1289
|
+
false
|
|
1290
|
+
gap> IsMajorantlyClosed(S, Elements(S));
|
|
1291
|
+
true
|
|
1292
|
+
gap> IsMajorantlyClosed(T, Elements(S));
|
|
1293
|
+
Error, the 2nd argument (a mult. elt. coll) is not a subset of the 1st argumen\
|
|
1294
|
+
t (an inverse semigroup)
|
|
1295
|
+
gap> IsMajorantlyClosed(S, [One(S)]);
|
|
1296
|
+
true
|
|
1297
|
+
|
|
1298
|
+
# attrinv: JoinIrreducibleDClasses, partial perms, 1
|
|
1299
|
+
gap> S := InverseSemigroup([PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
|
|
1300
|
+
> PartialPerm([1, 3, 5], [5, 1, 3])]);;
|
|
1301
|
+
gap> JoinIrreducibleDClasses(S)[1] = DClass(S, PartialPerm([3], [3]));
|
|
1302
|
+
true
|
|
1303
|
+
gap> S := InverseSemigroup(S, rec(acting := false));;
|
|
1304
|
+
gap> JoinIrreducibleDClasses(S)[1] = DClass(S, PartialPerm([3], [3]));
|
|
1305
|
+
true
|
|
1306
|
+
|
|
1307
|
+
# attrinv: JoinIrreducibleDClasses, partial perms, 2
|
|
1308
|
+
gap> S := InverseSemigroup([PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
|
|
1309
|
+
> PartialPerm([1, 3, 5], [5, 1, 3])]);;
|
|
1310
|
+
gap> JoinIrreducibleDClasses(S)[1] = DClass(S, PartialPerm([3], [3]));
|
|
1311
|
+
true
|
|
1312
|
+
|
|
1313
|
+
# attrinv: JoinIrreducibleDClasses, partial perms, 3
|
|
1314
|
+
gap> S := Semigroup(
|
|
1315
|
+
> [PartialPerm([1, 2, 3, 4], [1, 2, 3, 4]),
|
|
1316
|
+
> PartialPerm([1, 2, 3], [2, 3, 1])]);;
|
|
1317
|
+
gap> IsInverseSemigroup(S);
|
|
1318
|
+
true
|
|
1319
|
+
gap> JoinIrreducibleDClasses(S) = DClasses(S);
|
|
1320
|
+
true
|
|
1321
|
+
gap> ForAll(DClassReps(S), x -> IsJoinIrreducible(S, x));
|
|
1322
|
+
true
|
|
1323
|
+
|
|
1324
|
+
# attrinv: JoinIrreducibleDClasses, partial perms, 4
|
|
1325
|
+
gap> S := Semigroup([
|
|
1326
|
+
> PartialPerm([1, 2, 3, 4, 5, 7, 6]),
|
|
1327
|
+
> PartialPerm([2, 1]),
|
|
1328
|
+
> PartialPerm([4, 5], [5, 4])]);;
|
|
1329
|
+
gap> D := JoinIrreducibleDClasses(S);;
|
|
1330
|
+
gap> reps := Filtered(DClassReps(S), x -> x <> MultiplicativeZero(S));;
|
|
1331
|
+
gap> Length(D) = Length(reps);
|
|
1332
|
+
true
|
|
1333
|
+
gap> Length(D);
|
|
1334
|
+
3
|
|
1335
|
+
gap> ForAll(reps, x -> ForAny(D, d -> x in d));
|
|
1336
|
+
true
|
|
1337
|
+
|
|
1338
|
+
# attrinv: JoinIrreducibleDClasses, inverse op, 1/?
|
|
1339
|
+
gap> S := InverseMonoid([Bipartition([[1, 2, 5, -2, -3, -5], [3, 4, -1, -4]]),
|
|
1340
|
+
> Bipartition([[1, 4, -5], [2, 5, -1, -2, -3], [3, -4]])]);;
|
|
1341
|
+
gap> jid :=
|
|
1342
|
+
> [DClass(S, Bipartition([[1, 4, -1, -4], [2, 3, 5, -2, -3, -5]])),
|
|
1343
|
+
> DClass(S, Bipartition([[1, 2, 3, -1, -2, -3], [4, -4], [5, -5]]))];;
|
|
1344
|
+
gap> JoinIrreducibleDClasses(S) = jid or JoinIrreducibleDClasses(S) = Set(jid);
|
|
1345
|
+
true
|
|
1346
|
+
|
|
1347
|
+
# attrinv: MajorantClosure, 1/1
|
|
1348
|
+
gap> S := DualSymmetricInverseMonoid(3);
|
|
1349
|
+
<inverse block bijection monoid of degree 3 with 3 generators>
|
|
1350
|
+
gap> Size(S);
|
|
1351
|
+
25
|
|
1352
|
+
gap> T := InverseMonoid([Bipartition([[1, -1], [2, 3, -2, -3]]),
|
|
1353
|
+
> Bipartition([[1, -2], [2, 3, -1, -3]])]);
|
|
1354
|
+
<inverse block bijection monoid of degree 3 with 2 generators>
|
|
1355
|
+
gap> MajorantClosure(S, T);
|
|
1356
|
+
[ <block bijection: [ 1, 2, 3, -1, -2, -3 ]>,
|
|
1357
|
+
<block bijection: [ 1, 3, -1, -3 ], [ 2, -2 ]>,
|
|
1358
|
+
<block bijection: [ 1, 3, -2, -3 ], [ 2, -1 ]>,
|
|
1359
|
+
<block bijection: [ 1, -1 ], [ 2, 3, -2, -3 ]>,
|
|
1360
|
+
<block bijection: [ 1, -2 ], [ 2, 3, -1, -3 ]>,
|
|
1361
|
+
<block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>,
|
|
1362
|
+
<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ]>,
|
|
1363
|
+
<block bijection: [ 1, 2, -1, -3 ], [ 3, -2 ]>,
|
|
1364
|
+
<block bijection: [ 1, 2, -1 ], [ 3, -2, -3 ]>,
|
|
1365
|
+
<block bijection: [ 1, 2, -2, -3 ], [ 3, -1 ]>,
|
|
1366
|
+
<block bijection: [ 1, 2, -2 ], [ 3, -1, -3 ]>,
|
|
1367
|
+
<block bijection: [ 1, 2, -3 ], [ 3, -1, -2 ]>,
|
|
1368
|
+
<block bijection: [ 1, 3, -1, -2 ], [ 2, -3 ]>,
|
|
1369
|
+
<block bijection: [ 1, 3, -1 ], [ 2, -2, -3 ]>,
|
|
1370
|
+
<block bijection: [ 1, 3, -2 ], [ 2, -1, -3 ]>,
|
|
1371
|
+
<block bijection: [ 1, 3, -3 ], [ 2, -1, -2 ]>,
|
|
1372
|
+
<block bijection: [ 1, -1, -2 ], [ 2, 3, -3 ]>,
|
|
1373
|
+
<block bijection: [ 1, -1, -3 ], [ 2, 3, -2 ]>,
|
|
1374
|
+
<block bijection: [ 1, -2, -3 ], [ 2, 3, -1 ]>,
|
|
1375
|
+
<block bijection: [ 1, -3 ], [ 2, 3, -1, -2 ]>,
|
|
1376
|
+
<block bijection: [ 1, -1 ], [ 2, -3 ], [ 3, -2 ]>,
|
|
1377
|
+
<block bijection: [ 1, -2 ], [ 2, -1 ], [ 3, -3 ]>,
|
|
1378
|
+
<block bijection: [ 1, -3 ], [ 2, -1 ], [ 3, -2 ]>,
|
|
1379
|
+
<block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>,
|
|
1380
|
+
<block bijection: [ 1, -3 ], [ 2, -2 ], [ 3, -1 ]> ]
|
|
1381
|
+
gap> MajorantClosure(T, S);
|
|
1382
|
+
Error, the 2nd argument (a semigroup) is not a subset of the 1st argument (an \
|
|
1383
|
+
inverse semigroup)
|
|
1384
|
+
gap> MajorantClosure(S, Elements(T));
|
|
1385
|
+
[ <block bijection: [ 1, 2, 3, -1, -2, -3 ]>,
|
|
1386
|
+
<block bijection: [ 1, 3, -1, -3 ], [ 2, -2 ]>,
|
|
1387
|
+
<block bijection: [ 1, 3, -2, -3 ], [ 2, -1 ]>,
|
|
1388
|
+
<block bijection: [ 1, -1 ], [ 2, 3, -2, -3 ]>,
|
|
1389
|
+
<block bijection: [ 1, -2 ], [ 2, 3, -1, -3 ]>,
|
|
1390
|
+
<block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>,
|
|
1391
|
+
<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ]>,
|
|
1392
|
+
<block bijection: [ 1, 2, -1, -3 ], [ 3, -2 ]>,
|
|
1393
|
+
<block bijection: [ 1, 2, -1 ], [ 3, -2, -3 ]>,
|
|
1394
|
+
<block bijection: [ 1, 2, -2, -3 ], [ 3, -1 ]>,
|
|
1395
|
+
<block bijection: [ 1, 2, -2 ], [ 3, -1, -3 ]>,
|
|
1396
|
+
<block bijection: [ 1, 2, -3 ], [ 3, -1, -2 ]>,
|
|
1397
|
+
<block bijection: [ 1, 3, -1, -2 ], [ 2, -3 ]>,
|
|
1398
|
+
<block bijection: [ 1, 3, -1 ], [ 2, -2, -3 ]>,
|
|
1399
|
+
<block bijection: [ 1, 3, -2 ], [ 2, -1, -3 ]>,
|
|
1400
|
+
<block bijection: [ 1, 3, -3 ], [ 2, -1, -2 ]>,
|
|
1401
|
+
<block bijection: [ 1, -1, -2 ], [ 2, 3, -3 ]>,
|
|
1402
|
+
<block bijection: [ 1, -1, -3 ], [ 2, 3, -2 ]>,
|
|
1403
|
+
<block bijection: [ 1, -2, -3 ], [ 2, 3, -1 ]>,
|
|
1404
|
+
<block bijection: [ 1, -3 ], [ 2, 3, -1, -2 ]>,
|
|
1405
|
+
<block bijection: [ 1, -1 ], [ 2, -3 ], [ 3, -2 ]>,
|
|
1406
|
+
<block bijection: [ 1, -2 ], [ 2, -1 ], [ 3, -3 ]>,
|
|
1407
|
+
<block bijection: [ 1, -3 ], [ 2, -1 ], [ 3, -2 ]>,
|
|
1408
|
+
<block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>,
|
|
1409
|
+
<block bijection: [ 1, -3 ], [ 2, -2 ], [ 3, -1 ]> ]
|
|
1410
|
+
gap> MajorantClosure(S, Elements(S)) = Elements(S);
|
|
1411
|
+
true
|
|
1412
|
+
gap> MajorantClosure(T, Elements(S));
|
|
1413
|
+
Error, the 2nd argument (a mult. elt. coll.) is not a subset of the 1st argume\
|
|
1414
|
+
nt (an inverse semigroup)
|
|
1415
|
+
gap> MajorantClosure(S, [One(S)]);
|
|
1416
|
+
[ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]> ]
|
|
1417
|
+
|
|
1418
|
+
# attrinv: RightCosetsOfInverseSemigroup, 1/2
|
|
1419
|
+
gap> S := InverseMonoid([PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
|
|
1420
|
+
> PartialPerm([1, 3, 5], [5, 1, 3])]);;
|
|
1421
|
+
gap> T := InverseSemigroup(
|
|
1422
|
+
> [PartialPerm([3], [4]), PartialPerm([1, 3, 5], [3, 5, 1])]);;
|
|
1423
|
+
gap> RightCosetsOfInverseSemigroup(S, T);
|
|
1424
|
+
Error, the 2nd argument (an inverse semigroup) must be majorantly closed
|
|
1425
|
+
gap> RightCosetsOfInverseSemigroup(S,
|
|
1426
|
+
> InverseSemigroup(MajorantClosure(S, T), rec(small := true)));
|
|
1427
|
+
[ [ <empty partial perm>, <identity partial perm on [ 1 ]>, [1,2], [1,3],
|
|
1428
|
+
[1,4], [1,5], [2,1], <identity partial perm on [ 2 ]>, [2,3], [2,4],
|
|
1429
|
+
[2,5], <identity partial perm on [ 1, 2 ]>, [2,5](1), [1,2,4], [2,1,3],
|
|
1430
|
+
[1,3][2,4], [1,4][2,5], [1,5][2,3], [3,1], [3,2],
|
|
1431
|
+
<identity partial perm on [ 3 ]>, [3,4], [3,5],
|
|
1432
|
+
<identity partial perm on [ 1, 3 ]>,
|
|
1433
|
+
<identity partial perm on [ 1, 2, 3 ]>, [3,1,2], [3,1,2,4], [1,3,5],
|
|
1434
|
+
[1,4][3,2], [1,4](3), [1,4][3,2,5], [3,1,5], [1,5][3,4], [4,1], [4,2],
|
|
1435
|
+
[4,3], <identity partial perm on [ 4 ]>, [4,5], [3,1][4,2], [3,1][4,5],
|
|
1436
|
+
[3,2](4), [4,1](3), <identity partial perm on [ 3, 4 ]>, [3,4,5],
|
|
1437
|
+
[4,3,5], [4,2,1], [2,1][4,5], <identity partial perm on [ 2, 4 ]>,
|
|
1438
|
+
[2,3][4,1], [2,3](4), [2,4,5], [2,5][4,3],
|
|
1439
|
+
<identity partial perm on [ 1, 2, 4 ]>,
|
|
1440
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>, [1,2,4,5], [3,1,2,4,5],
|
|
1441
|
+
[4,2,1,3], [5,1], [5,2], [5,3], [5,4], <identity partial perm on [ 5 ]>,
|
|
1442
|
+
[4,1][5,2], [4,1](5), [5,4,2], [4,3][5,1], [5,4,3],
|
|
1443
|
+
<identity partial perm on [ 4, 5 ]>, [4,5,3], [5,3,1], [3,2][5,1],
|
|
1444
|
+
<identity partial perm on [ 3, 5 ]>, [3,4][5,2], [5,3,4], [3,5,1],
|
|
1445
|
+
[3,5,4], [5,4,2,1], <identity partial perm on [ 2, 4, 5 ]>,
|
|
1446
|
+
[4,1][5,2,3], [5,2](1), <identity partial perm on [ 1, 5 ]>,
|
|
1447
|
+
<identity partial perm on [ 1, 3, 5 ]>,
|
|
1448
|
+
<identity partial perm on [ 1, 2, 4, 5 ]>,
|
|
1449
|
+
<identity partial perm on [ 1, 2, 3, 4, 5 ]>, [1,2][5,4], [5,1,3],
|
|
1450
|
+
[1,3][5,4], (1,3,5), [5,4,2,1,3], [1,4](5), [1,5,3], (1,5,3) ] ]
|
|
1451
|
+
gap> T := InverseSemigroup([PartialPerm([1, 2, 4, 6, 8], [2, 10, 3, 5, 7]),
|
|
1452
|
+
> PartialPerm([1, 3, 4, 5, 6, 7, 8], [4, 7, 6, 9, 10, 1, 3])]);;
|
|
1453
|
+
gap> RightCosetsOfInverseSemigroup(S, T);
|
|
1454
|
+
Error, the 2nd argument (an inverse semigroup) must be a subsemigroup of the 1\
|
|
1455
|
+
st argument (an inverse semigroup)
|
|
1456
|
+
|
|
1457
|
+
# attrinv: RightCosetsOfInverseSemigroup, 2/2
|
|
1458
|
+
gap> S := InverseSemigroup([
|
|
1459
|
+
> PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
|
|
1460
|
+
> PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
|
|
1461
|
+
> PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
|
|
1462
|
+
> PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
|
|
1463
|
+
> PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
|
|
1464
|
+
gap> W := InverseSemigroup(MajorantClosure(S,
|
|
1465
|
+
> [PartialPerm([1, 2, 3, 4], [1, 2, 3, 4])]));
|
|
1466
|
+
<inverse partial perm semigroup of rank 7 with 5 generators>
|
|
1467
|
+
gap> Set(RightCosetsOfInverseSemigroup(S, W));
|
|
1468
|
+
[ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
|
|
1469
|
+
<identity partial perm on [ 1, 2, 3, 4, 5 ]>,
|
|
1470
|
+
<identity partial perm on [ 1, 2, 3, 4, 6 ]>,
|
|
1471
|
+
<identity partial perm on [ 1, 2, 3, 4, 5, 6 ]>,
|
|
1472
|
+
<identity partial perm on [ 1, 2, 3, 4, 5, 7 ]> ], [ [2,5](1)(3)(4) ],
|
|
1473
|
+
[ [4,3,2,7](1) ], [ [2,1,3,4,6] ],
|
|
1474
|
+
[ [1,3,4,6](2), [5,1,3,4,6](2), [7,5,1,3,4,6](2) ], [ [1,3,5][4,7](2) ],
|
|
1475
|
+
[ [1,3,2,5](4) ], [ [3,2,1,4,6] ], [ [3,1,4,5](2) ],
|
|
1476
|
+
[ [4,3,1,5](2), [4,3,1,5,7](2), [6,4,3,1,5](2), [6,4,3,1,5,7](2) ],
|
|
1477
|
+
[ [1,5][2,4,3,6] ], [ [2,7][4,3,1,5] ], [ [2,7][3,1,5][4,6] ],
|
|
1478
|
+
[ [4,1,6](2)(3) ], [ [3,5][4,1,7](2), [4,1,7][6,3,5](2) ], [ [2,3,4,1,7] ],
|
|
1479
|
+
[ [3,1,7][4,2,6] ] ]
|
|
1480
|
+
|
|
1481
|
+
# attrinv: SupremumIdempotents, 1/1
|
|
1482
|
+
gap> SupremumIdempotentsNC([], PartialPerm([]));
|
|
1483
|
+
<empty partial perm>
|
|
1484
|
+
gap> SupremumIdempotentsNC([], Bipartition([[1], [-1]]));
|
|
1485
|
+
<bipartition: [ 1 ], [ -1 ]>
|
|
1486
|
+
gap> SupremumIdempotentsNC([], Bipartition([[1, -1]]));
|
|
1487
|
+
<block bijection: [ 1, -1 ]>
|
|
1488
|
+
gap> SupremumIdempotentsNC(Idempotents(DualSymmetricInverseMonoid(3)),
|
|
1489
|
+
> RandomBlockBijection(3));
|
|
1490
|
+
<block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>
|
|
1491
|
+
gap> SupremumIdempotentsNC(Transformation([1, 1]), 1);
|
|
1492
|
+
Error, the argument is not a collection of partial perms, block bijections, or\
|
|
1493
|
+
partial perm bipartitions
|
|
1494
|
+
|
|
1495
|
+
# attrinv: InversesOfSemigroupElementNC, 1/1
|
|
1496
|
+
gap> S := InverseSemigroup(
|
|
1497
|
+
> [Bipartition([[1, 2, 4, -2, -3], [3, -4, -5], [5, -1]]),
|
|
1498
|
+
> Bipartition([[1, 2, 3, 4, 5, -1, -2, -3, -4, -5]]),
|
|
1499
|
+
> Bipartition([[1, 2, 3, 4, -2, -3], [5, -1, -4, -5]])]);;
|
|
1500
|
+
gap> x := Bipartition([[1, -3, -5], [2, 3, 4, 5, -1, -2, -4]]);;
|
|
1501
|
+
gap> InversesOfSemigroupElementNC(S, x);
|
|
1502
|
+
[ <block bijection: [ 1, 2, 4, -2, -3, -4, -5 ], [ 3, 5, -1 ]> ]
|
|
1503
|
+
gap> x in last;
|
|
1504
|
+
false
|
|
1505
|
+
|
|
1506
|
+
# attrinv: IdempotentGeneratedSubsemigroup
|
|
1507
|
+
gap> IdempotentGeneratedSubsemigroup(FreeInverseSemigroup(2));
|
|
1508
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1509
|
+
Error, no 4th choice method found for `IdempotentGeneratedSubsemigroup' on 1 a\
|
|
1510
|
+
rguments
|
|
1511
|
+
gap> S := InverseSemigroup([
|
|
1512
|
+
> PartialPerm([1, 2, 3, 4], [6, 2, 4, 3]),
|
|
1513
|
+
> PartialPerm([1, 2, 3, 5], [5, 6, 3, 2]),
|
|
1514
|
+
> PartialPerm([1, 2, 5], [3, 5, 4])]);;
|
|
1515
|
+
gap> S := IdempotentGeneratedSubsemigroup(S);;
|
|
1516
|
+
gap> HasIsIdempotentGenerated(S) and IsIdempotentGenerated(S);
|
|
1517
|
+
true
|
|
1518
|
+
|
|
1519
|
+
#
|
|
1520
|
+
gap> SEMIGROUPS.StopTest();
|
|
1521
|
+
gap> STOP_TEST("Semigroups package: standard/attributes/inverse.tst");
|