passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (356) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-unknown-linux-musl-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1021 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
  349. passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
  350. passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.libs/libgcc_s-2d945d6c.so.1 +0 -0
  352. passagemath_gap_pkg_semigroups.libs/libsemigroups-81d76771.so.2.0.0 +0 -0
  353. passagemath_gap_pkg_semigroups.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
  354. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  355. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  356. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,49 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/semieunit.tst
4
+ #Y Copyright (C) 2016 Christopher Russell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local BruteForceIsoCheck, InfoLevelInfoSmallsemi, e_unitary_semigroups
12
+ #@local inv_semigroups, triples, x, y
13
+ gap> START_TEST("Semigroups package: extreme/semieunit.tst");
14
+ gap> LoadPackage("semigroups", false);;
15
+ gap> LoadPackage("smallsemi", false);;
16
+
17
+ # Set info levels and user preferences
18
+ gap> SEMIGROUPS.StartTest();
19
+ gap> SEMIGROUPS.TestRec.InfoLevelInfoSmallsemi := InfoLevel(InfoSmallsemi);;
20
+ gap> SetInfoLevel(InfoSmallsemi, 0);;
21
+
22
+ # McAlisterTriple
23
+ gap> inv_semigroups := AllSmallSemigroups([2 .. 7], IsInverseSemigroup, true);;
24
+ gap> e_unitary_semigroups := Filtered(inv_semigroups, IsEUnitaryInverseSemigroup);;
25
+ gap> triples := ShallowCopy(e_unitary_semigroups);;
26
+ gap> Apply(triples, a -> AsSemigroup(IsPartialPermSemigroup, a));;
27
+ gap> Apply(triples, a -> IsomorphismSemigroup(IsMcAlisterTripleSemigroup, a));;
28
+ gap> BruteForceIsoCheck := function(iso)
29
+ > local x, y;
30
+ > if not IsInjective(iso) or not IsSurjective(iso) then
31
+ > return false;
32
+ > fi;
33
+ > for x in Generators(Source(iso)) do
34
+ > for y in Generators(Source(iso)) do
35
+ > if x ^ iso * y ^ iso <> (x * y) ^ iso then
36
+ > return false;
37
+ > fi;
38
+ > od;
39
+ > od;
40
+ > return true;
41
+ > end;;
42
+ gap> Apply(triples, BruteForceIsoCheck);;
43
+ gap> false in triples;
44
+ false
45
+
46
+ #
47
+ gap> SetInfoLevel(InfoSmallsemi, SEMIGROUPS.TestRec.InfoLevelInfoSmallsemi);
48
+ gap> SEMIGROUPS.StopTest();
49
+ gap> STOP_TEST("Semigroups package: extreme/semieunit.tst");
@@ -0,0 +1,353 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/semiffmat.tst
4
+ #Y Copyright (C) 2015 Markus Pfeiffer
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local G, M, S, T, acting, elms, func, i, j, n, upper, x, y, zero
12
+ gap> START_TEST("Semigroups package: extreme/semiffmat.tst");
13
+ gap> LoadPackage("semigroups", false);;
14
+
15
+ # Set info levels and user preferences
16
+ gap> SEMIGROUPS.StartTest();
17
+ gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
18
+
19
+ # MatrixSemigroupTest1: Create and Size
20
+ gap> M := Matrix(GF(2),
21
+ > [[0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
22
+ > Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
23
+ > 0 * Z(2), Z(2) ^ 0],
24
+ > [0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
25
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
26
+ > Z(2) ^ 0, Z(2) ^ 0],
27
+ > [Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
28
+ > Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0,
29
+ > Z(2) ^ 0, Z(2) ^ 0],
30
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
31
+ > 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
32
+ > 0 * Z(2), 0 * Z(2)],
33
+ > [0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
34
+ > 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
35
+ > 0 * Z(2), Z(2) ^ 0],
36
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2),
37
+ > 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
38
+ > 0 * Z(2), 0 * Z(2)],
39
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
40
+ > 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
41
+ > Z(2) ^ 0, 0 * Z(2)],
42
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
43
+ > 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
44
+ > Z(2) ^ 0, 0 * Z(2)],
45
+ > [Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
46
+ > Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
47
+ > 0 * Z(2), Z(2) ^ 0],
48
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2),
49
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
50
+ > Z(2) ^ 0, Z(2) ^ 0],
51
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
52
+ > Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
53
+ > Z(2) ^ 0, 0 * Z(2)],
54
+ > [0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
55
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2),
56
+ > 0 * Z(2), Z(2) ^ 0],
57
+ > [Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
58
+ > Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
59
+ > 0 * Z(2), Z(2) ^ 0],
60
+ > [0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
61
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
62
+ > 0 * Z(2), Z(2) ^ 0],
63
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
64
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
65
+ > 0 * Z(2), 0 * Z(2)],
66
+ > [Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
67
+ > 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
68
+ > Z(2) ^ 0, Z(2) ^ 0]]);;
69
+ gap> S := Semigroup(M);
70
+ <commutative semigroup of 16x16 matrices over GF(2) with 1 generator>
71
+ gap> Size(S);
72
+ 7161
73
+ gap> NrDClasses(S);
74
+ 1
75
+ gap> PartialOrderOfDClasses(S);
76
+ <immutable empty digraph with 1 vertex>
77
+ gap> StructureDescriptionSchutzenbergerGroups(S);
78
+ [ "C7161" ]
79
+ gap> T := AsSemigroup(IsTransformationSemigroup, S);
80
+ <commutative transformation semigroup of size 7161, degree 7161 with 1
81
+ generator>
82
+ gap> Size(T);
83
+ 7161
84
+ gap> Size(S) = Size(T);
85
+ true
86
+ gap> NrIdempotents(S) = NrIdempotents(T);
87
+ true
88
+
89
+ # MatrixSemigroupTest2: Create and Size
90
+ gap> S := Semigroup(
91
+ > [Matrix(GF(3),
92
+ > [[Z(3), Z(3), Z(3) ^ 0, Z(3), Z(3) ^ 0],
93
+ > [0 * Z(3), 0 * Z(3), Z(3), 0 * Z(3), Z(3) ^ 0],
94
+ > [Z(3), Z(3), Z(3) ^ 0, 0 * Z(3), Z(3)],
95
+ > [Z(3) ^ 0, Z(3) ^ 0, Z(3), Z(3), 0 * Z(3)],
96
+ > [Z(3), Z(3) ^ 0, Z(3), Z(3) ^ 0, 0 * Z(3)]]),
97
+ > Matrix(GF(3),
98
+ > [[0 * Z(3), Z(3) ^ 0, 0 * Z(3), Z(3), Z(3)],
99
+ > [Z(3), 0 * Z(3), Z(3) ^ 0, 0 * Z(3), Z(3) ^ 0],
100
+ > [Z(3), Z(3), Z(3) ^ 0, Z(3), Z(3)],
101
+ > [Z(3), Z(3), 0 * Z(3), Z(3), Z(3) ^ 0],
102
+ > [Z(3), Z(3), Z(3) ^ 0, Z(3) ^ 0, Z(3)]])]);;
103
+ gap> Size(S);
104
+ 170080803
105
+ gap> NrIdempotents(S);
106
+ 43844
107
+ gap> PartialOrderOfDClasses(S);
108
+ <immutable digraph with 5 vertices, 4 edges>
109
+ gap> S := Semigroup(GeneratorsOfSemigroup(S));
110
+ <semigroup of 5x5 matrices over GF(3) with 2 generators>
111
+ gap> PartialOrderOfDClasses(S);
112
+ <immutable digraph with 5 vertices, 4 edges>
113
+
114
+ # MatrixSemigroupTest3: Create, Size, MinimalIdeal
115
+ gap> S := Semigroup(
116
+ > [Matrix(GF(3),
117
+ > [[Z(3), Z(3), Z(3) ^ 0],
118
+ > [0 * Z(3), Z(3), Z(3)],
119
+ > [Z(3), 0 * Z(3), Z(3) ^ 0]]),
120
+ > Matrix(GF(3),
121
+ > [[Z(3), Z(3), 0 * Z(3)],
122
+ > [Z(3) ^ 0, Z(3) ^ 0, 0 * Z(3)],
123
+ > [Z(3) ^ 0, Z(3) ^ 0, 0 * Z(3)]])]);;
124
+ gap> Size(S);
125
+ 137
126
+ gap> NrIdempotents(S);
127
+ 42
128
+ gap> MinimalIdeal(S);
129
+ <simple semigroup ideal of 3x3 matrices over GF(3) with 1 generator>
130
+ gap> Size(last);
131
+ 1
132
+ gap> MultiplicativeZero(S);
133
+ [ [ 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3) ],
134
+ [ 0*Z(3), 0*Z(3), 0*Z(3) ] ]
135
+ gap> MinimalDClass(S);
136
+ <Green's D-class: <matrix object of dimensions 3x3 over GF(3)>>
137
+ gap> M := MaximalSubsemigroups(S);;
138
+ gap> List(M, Size);
139
+ [ 133, 9 ]
140
+ gap> List(M, U -> IsMaximalSubsemigroup(S, U));
141
+ [ true, true ]
142
+
143
+ # MatrixSemigroups3: Upper triangular matrices, SubsemigroupByProperty
144
+ gap> upper := function(mat)
145
+ > local zero, n, i, j;
146
+ > zero := Zero(BaseDomain(mat));
147
+ > n := NrRows(mat);
148
+ > for i in [2 .. n] do
149
+ > for j in [1 .. i - 1] do
150
+ > if mat[i, j] <> zero then
151
+ > return false;
152
+ > fi;
153
+ > od;
154
+ > od;
155
+ > return true;
156
+ > end;;
157
+ gap> S := GeneralLinearMonoid(3, 3);
158
+ <general linear monoid 3x3 over GF(3)>
159
+ gap> T := SubsemigroupByProperty(S, upper);
160
+ <monoid of size 729, 3x3 matrices over GF(3) with 21 generators>
161
+ gap> Size(T);
162
+ 729
163
+
164
+ # MatrixSemigroups4: ClosureSemigroup
165
+ gap> upper := function(mat)
166
+ > local zero, n, i, j;
167
+ > zero := Zero(BaseDomain(mat));
168
+ > n := NrRows(mat);
169
+ > for i in [2 .. n] do
170
+ > for j in [1 .. i - 1] do
171
+ > if mat[i][j] <> zero then
172
+ > return false;
173
+ > fi;
174
+ > od;
175
+ > od;
176
+ > return true;
177
+ > end;;
178
+ gap> elms := Filtered(Elements(GLM(3, 3)), upper);;
179
+ gap> S := Semigroup(elms[1]);;
180
+ gap> for i in [2 .. Length(elms)] do
181
+ > S := ClosureSemigroup(S, elms[i]);
182
+ > od;;
183
+ gap> S;
184
+ <monoid of 3x3 matrices over GF(3) with 64 generators>
185
+ gap> Size(S);
186
+ 729
187
+
188
+ # MatrixSemigroups5:
189
+ gap> func := IsGreensDGreaterThanFunc(S);
190
+ function( x, y ) ... end
191
+ gap> x := Random(S);;
192
+ gap> y := Random(S);;
193
+ gap> func(x, y);;
194
+ gap> func(y, x);;
195
+
196
+ # MatrixSemigroups6:
197
+ gap> T := Semigroup(Transformation([1, 2, 7, 3, 2, 1, 4, 3]),
198
+ > Transformation([5, 7, 8, 2, 7, 3, 8, 5]));
199
+ <transformation semigroup of degree 8 with 2 generators>
200
+ gap> Size(T);
201
+ 416
202
+ gap> S := AsSemigroup(IsMatrixOverFiniteFieldSemigroup, T);
203
+ <semigroup of 8x8 matrices over GF(2) with 2 generators>
204
+ gap> Size(S);
205
+ 416
206
+ gap> Size(S) = Size(T);
207
+ true
208
+ gap> NrIdempotents(S) = NrIdempotents(T);
209
+ true
210
+
211
+ # MatrixSemigroups7:
212
+ gap> S := Semigroup(
213
+ > Matrix(GF(2),
214
+ > [[Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
215
+ > 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
216
+ > 0 * Z(2), Z(2) ^ 0],
217
+ > [Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
218
+ > Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
219
+ > Z(2) ^ 0, 0 * Z(2)],
220
+ > [Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
221
+ > Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
222
+ > 0 * Z(2), 0 * Z(2)],
223
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
224
+ > 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
225
+ > 0 * Z(2), 0 * Z(2)],
226
+ > [Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0,
227
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
228
+ > Z(2) ^ 0, Z(2) ^ 0],
229
+ > [Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
230
+ > Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
231
+ > Z(2) ^ 0, Z(2) ^ 0],
232
+ > [Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0,
233
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0,
234
+ > 0 * Z(2), 0 * Z(2)],
235
+ > [Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
236
+ > Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
237
+ > 0 * Z(2), 0 * Z(2)],
238
+ > [Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
239
+ > 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
240
+ > 0 * Z(2), 0 * Z(2)],
241
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
242
+ > 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
243
+ > Z(2) ^ 0, Z(2) ^ 0],
244
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0,
245
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
246
+ > Z(2) ^ 0, 0 * Z(2)],
247
+ > [Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
248
+ > 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
249
+ > Z(2) ^ 0, 0 * Z(2)],
250
+ > [0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2),
251
+ > Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
252
+ > Z(2) ^ 0, 0 * Z(2)],
253
+ > [Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
254
+ > 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
255
+ > Z(2) ^ 0, 0 * Z(2)],
256
+ > [0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
257
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0,
258
+ > 0 * Z(2), Z(2) ^ 0],
259
+ > [Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
260
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
261
+ > Z(2) ^ 0, Z(2) ^ 0]]),
262
+ > Matrix(GF(2),
263
+ > [[Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
264
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
265
+ > Z(2) ^ 0, 0 * Z(2)],
266
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
267
+ > 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
268
+ > Z(2) ^ 0, Z(2) ^ 0],
269
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
270
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
271
+ > Z(2) ^ 0, Z(2) ^ 0],
272
+ > [Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2),
273
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
274
+ > Z(2) ^ 0, Z(2) ^ 0],
275
+ > [Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
276
+ > 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0,
277
+ > Z(2) ^ 0, Z(2) ^ 0],
278
+ > [0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2),
279
+ > 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
280
+ > 0 * Z(2), Z(2) ^ 0],
281
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
282
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
283
+ > 0 * Z(2), 0 * Z(2)],
284
+ > [Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
285
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
286
+ > Z(2) ^ 0, Z(2) ^ 0],
287
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2),
288
+ > 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
289
+ > Z(2) ^ 0, 0 * Z(2)],
290
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2),
291
+ > 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
292
+ > Z(2) ^ 0, 0 * Z(2)],
293
+ > [0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
294
+ > Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
295
+ > 0 * Z(2), Z(2) ^ 0],
296
+ > [Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
297
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0,
298
+ > 0 * Z(2), 0 * Z(2)],
299
+ > [0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0,
300
+ > Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
301
+ > 0 * Z(2), Z(2) ^ 0],
302
+ > [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
303
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0,
304
+ > 0 * Z(2), Z(2) ^ 0],
305
+ > [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
306
+ > 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2),
307
+ > 0 * Z(2), Z(2) ^ 0],
308
+ > [0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
309
+ > 0 * Z(2), Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, Z(2) ^ 0, 0 * Z(2),
310
+ > 0 * Z(2), 0 * Z(2)]]));
311
+ <semigroup of 16x16 matrices over GF(2) with 2 generators>
312
+ gap> Size(S);
313
+ 21392255076846796800
314
+ gap> IsGroupAsSemigroup(S);
315
+ false
316
+ gap> NrIdempotents(S);
317
+ 4
318
+ gap> NrRClasses(S);
319
+ 2
320
+ gap> NrLClasses(S);
321
+ 2
322
+ gap> SchutzenbergerGroup(DClasses(S)[1]);
323
+ <matrix group of size 5348063769211699200 with 3 generators>
324
+ gap> PartialOrderOfDClasses(S);
325
+ <immutable empty digraph with 1 vertex>
326
+
327
+ #FIXME(later)
328
+ #gap> StructureDescriptionOfSchutzenbergerGroups(S);
329
+ #T This takes ages, and this is probably due to the
330
+ #T StructureDescription for matrix over finite field
331
+ #T groups not being very efficient.
332
+ #T It seems to be going through permutation groups
333
+ #T Making a Schutzenberger group into a normal GAP
334
+ #T Matrix group yields a result instantly:
335
+ gap> G := Group(List(GeneratorsOfGroup(SchutzenbergerGroup(DClasses(S)[1])),
336
+ > AsList));
337
+ <matrix group with 3 generators>
338
+ gap> Size(G);
339
+ 5348063769211699200
340
+ gap> StructureDescription(G);
341
+ "PSL(8,2)"
342
+
343
+ #
344
+ gap> S := AsSemigroup(IsMatrixOverFiniteFieldSemigroup,
345
+ > Semigroup(Z(4) * [[1, 0, 0], [1, 1, 0], [0, 1, 0]],
346
+ > Z(4) * [[0, 0, 0], [0, 0, 1], [0, 1, 0]]));
347
+ <semigroup of 3x3 matrices over GF(2^2) with 2 generators>
348
+ gap> Size(S);
349
+ 27
350
+
351
+ #
352
+ gap> SEMIGROUPS.StopTest();
353
+ gap> STOP_TEST("Semigroups package: extreme/semiffmat.tst");
@@ -0,0 +1,245 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/semigroups.tst
4
+ #Y Copyright (C) 2015 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+
12
+ #@local S, acting, f, g, gens, i, inv, iso, s, small, u, x, y, z
13
+ gap> START_TEST("Semigroups package: extreme/semigroups.tst");
14
+ gap> LoadPackage("semigroups", false);;
15
+
16
+ # Set info levels and user preferences
17
+ gap> SEMIGROUPS.StartTest();
18
+ gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
19
+
20
+ # previously the second arg here (an ideal) would have been added using
21
+ # AsList to the set of generators of S. This is slow with the acting stuff
22
+ # turned off.
23
+ gap> S := Semigroup(AsSemigroup(IsPartialPermSemigroup, AlternatingGroup(8)),
24
+ > SemigroupIdeal(SymmetricInverseMonoid(8),
25
+ > PartialPerm([1 .. 7])));
26
+ <partial perm semigroup of rank 8 with 19 generators>
27
+ gap> Size(S);
28
+ 1421569
29
+
30
+ # SemigroupsTest1: Inverse semigroup of partial perms
31
+ gap> gens := [PartialPermNC([1, 2, 3, 4, 6, 7, 10], [5, 3, 4, 1, 9, 6, 8]),
32
+ > PartialPermNC([1, 2, 3, 5, 6, 7, 9], [8, 9, 6, 7, 3, 4, 5]),
33
+ > PartialPermNC([1, 2, 3, 5, 6, 8, 9], [2, 4, 1, 7, 3, 10, 8]),
34
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 8], [8, 4, 5, 3, 7, 2, 10]),
35
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 8], [9, 2, 8, 10, 6, 3, 7]),
36
+ > PartialPermNC([1, 2, 4, 6, 7, 8], [3, 1, 5, 7, 6, 10]),
37
+ > PartialPermNC([1, 2, 4, 5, 6, 7, 10], [1, 8, 2, 5, 3, 7, 9]),
38
+ > PartialPermNC([1, 2, 3, 4, 5, 8, 9], [8, 2, 9, 5, 7, 6, 10]),
39
+ > PartialPermNC([1, 2, 4, 5, 6, 7], [4, 8, 10, 3, 6, 9]),
40
+ > PartialPermNC([1, 2, 4, 6, 8, 9], [2, 6, 4, 8, 10, 3]),
41
+ > PartialPermNC([1, 2, 3, 4, 6, 7, 9], [4, 10, 9, 5, 6, 2, 3]),
42
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7], [7, 4, 8, 6, 1, 5, 10]),
43
+ > PartialPermNC([1, 3, 4, 7, 8], [1, 6, 3, 5, 9]),
44
+ > PartialPermNC([1, 2, 3, 5, 6, 7, 9], [6, 5, 1, 4, 10, 7, 8]),
45
+ > PartialPermNC([1, 2, 3, 5, 7, 8, 9], [4, 6, 2, 5, 10, 3, 8]),
46
+ > PartialPermNC([1, 2, 3, 4, 6, 9], [3, 7, 8, 2, 5, 10]),
47
+ > PartialPermNC([1, 2, 3, 4, 7, 8, 10], [3, 4, 2, 1, 5, 10, 8]),
48
+ > PartialPermNC([1, 2, 3, 4, 5, 8, 9, 10], [6, 5, 10, 7, 9, 1, 4, 8]),
49
+ > PartialPermNC([1, 2, 3, 5, 8, 9], [6, 10, 7, 8, 5, 3]),
50
+ > PartialPermNC([1, 2, 3, 4, 5, 10], [3, 7, 10, 8, 2, 6]),
51
+ > PartialPermNC([1, 2, 5, 6, 10], [7, 4, 8, 3, 2]),
52
+ > PartialPermNC([1, 2, 4, 5, 6, 8, 10], [6, 9, 5, 7, 4, 2, 1]),
53
+ > PartialPermNC([1, 2, 3, 4, 6, 9], [8, 2, 4, 7, 9, 1]),
54
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 9, 10], [9, 3, 4, 2, 6, 10, 8, 5]),
55
+ > PartialPermNC([1, 2, 3, 10], [4, 9, 7, 10]),
56
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 8, 10], [7, 10, 1, 2, 9, 8, 3, 5]),
57
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7], [9, 6, 4, 3, 10, 1, 7]),
58
+ > PartialPermNC([1, 2, 3, 5, 7, 8, 10], [5, 9, 4, 8, 1, 7, 2]),
59
+ > PartialPermNC([1, 2, 3, 6, 7, 9, 10], [4, 2, 5, 7, 3, 6, 9]),
60
+ > PartialPermNC([1, 2, 3, 4, 5, 8, 9], [9, 8, 7, 10, 4, 5, 2]),
61
+ > PartialPermNC([1, 2, 3, 4, 5, 8, 9], [4, 10, 1, 2, 8, 3, 9]),
62
+ > PartialPermNC([1, 2, 4, 5, 9, 10], [10, 8, 3, 7, 1, 2]),
63
+ > PartialPermNC([1, 2, 3, 5, 9, 10], [6, 10, 2, 7, 3, 4]),
64
+ > PartialPermNC([1, 2, 3, 4, 10], [8, 9, 10, 7, 6]),
65
+ > PartialPermNC([1, 2, 3, 6], [9, 10, 5, 8]),
66
+ > PartialPermNC([1, 2, 3, 5, 6, 8], [9, 8, 5, 7, 6, 10]),
67
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7], [1, 8, 5, 2, 10, 4, 6]),
68
+ > PartialPermNC([1, 2, 3, 5, 8, 10], [4, 5, 8, 7, 9, 2]),
69
+ > PartialPermNC([1, 2, 4, 5, 6, 8, 9], [8, 1, 3, 10, 2, 6, 5]),
70
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 8, 10], [10, 8, 3, 7, 6, 2, 1, 9]),
71
+ > PartialPermNC([1, 3, 4, 6, 10], [7, 2, 8, 6, 5]),
72
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 9], [8, 3, 9, 10, 2, 1, 5]),
73
+ > PartialPermNC([1, 3, 5, 6, 10], [9, 3, 4, 8, 6]),
74
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 9], [7, 3, 2, 8, 4, 1, 10]),
75
+ > PartialPermNC([1, 2, 3, 4, 6, 7], [6, 3, 5, 7, 10, 8]),
76
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [8, 7, 9, 4, 3, 6]),
77
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 8], [2, 1, 9, 7, 4, 5, 8]),
78
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 10], [10, 2, 6, 1, 3, 5, 9]),
79
+ > PartialPermNC([1, 2, 3, 4, 6, 10], [2, 3, 1, 4, 6, 10]),
80
+ > PartialPermNC([1, 2, 3, 4, 8, 9, 10], [8, 2, 7, 6, 5, 3, 4]),
81
+ > PartialPermNC([1, 2, 3, 7, 9], [9, 5, 8, 1, 7]),
82
+ > PartialPermNC([1, 2, 3, 4, 5, 10], [10, 6, 9, 5, 2, 1]),
83
+ > PartialPermNC([1, 2, 3, 4, 6, 7, 8], [9, 3, 10, 1, 7, 4, 6]),
84
+ > PartialPermNC([1, 3, 4, 5, 7, 10], [1, 6, 7, 5, 10, 4]),
85
+ > PartialPermNC([1, 3, 4, 6, 7, 8], [8, 2, 3, 1, 10, 7]),
86
+ > PartialPermNC([1, 2, 3, 5, 8, 10], [2, 6, 5, 8, 3, 4]),
87
+ > PartialPermNC([1, 2, 3, 5, 8, 9], [1, 10, 9, 3, 6, 4]),
88
+ > PartialPermNC([1, 2, 3, 4, 6, 9, 10], [10, 2, 6, 1, 8, 5, 7]),
89
+ > PartialPermNC([1, 2, 3, 5, 7], [1, 2, 10, 8, 9]),
90
+ > PartialPermNC([1, 2, 4, 5, 6, 9], [9, 5, 4, 10, 7, 2]),
91
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 10], [3, 10, 2, 4, 8, 7, 6]),
92
+ > PartialPermNC([1, 3, 4, 5, 6, 7], [6, 7, 3, 10, 4, 5]),
93
+ > PartialPermNC([1, 2, 3, 4, 6, 8], [3, 4, 9, 7, 10, 1]),
94
+ > PartialPermNC([1, 2, 3, 5, 7], [7, 5, 10, 3, 1]),
95
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 7, 9, 10],
96
+ > [5, 7, 1, 3, 2, 8, 4, 6, 10]),
97
+ > PartialPermNC([1, 2, 3, 4, 6, 7, 9], [6, 8, 2, 7, 1, 5, 4]),
98
+ > PartialPermNC([1, 2, 3, 4, 6, 8, 9], [8, 4, 6, 5, 9, 10, 1]),
99
+ > PartialPermNC([1, 2, 3, 4, 6, 7, 9], [5, 9, 3, 1, 6, 8, 10]),
100
+ > PartialPermNC([1, 2, 3, 4, 5, 7], [9, 3, 7, 4, 1, 10]),
101
+ > PartialPermNC([1, 3, 4, 5, 7, 9, 10], [7, 10, 2, 8, 9, 1, 6]),
102
+ > PartialPermNC([1, 3, 4, 5, 7, 8, 9], [7, 2, 3, 5, 10, 4, 6]),
103
+ > PartialPermNC([1, 2, 3, 7, 8, 9], [10, 7, 5, 4, 1, 9]),
104
+ > PartialPermNC([1, 3, 4, 5, 6, 8, 9], [8, 1, 7, 10, 4, 5, 9]),
105
+ > PartialPermNC([1, 2, 3, 4, 5], [10, 3, 7, 1, 6]),
106
+ > PartialPermNC([1, 2, 3, 5, 7, 8, 9, 10], [3, 5, 7, 6, 10, 2, 9, 4]),
107
+ > PartialPermNC([1, 2, 3, 4, 9], [5, 8, 7, 4, 6]),
108
+ > PartialPermNC([1, 2, 3, 4, 5, 8, 9], [2, 1, 10, 5, 8, 9, 6]),
109
+ > PartialPermNC([1, 2, 3, 5, 6, 7, 8], [8, 3, 2, 4, 9, 7, 1]),
110
+ > PartialPermNC([1, 2, 3, 4, 5, 7, 8], [3, 5, 1, 9, 4, 6, 8]),
111
+ > PartialPermNC([1, 2, 3, 5, 6, 8], [3, 7, 2, 5, 10, 9]),
112
+ > PartialPermNC([1, 2, 3, 6, 7, 9, 10], [5, 7, 2, 4, 6, 10, 1]),
113
+ > PartialPermNC([1, 2, 3, 5, 6, 8], [7, 5, 4, 1, 3, 10]),
114
+ > PartialPermNC([1, 2, 3, 6, 7, 8, 9, 10], [9, 6, 8, 3, 5, 7, 10, 4]),
115
+ > PartialPermNC([1, 2, 3, 5, 8], [8, 2, 5, 1, 10]),
116
+ > PartialPermNC([1, 2, 3, 7, 8, 9], [5, 3, 7, 1, 2, 6]),
117
+ > PartialPermNC([1, 2, 3, 4, 9], [6, 9, 10, 2, 1]),
118
+ > PartialPermNC([1, 2, 3, 5, 9], [8, 3, 9, 7, 5]),
119
+ > PartialPermNC([1, 2, 3, 4, 6, 8, 9, 10], [6, 7, 10, 1, 4, 2, 8, 5]),
120
+ > PartialPermNC([1, 2, 3, 4, 5, 6], [7, 10, 3, 9, 2, 8]),
121
+ > PartialPermNC([1, 2, 4, 5, 6, 8], [9, 1, 8, 7, 6, 3]),
122
+ > PartialPermNC([1, 2, 4, 5, 6, 7], [6, 4, 1, 5, 3, 9]),
123
+ > PartialPermNC([1, 2, 3, 5, 6, 7, 10], [8, 2, 4, 9, 3, 7, 10]),
124
+ > PartialPermNC([1, 2, 4, 5, 6, 8], [6, 2, 3, 8, 4, 10]),
125
+ > PartialPermNC([1, 2, 3, 6, 7, 9, 10], [10, 2, 7, 4, 9, 1, 8]),
126
+ > PartialPermNC([1, 2, 4, 5, 6, 7, 8], [2, 3, 8, 6, 9, 5, 1]),
127
+ > PartialPermNC([1, 3, 4, 5, 7, 8], [4, 8, 2, 6, 5, 9]),
128
+ > PartialPermNC([1, 2, 3, 5, 7, 8, 9], [6, 9, 7, 3, 5, 2, 10]),
129
+ > PartialPermNC([1, 2, 4, 7, 9, 10], [8, 2, 3, 5, 1, 6]),
130
+ > PartialPermNC([1, 2, 5, 8, 9, 10], [7, 1, 3, 10, 5, 8]),
131
+ > PartialPermNC([1, 2, 3, 4, 5, 6, 9], [1, 3, 5, 4, 9, 6, 7])];;
132
+ gap> s := InverseSemigroup(gens, rec(acting := true));
133
+ <inverse partial perm semigroup of rank 10 with 100 generators>
134
+ gap> Size(s);
135
+ 89616897
136
+ gap> s := InverseSemigroup(gens[1]);
137
+ <inverse partial perm semigroup of rank 10 with 1 generator>
138
+ gap> for i in [2 .. 100] do
139
+ > s := ClosureInverseSemigroup(s, gens[i], rec(acting := true));
140
+ > od;
141
+ gap> s;
142
+ <inverse partial perm semigroup of rank 10 with 54 generators>
143
+ gap> Size(s);
144
+ 89616897
145
+ gap> s := InverseMonoid(gens, rec(acting := true));
146
+ <inverse partial perm monoid of rank 10 with 100 generators>
147
+ gap> Size(s);
148
+ 89616898
149
+ gap> IsSubsemigroup(s, InverseSemigroup(s, rec(small := true, acting := true)));
150
+ true
151
+ gap> s := InverseMonoid(gens[1]);;
152
+ gap> for i in [2 .. 100] do
153
+ > s := ClosureInverseSemigroup(s, gens[i], rec(acting := true));
154
+ > od;
155
+ gap> s;
156
+ <inverse partial perm monoid of rank 10 with 54 generators>
157
+ gap> Size(s);
158
+ 89616898
159
+ gap> NrDClasses(s);
160
+ 15
161
+ gap> s := InverseSemigroup(gens, rec(small := true, acting := true));;
162
+ gap> NrDClasses(s);
163
+ 14
164
+
165
+ # SemigroupsTest2: Inverse monoid of partial perms
166
+ gap> s := InverseMonoid(PartialPermNC([1, 2, 3, 5], [5, 6, 8, 2]),
167
+ > PartialPermNC([1, 2, 3, 5, 9, 10], [7, 2, 1, 5, 9, 4]));;
168
+ gap> Generators(s);
169
+ [ [1,5,2,6][3,8], [3,1,7][10,4](2)(5)(9) ]
170
+ gap> GeneratorsOfInverseSemigroup(s);
171
+ [ [1,5,2,6][3,8], [3,1,7][10,4](2)(5)(9),
172
+ <identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]> ]
173
+ gap> GeneratorsOfInverseMonoid(s);
174
+ [ [1,5,2,6][3,8], [3,1,7][10,4](2)(5)(9) ]
175
+ gap> GeneratorsOfSemigroup(s);
176
+ [ <identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]>,
177
+ [1,5,2,6][3,8], [3,1,7][10,4](2)(5)(9), [6,2,5,1][8,3],
178
+ [4,10][7,1,3](2)(5)(9) ]
179
+ gap> GeneratorsOfMonoid(s);
180
+ [ [1,5,2,6][3,8], [3,1,7][10,4](2)(5)(9), [6,2,5,1][8,3],
181
+ [4,10][7,1,3](2)(5)(9) ]
182
+
183
+ # SemigroupsTest3: Dihedral (perm) group to a partial perm semigroup
184
+ gap> g := DihedralGroup(8);;
185
+ gap> g := Range(IsomorphismPermGroup(g));
186
+ Group([ (1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8) ])
187
+ gap> iso := IsomorphismPartialPermSemigroup(g);;
188
+ gap> Range(iso);
189
+ <partial perm group of size 8, rank 8 with 3 generators>
190
+ gap> inv := InverseGeneralMapping(iso);;
191
+ gap> f := (1, 5)(2, 3)(4, 8)(6, 7);;
192
+ gap> f ^ iso;
193
+ (1,5)(2,3)(4,8)(6,7)
194
+ gap> (f ^ iso) ^ inv;
195
+ (1,5)(2,3)(4,8)(6,7)
196
+ gap> ForAll(g, f -> (f ^ iso) ^ inv = f);
197
+ true
198
+ gap> Size(Range(iso));
199
+ 8
200
+
201
+ # SemigroupsTest4: Symmetric (perm) group to a partial perm semigroup
202
+ gap> s := Range(IsomorphismPartialPermSemigroup(SymmetricGroup(4)));
203
+ <partial perm group of size 24, rank 4 with 2 generators>
204
+ gap> iso := IsomorphismPermGroup(s);;
205
+ gap> Range(iso);
206
+ Group([ (1,2,3,4), (1,2) ])
207
+ gap> inv := InverseGeneralMapping(iso);;
208
+ gap> f := PartialPerm([1, 2, 3, 4], [2, 1, 3, 4]);
209
+ (1,2)(3)(4)
210
+ gap> f in s;
211
+ true
212
+ gap> f ^ iso;
213
+ (1,2)
214
+ gap> (f ^ iso) ^ inv;
215
+ (1,2)(3)(4)
216
+ gap> ForAll(s, f -> (f ^ iso) ^ inv = f);
217
+ true
218
+ gap> Size(s);
219
+ 24
220
+ gap> Size(Range(iso));
221
+ 24
222
+
223
+ # SemigroupsTest5: FreeInverseSemigroup
224
+ gap> S := FreeInverseSemigroup(3);
225
+ <free inverse semigroup on the generators [ x1, x2, x3 ]>
226
+ gap> Size(S);
227
+ infinity
228
+ gap> x := S.1;
229
+ x1
230
+ gap> y := S.2;
231
+ x2
232
+ gap> z := S.3;
233
+ x3
234
+ gap> u := x ^ 5 * y ^ 3 * z;
235
+ x1*x1*x1*x1*x1*x2*x2*x2*x3
236
+ gap> u ^ -1;
237
+ x3^-1*x2^-1*x2^-1*x2^-1*x1^-1*x1^-1*x1^-1*x1^-1*x1^-1
238
+ gap> x ^ 2 * y = x ^ 2 * y;
239
+ true
240
+ gap> x * x ^ -1 = y * y ^ -1;
241
+ false
242
+
243
+ #
244
+ gap> SEMIGROUPS.StopTest();
245
+ gap> STOP_TEST("Semigroups package: extreme/semigroups.tst");