passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-unknown-linux-musl-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1021 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-81d76771.so.2.0.0 +0 -0
- passagemath_gap_pkg_semigroups.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,311 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/congruences/congsimple.tst
|
|
4
|
+
#Y Copyright (C) 2014-2022 Michael Young
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local C, S, T, acting, classes, classx, classy, classz, cong, cong1, cong2
|
|
12
|
+
#@local congs, elms, i, j, map, x, y, z
|
|
13
|
+
gap> START_TEST("Semigroups package: standard/congruences/congsimple.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
# Set info levels and user preferences
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
|
|
19
|
+
# SimpleCongTest2: Find all congruences of a simple semigroup
|
|
20
|
+
gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
21
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
22
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
23
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
24
|
+
gap> congs := CongruencesOfSemigroup(S);;
|
|
25
|
+
gap> cong := SemigroupCongruence(S, [Transformation([2, 1, 1, 2, 1]),
|
|
26
|
+
> Transformation([1, 2, 2, 1, 2])]);;
|
|
27
|
+
gap> i := Positions(congs, cong);;
|
|
28
|
+
gap> Length(i) = 1;
|
|
29
|
+
true
|
|
30
|
+
gap> IsSimpleSemigroupCongruence(congs[i[1]]);
|
|
31
|
+
true
|
|
32
|
+
gap> Size(congs);
|
|
33
|
+
34
|
|
34
|
+
gap> cong1 := SemigroupCongruence(S, [[Transformation([1, 2, 2, 1, 2]),
|
|
35
|
+
> Transformation([1, 2, 2, 1, 1])],
|
|
36
|
+
> [Transformation([4, 3, 3, 4, 3]),
|
|
37
|
+
> Transformation([4, 3, 3, 4, 4])]]);;
|
|
38
|
+
gap> cong2 := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 2]),
|
|
39
|
+
> Transformation([1, 2, 1, 2, 1])],
|
|
40
|
+
> [Transformation([1, 2, 2, 1, 2]),
|
|
41
|
+
> Transformation([1, 2, 2, 1, 1])]]);;
|
|
42
|
+
gap> i := Positions(congs, cong1);;
|
|
43
|
+
gap> j := Positions(congs, cong2);;
|
|
44
|
+
gap> Length(i) = 1 and Length(j) = 1;
|
|
45
|
+
true
|
|
46
|
+
gap> i := i[1];;
|
|
47
|
+
gap> j := j[1];;
|
|
48
|
+
gap> IsSubrelation(congs[i], congs[j]);
|
|
49
|
+
false
|
|
50
|
+
|
|
51
|
+
# SimpleCongTest3: Construct a congruence by generating pairs
|
|
52
|
+
gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
53
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
54
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
55
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
56
|
+
gap> congs := CongruencesOfSemigroup(S);;
|
|
57
|
+
gap> cong1 := SemigroupCongruence(S,
|
|
58
|
+
> [[Transformation([1, 2, 1, 2, 2]),
|
|
59
|
+
> Transformation([2, 1, 2, 1, 2])],
|
|
60
|
+
> [Transformation([2, 1, 1, 2, 2]),
|
|
61
|
+
> Transformation([1, 2, 2, 1, 2])]]);;
|
|
62
|
+
gap> i := Positions(congs, cong1);;
|
|
63
|
+
gap> Length(i) = 1;
|
|
64
|
+
true
|
|
65
|
+
gap> cong2 := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 2]),
|
|
66
|
+
> Transformation([1, 2, 1, 2, 1])],
|
|
67
|
+
> [Transformation([1, 2, 1, 2, 2]),
|
|
68
|
+
> Transformation([1, 2, 2, 1, 1])]]);;
|
|
69
|
+
gap> j := Positions(congs, cong2);;
|
|
70
|
+
gap> Length(j) = 1;
|
|
71
|
+
true
|
|
72
|
+
gap> i = j;
|
|
73
|
+
false
|
|
74
|
+
gap> congs[i[1]] = congs[j[1]];
|
|
75
|
+
false
|
|
76
|
+
gap> cong1 = cong2;
|
|
77
|
+
false
|
|
78
|
+
gap> EquivalenceRelationCanonicalLookup(cong1);
|
|
79
|
+
[ 1, 2, 2, 3, 1, 3, 3, 4, 4, 1, 4, 2, 4, 2, 1, 3 ]
|
|
80
|
+
|
|
81
|
+
# SimpleCongTest4: Testing membership in a congruence
|
|
82
|
+
gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
83
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
84
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
85
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
86
|
+
gap> IsSimpleSemigroup(S);
|
|
87
|
+
true
|
|
88
|
+
gap> cong := SemigroupCongruence(S,
|
|
89
|
+
> [[Transformation([1, 2, 1, 2, 2]),
|
|
90
|
+
> Transformation([2, 1, 2, 1, 2])],
|
|
91
|
+
> [Transformation([2, 1, 1, 2, 2]),
|
|
92
|
+
> Transformation([1, 2, 2, 1, 2])]]);;
|
|
93
|
+
gap> x := Transformation([1, 2, 2, 1, 1]);;
|
|
94
|
+
gap> y := Transformation([1, 2, 2, 1, 2]);;
|
|
95
|
+
gap> z := Transformation([2, 1, 2, 1, 1]);;
|
|
96
|
+
gap> [x, y] in cong;
|
|
97
|
+
true
|
|
98
|
+
gap> [x, z] in cong;
|
|
99
|
+
false
|
|
100
|
+
gap> [x, y, z] in cong;
|
|
101
|
+
Error, the 1st argument (a list) does not have length 2
|
|
102
|
+
gap> [Transformation([2, 1, 1, 2, 1]), Transformation([5, 2, 1, 2, 2])] in cong;
|
|
103
|
+
Error, the items in the 1st argument (a list) do not all belong to the range o\
|
|
104
|
+
f the 2nd argument (a 2-sided semigroup congruence)
|
|
105
|
+
|
|
106
|
+
# SimpleCongTest5: Congruence classes
|
|
107
|
+
gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
108
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
109
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
110
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
111
|
+
gap> IsSimpleSemigroup(S);
|
|
112
|
+
true
|
|
113
|
+
gap> cong := SemigroupCongruence(S,
|
|
114
|
+
> [[Transformation([1, 2, 1, 2, 2]),
|
|
115
|
+
> Transformation([2, 1, 2, 1, 2])],
|
|
116
|
+
> [Transformation([2, 1, 1, 2, 2]),
|
|
117
|
+
> Transformation([1, 2, 2, 1, 2])]]);;
|
|
118
|
+
gap> classes := EquivalenceClasses(cong);;
|
|
119
|
+
gap> Size(classes[1]);
|
|
120
|
+
4
|
|
121
|
+
gap> Representative(classes[1]);
|
|
122
|
+
Transformation( [ 1, 2, 2, 1, 2 ] )
|
|
123
|
+
gap> Size(classes) = NrEquivalenceClasses(cong);
|
|
124
|
+
true
|
|
125
|
+
gap> EquivalenceClassOfElement(cong, PartialPerm([2], [3]));
|
|
126
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the range of the 1st\
|
|
127
|
+
argument (a 2-sided congruence)
|
|
128
|
+
gap> classx := EquivalenceClassOfElement(cong, x);;
|
|
129
|
+
gap> classy := EquivalenceClassOfElement(cong, y);;
|
|
130
|
+
gap> classz := EquivalenceClassOfElement(cong, z);
|
|
131
|
+
<2-sided congruence class of Transformation( [ 2, 1, 2, 1, 1 ] )>
|
|
132
|
+
gap> elms := ImagesElm(cong, x);
|
|
133
|
+
[ Transformation( [ 1, 2, 2, 1, 2 ] ), Transformation( [ 2, 1, 1, 2, 1 ] ),
|
|
134
|
+
Transformation( [ 1, 2, 2, 1, 1 ] ), Transformation( [ 2, 1, 1, 2, 2 ] ) ]
|
|
135
|
+
gap> ForAll(elms, elm -> elm in classx);
|
|
136
|
+
true
|
|
137
|
+
gap> Enumerator(classx);
|
|
138
|
+
[ Transformation( [ 1, 2, 2, 1, 2 ] ), Transformation( [ 2, 1, 1, 2, 1 ] ),
|
|
139
|
+
Transformation( [ 1, 2, 2, 1, 1 ] ), Transformation( [ 2, 1, 1, 2, 2 ] ) ]
|
|
140
|
+
gap> classx = classy;
|
|
141
|
+
true
|
|
142
|
+
gap> classz = classx;
|
|
143
|
+
false
|
|
144
|
+
gap> x in classx;
|
|
145
|
+
true
|
|
146
|
+
gap> y in classx;
|
|
147
|
+
true
|
|
148
|
+
gap> x in classz;
|
|
149
|
+
false
|
|
150
|
+
gap> classx = classes[1];
|
|
151
|
+
true
|
|
152
|
+
gap> z * y in classz * classy;
|
|
153
|
+
true
|
|
154
|
+
gap> y * z in classx * classz;
|
|
155
|
+
true
|
|
156
|
+
gap> x * z in classz * classx;
|
|
157
|
+
false
|
|
158
|
+
gap> Size(classx);
|
|
159
|
+
4
|
|
160
|
+
gap> Representative(classx);
|
|
161
|
+
Transformation( [ 1, 2, 2, 1, 1 ] )
|
|
162
|
+
|
|
163
|
+
# SimpleCongTest6: Join and meet congruences
|
|
164
|
+
gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
165
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
166
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
167
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
168
|
+
gap> IsSimpleSemigroup(S);
|
|
169
|
+
true
|
|
170
|
+
gap> congs := [];;
|
|
171
|
+
gap> congs[1] := SemigroupCongruence(S, []);;
|
|
172
|
+
gap> congs[2] := SemigroupCongruence(S, [Transformation([1, 2, 1, 2, 1]),
|
|
173
|
+
> Transformation([3, 4, 3, 4, 3])]);;
|
|
174
|
+
gap> congs[3] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 2]),
|
|
175
|
+
> Transformation([1, 2, 1, 2, 1])],
|
|
176
|
+
> [Transformation([1, 2, 1, 2, 2]),
|
|
177
|
+
> Transformation([1, 2, 2, 1, 1])]]);;
|
|
178
|
+
gap> congs[4] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 1]),
|
|
179
|
+
> Transformation([3, 4, 3, 4, 3])],
|
|
180
|
+
> [Transformation([1, 2, 1, 2, 2]),
|
|
181
|
+
> Transformation([1, 2, 1, 2, 1])],
|
|
182
|
+
> [Transformation([1, 2, 1, 2, 2]),
|
|
183
|
+
> Transformation([1, 2, 2, 1, 1])]]);;
|
|
184
|
+
gap> congs[5] := SemigroupCongruence(S, [Transformation([1, 2, 2, 1, 2]),
|
|
185
|
+
> Transformation([1, 2, 1, 2, 2])]);;
|
|
186
|
+
gap> congs[6] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 1]),
|
|
187
|
+
> Transformation([1, 2, 2, 1, 1])],
|
|
188
|
+
> [Transformation([1, 2, 1, 2, 1]),
|
|
189
|
+
> Transformation([3, 4, 3, 4, 3])],
|
|
190
|
+
> [Transformation([1, 2, 2, 1, 2]),
|
|
191
|
+
> Transformation([1, 2, 1, 2, 2])]]);;
|
|
192
|
+
gap> congs[7] := UniversalSemigroupCongruence(S);;
|
|
193
|
+
gap> congs[8] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 1]),
|
|
194
|
+
> Transformation([3, 4, 3, 4, 3])],
|
|
195
|
+
> [Transformation([1, 2, 1, 2, 2]),
|
|
196
|
+
> Transformation([1, 2, 1, 2, 1])],
|
|
197
|
+
> [Transformation([1, 2, 2, 1, 2]),
|
|
198
|
+
> Transformation([1, 2, 2, 1, 1])]]);;
|
|
199
|
+
gap> JoinSemigroupCongruences(congs[2], congs[3]) = congs[4];
|
|
200
|
+
true
|
|
201
|
+
gap> JoinSemigroupCongruences(congs[6], congs[3]) = congs[7];
|
|
202
|
+
true
|
|
203
|
+
gap> JoinSemigroupCongruences(congs[6], congs[4]) = congs[7];
|
|
204
|
+
true
|
|
205
|
+
gap> MeetSemigroupCongruences(congs[5], congs[1]) = congs[1];
|
|
206
|
+
true
|
|
207
|
+
gap> IsSubrelation(congs[5], congs[1]);
|
|
208
|
+
true
|
|
209
|
+
gap> MeetSemigroupCongruences(congs[8], congs[8]) = congs[8];
|
|
210
|
+
true
|
|
211
|
+
gap> JoinSemigroupCongruences(congs[8], congs[8]) = congs[8];
|
|
212
|
+
true
|
|
213
|
+
|
|
214
|
+
# SimpleCongTest7: Quotients
|
|
215
|
+
gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
216
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
217
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
218
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
219
|
+
gap> IsSimpleSemigroup(S);
|
|
220
|
+
true
|
|
221
|
+
gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1, 2, 2]),
|
|
222
|
+
> Transformation([1, 2, 2, 1, 1])]);;
|
|
223
|
+
gap> Size(S / cong);
|
|
224
|
+
6
|
|
225
|
+
|
|
226
|
+
# SimpleCongTest8
|
|
227
|
+
# Convert to and from semigroup congruence by generating pairs
|
|
228
|
+
gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
229
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
230
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
231
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
232
|
+
gap> congs := CongruencesOfSemigroup(S);;
|
|
233
|
+
gap> ForAll(congs, cong ->
|
|
234
|
+
> cong = SemigroupCongruence(S, GeneratingPairsOfSemigroupCongruence(cong)));
|
|
235
|
+
true
|
|
236
|
+
|
|
237
|
+
# SimpleCongTest9: The universal congruence
|
|
238
|
+
gap> S := InverseSemigroup(PartialPerm([1], [2]), PartialPerm([2], [1]));
|
|
239
|
+
<inverse partial perm semigroup of rank 2 with 2 generators>
|
|
240
|
+
gap> IsZeroSimpleSemigroup(S);
|
|
241
|
+
true
|
|
242
|
+
gap> C := SemigroupCongruence(S, [S.1, S.1 * S.2]);;
|
|
243
|
+
gap> NrEquivalenceClasses(C);
|
|
244
|
+
1
|
|
245
|
+
|
|
246
|
+
# Test with a 0-simple semigroup
|
|
247
|
+
gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])]);;
|
|
248
|
+
gap> IsRegularSemigroup(S);
|
|
249
|
+
true
|
|
250
|
+
gap> Size(CongruencesOfSemigroup(S));
|
|
251
|
+
2
|
|
252
|
+
|
|
253
|
+
# Join/Meet: bad input
|
|
254
|
+
gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])]);;
|
|
255
|
+
gap> IsZeroSimpleSemigroup(S);
|
|
256
|
+
true
|
|
257
|
+
gap> IsRegularSemigroup(S);
|
|
258
|
+
true
|
|
259
|
+
gap> T := Semigroup([Transformation([2, 1, 1, 2, 1]),
|
|
260
|
+
> Transformation([3, 4, 3, 4, 4]),
|
|
261
|
+
> Transformation([3, 4, 3, 4, 3]),
|
|
262
|
+
> Transformation([4, 3, 3, 4, 4])]);;
|
|
263
|
+
gap> IsSimpleSemigroup(T);
|
|
264
|
+
true
|
|
265
|
+
gap> cong1 := SemigroupCongruence(T,
|
|
266
|
+
> [[Transformation([1, 2, 1, 2, 2]),
|
|
267
|
+
> Transformation([2, 1, 2, 1, 2])],
|
|
268
|
+
> [Transformation([2, 1, 1, 2, 2]),
|
|
269
|
+
> Transformation([1, 2, 2, 1, 2])]]);;
|
|
270
|
+
gap> cong2 := SemigroupCongruence(S, []);;
|
|
271
|
+
gap> MeetSemigroupCongruences(cong1, cong2);
|
|
272
|
+
Error, cannot form the meet of congruences over different semigroups
|
|
273
|
+
gap> JoinSemigroupCongruences(cong1, cong2);
|
|
274
|
+
Error, cannot form the join of congruences over different semigroups
|
|
275
|
+
|
|
276
|
+
# not simple or 0-simple: try next method
|
|
277
|
+
gap> S := OrderEndomorphisms(2);;
|
|
278
|
+
gap> IsSimpleSemigroup(S) or IsZeroSimpleSemigroup(S);
|
|
279
|
+
false
|
|
280
|
+
gap> congs := CongruencesOfSemigroup(S);;
|
|
281
|
+
gap> Size(congs);
|
|
282
|
+
3
|
|
283
|
+
|
|
284
|
+
# ViewObj for a 0-simple semigroup congruence
|
|
285
|
+
gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])],
|
|
286
|
+
> rec(acting := true));;
|
|
287
|
+
gap> IsZeroSimpleSemigroup(S);
|
|
288
|
+
true
|
|
289
|
+
gap> C := SemigroupCongruence(S, [S.1, S.1 ^ 2]);
|
|
290
|
+
<semigroup congruence over <0-simple transformation semigroup of degree 4
|
|
291
|
+
with 2 generators> with linked triple (1,2,2)>
|
|
292
|
+
|
|
293
|
+
# SemigroupCongruenceByGeneratingPairs for free group
|
|
294
|
+
gap> SemigroupCongruenceByGeneratingPairs(FreeGroup(1), []);
|
|
295
|
+
<2-sided semigroup congruence over <free group on the generators [ f1 ]> with
|
|
296
|
+
0 generating pairs>
|
|
297
|
+
|
|
298
|
+
# CongruenceByIsomorphism, error
|
|
299
|
+
gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])],
|
|
300
|
+
> rec(acting := true));;
|
|
301
|
+
gap> map := IsomorphismSemigroup(IsBooleanMatSemigroup, S);;
|
|
302
|
+
gap> C := SemigroupCongruence(S, [S.1, S.2]);
|
|
303
|
+
<universal semigroup congruence over <0-simple transformation semigroup of
|
|
304
|
+
degree 4 with 2 generators>>
|
|
305
|
+
gap> CongruenceByIsomorphism(map, C);
|
|
306
|
+
Error, the range of the 1st argument (a general mapping) is not equal to the r\
|
|
307
|
+
ange of the 2nd argument (a congruence)
|
|
308
|
+
|
|
309
|
+
#
|
|
310
|
+
gap> SEMIGROUPS.StopTest();
|
|
311
|
+
gap> STOP_TEST("Semigroups package: standard/congruences/congsimple.tst");
|
|
@@ -0,0 +1,259 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/congruences/conguniv.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 Michael Young
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local S, T, badcong, class, classes, cong, congs, otheruni, pairs, part, r
|
|
12
|
+
#@local uni, uniS, uniT
|
|
13
|
+
gap> START_TEST("Semigroups package: standard/congruences/conguniv.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
# Set info levels and user preferences
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
|
|
19
|
+
# CongUnivTest1: No zero, non-simple
|
|
20
|
+
gap> S := Semigroup([Transformation([1, 3, 4, 1, 3, 7, 5]),
|
|
21
|
+
> Transformation([5, 7, 1, 6, 1, 7, 6])]);;
|
|
22
|
+
gap> uni := UniversalSemigroupCongruence(S);
|
|
23
|
+
<universal semigroup congruence over <transformation semigroup of degree 7
|
|
24
|
+
with 2 generators>>
|
|
25
|
+
gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
|
|
26
|
+
gap> cong := SemigroupCongruence(S, pairs);;
|
|
27
|
+
gap> NrEquivalenceClasses(cong);
|
|
28
|
+
1
|
|
29
|
+
gap> part := EquivalenceRelationPartition(uni);;
|
|
30
|
+
gap> Size(part);
|
|
31
|
+
1
|
|
32
|
+
gap> Set(part[1]) = Elements(S);
|
|
33
|
+
true
|
|
34
|
+
|
|
35
|
+
# CongUnivTest2: Has zero, not 0-simple
|
|
36
|
+
gap> S := Semigroup([Transformation([2, 4, 3, 5, 5, 7, 1]),
|
|
37
|
+
> Transformation([6, 2, 3, 3, 1, 5])]);;
|
|
38
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
39
|
+
gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
|
|
40
|
+
gap> cong := SemigroupCongruence(S, pairs);;
|
|
41
|
+
gap> NrEquivalenceClasses(cong);
|
|
42
|
+
1
|
|
43
|
+
|
|
44
|
+
# CongUnivTest3: Has zero, is 0-simple
|
|
45
|
+
gap> r := ReesZeroMatrixSemigroup(Group([(5, 6)]),
|
|
46
|
+
> [[0, (), 0, 0, 0, 0, 0, 0, 0, (5, 6), 0, 0, (5, 6), (5, 6)],
|
|
47
|
+
> [(), 0, (), 0, (), (5, 6), 0, (5, 6), 0, 0, (5, 6), (5, 6), (5, 6), ()],
|
|
48
|
+
> [0, 0, (), (5, 6), 0, 0, 0, (), 0, (5, 6), 0, 0, 0, (5, 6)],
|
|
49
|
+
> [0, 0, 0, (5, 6), 0, (), (5, 6), (), 0, (5, 6), 0, (), 0, (5, 6)],
|
|
50
|
+
> [0, (), (5, 6), 0, 0, 0, (5, 6), (5, 6), (), 0, (5, 6), (), (5, 6), 0],
|
|
51
|
+
> [0, (), 0, (5, 6), 0, 0, (5, 6), 0, (), (5, 6), (5, 6), (), (5, 6), (5, 6)],
|
|
52
|
+
> [0, (5, 6), 0, (5, 6), 0, (), (5, 6), (), 0, 0, 0, (), (), 0],
|
|
53
|
+
> [(), 0, (), (5, 6), (), 0, (5, 6), 0, 0, (5, 6), (5, 6), 0, (5, 6), 0],
|
|
54
|
+
> [0, (), 0, 0, 0, (5, 6), 0, (5, 6), (), 0, (5, 6), 0, (5, 6), 0],
|
|
55
|
+
> [0, 0, (5, 6), 0, 0, (), (5, 6), 0, 0, 0, 0, (), 0, 0],
|
|
56
|
+
> [0, (5, 6), (), (5, 6), 0, 0, 0, (), 0, 0, 0, 0, (), 0]]);;
|
|
57
|
+
gap> congs := CongruencesOfSemigroup(r);;
|
|
58
|
+
gap> uni := UniversalSemigroupCongruence(r);;
|
|
59
|
+
gap> uni = congs[3];
|
|
60
|
+
false
|
|
61
|
+
gap> congs[5] = uni;
|
|
62
|
+
false
|
|
63
|
+
gap> IsSubrelation(uni, congs[5]);
|
|
64
|
+
true
|
|
65
|
+
gap> IsSubrelation(congs[5], uni);
|
|
66
|
+
false
|
|
67
|
+
gap> otheruni := UniversalSemigroupCongruence(FullTransformationMonoid(5));;
|
|
68
|
+
gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
|
|
69
|
+
gap> IsSubrelation(congs[4], otheruni);
|
|
70
|
+
Error, the 1st and 2nd arguments are congruences over different semigroups
|
|
71
|
+
gap> IsSubrelation(otheruni, congs[4]);
|
|
72
|
+
Error, the 1st and 2nd arguments are congruences over different semigroups
|
|
73
|
+
gap> cong := SemigroupCongruence(r, pairs);;
|
|
74
|
+
gap> NrEquivalenceClasses(cong);
|
|
75
|
+
1
|
|
76
|
+
|
|
77
|
+
# CongUnivTest4: No zero, is simple
|
|
78
|
+
gap> S := Semigroup(
|
|
79
|
+
> [Transformation([1, 1, 1, 1, 5, 1, 1]),
|
|
80
|
+
> Transformation([1, 5, 1, 1, 5, 1, 1]),
|
|
81
|
+
> Transformation([3, 3, 3, 3, 5, 3, 3]),
|
|
82
|
+
> Transformation([3, 5, 3, 3, 5, 3, 3]),
|
|
83
|
+
> Transformation([4, 4, 4, 4, 5, 4, 4]),
|
|
84
|
+
> Transformation([4, 5, 4, 4, 5, 4, 4]),
|
|
85
|
+
> Transformation([6, 5, 6, 6, 5, 6, 6]),
|
|
86
|
+
> Transformation([6, 6, 6, 6, 5, 6, 6]),
|
|
87
|
+
> Transformation([7, 5, 7, 7, 5, 7, 7]),
|
|
88
|
+
> Transformation([7, 7, 7, 7, 5, 7, 7])]);;
|
|
89
|
+
gap> uni := UniversalSemigroupCongruence(r);;
|
|
90
|
+
gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
|
|
91
|
+
gap> cong := SemigroupCongruence(r, pairs);;
|
|
92
|
+
gap> NrEquivalenceClasses(cong);
|
|
93
|
+
1
|
|
94
|
+
|
|
95
|
+
# EquivalenceRelationCanonicalLookup
|
|
96
|
+
gap> S := FullTransformationMonoid(2);;
|
|
97
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
98
|
+
gap> EquivalenceRelationCanonicalLookup(uni);
|
|
99
|
+
[ 1, 1, 1, 1 ]
|
|
100
|
+
|
|
101
|
+
# Equality checking
|
|
102
|
+
gap> S := FullTransformationMonoid(2);;
|
|
103
|
+
gap> T := Semigroup([Transformation([2, 3, 3])]);;
|
|
104
|
+
gap> uniS := UniversalSemigroupCongruence(S);;
|
|
105
|
+
gap> uniT := UniversalSemigroupCongruence(T);;
|
|
106
|
+
gap> uniS = uniT;
|
|
107
|
+
false
|
|
108
|
+
gap> uniS = UniversalSemigroupCongruence(S);
|
|
109
|
+
true
|
|
110
|
+
gap> cong := SemigroupCongruence(S, [Transformation([1, 1]),
|
|
111
|
+
> Transformation([2, 2])]);;
|
|
112
|
+
gap> cong = uniS;
|
|
113
|
+
false
|
|
114
|
+
gap> cong := SemigroupCongruence(T, [Transformation([2, 3, 3]),
|
|
115
|
+
> Transformation([3, 3, 3])]);;
|
|
116
|
+
gap> uniT = cong;
|
|
117
|
+
true
|
|
118
|
+
|
|
119
|
+
# Pair inclusion
|
|
120
|
+
gap> S := Semigroup([Transformation([1, 4, 2, 4])]);;
|
|
121
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
122
|
+
gap> [Transformation([1, 4, 2, 4]), Transformation([1, 4, 4, 4])] in uni;
|
|
123
|
+
true
|
|
124
|
+
gap> [Transformation([1, 3, 2, 4]), Transformation([1, 4, 4, 4])] in uni;
|
|
125
|
+
Error, the items in the 1st argument (a list) do not all belong to the range o\
|
|
126
|
+
f the 2nd argument (a 2-sided semigroup congruence)
|
|
127
|
+
gap> [3, 4] in uni;
|
|
128
|
+
Error, the items in the 1st argument (a list) do not all belong to the range o\
|
|
129
|
+
f the 2nd argument (a 2-sided semigroup congruence)
|
|
130
|
+
gap> [Transformation([1, 4, 2, 4])] in uni;
|
|
131
|
+
Error, the 1st argument (a list) does not have length 2
|
|
132
|
+
|
|
133
|
+
# Classes
|
|
134
|
+
gap> S := Semigroup([PartialPerm([1, 2], [3, 1]),
|
|
135
|
+
> PartialPerm([1, 2, 3], [1, 3, 4])]);
|
|
136
|
+
<partial perm semigroup of rank 3 with 2 generators>
|
|
137
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
138
|
+
gap> AsSSortedList(ImagesElm(uni, PartialPerm([1, 2, 3], [1, 3, 4]))) = Elements(S);
|
|
139
|
+
true
|
|
140
|
+
gap> ImagesElm(uni, Transformation([1, 3, 2]));
|
|
141
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the range of the 1st\
|
|
142
|
+
argument (a congruence)
|
|
143
|
+
gap> classes := EquivalenceClasses(uni);
|
|
144
|
+
[ <2-sided congruence class of [2,1,3]> ]
|
|
145
|
+
gap> EquivalenceClassOfElement(uni, Transformation([1, 3, 2]));
|
|
146
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the range of the 1st\
|
|
147
|
+
argument (a 2-sided congruence)
|
|
148
|
+
gap> class := EquivalenceClassOfElement(uni, PartialPerm([1, 2, 3], [1, 3, 4]));
|
|
149
|
+
<2-sided congruence class of [2,3,4](1)>
|
|
150
|
+
gap> PartialPerm([2], [3]) in class;
|
|
151
|
+
true
|
|
152
|
+
gap> PartialPerm([1, 2, 4], [3, 2, 1]) in class;
|
|
153
|
+
false
|
|
154
|
+
gap> classes[1] * class = class;
|
|
155
|
+
true
|
|
156
|
+
gap> class = classes[1];
|
|
157
|
+
true
|
|
158
|
+
gap> T := Semigroup([PartialPerm([1], [3]),
|
|
159
|
+
> PartialPerm([1, 2, 3], [1, 3, 4])]);;
|
|
160
|
+
gap> badcong := UniversalSemigroupCongruence(T);;
|
|
161
|
+
gap> class * EquivalenceClassOfElement(badcong, PartialPerm([1], [3]));
|
|
162
|
+
Error, the arguments (cong. classes) are not classes of the same congruence
|
|
163
|
+
gap> Size(class);
|
|
164
|
+
11
|
|
165
|
+
|
|
166
|
+
# Meet and join
|
|
167
|
+
gap> S := Semigroup([Transformation([1, 3, 4, 1]),
|
|
168
|
+
> Transformation([3, 1, 1, 3])]);;
|
|
169
|
+
gap> T := Semigroup([Transformation([1, 2, 4, 1]),
|
|
170
|
+
> Transformation([3, 3, 1, 3])]);;
|
|
171
|
+
gap> cong := SemigroupCongruence(S, [Transformation([1, 3, 1, 1]),
|
|
172
|
+
> Transformation([1, 3, 4, 1])]);;
|
|
173
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
174
|
+
gap> uni = JoinSemigroupCongruences(uni, uni);
|
|
175
|
+
true
|
|
176
|
+
gap> uni = JoinSemigroupCongruences(cong, uni);
|
|
177
|
+
true
|
|
178
|
+
gap> uni = JoinSemigroupCongruences(uni, cong);
|
|
179
|
+
true
|
|
180
|
+
gap> uni = MeetSemigroupCongruences(uni, uni);
|
|
181
|
+
true
|
|
182
|
+
gap> cong = MeetSemigroupCongruences(cong, uni);
|
|
183
|
+
true
|
|
184
|
+
gap> cong = MeetSemigroupCongruences(uni, cong);
|
|
185
|
+
true
|
|
186
|
+
gap> badcong := SemigroupCongruence(T, [Transformation([1, 2, 4, 1]),
|
|
187
|
+
> Transformation([1, 1, 1, 1])]);;
|
|
188
|
+
gap> JoinSemigroupCongruences(uni, badcong);
|
|
189
|
+
Error, cannot form the join of congruences over different semigroups
|
|
190
|
+
gap> JoinSemigroupCongruences(badcong, uni);
|
|
191
|
+
Error, cannot form the join of congruences over different semigroups
|
|
192
|
+
gap> MeetSemigroupCongruences(uni, badcong);
|
|
193
|
+
Error, cannot form the meet of congruences over different semigroups
|
|
194
|
+
gap> MeetSemigroupCongruences(badcong, uni);
|
|
195
|
+
Error, cannot form the meet of congruences over different semigroups
|
|
196
|
+
gap> cong := SemigroupCongruence(S, [Transformation([1, 3, 4, 1]),
|
|
197
|
+
> Transformation([1, 3, 3, 1])]);;
|
|
198
|
+
gap> cong = uni;
|
|
199
|
+
true
|
|
200
|
+
|
|
201
|
+
# GeneratingPairsOfSemigroupCongruence
|
|
202
|
+
gap> S := Semigroup(IdentityTransformation);
|
|
203
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
204
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
205
|
+
gap> GeneratingPairsOfSemigroupCongruence(uni);
|
|
206
|
+
[ ]
|
|
207
|
+
gap> S := Semigroup([Transformation([4, 5, 3, 4, 5]),
|
|
208
|
+
> Transformation([5, 1, 3, 1, 5])]);;
|
|
209
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
210
|
+
gap> GeneratingPairsOfSemigroupCongruence(uni);
|
|
211
|
+
[ [ Transformation( [ 4, 5, 3, 4, 5 ] ), Transformation( [ 5, 5, 3, 5, 5 ] )
|
|
212
|
+
] ]
|
|
213
|
+
gap> S := Monoid([PartialPerm([1], [1]),
|
|
214
|
+
> PartialPerm([1, 2], [1, 2]),
|
|
215
|
+
> PartialPerm([1], [1])]);;
|
|
216
|
+
gap> uni := UniversalSemigroupCongruence(S);;
|
|
217
|
+
gap> GeneratingPairsOfSemigroupCongruence(uni);
|
|
218
|
+
[ [ <identity partial perm on [ 1 ]>, <identity partial perm on [ 1, 2 ]> ] ]
|
|
219
|
+
gap> S := Semigroup([Transformation([2, 1, 2]),
|
|
220
|
+
> Transformation([1, 2, 2])]);;
|
|
221
|
+
gap> uni := UniversalSemigroupCongruence(S);
|
|
222
|
+
<universal semigroup congruence over <transformation semigroup of degree 3
|
|
223
|
+
with 2 generators>>
|
|
224
|
+
gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
|
|
225
|
+
gap> cong := SemigroupCongruenceByGeneratingPairs(S, pairs);;
|
|
226
|
+
gap> NrEquivalenceClasses(cong);
|
|
227
|
+
1
|
|
228
|
+
|
|
229
|
+
# IsUniversalSemigroupCongruence for a cong by generating pairs
|
|
230
|
+
gap> S := Semigroup([PartialPerm([1], [2]),
|
|
231
|
+
> PartialPerm([1, 2, 3], [2, 3, 1])]);;
|
|
232
|
+
gap> cong := SemigroupCongruence(S, [PartialPerm([1], [1]),
|
|
233
|
+
> PartialPerm([1, 2, 3], [3, 1, 2])]);;
|
|
234
|
+
gap> IsUniversalSemigroupCongruence(cong);
|
|
235
|
+
true
|
|
236
|
+
gap> cong := SemigroupCongruence(S, [PartialPerm([1], [2]),
|
|
237
|
+
> PartialPerm([1], [3])]);;
|
|
238
|
+
gap> IsUniversalSemigroupCongruence(cong);
|
|
239
|
+
false
|
|
240
|
+
|
|
241
|
+
# IsUniversalSemigroupCongruence for an RMS congruence
|
|
242
|
+
gap> S := ReesMatrixSemigroup(SymmetricGroup(4),
|
|
243
|
+
> [[(), (), (), ()],
|
|
244
|
+
> [(2, 4), (), (1, 3), ()],
|
|
245
|
+
> [(1, 2, 3, 4), (), (1, 3, 2, 4), ()]]);;
|
|
246
|
+
gap> cong := RMSCongruenceByLinkedTriple(S, Group([(2, 4, 3),
|
|
247
|
+
> (1, 4)(2, 3),
|
|
248
|
+
> (1, 3)(2, 4)]),
|
|
249
|
+
> [[1], [2], [3], [4]], [[1], [2, 3]]);;
|
|
250
|
+
gap> IsUniversalSemigroupCongruence(cong);
|
|
251
|
+
false
|
|
252
|
+
gap> cong := RMSCongruenceByLinkedTriple(S, SymmetricGroup(4),
|
|
253
|
+
> [[1, 2, 3, 4]], [[1, 2, 3]]);;
|
|
254
|
+
gap> IsUniversalSemigroupCongruence(cong);
|
|
255
|
+
true
|
|
256
|
+
|
|
257
|
+
#
|
|
258
|
+
gap> SEMIGROUPS.StopTest();
|
|
259
|
+
gap> STOP_TEST("Semigroups package: standard/congruences/conguniv.tst");
|