passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (356) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-unknown-linux-musl-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1021 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
  349. passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
  350. passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.libs/libgcc_s-2d945d6c.so.1 +0 -0
  352. passagemath_gap_pkg_semigroups.libs/libsemigroups-81d76771.so.2.0.0 +0 -0
  353. passagemath_gap_pkg_semigroups.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
  354. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  355. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  356. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,2449 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/examples.tst
4
+ #Y Copyright (C) 2011-15 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+
10
+ #@local S, gens
11
+ gap> START_TEST("Semigroups package: extreme/examples.tst");
12
+ gap> LoadPackage("semigroups", false);;
13
+
14
+ #
15
+ gap> SEMIGROUPS.StartTest();
16
+
17
+ # ExamplesTest1
18
+ gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
19
+ > Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
20
+ > Transformation([4, 1, 8, 3, 5, 7, 3, 5]),
21
+ > Transformation([4, 3, 4, 5, 6, 4, 1, 2]),
22
+ > Transformation([5, 4, 8, 8, 5, 6, 1, 5]),
23
+ > Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
24
+ > Transformation([7, 1, 2, 2, 2, 7, 4, 5]),
25
+ > Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
26
+ gap> S := Semigroup(gens);;
27
+ gap> Size(S);
28
+ 597369
29
+ gap> NrRClasses(S);
30
+ 10139
31
+ gap> NrDClasses(S);
32
+ 257
33
+ gap> NrLClasses(S);
34
+ 3065
35
+ gap> NrHClasses(S);
36
+ 50989
37
+ gap> NrIdempotents(S);
38
+ 8194
39
+ gap> NrRegularDClasses(S);
40
+ 6
41
+ gap> MultiplicativeZero(S);
42
+ fail
43
+ gap> MultiplicativeNeutralElement(S);
44
+ fail
45
+ gap> One(S);
46
+ fail
47
+ gap> if GroupOfUnits(S) <> fail then
48
+ > StructureDescription(GroupOfUnits(S));
49
+ > fi;;
50
+ gap> Size(MinimalIdeal(S));
51
+ 8
52
+ gap> IsBlockGroup(S);
53
+ false
54
+ gap> IsSemigroupWithCommutingIdempotents(S);
55
+ false
56
+ gap> IsCliffordSemigroup(S);
57
+ false
58
+ gap> IsCommutative(S);
59
+ false
60
+ gap> IsCompletelyRegularSemigroup(S);
61
+ false
62
+ gap> IsCompletelySimpleSemigroup(S);
63
+ false
64
+ gap> IsHTrivial(S);
65
+ false
66
+ gap> IsLTrivial(S);
67
+ false
68
+ gap> IsRTrivial(S);
69
+ false
70
+ gap> IsGroupAsSemigroup(S);
71
+ false
72
+ gap> IsInverseSemigroup(S);
73
+ false
74
+ gap> IsLeftZeroSemigroup(S);
75
+ false
76
+ gap> IsMonoidAsSemigroup(S);
77
+ false
78
+ gap> IsOrthodoxSemigroup(S);
79
+ false
80
+ gap> IsRectangularBand(S);
81
+ false
82
+ gap> IsRegularSemigroup(S);
83
+ false
84
+ gap> IsRightZeroSemigroup(S);
85
+ false
86
+ gap> IsSemiband(S);
87
+ false
88
+ gap> IsSemilattice(S);
89
+ false
90
+ gap> IsSimpleSemigroup(S);
91
+ false
92
+ gap> IsSynchronizingSemigroup(S);
93
+ true
94
+ gap> IsZeroGroup(S);
95
+ false
96
+ gap> IsZeroSemigroup(S);
97
+ false
98
+
99
+ # ExamplesTest2
100
+ gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
101
+ > Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
102
+ > Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
103
+ > Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
104
+ gap> S := Semigroup(gens);;
105
+ gap> Size(S);
106
+ 95540
107
+ gap> NrRClasses(S);
108
+ 6343
109
+ gap> NrDClasses(S);
110
+ 944
111
+ gap> NrLClasses(S);
112
+ 9904
113
+ gap> NrHClasses(S);
114
+ 23659
115
+ gap> NrIdempotents(S);
116
+ 2595
117
+ gap> NrRegularDClasses(S);
118
+ 6
119
+ gap> MultiplicativeZero(S);
120
+ fail
121
+ gap> MultiplicativeNeutralElement(S);
122
+ fail
123
+ gap> One(S);
124
+ fail
125
+ gap> if GroupOfUnits(S) <> fail then
126
+ > StructureDescription(GroupOfUnits(S));
127
+ > fi;;
128
+ gap> Size(MinimalIdeal(S));
129
+ 8
130
+ gap> IsBlockGroup(S);
131
+ false
132
+ gap> IsSemigroupWithCommutingIdempotents(S);
133
+ false
134
+ gap> IsCliffordSemigroup(S);
135
+ false
136
+ gap> IsCommutative(S);
137
+ false
138
+ gap> IsCompletelyRegularSemigroup(S);
139
+ false
140
+ gap> IsCompletelySimpleSemigroup(S);
141
+ false
142
+ gap> IsHTrivial(S);
143
+ false
144
+ gap> IsLTrivial(S);
145
+ false
146
+ gap> IsRTrivial(S);
147
+ false
148
+ gap> IsGroupAsSemigroup(S);
149
+ false
150
+ gap> IsInverseSemigroup(S);
151
+ false
152
+ gap> IsLeftZeroSemigroup(S);
153
+ false
154
+ gap> IsMonoidAsSemigroup(S);
155
+ false
156
+ gap> IsOrthodoxSemigroup(S);
157
+ false
158
+ gap> IsRectangularBand(S);
159
+ false
160
+ gap> IsRegularSemigroup(S);
161
+ false
162
+ gap> IsRightZeroSemigroup(S);
163
+ false
164
+ gap> IsSemiband(S);
165
+ false
166
+ gap> IsSemilattice(S);
167
+ false
168
+ gap> IsSimpleSemigroup(S);
169
+ false
170
+ gap> IsSynchronizingSemigroup(S);
171
+ true
172
+ gap> IsZeroGroup(S);
173
+ false
174
+ gap> IsZeroSemigroup(S);
175
+ false
176
+
177
+ # ExamplesTest3
178
+ gap> gens := [Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
179
+ > Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
180
+ > Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
181
+ > Transformation([7, 1, 7, 4, 2, 5, 6, 3])];;
182
+ gap> S := Semigroup(gens);;
183
+ gap> Size(S);
184
+ 233605
185
+ gap> NrRClasses(S);
186
+ 4396
187
+ gap> NrDClasses(S);
188
+ 661
189
+ gap> NrLClasses(S);
190
+ 16914
191
+ gap> NrHClasses(S);
192
+ 40882
193
+ gap> NrIdempotents(S);
194
+ 4891
195
+ gap> NrRegularDClasses(S);
196
+ 7
197
+ gap> MultiplicativeZero(S);
198
+ fail
199
+ gap> MultiplicativeNeutralElement(S);
200
+ fail
201
+ gap> One(S);
202
+ fail
203
+ gap> if GroupOfUnits(S) <> fail then
204
+ > StructureDescription(GroupOfUnits(S));
205
+ > fi;;
206
+ gap> Size(MinimalIdeal(S));
207
+ 8
208
+ gap> IsBlockGroup(S);
209
+ false
210
+ gap> IsSemigroupWithCommutingIdempotents(S);
211
+ false
212
+ gap> IsCliffordSemigroup(S);
213
+ false
214
+ gap> IsCommutative(S);
215
+ false
216
+ gap> IsCompletelyRegularSemigroup(S);
217
+ false
218
+ gap> IsCompletelySimpleSemigroup(S);
219
+ false
220
+ gap> IsHTrivial(S);
221
+ false
222
+ gap> IsLTrivial(S);
223
+ false
224
+ gap> IsRTrivial(S);
225
+ false
226
+ gap> IsGroupAsSemigroup(S);
227
+ false
228
+ gap> IsInverseSemigroup(S);
229
+ false
230
+ gap> IsLeftZeroSemigroup(S);
231
+ false
232
+ gap> IsMonoidAsSemigroup(S);
233
+ false
234
+ gap> IsOrthodoxSemigroup(S);
235
+ false
236
+ gap> IsRectangularBand(S);
237
+ false
238
+ gap> IsRegularSemigroup(S);
239
+ false
240
+ gap> IsRightZeroSemigroup(S);
241
+ false
242
+ gap> IsSemiband(S);
243
+ false
244
+ gap> IsSemilattice(S);
245
+ false
246
+ gap> IsSimpleSemigroup(S);
247
+ false
248
+ gap> IsSynchronizingSemigroup(S);
249
+ true
250
+ gap> IsZeroGroup(S);
251
+ false
252
+ gap> IsZeroSemigroup(S);
253
+ false
254
+
255
+ # ExamplesTest4
256
+ gap> gens := [Transformation([1, 5, 6, 2, 5, 2, 1]),
257
+ > Transformation([1, 7, 5, 4, 3, 5, 7]),
258
+ > Transformation([2, 7, 7, 2, 4, 1, 1]),
259
+ > Transformation([3, 2, 2, 4, 1, 7, 6]),
260
+ > Transformation([3, 3, 5, 1, 7, 1, 6]),
261
+ > Transformation([3, 3, 6, 1, 7, 5, 2]),
262
+ > Transformation([3, 4, 6, 5, 4, 4, 7]),
263
+ > Transformation([5, 2, 4, 5, 1, 4, 5]),
264
+ > Transformation([5, 5, 2, 2, 6, 7, 2]),
265
+ > Transformation([7, 7, 5, 4, 5, 3, 2])];;
266
+ gap> S := Semigroup(gens);;
267
+ gap> Size(S);
268
+ 97310
269
+ gap> NrRClasses(S);
270
+ 879
271
+ gap> NrDClasses(S);
272
+ 401
273
+ gap> NrLClasses(S);
274
+ 1207
275
+ gap> NrHClasses(S);
276
+ 10664
277
+ gap> NrIdempotents(S);
278
+ 2434
279
+ gap> NrRegularDClasses(S);
280
+ 6
281
+ gap> MultiplicativeZero(S);
282
+ fail
283
+ gap> MultiplicativeNeutralElement(S);
284
+ fail
285
+ gap> One(S);
286
+ fail
287
+ gap> if GroupOfUnits(S) <> fail then
288
+ > StructureDescription(GroupOfUnits(S));
289
+ > fi;;
290
+ gap> Size(MinimalIdeal(S));
291
+ 7
292
+ gap> IsBlockGroup(S);
293
+ false
294
+ gap> IsSemigroupWithCommutingIdempotents(S);
295
+ false
296
+ gap> IsCliffordSemigroup(S);
297
+ false
298
+ gap> IsCommutative(S);
299
+ false
300
+ gap> IsCompletelyRegularSemigroup(S);
301
+ false
302
+ gap> IsCompletelySimpleSemigroup(S);
303
+ false
304
+ gap> IsHTrivial(S);
305
+ false
306
+ gap> IsLTrivial(S);
307
+ false
308
+ gap> IsRTrivial(S);
309
+ false
310
+ gap> IsGroupAsSemigroup(S);
311
+ false
312
+ gap> IsInverseSemigroup(S);
313
+ false
314
+ gap> IsLeftZeroSemigroup(S);
315
+ false
316
+ gap> IsMonoidAsSemigroup(S);
317
+ false
318
+ gap> IsOrthodoxSemigroup(S);
319
+ false
320
+ gap> IsRectangularBand(S);
321
+ false
322
+ gap> IsRegularSemigroup(S);
323
+ false
324
+ gap> IsRightZeroSemigroup(S);
325
+ false
326
+ gap> IsSemiband(S);
327
+ false
328
+ gap> IsSemilattice(S);
329
+ false
330
+ gap> IsSimpleSemigroup(S);
331
+ false
332
+ gap> IsSynchronizingSemigroup(S);
333
+ true
334
+ gap> IsZeroGroup(S);
335
+ false
336
+ gap> IsZeroSemigroup(S);
337
+ false
338
+
339
+ # ExamplesTest5
340
+ gap> gens := [Transformation([3, 4, 1, 2, 1]),
341
+ > Transformation([4, 2, 1, 5, 5]),
342
+ > Transformation([4, 2, 2, 2, 4])];;
343
+ gap> S := Semigroup(gens);;
344
+ gap> Size(S);
345
+ 731
346
+ gap> NrRClasses(S);
347
+ 26
348
+ gap> NrDClasses(S);
349
+ 4
350
+ gap> NrLClasses(S);
351
+ 23
352
+ gap> NrHClasses(S);
353
+ 194
354
+ gap> NrIdempotents(S);
355
+ 100
356
+ gap> NrRegularDClasses(S);
357
+ 4
358
+ gap> MultiplicativeZero(S);
359
+ fail
360
+ gap> MultiplicativeNeutralElement(S);
361
+ fail
362
+ gap> One(S);
363
+ fail
364
+ gap> if GroupOfUnits(S) <> fail then
365
+ > StructureDescription(GroupOfUnits(S));
366
+ > fi;;
367
+ gap> Size(MinimalIdeal(S));
368
+ 5
369
+ gap> IsBlockGroup(S);
370
+ false
371
+ gap> IsSemigroupWithCommutingIdempotents(S);
372
+ false
373
+ gap> IsCliffordSemigroup(S);
374
+ false
375
+ gap> IsCommutative(S);
376
+ false
377
+ gap> IsCompletelyRegularSemigroup(S);
378
+ false
379
+ gap> IsCompletelySimpleSemigroup(S);
380
+ false
381
+ gap> IsHTrivial(S);
382
+ false
383
+ gap> IsLTrivial(S);
384
+ false
385
+ gap> IsRTrivial(S);
386
+ false
387
+ gap> IsGroupAsSemigroup(S);
388
+ false
389
+ gap> IsInverseSemigroup(S);
390
+ false
391
+ gap> IsLeftZeroSemigroup(S);
392
+ false
393
+ gap> IsMonoidAsSemigroup(S);
394
+ false
395
+ gap> IsOrthodoxSemigroup(S);
396
+ false
397
+ gap> IsRectangularBand(S);
398
+ false
399
+ gap> IsRegularSemigroup(S);
400
+ true
401
+ gap> IsRightZeroSemigroup(S);
402
+ false
403
+ gap> IsSemiband(S);
404
+ false
405
+ gap> IsSemilattice(S);
406
+ false
407
+ gap> IsSimpleSemigroup(S);
408
+ false
409
+ gap> IsSynchronizingSemigroup(S);
410
+ true
411
+ gap> IsZeroGroup(S);
412
+ false
413
+ gap> IsZeroSemigroup(S);
414
+ false
415
+
416
+ # ExamplesTest6
417
+ gap> gens := [Transformation([1, 3, 4, 1]),
418
+ > Transformation([2, 4, 1, 2]),
419
+ > Transformation([3, 1, 1, 3]),
420
+ > Transformation([3, 3, 4, 1])];;
421
+ gap> S := Semigroup(gens);;
422
+ gap> Size(S);
423
+ 61
424
+ gap> NrRClasses(S);
425
+ 9
426
+ gap> NrDClasses(S);
427
+ 5
428
+ gap> NrLClasses(S);
429
+ 14
430
+ gap> NrHClasses(S);
431
+ 34
432
+ gap> NrIdempotents(S);
433
+ 19
434
+ gap> NrRegularDClasses(S);
435
+ 3
436
+ gap> MultiplicativeZero(S);
437
+ fail
438
+ gap> MultiplicativeNeutralElement(S);
439
+ fail
440
+ gap> One(S);
441
+ fail
442
+ gap> if GroupOfUnits(S) <> fail then
443
+ > StructureDescription(GroupOfUnits(S));
444
+ > fi;;
445
+ gap> Size(MinimalIdeal(S));
446
+ 4
447
+ gap> IsBlockGroup(S);
448
+ false
449
+ gap> IsSemigroupWithCommutingIdempotents(S);
450
+ false
451
+ gap> IsCliffordSemigroup(S);
452
+ false
453
+ gap> IsCommutative(S);
454
+ false
455
+ gap> IsCompletelyRegularSemigroup(S);
456
+ false
457
+ gap> IsCompletelySimpleSemigroup(S);
458
+ false
459
+ gap> IsHTrivial(S);
460
+ false
461
+ gap> IsLTrivial(S);
462
+ false
463
+ gap> IsRTrivial(S);
464
+ false
465
+ gap> IsGroupAsSemigroup(S);
466
+ false
467
+ gap> IsInverseSemigroup(S);
468
+ false
469
+ gap> IsLeftZeroSemigroup(S);
470
+ false
471
+ gap> IsMonoidAsSemigroup(S);
472
+ false
473
+ gap> IsOrthodoxSemigroup(S);
474
+ false
475
+ gap> IsRectangularBand(S);
476
+ false
477
+ gap> IsRegularSemigroup(S);
478
+ false
479
+ gap> IsRightZeroSemigroup(S);
480
+ false
481
+ gap> IsSemiband(S);
482
+ false
483
+ gap> IsSemilattice(S);
484
+ false
485
+ gap> IsSimpleSemigroup(S);
486
+ false
487
+ gap> IsSynchronizingSemigroup(S);
488
+ true
489
+ gap> IsZeroGroup(S);
490
+ false
491
+ gap> IsZeroSemigroup(S);
492
+ false
493
+
494
+ # ExamplesTest7
495
+ gap> gens := [Transformation([1, 3, 2, 3]),
496
+ > Transformation([1, 4, 1, 2]),
497
+ > Transformation([2, 4, 1, 1]),
498
+ > Transformation([3, 4, 2, 2])];;
499
+ gap> S := Semigroup(gens);;
500
+ gap> Size(S);
501
+ 114
502
+ gap> NrRClasses(S);
503
+ 11
504
+ gap> NrDClasses(S);
505
+ 5
506
+ gap> NrLClasses(S);
507
+ 19
508
+ gap> NrHClasses(S);
509
+ 51
510
+ gap> NrIdempotents(S);
511
+ 28
512
+ gap> NrRegularDClasses(S);
513
+ 4
514
+ gap> MultiplicativeZero(S);
515
+ fail
516
+ gap> MultiplicativeNeutralElement(S);
517
+ fail
518
+ gap> One(S);
519
+ fail
520
+ gap> if GroupOfUnits(S) <> fail then
521
+ > StructureDescription(GroupOfUnits(S));
522
+ > fi;;
523
+ gap> Size(MinimalIdeal(S));
524
+ 4
525
+ gap> IsBlockGroup(S);
526
+ false
527
+ gap> IsSemigroupWithCommutingIdempotents(S);
528
+ false
529
+ gap> IsCliffordSemigroup(S);
530
+ false
531
+ gap> IsCommutative(S);
532
+ false
533
+ gap> IsCompletelyRegularSemigroup(S);
534
+ false
535
+ gap> IsCompletelySimpleSemigroup(S);
536
+ false
537
+ gap> IsHTrivial(S);
538
+ false
539
+ gap> IsLTrivial(S);
540
+ false
541
+ gap> IsRTrivial(S);
542
+ false
543
+ gap> IsGroupAsSemigroup(S);
544
+ false
545
+ gap> IsInverseSemigroup(S);
546
+ false
547
+ gap> IsLeftZeroSemigroup(S);
548
+ false
549
+ gap> IsMonoidAsSemigroup(S);
550
+ false
551
+ gap> IsOrthodoxSemigroup(S);
552
+ false
553
+ gap> IsRectangularBand(S);
554
+ false
555
+ gap> IsRegularSemigroup(S);
556
+ false
557
+ gap> IsRightZeroSemigroup(S);
558
+ false
559
+ gap> IsSemiband(S);
560
+ false
561
+ gap> IsSemilattice(S);
562
+ false
563
+ gap> IsSimpleSemigroup(S);
564
+ false
565
+ gap> IsSynchronizingSemigroup(S);
566
+ true
567
+ gap> IsZeroGroup(S);
568
+ false
569
+ gap> IsZeroSemigroup(S);
570
+ false
571
+
572
+ # ExamplesTest8
573
+ gap> gens := [Transformation([1, 3, 2, 3]),
574
+ > Transformation([1, 4, 1, 2]),
575
+ > Transformation([3, 4, 2, 2]),
576
+ > Transformation([4, 1, 2, 1])];;
577
+ gap> S := Semigroup(gens);;
578
+ gap> Size(S);
579
+ 68
580
+ gap> NrRClasses(S);
581
+ 16
582
+ gap> NrDClasses(S);
583
+ 8
584
+ gap> NrLClasses(S);
585
+ 20
586
+ gap> NrHClasses(S);
587
+ 40
588
+ gap> NrIdempotents(S);
589
+ 21
590
+ gap> NrRegularDClasses(S);
591
+ 5
592
+ gap> MultiplicativeZero(S);
593
+ fail
594
+ gap> MultiplicativeNeutralElement(S);
595
+ fail
596
+ gap> One(S);
597
+ fail
598
+ gap> if GroupOfUnits(S) <> fail then
599
+ > StructureDescription(GroupOfUnits(S));
600
+ > fi;;
601
+ gap> Size(MinimalIdeal(S));
602
+ 4
603
+ gap> IsBlockGroup(S);
604
+ false
605
+ gap> IsSemigroupWithCommutingIdempotents(S);
606
+ false
607
+ gap> IsCliffordSemigroup(S);
608
+ false
609
+ gap> IsCommutative(S);
610
+ false
611
+ gap> IsCompletelyRegularSemigroup(S);
612
+ false
613
+ gap> IsCompletelySimpleSemigroup(S);
614
+ false
615
+ gap> IsHTrivial(S);
616
+ false
617
+ gap> IsLTrivial(S);
618
+ false
619
+ gap> IsRTrivial(S);
620
+ false
621
+ gap> IsGroupAsSemigroup(S);
622
+ false
623
+ gap> IsInverseSemigroup(S);
624
+ false
625
+ gap> IsLeftZeroSemigroup(S);
626
+ false
627
+ gap> IsMonoidAsSemigroup(S);
628
+ false
629
+ gap> IsOrthodoxSemigroup(S);
630
+ false
631
+ gap> IsRectangularBand(S);
632
+ false
633
+ gap> IsRegularSemigroup(S);
634
+ false
635
+ gap> IsRightZeroSemigroup(S);
636
+ false
637
+ gap> IsSemiband(S);
638
+ false
639
+ gap> IsSemilattice(S);
640
+ false
641
+ gap> IsSimpleSemigroup(S);
642
+ false
643
+ gap> IsSynchronizingSemigroup(S);
644
+ true
645
+ gap> IsZeroGroup(S);
646
+ false
647
+ gap> IsZeroSemigroup(S);
648
+ false
649
+
650
+ # ExamplesTest9
651
+ gap> gens := [Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
652
+ > Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7])];;
653
+ gap> S := Semigroup(gens);;
654
+ gap> Size(S);
655
+ 20167
656
+ gap> NrRClasses(S);
657
+ 9
658
+ gap> NrDClasses(S);
659
+ 2
660
+ gap> NrLClasses(S);
661
+ 2
662
+ gap> NrHClasses(S);
663
+ 9
664
+ gap> NrIdempotents(S);
665
+ 9
666
+ gap> NrRegularDClasses(S);
667
+ 2
668
+ gap> MultiplicativeZero(S);
669
+ fail
670
+ gap> MultiplicativeNeutralElement(S);
671
+ fail
672
+ gap> One(S);
673
+ fail
674
+ gap> if GroupOfUnits(S) <> fail then
675
+ > StructureDescription(GroupOfUnits(S));
676
+ > fi;;
677
+ gap> Size(MinimalIdeal(S));
678
+ 20160
679
+ gap> IsBlockGroup(S);
680
+ false
681
+ gap> IsSemigroupWithCommutingIdempotents(S);
682
+ false
683
+ gap> IsCliffordSemigroup(S);
684
+ false
685
+ gap> IsCommutative(S);
686
+ false
687
+ gap> IsCompletelyRegularSemigroup(S);
688
+ true
689
+ gap> IsCompletelySimpleSemigroup(S);
690
+ false
691
+ gap> IsHTrivial(S);
692
+ false
693
+ gap> IsLTrivial(S);
694
+ false
695
+ gap> IsRTrivial(S);
696
+ false
697
+ gap> IsGroupAsSemigroup(S);
698
+ false
699
+ gap> IsInverseSemigroup(S);
700
+ false
701
+ gap> IsLeftZeroSemigroup(S);
702
+ false
703
+ gap> IsMonoidAsSemigroup(S);
704
+ false
705
+ gap> IsOrthodoxSemigroup(S);
706
+ true
707
+ gap> IsRectangularBand(S);
708
+ false
709
+ gap> IsRegularSemigroup(S);
710
+ true
711
+ gap> IsRightZeroSemigroup(S);
712
+ false
713
+ gap> IsSemiband(S);
714
+ false
715
+ gap> IsSemilattice(S);
716
+ false
717
+ gap> IsSimpleSemigroup(S);
718
+ false
719
+ gap> IsSynchronizingSemigroup(S);
720
+ false
721
+ gap> IsZeroGroup(S);
722
+ false
723
+ gap> IsZeroSemigroup(S);
724
+ false
725
+
726
+ # ExamplesTest10
727
+ gap> gens := [Transformation([2, 1, 4, 5, 3, 7, 8, 9, 10, 6]),
728
+ > Transformation([1, 2, 4, 3, 5, 6, 7, 8, 9, 10]),
729
+ > Transformation([1, 2, 3, 4, 5, 6, 10, 9, 8, 7]),
730
+ > Transformation([9, 1, 4, 3, 6, 9, 3, 4, 3, 9])];;
731
+ gap> S := Semigroup(gens);;
732
+ gap> Size(S);
733
+ 491558
734
+ gap> NrRClasses(S);
735
+ 2072
736
+ gap> NrDClasses(S);
737
+ 12
738
+ gap> NrLClasses(S);
739
+ 425
740
+ gap> NrHClasses(S);
741
+ 86036
742
+ gap> NrIdempotents(S);
743
+ 13655
744
+ gap> NrRegularDClasses(S);
745
+ 9
746
+ gap> MultiplicativeZero(S);
747
+ fail
748
+ gap> MultiplicativeNeutralElement(S);
749
+ IdentityTransformation
750
+ gap> One(S);
751
+ IdentityTransformation
752
+ gap> if GroupOfUnits(S) <> fail then
753
+ > StructureDescription(GroupOfUnits(S));
754
+ > fi;;
755
+ gap> Size(MinimalIdeal(S));
756
+ 8
757
+ gap> IsBlockGroup(S);
758
+ false
759
+ gap> IsSemigroupWithCommutingIdempotents(S);
760
+ false
761
+ gap> IsCliffordSemigroup(S);
762
+ false
763
+ gap> IsCommutative(S);
764
+ false
765
+ gap> IsCompletelyRegularSemigroup(S);
766
+ false
767
+ gap> IsCompletelySimpleSemigroup(S);
768
+ false
769
+ gap> IsHTrivial(S);
770
+ false
771
+ gap> IsLTrivial(S);
772
+ false
773
+ gap> IsRTrivial(S);
774
+ false
775
+ gap> IsGroupAsSemigroup(S);
776
+ false
777
+ gap> IsInverseSemigroup(S);
778
+ false
779
+ gap> IsLeftZeroSemigroup(S);
780
+ false
781
+ gap> IsMonoidAsSemigroup(S);
782
+ true
783
+ gap> IsOrthodoxSemigroup(S);
784
+ false
785
+ gap> IsRectangularBand(S);
786
+ false
787
+ gap> IsRegularSemigroup(S);
788
+ false
789
+ gap> IsRightZeroSemigroup(S);
790
+ false
791
+ gap> IsSemiband(S);
792
+ false
793
+ gap> IsSemilattice(S);
794
+ false
795
+ gap> IsSimpleSemigroup(S);
796
+ false
797
+ gap> IsSynchronizingSemigroup(S);
798
+ true
799
+ gap> IsZeroGroup(S);
800
+ false
801
+ gap> IsZeroSemigroup(S);
802
+ false
803
+
804
+ # ExamplesTest11
805
+ gap> gens := [Transformation([13, 10, 9, 5, 1, 5, 13, 13, 8, 2, 7, 2, 6]),
806
+ > Transformation([6, 11, 12, 10, 4, 10, 13, 5, 8, 5, 11, 6, 9])];;
807
+ gap> S := Semigroup(gens);;
808
+ gap> Size(S);
809
+ 208650
810
+ gap> NrRClasses(S);
811
+ 31336
812
+ gap> NrDClasses(S);
813
+ 3807
814
+ gap> NrLClasses(S);
815
+ 18856
816
+ gap> NrHClasses(S);
817
+ 70693
818
+ gap> NrIdempotents(S);
819
+ 5857
820
+ gap> NrRegularDClasses(S);
821
+ 8
822
+ gap> MultiplicativeZero(S);
823
+ fail
824
+ gap> MultiplicativeNeutralElement(S);
825
+ fail
826
+ gap> One(S);
827
+ fail
828
+ gap> if GroupOfUnits(S) <> fail then
829
+ > StructureDescription(GroupOfUnits(S));
830
+ > fi;;
831
+ gap> Size(MinimalIdeal(S));
832
+ 11
833
+ gap> IsBlockGroup(S);
834
+ false
835
+ gap> IsSemigroupWithCommutingIdempotents(S);
836
+ false
837
+ gap> IsCliffordSemigroup(S);
838
+ false
839
+ gap> IsCommutative(S);
840
+ false
841
+ gap> IsCompletelyRegularSemigroup(S);
842
+ false
843
+ gap> IsCompletelySimpleSemigroup(S);
844
+ false
845
+ gap> IsHTrivial(S);
846
+ false
847
+ gap> IsLTrivial(S);
848
+ false
849
+ gap> IsRTrivial(S);
850
+ false
851
+ gap> IsGroupAsSemigroup(S);
852
+ false
853
+ gap> IsInverseSemigroup(S);
854
+ false
855
+ gap> IsLeftZeroSemigroup(S);
856
+ false
857
+ gap> IsMonoidAsSemigroup(S);
858
+ false
859
+ gap> IsOrthodoxSemigroup(S);
860
+ false
861
+ gap> IsRectangularBand(S);
862
+ false
863
+ gap> IsRegularSemigroup(S);
864
+ false
865
+ gap> IsRightZeroSemigroup(S);
866
+ false
867
+ gap> IsSemiband(S);
868
+ false
869
+ gap> IsSemilattice(S);
870
+ false
871
+ gap> IsSimpleSemigroup(S);
872
+ false
873
+ gap> IsSynchronizingSemigroup(S);
874
+ true
875
+ gap> IsZeroGroup(S);
876
+ false
877
+ gap> IsZeroSemigroup(S);
878
+ false
879
+
880
+ # ExamplesTest12
881
+ gap> gens := [Transformation([12, 10, 8, 5, 1, 5, 12, 12, 8, 2, 6, 2]),
882
+ > Transformation([5, 6, 10, 11, 10, 4, 10, 12, 5, 7, 4, 10]),
883
+ > Transformation([6, 8, 12, 5, 4, 8, 10, 7, 4, 1, 10, 11])];;
884
+ gap> S := Semigroup(gens);;
885
+ gap> Size(S);
886
+ 945560
887
+ gap> NrRClasses(S);
888
+ 19658
889
+ gap> NrDClasses(S);
890
+ 4092
891
+ gap> NrLClasses(S);
892
+ 132176
893
+ gap> NrHClasses(S);
894
+ 215008
895
+ gap> NrIdempotents(S);
896
+ 15053
897
+ gap> NrRegularDClasses(S);
898
+ 6
899
+ gap> MultiplicativeZero(S);
900
+ fail
901
+ gap> MultiplicativeNeutralElement(S);
902
+ fail
903
+ gap> One(S);
904
+ fail
905
+ gap> if GroupOfUnits(S) <> fail then
906
+ > StructureDescription(GroupOfUnits(S));
907
+ > fi;;
908
+ gap> Size(MinimalIdeal(S));
909
+ 10
910
+ gap> IsBlockGroup(S);
911
+ false
912
+ gap> IsSemigroupWithCommutingIdempotents(S);
913
+ false
914
+ gap> IsCliffordSemigroup(S);
915
+ false
916
+ gap> IsCommutative(S);
917
+ false
918
+ gap> IsCompletelyRegularSemigroup(S);
919
+ false
920
+ gap> IsCompletelySimpleSemigroup(S);
921
+ false
922
+ gap> IsHTrivial(S);
923
+ false
924
+ gap> IsLTrivial(S);
925
+ false
926
+ gap> IsRTrivial(S);
927
+ false
928
+ gap> IsGroupAsSemigroup(S);
929
+ false
930
+ gap> IsInverseSemigroup(S);
931
+ false
932
+ gap> IsLeftZeroSemigroup(S);
933
+ false
934
+ gap> IsMonoidAsSemigroup(S);
935
+ false
936
+ gap> IsOrthodoxSemigroup(S);
937
+ false
938
+ gap> IsRectangularBand(S);
939
+ false
940
+ gap> IsRegularSemigroup(S);
941
+ false
942
+ gap> IsRightZeroSemigroup(S);
943
+ false
944
+ gap> IsSemiband(S);
945
+ false
946
+ gap> IsSemilattice(S);
947
+ false
948
+ gap> IsSimpleSemigroup(S);
949
+ false
950
+ gap> IsSynchronizingSemigroup(S);
951
+ true
952
+ gap> IsZeroGroup(S);
953
+ false
954
+ gap> IsZeroSemigroup(S);
955
+ false
956
+
957
+ # ExamplesTest13
958
+ gap> gens := [Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
959
+ > Transformation([5, 4, 1, 2, 3, 7, 6, 5, 4, 1]),
960
+ > Transformation([2, 1, 4, 3, 2, 1, 4, 4, 3, 3])];;
961
+ gap> S := Semigroup(gens);;
962
+ gap> Size(S);
963
+ 188315
964
+ gap> NrRClasses(S);
965
+ 2105
966
+ gap> NrDClasses(S);
967
+ 8
968
+ gap> NrLClasses(S);
969
+ 37
970
+ gap> NrHClasses(S);
971
+ 15018
972
+ gap> NrIdempotents(S);
973
+ 5964
974
+ gap> NrRegularDClasses(S);
975
+ 8
976
+ gap> MultiplicativeZero(S);
977
+ fail
978
+ gap> MultiplicativeNeutralElement(S);
979
+ fail
980
+ gap> One(S);
981
+ fail
982
+ gap> if GroupOfUnits(S) <> fail then
983
+ > StructureDescription(GroupOfUnits(S));
984
+ > fi;;
985
+ gap> Size(MinimalIdeal(S));
986
+ 5
987
+ gap> IsBlockGroup(S);
988
+ false
989
+ gap> IsSemigroupWithCommutingIdempotents(S);
990
+ false
991
+ gap> IsCliffordSemigroup(S);
992
+ false
993
+ gap> IsCommutative(S);
994
+ false
995
+ gap> IsCompletelyRegularSemigroup(S);
996
+ false
997
+ gap> IsCompletelySimpleSemigroup(S);
998
+ false
999
+ gap> IsHTrivial(S);
1000
+ false
1001
+ gap> IsLTrivial(S);
1002
+ false
1003
+ gap> IsRTrivial(S);
1004
+ false
1005
+ gap> IsGroupAsSemigroup(S);
1006
+ false
1007
+ gap> IsInverseSemigroup(S);
1008
+ false
1009
+ gap> IsLeftZeroSemigroup(S);
1010
+ false
1011
+ gap> IsMonoidAsSemigroup(S);
1012
+ false
1013
+ gap> IsOrthodoxSemigroup(S);
1014
+ false
1015
+ gap> IsRectangularBand(S);
1016
+ false
1017
+ gap> IsRegularSemigroup(S);
1018
+ true
1019
+ gap> IsRightZeroSemigroup(S);
1020
+ false
1021
+ gap> IsSemiband(S);
1022
+ false
1023
+ gap> IsSemilattice(S);
1024
+ false
1025
+ gap> IsSimpleSemigroup(S);
1026
+ false
1027
+ gap> IsSynchronizingSemigroup(S);
1028
+ true
1029
+ gap> IsZeroGroup(S);
1030
+ false
1031
+ gap> IsZeroSemigroup(S);
1032
+ false
1033
+
1034
+ # ExamplesTest14
1035
+ gap> gens := [Transformation([8, 7, 5, 3, 1, 3, 8, 8]),
1036
+ > Transformation([5, 1, 4, 1, 4, 4, 7, 8])];;
1037
+ gap> S := Semigroup(gens);;
1038
+ gap> Size(S);
1039
+ 56
1040
+ gap> NrRClasses(S);
1041
+ 16
1042
+ gap> NrDClasses(S);
1043
+ 7
1044
+ gap> NrLClasses(S);
1045
+ 18
1046
+ gap> NrHClasses(S);
1047
+ 54
1048
+ gap> NrIdempotents(S);
1049
+ 16
1050
+ gap> NrRegularDClasses(S);
1051
+ 4
1052
+ gap> MultiplicativeZero(S);
1053
+ Transformation( [ 8, 8, 8, 8, 8, 8, 8, 8 ] )
1054
+ gap> MultiplicativeNeutralElement(S);
1055
+ fail
1056
+ gap> One(S);
1057
+ fail
1058
+ gap> if GroupOfUnits(S) <> fail then
1059
+ > StructureDescription(GroupOfUnits(S));
1060
+ > fi;;
1061
+ gap> Size(MinimalIdeal(S));
1062
+ 1
1063
+ gap> IsBlockGroup(S);
1064
+ false
1065
+ gap> IsSemigroupWithCommutingIdempotents(S);
1066
+ false
1067
+ gap> IsCliffordSemigroup(S);
1068
+ false
1069
+ gap> IsCommutative(S);
1070
+ false
1071
+ gap> IsCompletelyRegularSemigroup(S);
1072
+ false
1073
+ gap> IsCompletelySimpleSemigroup(S);
1074
+ false
1075
+ gap> IsHTrivial(S);
1076
+ false
1077
+ gap> IsLTrivial(S);
1078
+ false
1079
+ gap> IsRTrivial(S);
1080
+ false
1081
+ gap> IsGroupAsSemigroup(S);
1082
+ false
1083
+ gap> IsInverseSemigroup(S);
1084
+ false
1085
+ gap> IsLeftZeroSemigroup(S);
1086
+ false
1087
+ gap> IsMonoidAsSemigroup(S);
1088
+ false
1089
+ gap> IsOrthodoxSemigroup(S);
1090
+ false
1091
+ gap> IsRectangularBand(S);
1092
+ false
1093
+ gap> IsRegularSemigroup(S);
1094
+ false
1095
+ gap> IsRightZeroSemigroup(S);
1096
+ false
1097
+ gap> IsSemiband(S);
1098
+ false
1099
+ gap> IsSemilattice(S);
1100
+ false
1101
+ gap> IsSimpleSemigroup(S);
1102
+ false
1103
+ gap> IsSynchronizingSemigroup(S);
1104
+ true
1105
+ gap> IsZeroGroup(S);
1106
+ false
1107
+ gap> IsZeroSemigroup(S);
1108
+ false
1109
+
1110
+ # ExamplesTest15
1111
+ gap> gens := [Transformation([5, 4, 4, 2, 1]),
1112
+ > Transformation([2, 5, 5, 4, 1])];;
1113
+ gap> S := Semigroup(gens);;
1114
+ gap> Size(S);
1115
+ 12
1116
+ gap> NrRClasses(S);
1117
+ 1
1118
+ gap> NrDClasses(S);
1119
+ 1
1120
+ gap> NrLClasses(S);
1121
+ 1
1122
+ gap> NrHClasses(S);
1123
+ 1
1124
+ gap> NrIdempotents(S);
1125
+ 1
1126
+ gap> NrRegularDClasses(S);
1127
+ 1
1128
+ gap> MultiplicativeZero(S);
1129
+ fail
1130
+ gap> MultiplicativeNeutralElement(S);
1131
+ Transformation( [ 1, 2, 2 ] )
1132
+ gap> One(S);
1133
+ fail
1134
+ gap> if GroupOfUnits(S) <> fail then
1135
+ > StructureDescription(GroupOfUnits(S));
1136
+ > fi;;
1137
+ gap> Size(MinimalIdeal(S));
1138
+ 12
1139
+ gap> IsBlockGroup(S);
1140
+ true
1141
+ gap> IsSemigroupWithCommutingIdempotents(S);
1142
+ true
1143
+ gap> IsCliffordSemigroup(S);
1144
+ true
1145
+ gap> IsCommutative(S);
1146
+ false
1147
+ gap> IsCompletelyRegularSemigroup(S);
1148
+ true
1149
+ gap> IsCompletelySimpleSemigroup(S);
1150
+ true
1151
+ gap> IsHTrivial(S);
1152
+ false
1153
+ gap> IsLTrivial(S);
1154
+ false
1155
+ gap> IsRTrivial(S);
1156
+ false
1157
+ gap> IsGroupAsSemigroup(S);
1158
+ true
1159
+ gap> IsInverseSemigroup(S);
1160
+ true
1161
+ gap> IsLeftZeroSemigroup(S);
1162
+ false
1163
+ gap> IsMonoidAsSemigroup(S);
1164
+ true
1165
+ gap> IsOrthodoxSemigroup(S);
1166
+ true
1167
+ gap> IsRectangularBand(S);
1168
+ false
1169
+ gap> IsRegularSemigroup(S);
1170
+ true
1171
+ gap> IsRightZeroSemigroup(S);
1172
+ false
1173
+ gap> IsSemiband(S);
1174
+ false
1175
+ gap> IsSemilattice(S);
1176
+ false
1177
+ gap> IsSimpleSemigroup(S);
1178
+ true
1179
+ gap> IsSynchronizingSemigroup(S);
1180
+ false
1181
+ gap> IsZeroGroup(S);
1182
+ false
1183
+ gap> IsZeroSemigroup(S);
1184
+ false
1185
+
1186
+ # ExamplesTest16
1187
+ gap> gens := [Transformation([1, 2, 1, 3, 3]),
1188
+ > Transformation([2, 2, 3, 5, 5])];;
1189
+ gap> S := Semigroup(gens);;
1190
+ gap> Size(S);
1191
+ 8
1192
+ gap> NrRClasses(S);
1193
+ 8
1194
+ gap> NrDClasses(S);
1195
+ 8
1196
+ gap> NrLClasses(S);
1197
+ 8
1198
+ gap> NrHClasses(S);
1199
+ 8
1200
+ gap> NrIdempotents(S);
1201
+ 3
1202
+ gap> NrRegularDClasses(S);
1203
+ 3
1204
+ gap> MultiplicativeZero(S);
1205
+ Transformation( [ 2, 2, 2, 2, 2 ] )
1206
+ gap> MultiplicativeNeutralElement(S);
1207
+ fail
1208
+ gap> One(S);
1209
+ fail
1210
+ gap> if GroupOfUnits(S) <> fail then
1211
+ > StructureDescription(GroupOfUnits(S));
1212
+ > fi;;
1213
+ gap> Size(MinimalIdeal(S));
1214
+ 1
1215
+ gap> IsBlockGroup(S);
1216
+ true
1217
+ gap> IsSemigroupWithCommutingIdempotents(S);
1218
+ false
1219
+ gap> IsCliffordSemigroup(S);
1220
+ false
1221
+ gap> IsCommutative(S);
1222
+ false
1223
+ gap> IsCompletelyRegularSemigroup(S);
1224
+ false
1225
+ gap> IsCompletelySimpleSemigroup(S);
1226
+ false
1227
+ gap> IsHTrivial(S);
1228
+ true
1229
+ gap> IsLTrivial(S);
1230
+ true
1231
+ gap> IsRTrivial(S);
1232
+ true
1233
+ gap> IsGroupAsSemigroup(S);
1234
+ false
1235
+ gap> IsInverseSemigroup(S);
1236
+ false
1237
+ gap> IsLeftZeroSemigroup(S);
1238
+ false
1239
+ gap> IsMonoidAsSemigroup(S);
1240
+ false
1241
+ gap> IsOrthodoxSemigroup(S);
1242
+ false
1243
+ gap> IsRectangularBand(S);
1244
+ false
1245
+ gap> IsRegularSemigroup(S);
1246
+ false
1247
+ gap> IsRightZeroSemigroup(S);
1248
+ false
1249
+ gap> IsSemiband(S);
1250
+ false
1251
+ gap> IsSemilattice(S);
1252
+ false
1253
+ gap> IsSimpleSemigroup(S);
1254
+ false
1255
+ gap> IsSynchronizingSemigroup(S);
1256
+ true
1257
+ gap> IsZeroGroup(S);
1258
+ false
1259
+ gap> IsZeroSemigroup(S);
1260
+ false
1261
+
1262
+ # ExamplesTest17
1263
+ gap> gens := [Transformation([3, 1, 2, 3, 2, 3, 2, 3]),
1264
+ > Transformation([2, 5, 8, 5, 2, 5, 7, 8])];;
1265
+ gap> S := Semigroup(gens);;
1266
+ gap> Size(S);
1267
+ 38
1268
+ gap> NrRClasses(S);
1269
+ 4
1270
+ gap> NrDClasses(S);
1271
+ 2
1272
+ gap> NrLClasses(S);
1273
+ 3
1274
+ gap> NrHClasses(S);
1275
+ 7
1276
+ gap> NrIdempotents(S);
1277
+ 7
1278
+ gap> NrRegularDClasses(S);
1279
+ 2
1280
+ gap> MultiplicativeZero(S);
1281
+ fail
1282
+ gap> MultiplicativeNeutralElement(S);
1283
+ fail
1284
+ gap> One(S);
1285
+ fail
1286
+ gap> if GroupOfUnits(S) <> fail then
1287
+ > StructureDescription(GroupOfUnits(S));
1288
+ > fi;;
1289
+ gap> Size(MinimalIdeal(S));
1290
+ 36
1291
+ gap> IsBlockGroup(S);
1292
+ false
1293
+ gap> IsSemigroupWithCommutingIdempotents(S);
1294
+ false
1295
+ gap> IsCliffordSemigroup(S);
1296
+ false
1297
+ gap> IsCommutative(S);
1298
+ false
1299
+ gap> IsCompletelyRegularSemigroup(S);
1300
+ true
1301
+ gap> IsCompletelySimpleSemigroup(S);
1302
+ false
1303
+ gap> IsHTrivial(S);
1304
+ false
1305
+ gap> IsLTrivial(S);
1306
+ false
1307
+ gap> IsRTrivial(S);
1308
+ false
1309
+ gap> IsGroupAsSemigroup(S);
1310
+ false
1311
+ gap> IsInverseSemigroup(S);
1312
+ false
1313
+ gap> IsLeftZeroSemigroup(S);
1314
+ false
1315
+ gap> IsMonoidAsSemigroup(S);
1316
+ false
1317
+ gap> IsOrthodoxSemigroup(S);
1318
+ false
1319
+ gap> IsRectangularBand(S);
1320
+ false
1321
+ gap> IsRegularSemigroup(S);
1322
+ true
1323
+ gap> IsRightZeroSemigroup(S);
1324
+ false
1325
+ gap> IsSemiband(S);
1326
+ false
1327
+ gap> IsSemilattice(S);
1328
+ false
1329
+ gap> IsSimpleSemigroup(S);
1330
+ false
1331
+ gap> IsSynchronizingSemigroup(S);
1332
+ false
1333
+ gap> IsZeroGroup(S);
1334
+ false
1335
+ gap> IsZeroSemigroup(S);
1336
+ false
1337
+
1338
+ # ExamplesTest18
1339
+ gap> gens := [Transformation([3, 3, 2, 6, 2, 4, 4, 6]),
1340
+ > Transformation([5, 1, 7, 8, 7, 5, 8, 1])];;
1341
+ gap> S := Semigroup(gens);;
1342
+ gap> Size(S);
1343
+ 96
1344
+ gap> NrRClasses(S);
1345
+ 2
1346
+ gap> NrDClasses(S);
1347
+ 1
1348
+ gap> NrLClasses(S);
1349
+ 2
1350
+ gap> NrHClasses(S);
1351
+ 4
1352
+ gap> NrIdempotents(S);
1353
+ 4
1354
+ gap> NrRegularDClasses(S);
1355
+ 1
1356
+ gap> MultiplicativeZero(S);
1357
+ fail
1358
+ gap> MultiplicativeNeutralElement(S);
1359
+ fail
1360
+ gap> One(S);
1361
+ fail
1362
+ gap> if GroupOfUnits(S) <> fail then
1363
+ > StructureDescription(GroupOfUnits(S));
1364
+ > fi;;
1365
+ gap> Size(MinimalIdeal(S));
1366
+ 96
1367
+ gap> IsBlockGroup(S);
1368
+ false
1369
+ gap> IsSemigroupWithCommutingIdempotents(S);
1370
+ false
1371
+ gap> IsCliffordSemigroup(S);
1372
+ false
1373
+ gap> IsCommutative(S);
1374
+ false
1375
+ gap> IsCompletelyRegularSemigroup(S);
1376
+ true
1377
+ gap> IsCompletelySimpleSemigroup(S);
1378
+ true
1379
+ gap> IsHTrivial(S);
1380
+ false
1381
+ gap> IsLTrivial(S);
1382
+ false
1383
+ gap> IsRTrivial(S);
1384
+ false
1385
+ gap> IsGroupAsSemigroup(S);
1386
+ false
1387
+ gap> IsInverseSemigroup(S);
1388
+ false
1389
+ gap> IsLeftZeroSemigroup(S);
1390
+ false
1391
+ gap> IsMonoidAsSemigroup(S);
1392
+ false
1393
+ gap> IsOrthodoxSemigroup(S);
1394
+ false
1395
+ gap> IsRectangularBand(S);
1396
+ false
1397
+ gap> IsRegularSemigroup(S);
1398
+ true
1399
+ gap> IsRightZeroSemigroup(S);
1400
+ false
1401
+ gap> IsSemiband(S);
1402
+ false
1403
+ gap> IsSemilattice(S);
1404
+ false
1405
+ gap> IsSimpleSemigroup(S);
1406
+ true
1407
+ gap> IsSynchronizingSemigroup(S);
1408
+ false
1409
+ gap> IsZeroGroup(S);
1410
+ false
1411
+ gap> IsZeroSemigroup(S);
1412
+ false
1413
+
1414
+ # ExamplesTest19
1415
+ gap> gens := [Transformation([10, 8, 7, 4, 1, 4, 10, 10, 7, 2]),
1416
+ > Transformation([5, 2, 5, 5, 9, 10, 8, 3, 8, 10])];;
1417
+ gap> S := Semigroup(gens);;
1418
+ gap> Size(S);
1419
+ 30176
1420
+ gap> NrRClasses(S);
1421
+ 152
1422
+ gap> NrDClasses(S);
1423
+ 11
1424
+ gap> NrLClasses(S);
1425
+ 456
1426
+ gap> NrHClasses(S);
1427
+ 4234
1428
+ gap> NrIdempotents(S);
1429
+ 1105
1430
+ gap> NrRegularDClasses(S);
1431
+ 7
1432
+ gap> MultiplicativeZero(S);
1433
+ fail
1434
+ gap> MultiplicativeNeutralElement(S);
1435
+ fail
1436
+ gap> One(S);
1437
+ fail
1438
+ gap> if GroupOfUnits(S) <> fail then
1439
+ > StructureDescription(GroupOfUnits(S));
1440
+ > fi;;
1441
+ gap> Size(MinimalIdeal(S));
1442
+ 8
1443
+ gap> IsBlockGroup(S);
1444
+ false
1445
+ gap> IsSemigroupWithCommutingIdempotents(S);
1446
+ false
1447
+ gap> IsCliffordSemigroup(S);
1448
+ false
1449
+ gap> IsCommutative(S);
1450
+ false
1451
+ gap> IsCompletelyRegularSemigroup(S);
1452
+ false
1453
+ gap> IsCompletelySimpleSemigroup(S);
1454
+ false
1455
+ gap> IsHTrivial(S);
1456
+ false
1457
+ gap> IsLTrivial(S);
1458
+ false
1459
+ gap> IsRTrivial(S);
1460
+ false
1461
+ gap> IsGroupAsSemigroup(S);
1462
+ false
1463
+ gap> IsInverseSemigroup(S);
1464
+ false
1465
+ gap> IsLeftZeroSemigroup(S);
1466
+ false
1467
+ gap> IsMonoidAsSemigroup(S);
1468
+ false
1469
+ gap> IsOrthodoxSemigroup(S);
1470
+ false
1471
+ gap> IsRectangularBand(S);
1472
+ false
1473
+ gap> IsRegularSemigroup(S);
1474
+ false
1475
+ gap> IsRightZeroSemigroup(S);
1476
+ false
1477
+ gap> IsSemiband(S);
1478
+ false
1479
+ gap> IsSemilattice(S);
1480
+ false
1481
+ gap> IsSimpleSemigroup(S);
1482
+ false
1483
+ gap> IsSynchronizingSemigroup(S);
1484
+ true
1485
+ gap> IsZeroGroup(S);
1486
+ false
1487
+ gap> IsZeroSemigroup(S);
1488
+ false
1489
+
1490
+ # ExamplesTest20
1491
+ gap> gens := [Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
1492
+ > Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 2])];;
1493
+ gap> S := Semigroup(gens);;
1494
+ gap> Size(S);
1495
+ 10080
1496
+ gap> NrRClasses(S);
1497
+ 2
1498
+ gap> NrDClasses(S);
1499
+ 1
1500
+ gap> NrLClasses(S);
1501
+ 1
1502
+ gap> NrHClasses(S);
1503
+ 2
1504
+ gap> NrIdempotents(S);
1505
+ 2
1506
+ gap> NrRegularDClasses(S);
1507
+ 1
1508
+ gap> MultiplicativeZero(S);
1509
+ fail
1510
+ gap> MultiplicativeNeutralElement(S);
1511
+ fail
1512
+ gap> One(S);
1513
+ fail
1514
+ gap> if GroupOfUnits(S) <> fail then
1515
+ > StructureDescription(GroupOfUnits(S));
1516
+ > fi;;
1517
+ gap> Size(MinimalIdeal(S));
1518
+ 10080
1519
+ gap> IsBlockGroup(S);
1520
+ false
1521
+ gap> IsSemigroupWithCommutingIdempotents(S);
1522
+ false
1523
+ gap> IsCliffordSemigroup(S);
1524
+ false
1525
+ gap> IsCommutative(S);
1526
+ false
1527
+ gap> IsCompletelyRegularSemigroup(S);
1528
+ true
1529
+ gap> IsCompletelySimpleSemigroup(S);
1530
+ true
1531
+ gap> IsHTrivial(S);
1532
+ false
1533
+ gap> IsLTrivial(S);
1534
+ false
1535
+ gap> IsRTrivial(S);
1536
+ false
1537
+ gap> IsGroupAsSemigroup(S);
1538
+ false
1539
+ gap> IsInverseSemigroup(S);
1540
+ false
1541
+ gap> IsLeftZeroSemigroup(S);
1542
+ false
1543
+ gap> IsMonoidAsSemigroup(S);
1544
+ false
1545
+ gap> IsOrthodoxSemigroup(S);
1546
+ true
1547
+ gap> IsRectangularBand(S);
1548
+ false
1549
+ gap> IsRegularSemigroup(S);
1550
+ true
1551
+ gap> IsRightZeroSemigroup(S);
1552
+ false
1553
+ gap> IsSemiband(S);
1554
+ false
1555
+ gap> IsSemilattice(S);
1556
+ false
1557
+ gap> IsSimpleSemigroup(S);
1558
+ true
1559
+ gap> IsSynchronizingSemigroup(S);
1560
+ false
1561
+ gap> IsZeroGroup(S);
1562
+ false
1563
+ gap> IsZeroSemigroup(S);
1564
+ false
1565
+
1566
+ # ExamplesTest21
1567
+ gap> gens := [Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
1568
+ > Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2])];;
1569
+ gap> S := Semigroup(gens);;
1570
+ gap> Size(S);
1571
+ 121804
1572
+ gap> NrRClasses(S);
1573
+ 462
1574
+ gap> NrDClasses(S);
1575
+ 33
1576
+ gap> NrLClasses(S);
1577
+ 8320
1578
+ gap> NrHClasses(S);
1579
+ 24159
1580
+ gap> NrIdempotents(S);
1581
+ 4161
1582
+ gap> NrRegularDClasses(S);
1583
+ 6
1584
+ gap> MultiplicativeZero(S);
1585
+ fail
1586
+ gap> MultiplicativeNeutralElement(S);
1587
+ fail
1588
+ gap> One(S);
1589
+ fail
1590
+ gap> if GroupOfUnits(S) <> fail then
1591
+ > StructureDescription(GroupOfUnits(S));
1592
+ > fi;;
1593
+ gap> Size(MinimalIdeal(S));
1594
+ 8
1595
+ gap> IsBlockGroup(S);
1596
+ false
1597
+ gap> IsSemigroupWithCommutingIdempotents(S);
1598
+ false
1599
+ gap> IsCliffordSemigroup(S);
1600
+ false
1601
+ gap> IsCommutative(S);
1602
+ false
1603
+ gap> IsCompletelyRegularSemigroup(S);
1604
+ false
1605
+ gap> IsCompletelySimpleSemigroup(S);
1606
+ false
1607
+ gap> IsHTrivial(S);
1608
+ false
1609
+ gap> IsLTrivial(S);
1610
+ false
1611
+ gap> IsRTrivial(S);
1612
+ false
1613
+ gap> IsGroupAsSemigroup(S);
1614
+ false
1615
+ gap> IsInverseSemigroup(S);
1616
+ false
1617
+ gap> IsLeftZeroSemigroup(S);
1618
+ false
1619
+ gap> IsMonoidAsSemigroup(S);
1620
+ false
1621
+ gap> IsOrthodoxSemigroup(S);
1622
+ false
1623
+ gap> IsRectangularBand(S);
1624
+ false
1625
+ gap> IsRegularSemigroup(S);
1626
+ false
1627
+ gap> IsRightZeroSemigroup(S);
1628
+ false
1629
+ gap> IsSemiband(S);
1630
+ false
1631
+ gap> IsSemilattice(S);
1632
+ false
1633
+ gap> IsSimpleSemigroup(S);
1634
+ false
1635
+ gap> IsSynchronizingSemigroup(S);
1636
+ true
1637
+ gap> IsZeroGroup(S);
1638
+ false
1639
+ gap> IsZeroSemigroup(S);
1640
+ false
1641
+
1642
+ # ExamplesTest22
1643
+ gap> gens := [Transformation([1, 4, 6, 2, 5, 3, 7, 8]),
1644
+ > Transformation([6, 3, 2, 7, 5, 1, 8, 8])];;
1645
+ gap> S := Semigroup(gens);;
1646
+ gap> Size(S);
1647
+ 131
1648
+ gap> NrRClasses(S);
1649
+ 41
1650
+ gap> NrDClasses(S);
1651
+ 11
1652
+ gap> NrLClasses(S);
1653
+ 25
1654
+ gap> NrHClasses(S);
1655
+ 101
1656
+ gap> NrIdempotents(S);
1657
+ 16
1658
+ gap> NrRegularDClasses(S);
1659
+ 6
1660
+ gap> MultiplicativeZero(S);
1661
+ Transformation( [ 8, 8, 8, 8, 5, 8, 8, 8 ] )
1662
+ gap> MultiplicativeNeutralElement(S);
1663
+ IdentityTransformation
1664
+ gap> One(S);
1665
+ IdentityTransformation
1666
+ gap> if GroupOfUnits(S) <> fail then
1667
+ > StructureDescription(GroupOfUnits(S));
1668
+ > fi;;
1669
+ gap> Size(MinimalIdeal(S));
1670
+ 1
1671
+ gap> IsBlockGroup(S);
1672
+ true
1673
+ gap> IsSemigroupWithCommutingIdempotents(S);
1674
+ true
1675
+ gap> IsCliffordSemigroup(S);
1676
+ false
1677
+ gap> IsCommutative(S);
1678
+ false
1679
+ gap> IsCompletelyRegularSemigroup(S);
1680
+ false
1681
+ gap> IsCompletelySimpleSemigroup(S);
1682
+ false
1683
+ gap> IsHTrivial(S);
1684
+ false
1685
+ gap> IsLTrivial(S);
1686
+ false
1687
+ gap> IsRTrivial(S);
1688
+ false
1689
+ gap> IsGroupAsSemigroup(S);
1690
+ false
1691
+ gap> IsInverseSemigroup(S);
1692
+ false
1693
+ gap> IsLeftZeroSemigroup(S);
1694
+ false
1695
+ gap> IsMonoidAsSemigroup(S);
1696
+ true
1697
+ gap> IsOrthodoxSemigroup(S);
1698
+ false
1699
+ gap> IsRectangularBand(S);
1700
+ false
1701
+ gap> IsRegularSemigroup(S);
1702
+ false
1703
+ gap> IsRightZeroSemigroup(S);
1704
+ false
1705
+ gap> IsSemiband(S);
1706
+ false
1707
+ gap> IsSemilattice(S);
1708
+ false
1709
+ gap> IsSimpleSemigroup(S);
1710
+ false
1711
+ gap> IsSynchronizingSemigroup(S);
1712
+ false
1713
+ gap> IsZeroGroup(S);
1714
+ false
1715
+ gap> IsZeroSemigroup(S);
1716
+ false
1717
+
1718
+ # ExamplesTest23
1719
+ gap> gens := [Transformation([5, 6, 7, 3, 1, 4, 2, 8]),
1720
+ > Transformation([3, 6, 8, 5, 7, 4, 2, 8])];;
1721
+ gap> S := Semigroup(gens);;
1722
+ gap> Size(S);
1723
+ 52300
1724
+ gap> NrRClasses(S);
1725
+ 130
1726
+ gap> NrDClasses(S);
1727
+ 14
1728
+ gap> NrLClasses(S);
1729
+ 2014
1730
+ gap> NrHClasses(S);
1731
+ 11646
1732
+ gap> NrIdempotents(S);
1733
+ 94
1734
+ gap> NrRegularDClasses(S);
1735
+ 7
1736
+ gap> MultiplicativeZero(S);
1737
+ Transformation( [ 8, 8, 8, 8, 8, 8, 8, 8 ] )
1738
+ gap> MultiplicativeNeutralElement(S);
1739
+ IdentityTransformation
1740
+ gap> One(S);
1741
+ IdentityTransformation
1742
+ gap> if GroupOfUnits(S) <> fail then
1743
+ > StructureDescription(GroupOfUnits(S));
1744
+ > fi;;
1745
+ gap> Size(MinimalIdeal(S));
1746
+ 1
1747
+ gap> IsBlockGroup(S);
1748
+ true
1749
+ gap> IsSemigroupWithCommutingIdempotents(S);
1750
+ true
1751
+ gap> IsCliffordSemigroup(S);
1752
+ false
1753
+ gap> IsCommutative(S);
1754
+ false
1755
+ gap> IsCompletelyRegularSemigroup(S);
1756
+ false
1757
+ gap> IsCompletelySimpleSemigroup(S);
1758
+ false
1759
+ gap> IsHTrivial(S);
1760
+ false
1761
+ gap> IsLTrivial(S);
1762
+ false
1763
+ gap> IsRTrivial(S);
1764
+ false
1765
+ gap> IsGroupAsSemigroup(S);
1766
+ false
1767
+ gap> IsInverseSemigroup(S);
1768
+ false
1769
+ gap> IsLeftZeroSemigroup(S);
1770
+ false
1771
+ gap> IsMonoidAsSemigroup(S);
1772
+ true
1773
+ gap> IsOrthodoxSemigroup(S);
1774
+ false
1775
+ gap> IsRectangularBand(S);
1776
+ false
1777
+ gap> IsRegularSemigroup(S);
1778
+ false
1779
+ gap> IsRightZeroSemigroup(S);
1780
+ false
1781
+ gap> IsSemiband(S);
1782
+ false
1783
+ gap> IsSemilattice(S);
1784
+ false
1785
+ gap> IsSimpleSemigroup(S);
1786
+ false
1787
+ gap> IsSynchronizingSemigroup(S);
1788
+ true
1789
+ gap> IsZeroGroup(S);
1790
+ false
1791
+ gap> IsZeroSemigroup(S);
1792
+ false
1793
+
1794
+ # ExamplesTest24
1795
+ gap> gens := [Transformation([1, 2, 4, 5, 6, 3, 7, 8]),
1796
+ > Transformation([3, 3, 4, 5, 6, 2, 7, 8]),
1797
+ > Transformation([1, 2, 5, 3, 6, 8, 4, 4])];;
1798
+ gap> S := Semigroup(gens);;
1799
+ gap> Size(S);
1800
+ 864
1801
+ gap> NrRClasses(S);
1802
+ 4
1803
+ gap> NrDClasses(S);
1804
+ 4
1805
+ gap> NrLClasses(S);
1806
+ 4
1807
+ gap> NrHClasses(S);
1808
+ 4
1809
+ gap> NrIdempotents(S);
1810
+ 4
1811
+ gap> NrRegularDClasses(S);
1812
+ 4
1813
+ gap> MultiplicativeZero(S);
1814
+ fail
1815
+ gap> MultiplicativeNeutralElement(S);
1816
+ IdentityTransformation
1817
+ gap> One(S);
1818
+ IdentityTransformation
1819
+ gap> if GroupOfUnits(S) <> fail then
1820
+ > StructureDescription(GroupOfUnits(S));
1821
+ > fi;;
1822
+ gap> Size(MinimalIdeal(S));
1823
+ 720
1824
+ gap> IsBlockGroup(S);
1825
+ true
1826
+ gap> IsSemigroupWithCommutingIdempotents(S);
1827
+ true
1828
+ gap> IsCliffordSemigroup(S);
1829
+ true
1830
+ gap> IsCommutative(S);
1831
+ false
1832
+ gap> IsCompletelyRegularSemigroup(S);
1833
+ true
1834
+ gap> IsCompletelySimpleSemigroup(S);
1835
+ false
1836
+ gap> IsHTrivial(S);
1837
+ false
1838
+ gap> IsLTrivial(S);
1839
+ false
1840
+ gap> IsRTrivial(S);
1841
+ false
1842
+ gap> IsGroupAsSemigroup(S);
1843
+ false
1844
+ gap> IsInverseSemigroup(S);
1845
+ true
1846
+ gap> IsLeftZeroSemigroup(S);
1847
+ false
1848
+ gap> IsMonoidAsSemigroup(S);
1849
+ true
1850
+ gap> IsOrthodoxSemigroup(S);
1851
+ true
1852
+ gap> IsRectangularBand(S);
1853
+ false
1854
+ gap> IsRegularSemigroup(S);
1855
+ true
1856
+ gap> IsRightZeroSemigroup(S);
1857
+ false
1858
+ gap> IsSemiband(S);
1859
+ false
1860
+ gap> IsSemilattice(S);
1861
+ false
1862
+ gap> IsSimpleSemigroup(S);
1863
+ false
1864
+ gap> IsSynchronizingSemigroup(S);
1865
+ false
1866
+ gap> IsZeroGroup(S);
1867
+ false
1868
+ gap> IsZeroSemigroup(S);
1869
+ false
1870
+
1871
+ # ExamplesTest25
1872
+ gap> gens := [Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1873
+ > 4, 4, 4, 4, 4]),
1874
+ > Transformation([1, 2, 3, 4, 5, 6, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1875
+ > 4]),
1876
+ > Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 4, 4, 4, 4, 4, 4, 4,
1877
+ > 4, 4]),
1878
+ > Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 12, 13, 14, 15, 16, 17,
1879
+ > 18, 19, 20, 21]),
1880
+ > Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
1881
+ > 18, 19, 20, 21])];;
1882
+ gap> S := Semigroup(gens);;
1883
+ gap> Size(S);
1884
+ 5
1885
+ gap> NrRClasses(S);
1886
+ 5
1887
+ gap> NrDClasses(S);
1888
+ 5
1889
+ gap> NrLClasses(S);
1890
+ 5
1891
+ gap> NrHClasses(S);
1892
+ 5
1893
+ gap> NrIdempotents(S);
1894
+ 5
1895
+ gap> NrRegularDClasses(S);
1896
+ 5
1897
+ gap> MultiplicativeZero(S);
1898
+ Transformation( [ 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1899
+ 4 ] )
1900
+ gap> MultiplicativeNeutralElement(S);
1901
+ IdentityTransformation
1902
+ gap> One(S);
1903
+ IdentityTransformation
1904
+ gap> if GroupOfUnits(S) <> fail then
1905
+ > StructureDescription(GroupOfUnits(S));
1906
+ > fi;;
1907
+ gap> Size(MinimalIdeal(S));
1908
+ 1
1909
+ gap> IsBlockGroup(S);
1910
+ true
1911
+ gap> IsSemigroupWithCommutingIdempotents(S);
1912
+ true
1913
+ gap> IsCliffordSemigroup(S);
1914
+ true
1915
+ gap> IsCommutative(S);
1916
+ true
1917
+ gap> IsCompletelyRegularSemigroup(S);
1918
+ true
1919
+ gap> IsCompletelySimpleSemigroup(S);
1920
+ false
1921
+ gap> IsHTrivial(S);
1922
+ true
1923
+ gap> IsLTrivial(S);
1924
+ true
1925
+ gap> IsRTrivial(S);
1926
+ true
1927
+ gap> IsGroupAsSemigroup(S);
1928
+ false
1929
+ gap> IsInverseSemigroup(S);
1930
+ true
1931
+ gap> IsLeftZeroSemigroup(S);
1932
+ false
1933
+ gap> IsMonoidAsSemigroup(S);
1934
+ true
1935
+ gap> IsMonoid(S);
1936
+ true
1937
+ gap> IsOrthodoxSemigroup(S);
1938
+ true
1939
+ gap> IsRectangularBand(S);
1940
+ false
1941
+ gap> IsRegularSemigroup(S);
1942
+ true
1943
+ gap> IsRightZeroSemigroup(S);
1944
+ false
1945
+ gap> IsSemiband(S);
1946
+ true
1947
+ gap> IsSemilattice(S);
1948
+ true
1949
+ gap> IsSimpleSemigroup(S);
1950
+ false
1951
+ gap> IsSynchronizingSemigroup(S);
1952
+ false
1953
+ gap> IsZeroGroup(S);
1954
+ false
1955
+ gap> IsZeroSemigroup(S);
1956
+ false
1957
+
1958
+ # ExamplesTest26
1959
+ gap> gens := [Transformation([2, 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1960
+ > 4, 4, 4, 4, 4]),
1961
+ > Transformation([2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1962
+ > 1]),
1963
+ > Transformation([1, 2, 3, 4, 6, 5, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1964
+ > 4]),
1965
+ > Transformation([1, 2, 3, 4, 6, 7, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
1966
+ > 4]),
1967
+ > Transformation([1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 11, 4, 4, 4, 4, 4, 4, 4, 4,
1968
+ > 4, 4]),
1969
+ > Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 4, 4, 4, 4, 4, 4, 4, 4,
1970
+ > 4, 4]),
1971
+ > Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 13, 12, 14, 15, 16, 17,
1972
+ > 18, 19, 20, 21]),
1973
+ > Transformation([1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 13, 14, 15, 16, 12, 17,
1974
+ > 18, 19, 20, 21]),
1975
+ > Transformation([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18,
1976
+ > 19, 20, 21, 17])];;
1977
+ gap> S := Semigroup(gens);;
1978
+ gap> Size(S);
1979
+ 639
1980
+ gap> NrRClasses(S);
1981
+ 5
1982
+ gap> NrDClasses(S);
1983
+ 5
1984
+ gap> NrLClasses(S);
1985
+ 5
1986
+ gap> NrHClasses(S);
1987
+ 5
1988
+ gap> NrIdempotents(S);
1989
+ 5
1990
+ gap> NrRegularDClasses(S);
1991
+ 5
1992
+ gap> MultiplicativeZero(S);
1993
+ fail
1994
+ gap> MultiplicativeNeutralElement(S);
1995
+ IdentityTransformation
1996
+ gap> One(S);
1997
+ IdentityTransformation
1998
+ gap> if GroupOfUnits(S) <> fail then
1999
+ > StructureDescription(GroupOfUnits(S));
2000
+ > fi;;
2001
+ gap> Size(MinimalIdeal(S));
2002
+ 24
2003
+ gap> IsBlockGroup(S);
2004
+ true
2005
+ gap> IsSemigroupWithCommutingIdempotents(S);
2006
+ true
2007
+ gap> IsCliffordSemigroup(S);
2008
+ true
2009
+ gap> IsCommutative(S);
2010
+ false
2011
+ gap> IsCompletelyRegularSemigroup(S);
2012
+ true
2013
+ gap> IsCompletelySimpleSemigroup(S);
2014
+ false
2015
+ gap> IsHTrivial(S);
2016
+ false
2017
+ gap> IsLTrivial(S);
2018
+ false
2019
+ gap> IsRTrivial(S);
2020
+ false
2021
+ gap> IsGroupAsSemigroup(S);
2022
+ false
2023
+ gap> IsInverseSemigroup(S);
2024
+ true
2025
+ gap> IsLeftZeroSemigroup(S);
2026
+ false
2027
+ gap> IsMonoidAsSemigroup(S);
2028
+ true
2029
+ gap> IsOrthodoxSemigroup(S);
2030
+ true
2031
+ gap> IsRectangularBand(S);
2032
+ false
2033
+ gap> IsRegularSemigroup(S);
2034
+ true
2035
+ gap> IsRightZeroSemigroup(S);
2036
+ false
2037
+ gap> IsSemiband(S);
2038
+ false
2039
+ gap> IsSemilattice(S);
2040
+ false
2041
+ gap> IsSimpleSemigroup(S);
2042
+ false
2043
+ gap> IsSynchronizingSemigroup(S);
2044
+ false
2045
+ gap> IsZeroGroup(S);
2046
+ false
2047
+ gap> IsZeroSemigroup(S);
2048
+ false
2049
+
2050
+ # ExamplesTest27
2051
+ gap> gens := [Transformation([2, 1, 1, 2, 1]),
2052
+ > Transformation([3, 4, 3, 4, 4]),
2053
+ > Transformation([3, 4, 3, 4, 3]),
2054
+ > Transformation([4, 3, 3, 4, 4])];;
2055
+ gap> S := Semigroup(gens);;
2056
+ gap> Size(S);
2057
+ 16
2058
+ gap> NrRClasses(S);
2059
+ 4
2060
+ gap> NrDClasses(S);
2061
+ 1
2062
+ gap> NrLClasses(S);
2063
+ 2
2064
+ gap> NrHClasses(S);
2065
+ 8
2066
+ gap> NrIdempotents(S);
2067
+ 8
2068
+ gap> NrRegularDClasses(S);
2069
+ 1
2070
+ gap> MultiplicativeZero(S);
2071
+ fail
2072
+ gap> MultiplicativeNeutralElement(S);
2073
+ fail
2074
+ gap> One(S);
2075
+ fail
2076
+ gap> if GroupOfUnits(S) <> fail then
2077
+ > StructureDescription(GroupOfUnits(S));
2078
+ > fi;;
2079
+ gap> Size(MinimalIdeal(S));
2080
+ 16
2081
+ gap> IsBlockGroup(S);
2082
+ false
2083
+ gap> IsSemigroupWithCommutingIdempotents(S);
2084
+ false
2085
+ gap> IsCliffordSemigroup(S);
2086
+ false
2087
+ gap> IsCommutative(S);
2088
+ false
2089
+ gap> IsCompletelyRegularSemigroup(S);
2090
+ true
2091
+ gap> IsCompletelySimpleSemigroup(S);
2092
+ true
2093
+ gap> IsHTrivial(S);
2094
+ false
2095
+ gap> IsLTrivial(S);
2096
+ false
2097
+ gap> IsRTrivial(S);
2098
+ false
2099
+ gap> IsGroupAsSemigroup(S);
2100
+ false
2101
+ gap> IsInverseSemigroup(S);
2102
+ false
2103
+ gap> IsLeftZeroSemigroup(S);
2104
+ false
2105
+ gap> IsMonoidAsSemigroup(S);
2106
+ false
2107
+ gap> IsOrthodoxSemigroup(S);
2108
+ false
2109
+ gap> IsRectangularBand(S);
2110
+ false
2111
+ gap> IsRegularSemigroup(S);
2112
+ true
2113
+ gap> IsRightZeroSemigroup(S);
2114
+ false
2115
+ gap> IsSemiband(S);
2116
+ true
2117
+ gap> IsSemilattice(S);
2118
+ false
2119
+ gap> IsSimpleSemigroup(S);
2120
+ true
2121
+ gap> IsSynchronizingSemigroup(S);
2122
+ false
2123
+ gap> IsZeroGroup(S);
2124
+ false
2125
+ gap> IsZeroSemigroup(S);
2126
+ false
2127
+
2128
+ # ExamplesTest28
2129
+ gap> gens := [Transformation([4, 4, 4, 1, 1, 6, 7, 8, 9, 10, 11, 1]),
2130
+ > Transformation([6, 6, 6, 7, 7, 1, 4, 8, 9, 10, 11, 7]),
2131
+ > Transformation([8, 8, 8, 9, 9, 10, 11, 1, 4, 6, 7, 9]),
2132
+ > Transformation([2, 2, 2, 4, 4, 6, 7, 8, 9, 10, 11, 4]),
2133
+ > Transformation([1, 1, 1, 5, 5, 6, 7, 8, 9, 10, 11, 5]),
2134
+ > Transformation([1, 1, 4, 4, 4, 6, 7, 8, 9, 10, 11, 1]),
2135
+ > Transformation([1, 1, 7, 4, 4, 6, 7, 8, 9, 10, 11, 6])];;
2136
+ gap> S := Semigroup(gens);;
2137
+ gap> Size(S);
2138
+ 1152
2139
+ gap> NrRClasses(S);
2140
+ 3
2141
+ gap> NrDClasses(S);
2142
+ 1
2143
+ gap> NrLClasses(S);
2144
+ 3
2145
+ gap> NrHClasses(S);
2146
+ 9
2147
+ gap> NrIdempotents(S);
2148
+ 9
2149
+ gap> NrRegularDClasses(S);
2150
+ 1
2151
+ gap> MultiplicativeZero(S);
2152
+ fail
2153
+ gap> MultiplicativeNeutralElement(S);
2154
+ fail
2155
+ gap> One(S);
2156
+ fail
2157
+ gap> if GroupOfUnits(S) <> fail then
2158
+ > StructureDescription(GroupOfUnits(S));
2159
+ > fi;;
2160
+ gap> Size(MinimalIdeal(S));
2161
+ 1152
2162
+ gap> IsBlockGroup(S);
2163
+ false
2164
+ gap> IsSemigroupWithCommutingIdempotents(S);
2165
+ false
2166
+ gap> IsCliffordSemigroup(S);
2167
+ false
2168
+ gap> IsCommutative(S);
2169
+ false
2170
+ gap> IsCompletelyRegularSemigroup(S);
2171
+ true
2172
+ gap> IsCompletelySimpleSemigroup(S);
2173
+ true
2174
+ gap> IsHTrivial(S);
2175
+ false
2176
+ gap> IsLTrivial(S);
2177
+ false
2178
+ gap> IsRTrivial(S);
2179
+ false
2180
+ gap> IsGroupAsSemigroup(S);
2181
+ false
2182
+ gap> IsInverseSemigroup(S);
2183
+ false
2184
+ gap> IsLeftZeroSemigroup(S);
2185
+ false
2186
+ gap> IsMonoidAsSemigroup(S);
2187
+ false
2188
+ gap> IsOrthodoxSemigroup(S);
2189
+ true
2190
+ gap> IsRectangularBand(S);
2191
+ false
2192
+ gap> IsRegularSemigroup(S);
2193
+ true
2194
+ gap> IsRightZeroSemigroup(S);
2195
+ false
2196
+ gap> IsSemiband(S);
2197
+ false
2198
+ gap> IsSemilattice(S);
2199
+ false
2200
+ gap> IsSimpleSemigroup(S);
2201
+ true
2202
+ gap> IsSynchronizingSemigroup(S);
2203
+ false
2204
+ gap> IsZeroGroup(S);
2205
+ false
2206
+ gap> IsZeroSemigroup(S);
2207
+ false
2208
+
2209
+ # ExamplesTest29
2210
+ gap> gens := [Transformation([1, 2, 2, 1, 2]),
2211
+ > Transformation([3, 4, 3, 4, 4]),
2212
+ > Transformation([3, 4, 3, 4, 3]),
2213
+ > Transformation([4, 3, 3, 4, 4])];;
2214
+ gap> S := Semigroup(gens);;
2215
+ gap> Size(S);
2216
+ 16
2217
+ gap> NrRClasses(S);
2218
+ 4
2219
+ gap> NrDClasses(S);
2220
+ 1
2221
+ gap> NrLClasses(S);
2222
+ 2
2223
+ gap> NrHClasses(S);
2224
+ 8
2225
+ gap> NrIdempotents(S);
2226
+ 8
2227
+ gap> NrRegularDClasses(S);
2228
+ 1
2229
+ gap> MultiplicativeZero(S);
2230
+ fail
2231
+ gap> MultiplicativeNeutralElement(S);
2232
+ fail
2233
+ gap> One(S);
2234
+ fail
2235
+ gap> if GroupOfUnits(S) <> fail then
2236
+ > StructureDescription(GroupOfUnits(S));
2237
+ > fi;;
2238
+ gap> Size(MinimalIdeal(S));
2239
+ 16
2240
+ gap> IsBlockGroup(S);
2241
+ false
2242
+ gap> IsSemigroupWithCommutingIdempotents(S);
2243
+ false
2244
+ gap> IsCliffordSemigroup(S);
2245
+ false
2246
+ gap> IsCommutative(S);
2247
+ false
2248
+ gap> IsCompletelyRegularSemigroup(S);
2249
+ true
2250
+ gap> IsCompletelySimpleSemigroup(S);
2251
+ true
2252
+ gap> IsHTrivial(S);
2253
+ false
2254
+ gap> IsLTrivial(S);
2255
+ false
2256
+ gap> IsRTrivial(S);
2257
+ false
2258
+ gap> IsGroupAsSemigroup(S);
2259
+ false
2260
+ gap> IsInverseSemigroup(S);
2261
+ false
2262
+ gap> IsLeftZeroSemigroup(S);
2263
+ false
2264
+ gap> IsMonoidAsSemigroup(S);
2265
+ false
2266
+ gap> IsOrthodoxSemigroup(S);
2267
+ false
2268
+ gap> IsRectangularBand(S);
2269
+ false
2270
+ gap> IsRegularSemigroup(S);
2271
+ true
2272
+ gap> IsRightZeroSemigroup(S);
2273
+ false
2274
+ gap> IsSemiband(S);
2275
+ true
2276
+ gap> IsSemilattice(S);
2277
+ false
2278
+ gap> IsSimpleSemigroup(S);
2279
+ true
2280
+ gap> IsSynchronizingSemigroup(S);
2281
+ false
2282
+ gap> IsZeroGroup(S);
2283
+ false
2284
+ gap> IsZeroSemigroup(S);
2285
+ false
2286
+
2287
+ # ExamplesTest30
2288
+ gap> gens := [Transformation([2, 6, 1, 7, 5, 3, 4]),
2289
+ > Transformation([5, 3, 7, 2, 1, 6, 4]),
2290
+ > Transformation([2, 5, 5, 3, 4, 2, 3]),
2291
+ > Transformation([1, 5, 1, 6, 1, 5, 6]),
2292
+ > Transformation([6, 2, 2, 2, 5, 1, 2]),
2293
+ > Transformation([7, 5, 4, 4, 4, 5, 5]),
2294
+ > Transformation([5, 1, 6, 1, 1, 5, 1]),
2295
+ > Transformation([3, 5, 2, 3, 2, 2, 3])];;
2296
+ gap> S := Semigroup(gens);;
2297
+ gap> Size(S);
2298
+ 21343
2299
+ gap> NrRClasses(S);
2300
+ 401
2301
+ gap> NrDClasses(S);
2302
+ 7
2303
+ gap> NrLClasses(S);
2304
+ 99
2305
+ gap> NrHClasses(S);
2306
+ 4418
2307
+ gap> NrIdempotents(S);
2308
+ 1471
2309
+ gap> NrRegularDClasses(S);
2310
+ 6
2311
+ gap> MultiplicativeZero(S);
2312
+ fail
2313
+ gap> MultiplicativeNeutralElement(S);
2314
+ IdentityTransformation
2315
+ gap> One(S);
2316
+ IdentityTransformation
2317
+ gap> if GroupOfUnits(S) <> fail then
2318
+ > StructureDescription(GroupOfUnits(S));
2319
+ > fi;;
2320
+ gap> Size(MinimalIdeal(S));
2321
+ 7
2322
+ gap> IsBlockGroup(S);
2323
+ false
2324
+ gap> IsSemigroupWithCommutingIdempotents(S);
2325
+ false
2326
+ gap> IsCliffordSemigroup(S);
2327
+ false
2328
+ gap> IsCommutative(S);
2329
+ false
2330
+ gap> IsCompletelyRegularSemigroup(S);
2331
+ false
2332
+ gap> IsCompletelySimpleSemigroup(S);
2333
+ false
2334
+ gap> IsHTrivial(S);
2335
+ false
2336
+ gap> IsLTrivial(S);
2337
+ false
2338
+ gap> IsRTrivial(S);
2339
+ false
2340
+ gap> IsGroupAsSemigroup(S);
2341
+ false
2342
+ gap> IsInverseSemigroup(S);
2343
+ false
2344
+ gap> IsLeftZeroSemigroup(S);
2345
+ false
2346
+ gap> IsMonoidAsSemigroup(S);
2347
+ true
2348
+ gap> IsOrthodoxSemigroup(S);
2349
+ false
2350
+ gap> IsRectangularBand(S);
2351
+ false
2352
+ gap> IsRegularSemigroup(S);
2353
+ false
2354
+ gap> IsRightZeroSemigroup(S);
2355
+ false
2356
+ gap> IsSemiband(S);
2357
+ false
2358
+ gap> IsSemilattice(S);
2359
+ false
2360
+ gap> IsSimpleSemigroup(S);
2361
+ false
2362
+ gap> IsSynchronizingSemigroup(S);
2363
+ true
2364
+ gap> IsZeroGroup(S);
2365
+ false
2366
+ gap> IsZeroSemigroup(S);
2367
+ false
2368
+
2369
+ # ExamplesTest31
2370
+ gap> gens := [Transformation([3, 6, 9, 1, 4, 7, 2, 5, 8]),
2371
+ > Transformation([3, 6, 9, 7, 1, 4, 5, 8, 2]),
2372
+ > Transformation([8, 2, 5, 5, 4, 5, 5, 2, 8]),
2373
+ > Transformation([4, 4, 8, 4, 4, 2, 4, 4, 5])];;
2374
+ gap> S := Semigroup(gens);;
2375
+ gap> Size(S);
2376
+ 82953
2377
+ gap> NrRClasses(S);
2378
+ 503
2379
+ gap> NrDClasses(S);
2380
+ 7
2381
+ gap> NrLClasses(S);
2382
+ 214
2383
+ gap> NrHClasses(S);
2384
+ 16426
2385
+ gap> NrIdempotents(S);
2386
+ 3718
2387
+ gap> NrRegularDClasses(S);
2388
+ 6
2389
+ gap> MultiplicativeZero(S);
2390
+ fail
2391
+ gap> MultiplicativeNeutralElement(S);
2392
+ IdentityTransformation
2393
+ gap> One(S);
2394
+ IdentityTransformation
2395
+ gap> if GroupOfUnits(S) <> fail then
2396
+ > StructureDescription(GroupOfUnits(S));
2397
+ > fi;;
2398
+ gap> Size(MinimalIdeal(S));
2399
+ 9
2400
+ gap> IsBlockGroup(S);
2401
+ false
2402
+ gap> IsSemigroupWithCommutingIdempotents(S);
2403
+ false
2404
+ gap> IsCliffordSemigroup(S);
2405
+ false
2406
+ gap> IsCommutative(S);
2407
+ false
2408
+ gap> IsCompletelyRegularSemigroup(S);
2409
+ false
2410
+ gap> IsCompletelySimpleSemigroup(S);
2411
+ false
2412
+ gap> IsHTrivial(S);
2413
+ false
2414
+ gap> IsLTrivial(S);
2415
+ false
2416
+ gap> IsRTrivial(S);
2417
+ false
2418
+ gap> IsGroupAsSemigroup(S);
2419
+ false
2420
+ gap> IsInverseSemigroup(S);
2421
+ false
2422
+ gap> IsLeftZeroSemigroup(S);
2423
+ false
2424
+ gap> IsMonoidAsSemigroup(S);
2425
+ true
2426
+ gap> IsOrthodoxSemigroup(S);
2427
+ false
2428
+ gap> IsRectangularBand(S);
2429
+ false
2430
+ gap> IsRegularSemigroup(S);
2431
+ false
2432
+ gap> IsRightZeroSemigroup(S);
2433
+ false
2434
+ gap> IsSemiband(S);
2435
+ false
2436
+ gap> IsSemilattice(S);
2437
+ false
2438
+ gap> IsSimpleSemigroup(S);
2439
+ false
2440
+ gap> IsSynchronizingSemigroup(S);
2441
+ true
2442
+ gap> IsZeroGroup(S);
2443
+ false
2444
+ gap> IsZeroSemigroup(S);
2445
+ false
2446
+
2447
+ #
2448
+ gap> SEMIGROUPS.StopTest();
2449
+ gap> STOP_TEST("Semigroups package: extreme/examples.tst");