passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-unknown-linux-musl-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1021 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-81d76771.so.2.0.0 +0 -0
- passagemath_gap_pkg_semigroups.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
#
|
|
2
|
+
# Semigroups GAP package
|
|
3
|
+
#
|
|
4
|
+
# This file is part of the build system of a GAP kernel extension.
|
|
5
|
+
# Requires GNU autoconf, GNU automake and GNU libtool.
|
|
6
|
+
#
|
|
7
|
+
|
|
8
|
+
dnl ##
|
|
9
|
+
dnl ## Setup autoconf
|
|
10
|
+
dnl ##
|
|
11
|
+
AC_PREREQ([2.68])
|
|
12
|
+
AC_INIT([semigroups], [GAP package])
|
|
13
|
+
AC_CONFIG_SRCDIR([src/pkg.cpp])
|
|
14
|
+
AC_CONFIG_HEADERS([gen/pkgconfig.h:src/pkgconfig.h.in])
|
|
15
|
+
AC_CONFIG_MACRO_DIR([m4])
|
|
16
|
+
|
|
17
|
+
AX_PREFIX_CONFIG_H([src/semigroups-config.hpp],[semigroups],[gen/pkgconfig.h])
|
|
18
|
+
|
|
19
|
+
dnl ## abs_top_builddir seems to hold the top build dir for the subpackage
|
|
20
|
+
dnl ## libsemigroups which is why this contains ../
|
|
21
|
+
AC_PREFIX_DEFAULT('${abs_top_builddir}/../bin/')
|
|
22
|
+
|
|
23
|
+
dnl ##
|
|
24
|
+
dnl ## Set the language
|
|
25
|
+
dnl ##
|
|
26
|
+
AC_PROG_CXX
|
|
27
|
+
AC_LANG([C++])
|
|
28
|
+
|
|
29
|
+
AX_CXX_COMPILE_STDCXX_14(,[mandatory])
|
|
30
|
+
|
|
31
|
+
dnl ##
|
|
32
|
+
dnl ## Locate the GAP root dir
|
|
33
|
+
dnl ##
|
|
34
|
+
FIND_GAP
|
|
35
|
+
|
|
36
|
+
dnl ##
|
|
37
|
+
dnl ## Check for pthread, this seems to be required to compile with GCC
|
|
38
|
+
dnl ##
|
|
39
|
+
AX_PTHREAD(,[AC_MSG_ERROR([pthread is required])])
|
|
40
|
+
AC_CHECK_LIB([pthread], [pthread_create])
|
|
41
|
+
|
|
42
|
+
dnl ##
|
|
43
|
+
dnl ## Detect Windows resp. Cygwin
|
|
44
|
+
dnl ##
|
|
45
|
+
case $host_os in
|
|
46
|
+
*cygwin* ) AC_SUBST(SYS_IS_CYGWIN, yes);;
|
|
47
|
+
esac
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
dnl ## Check for libsemigroups
|
|
51
|
+
AX_CHECK_LIBSEMIGROUPS
|
|
52
|
+
|
|
53
|
+
dnl ## User setting: Debug mode (off by default)
|
|
54
|
+
AC_ARG_ENABLE([debug],
|
|
55
|
+
[AS_HELP_STRING([--enable-debug], [enable debug mode])],
|
|
56
|
+
[AC_DEFINE([KERNEL_DEBUG], [1], [define if building in debug mode])],
|
|
57
|
+
[enable_debug=no]
|
|
58
|
+
)
|
|
59
|
+
AC_MSG_CHECKING([whether to enable debug mode])
|
|
60
|
+
AC_MSG_RESULT([$enable_debug])
|
|
61
|
+
KERNEL_DEBUG=$enable_debug
|
|
62
|
+
AC_SUBST(KERNEL_DEBUG)
|
|
63
|
+
|
|
64
|
+
# Check if HPCombi is enable, and available
|
|
65
|
+
AX_CHECK_HPCOMBI
|
|
66
|
+
|
|
67
|
+
dnl ##
|
|
68
|
+
dnl ## Output everything
|
|
69
|
+
dnl ##
|
|
70
|
+
AC_CONFIG_FILES([GNUmakefile])
|
|
71
|
+
AC_OUTPUT
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
MLIS2PPERILIS27AINTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19INTG1AINTG1BINTG1CINTG1DINTG1EINTG1FINTG210INTG211INTG212INTG213INTG215INTG216INTG217INTG218INTG219INTG21AINTG21BINTG21CINTG21DINTG21EINTG21FINTG220INTG221INTG222INTG223INTG224INTG225INTG226INTG227INTG229INTG22AINTG22BINTG22CINTG22DINTG22EINTG22FINTG230INTG231INTG232INTG233INTG234INTG235INTG236INTG237INTG238INTG239INTG23AINTG23BINTG23CINTG23DINTG23EINTG23FINTG240INTG241INTG242INTG243INTG244INTG245INTG246INTG247INTG248INTG249INTG24AINTG24BINTG24CINTG24DINTG24EINTG24FINTG250INTG251INTG252INTG253INTG254INTG255INTG256INTG257INTG258INTG259INTG25AINTG25BINTG25CINTG25DINTG25EINTG260INTG261INTG262INTG263INTG264INTG265INTG266INTG267INTG268INTG269INTG26AINTG26BINTG26CINTG26DINTG26FINTG270INTG271INTG272INTG273INTG274INTG275INTG276INTG278INTG279INTG27AINTG27BINTG27CINTG27DINTG27EINTG27FINTG281INTG282INTG283INTG284INTG285INTG286INTG287INTG288INTG289INTG28BINTG28CINTG28FINTG290INTG292INTG293INTG294INTG296INTG297INTG298INTG299INTG29AINTG29BINTG29CINTG29DINTG29EINTG29FINTG2A0INTG2A2INTG2A3INTG2A5INTG2A7INTG2A8INTG2A9INTG2AAINTG2ABINTG2ACINTG2ADINTG2AEINTG2AFINTG2B0INTG2B2INTG2B3INTG2B4INTG2B5INTG2B6INTG2B7INTG2B8INTG2B9INTG2BAINTG2BBINTG2BCINTG2BDINTG2BFINTG2C1INTG2C2INTG2C3INTG2C4INTG2C5INTG2C6INTG2C7INTG2C8INTG2C9INTG2CBINTG2CCINTG2CEINTG2CFINTG2D1INTG2D3INTG2D4INTG2D5INTG2D6INTG2D7INTG2D8INTG2D9INTG2DBINTG2DCINTG2DDINTG2DEINTG2DFINTG2E0INTG2E1INTG2E2INTG2E3INTG2E6INTG2E7INTG2E8INTG2E9INTG2EAINTG2EBINTG2ECINTG2EDINTG2EEINTG2EFINTG2F0INTG2F1INTG2F2INTG2F3INTG2F4INTG2F5INTG2F6INTG2F7INTG2F9INTG2FAINTG2FBINTG2FDINTG2FEINTG2FFINTG3100INTG3101INTG3102INTG3103INTG3105INTG3106INTG3107INTG3108INTG3109INTG310AINTG310BINTG310CINTG310EINTG310FINTG3110INTG3112INTG3113INTG3115INTG3116INTG3118INTG311BINTG311CINTG311EINTG311FINTG3121INTG3122INTG3123INTG3124INTG3125INTG3126INTG3127INTG3128INTG3129INTG312AINTG312BINTG312CINTG312EINTG312FINTG3131INTG3132INTG3133INTG3136INTG3138INTG3139INTG313BINTG313EINTG313FINTG3140INTG3142INTG3143INTG3144INTG3145INTG3146INTG3147INTG3148INTG3149INTG314AINTG314BINTG314DINTG314FINTG3152INTG3154INTG3155INTG3156INTG3158INTG3159INTG315AINTG315BINTG315DINTG3160INTG3162INTG3164INTG3165INTG3166INTG3167INTG3169INTG316AINTG316BINTG316CINTG316DINTG316EINTG316FINTG3172INTG3175INTG3177INTG3178INTG3179INTG317BINTG317CINTG317FINTG3180INTG3181INTG3183INTG3184INTG3187INTG3188INTG318BINTG318CINTG318DINTG318EINTG3191INTG3194INTG3195INTG3196INTG3197INTG3199INTG319AINTG319CINTG319DINTG319EINTG31A0INTG31A2INTG31A4INTG31A5INTG31A6INTG31A7INTG31A8INTG31A9INTG31AAINTG31ABINTG31ACINTG31ADINTG31AEINTG31AFINTG31B0INTG31B1INTG31B3INTG31B4INTG31B5INTG31B8INTG31B9INTG31BBINTG31BCINTG31BEINTG31C0INTG31C2INTG31C5INTG31C6INTG31C8INTG31C9INTG31CAINTG31CBINTG31CCINTG31CDINTG31D1INTG31D3INTG31D4INTG31D6INTG31D7INTG31D8INTG31D9INTG31DBINTG31DCINTG31DDINTG31DEINTG31E0INTG31E4INTG31E5INTG31E7INTG31E9INTG31EAINTG31EBINTG31EEINTG31F0INTG31F1INTG31F2INTG31F4INTG31F5INTG31F6INTG31F8INTG31F9INTG31FAINTG31FBINTG31FCINTG31FDINTG3203INTG3204INTG3205INTG3206INTG3208INTG3209INTG320AINTG320BINTG320FINTG3210INTG3211INTG3212INTG3213INTG3214INTG3215INTG3218INTG321BINTG3223INTG3224INTG3226INTG3227INTG3228INTG322AINTG322BINTG322CINTG322DINTG322EINTG322FINTG3230INTG3231INTG3234INTG3235INTG3237INTG323AINTG323EINTG3243INTG3245INTG3248INTG3249INTG324AINTG324BINTG324EINTG3250INTG3252INTG3253INTG3255INTG3256INTG3258INTG3259INTG325AINTG325CINTG325EINTG325FINTG3260INTG3261INTG3262INTG3263INTG3266INTG3267INTG3269INTG326DINTG3270INTG3271INTG3274INTG3275INTG3276INTG3277INTG327BINTG327CINTG327DINTG3281INTG3282INTG3283INTG3284INTG3286INTG3287INTG3288INTG328AINTG328BINTG328DINTG3291INTG3292INTG3293INTG3298INTG329DINTG32A0INTG32A1INTG32A4INTG32A6INTG32A7INTG32AAINTG32ABINTG32ADINTG32AEINTG32AFINTG32B2INTG32B4INTG32B7INTG32B8INTG32B9INTG32BBINTG32BCINTG32BDINTG32BEINTG32BFINTG32C1INTG32C2INTG32C5INTG32C6INTG32C7INTG32C9INTG32CAINTG32CBINTG32CCINTG32CFINTG32D6INTG32D7INTG32DAINTG32DCINTG32DFINTG32E0INTG32E4INTG32E6INTG32E8INTG32EAINTG32EBINTG32ECINTG32EFINTG32F1INTG32F5INTG32F6INTG32FCINTG3300INTG3303INTG3305INTG3308INTG330CINTG330DINTG330EINTG330FINTG3310INTG3311INTG3312INTG3313INTG3315INTG3316INTG3317INTG3318INTG331AINTG331BINTG331CINTG331DINTG331FINTG3320INTG3321INTG3323INTG3324INTG3325INTG3327INTG332DINTG332FINTG3330INTG3332INTG3334INTG3335INTG3339INTG333AINTG333FINTG3340INTG3342INTG3344INTG3345INTG3348INTG334CINTG334DINTG334EINTG334FINTG3351INTG3354INTG335DINTG335EINTG335FINTG3360INTG3362INTG3363INTG3365INTG3368INTG336AINTG3373INTG3374INTG3375INTG3377INTG3378INTG3379INTG337BINTG3380INTG3381INTG3383INTG3385INTG338AINTG338FINTG3393INTG3397INTG339CINTG33A0INTG33A4INTG33A9INTG33ADINTG33B9INTG33BAINTG33BBINTG33BDINTG33C0INTG33C1INTG33C4INTG33C5INTG33C6INTG33C7INTG33CAINTG33CEINTG33D3INTG33D4INTG33D5INTG33DAINTG33DCINTG33DFINTG33E2INTG33E5INTG33E7INTG33E8MLIS27AINTG3276INTG3203INTG31FFINTG31ADINTG3161INTG3180INTG2F3INTG32B5INTG3302INTG316FINTG33E8INTG2FDINTG2F6INTG3269INTG3128INTG31EAINTG31E3INTG316DINTG31FEINTG259INTG219INTG3251INTG299INTG3224INTG3221INTG33B2INTG314DINTG32EAINTG3282INTG32C2INTG23EINTG317CINTG3361INTG311BINTG3114INTG33E2INTG32FFINTG3314INTG2D4INTG331CINTG3334INTG32B8INTG31CEINTG3113INTG3156INTG311EINTG31BEINTG336BINTG264INTG31CCINTG32EFINTG33DEINTG32B1INTG33D5INTG32DDINTG3202INTG3375INTG319BINTG313BINTG270INTG3232INTG3131INTG317DINTG329AINTG263INTG214INTG3301INTG31ACINTG32ACINTG3117INTG33B3INTG322EINTG2AAINTG3337INTG3384INTG3264INTG31D3INTG3135INTG33D4INTG315CINTG29AINTG3280INTG316AINTG32A3INTG3243INTG3257INTG335CINTG3110INTG318CINTG3292INTG33C5INTG3198INTG2C2INTG31A4INTG331DINTG3331INTG3250INTG317EINTG2C4INTG331FINTG330DINTG28AINTG3118INTG2A8INTG21EINTG2B7INTG3341INTG33BDINTG320BINTG321AINTG3273INTG32E4INTG3383INTG31B7INTG3380INTG2BFINTG245INTG215INTG3210INTG3266INTG311DINTG33B5INTG1DINTG32F5INTG33BCINTG3328INTG33A8INTG288INTG31F9INTG287INTG314CINTG2E6INTG319CINTG3103INTG33C3INTG32CEINTG329BINTG31E2INTG31A0INTG32EEINTG328DINTG3220INTG257INTG3190INTG31ABINTG326FINTG3297INTG27CINTG3381INTG323DINTG337EINTG31DAINTG3396INTG339DINTG3189INTG312EINTG31E8INTG327EINTG211INTG293INTG32DBINTG25BINTG3165INTG3378INTG32E7INTG3126INTG31A9INTG3205INTG3313INTG3185INTG3217INTG2EEINTG318FINTG3321INTG290INTG28DINTG2CCINTG21CINTG32B2INTG3136INTG3300INTG325CINTG33CBINTG3143INTG3395INTG3249INTG33B8INTG3367INTG3355INTG32D0INTG322CINTG22BINTG3388INTG33CEINTG3364INTG239INTG2DFINTG3371INTG31A2INTG24AINTG2FEINTG32FEINTG337BINTG3309INTG3207INTG31BDINTG3120INTG32FCINTG33D7INTG3151INTG320AINTG326AINTG235INTG31B6INTG3316INTG26BINTG33C4INTG3215INTG3247INTG280INTG2BBINTG213INTG13INTG3267INTG32B0INTG3225INTG33D6INTG3197INTG3387INTG3226INTG3315INTG317AINTG335FINTG2A9INTG3195INTG18INTG32E2INTG33C0INTG332FINTG227INTG3170INTG32DAINTG292INTG3343INTG3240INTG33C8INTG32D4INTG3127INTG24CINTG31F6INTG2A1INTG275INTG332EINTG28EINTG3184INTG335AINTG327AINTG2E0INTG3394INTG268INTG3277INTG3295INTG3322INTG3177INTG3368INTG3218INTG316BINTG32BDINTG325EINTG2A6INTG2D9INTG31BAINTG33DCINTG312FINTG335DINTG3370INTG31FAINTG32F9INTG31BBINTG332DINTG33DDINTG313AINTG320EINTG33BAINTG27EINTG31EBINTG283INTG33B0INTG32ECINTG3398INTG32E9INTG3392INTG3213INTG3391INTG31C4INTG3246INTG31E9INTG32A1INTG31C1INTG31BCINTG32C1INTG3330INTG2D2INTG3270INTG3312INTG289INTG3193INTG3354INTG314BINTG297INTG3201INTG3112INTG32D1INTG3133INTG3369INTG243INTG328EINTG31DEINTG317FINTG313CINTG339AINTG255INTG2DCINTG3275INTG33ABINTG311FINTG2AEINTG3258INTG269INTG16INTG3182INTG31D9INTG17INTG312CINTG2E2INTG32E0INTG322BINTG274INTG31A6INTG32E3INTG3183INTG312AINTG3285INTG3196INTG32C7INTG3144INTG223INTG31C5INTG3111INTG33DAINTG33E6INTG232INTG282INTG3389INTG323BINTG228INTG32F2INTG251INTG2B2INTG14INTG335EINTG3244INTG322AINTG2E9INTG222INTG333AINTG311AINTG32CCINTG315BINTG3142INTG3233INTG3125INTG3179INTG324AINTG335BINTG3308INTG3350INTG31ECINTG2E8INTG28FINTG33C9INTG32B9INTG2D5INTG3154INTG3289INTG310EINTG334AINTG31C6INTG3105INTG3290INTG2EFINTG33E3INTG3342INTG225INTG3214INTG3164INTG32F4INTG32CAINTG23DINTG31FCINTG32BBINTG250INTG33D0INTG331BINTG28CINTG334EINTG247INTG325DINTG3106INTG2E3INTG32CFINTG15INTG336EINTG3109INTG25AINTG31C7INTG328BINTG31F0INTG3372INTG3317INTG3253INTG32D6INTG3116INTG32D7INTG3386INTG3115INTG324CINTG32D3INTG32F0INTG338CINTG273INTG19INTG336DINTG3356INTG314AINTG33A5INTG31B2INTG2CDINTG3163INTG3141INTG3162INTG3166INTG3181INTG3318INTG31CBINTG33D1INTG31CAINTG2E7INTG333DINTG325AINTG324EINTG3121INTG3304INTG31D2INTG31B0INTG2A4INTG315FINTG3152INTG294INTG33D2INTG337AINTG2CBINTG339FINTG1CINTG330BINTG3186INTG3236INTG3256INTG231INTG31E0INTG31B4INTG3212INTG3362INTG3169INTG2DAINTG339CINTG31D1INTG3229INTG3187INTG237INTG333FINTG234INTG310CINTG2CEINTG31F8INTG254INTG28BINTG3167INTG31AFINTG3283INTG323FINTG3360INTG327BINTG2B5INTG2BEINTG3288INTG3347INTG3200INTG3259INTG319DINTG252INTG316CINTG3319INTG216INTG33C2INTG3353INTG244INTG33BEINTG31E4INTG248INTG2D8INTG2FBINTG3137INTG32AEINTG2BDINTG3188INTG2DBINTG339EINTG33C1INTG32AAINTG3227INTG3393INTG33A7INTG3296INTG2C6INTG2B0INTG327CINTG31E6INTG32EDINTG32C5INTG2C1INTG2FAINTG33DBINTG326EINTG1EINTG3228INTG2ADINTG326CINTG320CINTG3345INTG32C8INTG33AFINTG2B4INTG262INTG272INTG3153INTG31EDINTG324BINTG23BINTG31B8INTG3262INTG3108INTG238INTG210INTG3242INTG31D5INTG249INTG318EINTG321CINTG3222INTG312BINTG3123INTG324FINTG253INTG3338INTG3132INTG24EINTG3238INTG31CFINTG31C3INTG330EINTG3208INTG3348INTG31C8INTG3168INTG2F5INTG26CINTG27AINTG333BINTG32CDINTG321DINTG2C9INTG3320INTG32A0INTG338DINTG33B7INTG311CINTG3178INTG2F4INTG3352INTG315EINTG31FDINTG31C9INTG33B4INTG2C7INTG2F9INTG295INTG3239INTG32D5INTG32A5INTG334FINTG3237INTG3294INTG3160INTG32C6INTG25DINTG314EINTG33CFINTG337DINTG260INTG331EINTG284INTG310AINTG332BINTG2BAINTG21DINTG256INTG33A2INTG265INTG327FINTG2D7INTG31A3INTG313FINTG2FFINTG279INTG334BINTG3286INTG329DINTG3377INTG31F1INTG31FBINTG31E7INTG12INTG3357PPERILIS27FINTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19INTG1AINTG1BINTG1CINTG1DINTG1EINTG1FINTG210INTG211INTG212INTG213INTG214INTG215INTG216INTG217INTG218INTG219INTG21AINTG21BINTG21CINTG21DINTG21EINTG21FINTG220INTG221INTG222INTG223INTG224INTG225INTG226INTG227INTG228INTG229INTG22AINTG22BINTG22DINTG22EINTG22FINTG230INTG231INTG232INTG233INTG234INTG235INTG236INTG237INTG238INTG239INTG23AINTG23BINTG23CINTG23DINTG23EINTG23FINTG241INTG242INTG243INTG244INTG245INTG246INTG247INTG248INTG249INTG24AINTG24BINTG24CINTG24EINTG24FINTG250INTG251INTG252INTG254INTG255INTG256INTG257INTG258INTG259INTG25AINTG25BINTG25DINTG25EINTG25FINTG260INTG261INTG262INTG263INTG264INTG265INTG266INTG267INTG268INTG269INTG26AINTG26BINTG26CINTG26DINTG26EINTG26FINTG270INTG271INTG272INTG273INTG274INTG275INTG277INTG278INTG279INTG27AINTG27BINTG27CINTG27DINTG27EINTG27FINTG280INTG281INTG282INTG284INTG285INTG286INTG288INTG289INTG28AINTG28BINTG28CINTG28DINTG28EINTG28FINTG290INTG291INTG292INTG293INTG294INTG295INTG296INTG297INTG299INTG29AINTG29BINTG29DINTG29FINTG2A0INTG2A1INTG2A2INTG2A3INTG2A4INTG2A5INTG2A6INTG2A7INTG2A8INTG2A9INTG2AAINTG2ABINTG2ACINTG2ADINTG2AEINTG2AFINTG2B0INTG2B1INTG2B3INTG2B4INTG2B5INTG2B6INTG2B8INTG2BBINTG2BCINTG2BDINTG2BEINTG2BFINTG2C0INTG2C1INTG2C2INTG2C3INTG2C4INTG2C5INTG2C6INTG2C7INTG2C8INTG2C9INTG2CAINTG2CBINTG2CCINTG2CEINTG2CFINTG2D0INTG2D1INTG2D2INTG2D3INTG2D6INTG2D7INTG2D8INTG2D9INTG2DAINTG2DBINTG2DCINTG2DEINTG2DFINTG2E0INTG2E1INTG2E2INTG2E4INTG2E6INTG2E7INTG2E9INTG2EDINTG2EFINTG2F0INTG2F1INTG2F2INTG2F4INTG2F8INTG2F9INTG2FAINTG2FBINTG2FCINTG2FDINTG2FFINTG3102INTG3104INTG3105INTG3108INTG310AINTG310BINTG310CINTG310EINTG310FINTG3110INTG3112INTG3113INTG3115INTG3117INTG3118INTG3119INTG311AINTG311BINTG311CINTG311DINTG311EINTG311FINTG3120INTG3121INTG3122INTG3123INTG3124INTG3125INTG3126INTG3127INTG3129INTG312AINTG312BINTG312CINTG312DINTG312EINTG3131INTG3132INTG3133INTG3134INTG3135INTG3137INTG3139INTG313AINTG313BINTG313CINTG313DINTG313FINTG3140INTG3141INTG3142INTG3143INTG3144INTG3145INTG3146INTG3147INTG3149INTG314AINTG314DINTG314EINTG3150INTG3151INTG3152INTG3154INTG3155INTG3157INTG3158INTG315BINTG315CINTG315DINTG315EINTG315FINTG3161INTG3162INTG3163INTG3164INTG3165INTG3166INTG3167INTG3168INTG3169INTG316AINTG316BINTG316CINTG316EINTG316FINTG3170INTG3171INTG3172INTG3173INTG3174INTG3175INTG3176INTG3177INTG3178INTG3179INTG317AINTG317BINTG317DINTG317EINTG317FINTG3181INTG3182INTG3185INTG3186INTG3187INTG3188INTG3189INTG318BINTG318DINTG318FINTG3190INTG3192INTG3193INTG3194INTG3196INTG3197INTG3199INTG319CINTG319FINTG31A0INTG31A1INTG31A2INTG31A3INTG31A4INTG31A6INTG31A7INTG31A8INTG31A9INTG31ABINTG31ACINTG31B1INTG31B3INTG31B4INTG31BAINTG31BBINTG31BEINTG31BFINTG31C0INTG31C2INTG31C4INTG31C5INTG31C7INTG31CBINTG31CCINTG31CEINTG31CFINTG31D0INTG31D4INTG31D5INTG31D6INTG31D7INTG31D8INTG31D9INTG31DAINTG31DBINTG31DCINTG31DDINTG31DEINTG31DFINTG31E1INTG31E3INTG31E4INTG31E5INTG31E6INTG31E7INTG31E8INTG31EAINTG31ECINTG31EFINTG31F0INTG31F1INTG31F2INTG31F3INTG31F6INTG31F7INTG31F8INTG31F9INTG31FAINTG31FBINTG31FDINTG3201INTG3202INTG3203INTG3204INTG3205INTG3206INTG320DINTG320EINTG3210INTG3214INTG3215INTG3216INTG3217INTG3218INTG321BINTG321DINTG321EINTG321FINTG3220INTG3221INTG3223INTG3225INTG3226INTG3227INTG322BINTG322FINTG3230INTG3231INTG3233INTG3239INTG323AINTG323BINTG323DINTG3240INTG3242INTG3244INTG3246INTG3247INTG3248INTG324DINTG324FINTG3250INTG3251INTG3253INTG3254INTG3255INTG3256INTG3259INTG325CINTG325DINTG325FINTG3261INTG3262INTG3263INTG3264INTG3267INTG3268INTG3269INTG326CINTG326DINTG326EINTG326FINTG3276INTG3277INTG327AINTG327BINTG327DINTG327FINTG3281INTG3284INTG3287INTG3288INTG3289INTG328AINTG328EINTG328FINTG3290INTG3291INTG3292INTG3296INTG3298INTG329AINTG329BINTG329CINTG329DINTG32A4INTG32A8INTG32AAINTG32ABINTG32ACINTG32ADINTG32AFINTG32B1INTG32B5INTG32B6INTG32BCINTG32BDINTG32C2INTG32C3INTG32C6INTG32C7INTG32C8INTG32C9INTG32CAINTG32CBINTG32CCINTG32CDINTG32CEINTG32D1INTG32D2INTG32D6INTG32D8INTG32D9INTG32DDINTG32DEINTG32DFINTG32E1INTG32E2INTG32E3INTG32E4INTG32E5INTG32E7INTG32EFINTG32F3INTG32FAINTG32FBINTG32FCINTG3301INTG3302INTG3303INTG3305INTG3306INTG3307INTG3308INTG3309INTG330AINTG3310INTG3311INTG3313INTG3314INTG3316INTG3318INTG3319INTG331AINTG331CINTG331DINTG3322INTG3324INTG3325INTG3328INTG3329INTG332BINTG332DINTG3330INTG3332INTG3334INTG333BINTG333EINTG333FINTG3341INTG3342INTG3345INTG3349INTG334AINTG334EINTG3353INTG3355INTG3357INTG3359INTG335AINTG335FINTG3361INTG3364INTG3366INTG3367INTG3368INTG3369INTG336BINTG336CINTG336DINTG3372INTG3373INTG3376INTG337BINTG337DINTG337EINTG3380INTG3382INTG3384INTG3387INTG338CINTG338DINTG3390INTG3391INTG3394INTG3395INTG339DINTG339EINTG339FINTG33A0INTG33A3INTG33A4INTG33A6INTG33A7INTG33A8INTG33ABINTG33AFINTG33B0INTG33B3INTG33B4INTG33B7INTG33BCINTG33BDINTG33BFINTG33C3INTG33C6INTG33C7INTG33C8INTG33C9INTG33CAINTG33CBINTG33CCINTG33CFINTG33D0INTG33D1INTG33D3INTG33D4INTG33D7INTG33D8INTG33DAINTG33DBINTG33DEINTG33E3INTG33E6MLIS27FINTG24FINTG21BINTG2E9INTG3170INTG3393INTG32A5INTG28FINTG32F8INTG3135INTG337BINTG254INTG33ADINTG15INTG320EINTG2E1INTG3326INTG3351INTG241INTG31E9INTG333DINTG3169INTG3173INTG3146INTG330FINTG3340INTG2AAINTG31D5INTG257INTG317CINTG293INTG2D7INTG3232INTG25AINTG3217INTG328BINTG32AFINTG31B8INTG3172INTG329AINTG331DINTG3249INTG32C8INTG312CINTG2B9INTG323BINTG3245INTG319BINTG299INTG31A8INTG26DINTG2ADINTG3288INTG3104INTG319DINTG32B2INTG33CCINTG3255INTG31C5INTG3281INTG3366INTG3307INTG32C4INTG32ECINTG2DAINTG3247INTG31C1INTG3392INTG33CEINTG33D4INTG3201INTG323AINTG324EINTG326EINTG3364INTG310AINTG32ADINTG3385INTG3362INTG14INTG329CINTG327FINTG3240INTG332EINTG2D0INTG2EEINTG323CINTG2FCINTG322CINTG31CCINTG3317INTG3228INTG326FINTG3234INTG32B3INTG223INTG249INTG3269INTG323DINTG33BBINTG327CINTG339CINTG326BINTG3262INTG338CINTG2C1INTG3283INTG3360INTG2D3INTG32A1INTG31C8INTG275INTG3302INTG3236INTG31EDINTG2C7INTG219INTG2A8INTG33DDINTG32EFINTG327AINTG2E3INTG3274INTG3142INTG31FAINTG3110INTG2A1INTG32D9INTG2B4INTG31BBINTG3162INTG3354INTG2F0INTG3343INTG3126INTG25BINTG329DINTG320BINTG2EAINTG3318INTG3272INTG3282INTG3339INTG33D9INTG333EINTG31D3INTG312AINTG3216INTG245INTG31A0INTG33AEINTG316AINTG338BINTG32EDINTG3141INTG3336INTG3138INTG3230INTG334EINTG32D5INTG31A3INTG24DINTG332DINTG252INTG310EINTG31B7INTG31E4INTG221INTG329EINTG2C3INTG33C5INTG32B9INTG216INTG33DBINTG260INTG253INTG3181INTG290INTG330CINTG328CINTG3209INTG336EINTG331CINTG332BINTG17INTG25EINTG316BINTG32A9INTG3179INTG2F5INTG21CINTG262INTG3225INTG31A5INTG317AINTG3375INTG3200INTG31A6INTG2C0INTG3395INTG3134INTG31F5INTG233INTG2A7INTG327EINTG317EINTG32DAINTG32BBINTG298INTG319EINTG32E5INTG214INTG31E8INTG276INTG31C9INTG3114INTG3334INTG2FAINTG332AINTG2EDINTG322AINTG3313INTG31B6INTG218INTG287INTG3165INTG3355INTG32D2INTG319AINTG259INTG337FINTG32F3INTG2FFINTG25DINTG33B0INTG3267INTG32C0INTG32DFINTG3186INTG32CCINTG31EEINTG32D3INTG337AINTG336DINTG324AINTG28AINTG31EBINTG2BFINTG3175INTG3194INTG2A5INTG23FINTG2AEINTG2E5INTG3147INTG3295INTG3377INTG31BDINTG3193INTG2F9INTG338FINTG33DEINTG3197INTG311EINTG239INTG21FINTG336BINTG333AINTG31FCINTG321EINTG227INTG313EINTG31C3INTG320CINTG33A3INTG313BINTG3149INTG3152INTG33A5INTG24EINTG3231INTG278INTG33A9INTG3270INTG318AINTG31D8INTG224INTG31C4INTG32B1INTG23BINTG33D1INTG32FFINTG322EINTG3381INTG3298INTG2CDINTG3368INTG27AINTG3398INTG338EINTG2DFINTG3322INTG3111INTG3286INTG2DBINTG2C4INTG33DCINTG33CFINTG316EINTG3226INTG3324INTG3100INTG250INTG31E7INTG28CINTG261INTG31E1INTG322FINTG2ECINTG2D6INTG244INTG31E0INTG33DFINTG31E5INTG33B1INTG247INTG3309INTG3259INTG3315INTG33B6INTG331EINTG1EINTG31C0INTG319CINTG33A8INTG3198INTG3207INTG2B6INTG1FINTG29DINTG33B2INTG32D8INTG3330INTG3266INTG313AINTG333BINTG31DDINTG273INTG24CINTG33E5INTG2C8INTG270INTG26CINTG321BINTG3102INTG235INTG322DINTG3387INTG3229INTG2CCINTG31ECINTG311BINTG3389INTG32A4INTG274INTG3166INTG3273INTG31EAINTG3143INTG339FINTG3227INTG3382INTG329BINTG3174INTG31F3INTG324DINTG28DINTG27DINTG3101INTG27BINTG2B1INTG3136INTG24BINTG33C6INTG314CINTG29EINTG33D8INTG33A2INTG324BINTG32F0INTG3210INTG3219INTG2B3INTG3233INTG33A4INTG13INTG32E4INTG2C6INTG22DINTG3248INTG236INTG288INTG3254INTG3306INTG3358INTG1BINTG311CINTG321CINTG3129INTG32E2INTG316CINTG33BDINTG32D1INTG3127INTG315FINTG3312INTG328FINTG324FINTG3303INTG2EBINTG321FINTG32F7INTG23DINTG335BINTG32F4INTG2F3INTG1CINTG33AAINTG31EFINTG271INTG3239INTG314BINTG2B5INTG3140INTG3214INTG26AINTG2E0INTG32D7INTG33C8INTG3107INTG326CINTG32C1INTG264INTG3191INTG316DINTG32CEINTG315DINTG33C2INTG31D0INTG31F9INTG314AINTG12INTG3264INTG327DINTG332FINTG3365INTG31CAINTG2B8INTG3341INTG281INTG3352INTG32EBINTG334AINTG3196INTG339BINTG322BINTG32B4INTG33D6INTG27EINTG3112INTG32E6INTG31B5INTG3349INTG315BINTG337DINTG2F6INTG318EINTG32ABINTG3103INTG3158INTG31F0INTG3331INTG31D4INTG3287INTG320FINTG3205INTG26BINTG3370INTG336FINTG29CINTG3348INTG11INTG3202INTG310BINTG3357INTG325BINTG3124INTG32BAINTG315CINTG323FINTG3342INTG3301INTG3139INTG3320INTG2B2INTG317DINTG3123INTG3164INTG32FCINTG3119INTG32F9INTG32E1INTG330DINTG3218INTG33B5INTG22BINTG3383INTG318CINTG3224INTG312FINTG2A2INTG3310INTG263INTG2D2INTG2FEINTG3133INTG32B6INTG335DINTG317BINTG3363INTG32A0INTG32E8INTG32CFINTG337CINTG335CINTG32EEINTG3192INTG3168INTG32FBINTG3113INTG32C5INTG3376INTG31DBINTG324CINTG321DINTG3390INTG294INTG33A7INTG32FDINTG3335INTG323EINTG255INTG22FINTG33DAINTG3176INTG31BFINTG31CBINTG3246INTG3258INTG248INTG331BINTG32BFINTG3184INTG3252INTG3180INTG31E3INTG3144INTG2F4INTG3316INTG282INTG3290INTG32A8INTG32E9INTG266INTG313DINTG3394INTG31FEINTG3128INTG2F2INTG33B3INTG285INTG332CINTG31F7INTG31A4INTG251INTG3289INTG21EINTG33E4INTG32E3INTG31AEINTG3171INTG32A3INTG3157INTG3344INTG2BAINTG3253INTG2D8INTG32C3INTG31DEINTG3109INTG2EFINTG22CINTG3399INTG3131INTG2D9INTG27CINTG280INTG24AINTG2A3INTG3151INTG3117INTG3311INTG32FAINTG289INTG2DEINTG3183INTG267INTG312EINTG31CFINTG32B0INTG3263INTG2E7INTG31D6INTG31B1INTG3372INTG31C6INTG3222INTG318BINTG3105INTG2F1INTG3182INTG3211INTG256INTG328EINTG3319INTG3204INTG277INTG325DINTG339AINTG328A
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
p210 2 6 7 0 0 9 0 1 0 5
|
|
Binary file
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
MLIS2PPERILIS3INTG11INTG12INTG13MLIS3INTG11INTG12INTG13PPERILIS2INTG11INTG13MLIS2INTG11INTG13MLIS2PPERILIS3INTG11INTG13INTG14MLIS3INTG11INTG13INTG14PPERILIS3INTG11INTG13INTG14MLIS3INTG12INTG13INTG14MLIS3PPERILIS4INTG11INTG12INTG13INTG14MLIS4INTG11INTG12INTG13INTG14PPERILIS3INTG11INTG12INTG14MLIS3INTG11INTG12INTG14PPERILIS2INTG11INTG14MLIS2INTG11INTG14MLIS2PPERILIS3INTG13INTG14INTG15MLIS3INTG11INTG14INTG15PPERILIS3INTG13INTG14INTG15MLIS3INTG12INTG14INTG15MLIS2PPERILIS4INTG12INTG13INTG14INTG15MLIS4INTG12INTG13INTG14INTG15PPERILIS3INTG11INTG14INTG15MLIS3INTG12INTG14INTG15MLIS2PPERILIS5INTG11INTG12INTG13INTG14INTG15MLIS5INTG12INTG11INTG13INTG14INTG15PPERILIS3INTG12INTG14INTG15MLIS3INTG12INTG14INTG15MLIS3PPERILIS4INTG11INTG12INTG14INTG15MLIS4INTG11INTG12INTG14INTG15PPERILIS4INTG11INTG13INTG14INTG15MLIS4INTG11INTG12INTG14INTG15PPERILIS2INTG11INTG15MLIS2INTG11INTG15MLIS4PPERILIS5INTG11INTG12INTG13INTG14INTG15MLIS5INTG11INTG12INTG13INTG14INTG15PPERILIS4INTG11INTG12INTG13INTG15MLIS4INTG11INTG12INTG13INTG15PPERILIS3INTG11INTG12INTG15MLIS3INTG11INTG12INTG15PPERILIS2INTG11INTG15MLIS2INTG11INTG15MLIS4PPERILIS3INTG14INTG15INTG16MLIS3INTG14INTG15INTG16PPERILIS3INTG12INTG15INTG16MLIS3INTG13INTG15INTG16PPERILIS3INTG14INTG15INTG16MLIS3INTG11INTG15INTG16PPERILIS3INTG13INTG15INTG16MLIS3INTG11INTG15INTG16MLIS3PPERILIS4INTG13INTG14INTG15INTG16MLIS4INTG13INTG14INTG15INTG16PPERILIS3INTG11INTG15INTG16MLIS3INTG12INTG15INTG16PPERILIS3INTG13INTG15INTG16MLIS3INTG12INTG15INTG16MLIS2PPERILIS5INTG12INTG13INTG14INTG15INTG16MLIS5INTG13INTG12INTG14INTG15INTG16PPERILIS3INTG11INTG15INTG16MLIS3INTG12INTG15INTG16MLIS2PPERILIS4INTG12INTG14INTG15INTG16MLIS4INTG13INTG14INTG15INTG16PPERILIS3INTG14INTG15INTG16MLIS3INTG14INTG11INTG16MLIS3PPERILIS5INTG12INTG13INTG14INTG15INTG16MLIS5INTG12INTG13INTG14INTG15INTG16PPERILIS4INTG12INTG13INTG15INTG16MLIS4INTG12INTG13INTG15INTG16PPERILIS3INTG11INTG15INTG16MLIS3INTG12INTG15INTG16
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
MLIS8PPERILIS9INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19MLIS9INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19PPERILIS8INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG19MLIS8INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG19PPERILIS7INTG11INTG12INTG13INTG14INTG15INTG16INTG19MLIS7INTG11INTG12INTG13INTG14INTG15INTG16INTG19PPERILIS6INTG11INTG12INTG13INTG14INTG15INTG19MLIS6INTG11INTG12INTG13INTG14INTG15INTG19PPERILIS5INTG11INTG12INTG13INTG14INTG19MLIS5INTG11INTG12INTG13INTG14INTG19PPERILIS4INTG11INTG12INTG13INTG19MLIS4INTG11INTG12INTG13INTG19PPERILIS3INTG11INTG12INTG19MLIS3INTG11INTG12INTG19PPERILIS2INTG11INTG19MLIS2INTG11INTG19
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
## attributes/acting.gd
|
|
4
|
+
## Copyright (C) 2015-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
# This file contains declarations relating to attributes which only apply to
|
|
12
|
+
# acting semigroups.
|
|
13
|
+
|
|
14
|
+
DeclareAttribute("StructureDescriptionSchutzenbergerGroups",
|
|
15
|
+
IsSemigroup and IsFinite);
|
|
@@ -0,0 +1,297 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
## attributes/acting.gi
|
|
4
|
+
## Copyright (C) 2013-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
# This file contains methods for finding various attributes of acting
|
|
12
|
+
# semigroups, sometimes there is no better method than that given in
|
|
13
|
+
# attr.gi.
|
|
14
|
+
|
|
15
|
+
# same method for ideals
|
|
16
|
+
|
|
17
|
+
InstallMethod(IsMultiplicativeZero,
|
|
18
|
+
"for an acting semigroup and element",
|
|
19
|
+
[IsActingSemigroup, IsMultiplicativeElement],
|
|
20
|
+
{S, x} -> MultiplicativeZero(S) <> fail and x = MultiplicativeZero(S));
|
|
21
|
+
|
|
22
|
+
# same method for ideals
|
|
23
|
+
|
|
24
|
+
InstallMethod(IsGreensDGreaterThanFunc, "for an acting semigroup",
|
|
25
|
+
[IsActingSemigroup],
|
|
26
|
+
function(S)
|
|
27
|
+
local D, data;
|
|
28
|
+
|
|
29
|
+
D := PartialOrderOfDClasses(S);
|
|
30
|
+
data := SemigroupData(S);
|
|
31
|
+
|
|
32
|
+
return
|
|
33
|
+
function(x, y)
|
|
34
|
+
local u, v;
|
|
35
|
+
if x = y then
|
|
36
|
+
return false;
|
|
37
|
+
fi;
|
|
38
|
+
x := ConvertToInternalElement(S, x);
|
|
39
|
+
y := ConvertToInternalElement(S, y);
|
|
40
|
+
u := OrbSCCLookup(data)[Position(data, x)] - 1;
|
|
41
|
+
v := OrbSCCLookup(data)[Position(data, y)] - 1;
|
|
42
|
+
return u <> v and IsReachable(D, u, v);
|
|
43
|
+
end;
|
|
44
|
+
end);
|
|
45
|
+
|
|
46
|
+
# same method for ideals
|
|
47
|
+
|
|
48
|
+
InstallMethod(StructureDescriptionSchutzenbergerGroups,
|
|
49
|
+
"for an acting semigroup", [IsActingSemigroup],
|
|
50
|
+
function(S)
|
|
51
|
+
local o, scc, out, m;
|
|
52
|
+
|
|
53
|
+
o := LambdaOrb(S);
|
|
54
|
+
Enumerate(o, infinity);
|
|
55
|
+
scc := OrbSCC(o);
|
|
56
|
+
out := [];
|
|
57
|
+
|
|
58
|
+
for m in [2 .. Length(scc)] do
|
|
59
|
+
AddSet(out, StructureDescription(LambdaOrbSchutzGp(o, m)));
|
|
60
|
+
od;
|
|
61
|
+
|
|
62
|
+
return out;
|
|
63
|
+
end);
|
|
64
|
+
|
|
65
|
+
# different method for ideals
|
|
66
|
+
|
|
67
|
+
InstallMethod(InversesOfSemigroupElementNC,
|
|
68
|
+
"for an acting semigroup and multiplicative element",
|
|
69
|
+
[IsActingSemigroup and HasGeneratorsOfSemigroup, IsMultiplicativeElement],
|
|
70
|
+
function(S, x)
|
|
71
|
+
local regular, lambda, rank, rhorank, tester, j, o, rhos, opts, gens, grades,
|
|
72
|
+
rho_x, lambdarank, creator, inv, out, k, y, i, name, rho;
|
|
73
|
+
|
|
74
|
+
regular := IsRegularSemigroup(S);
|
|
75
|
+
if not (regular or IsRegularSemigroupElementNC(S, x)) then
|
|
76
|
+
return [];
|
|
77
|
+
fi;
|
|
78
|
+
|
|
79
|
+
x := ConvertToInternalElement(S, x);
|
|
80
|
+
lambda := LambdaFunc(S)(x);
|
|
81
|
+
rank := LambdaRank(S)(LambdaFunc(S)(x));
|
|
82
|
+
rhorank := RhoRank(S);
|
|
83
|
+
tester := IdempotentTester(S);
|
|
84
|
+
j := 0;
|
|
85
|
+
|
|
86
|
+
# can't use GradedRhoOrb here since there may be inverses not D-related to f
|
|
87
|
+
if HasRhoOrb(S) and IsClosedOrbit(RhoOrb(S)) then
|
|
88
|
+
o := RhoOrb(S);
|
|
89
|
+
rhos := EmptyPlist(Length(o));
|
|
90
|
+
for i in [2 .. Length(o)] do
|
|
91
|
+
if rhorank(o[i]) = rank and tester(lambda, o[i]) then
|
|
92
|
+
j := j + 1;
|
|
93
|
+
rhos[j] := o[i];
|
|
94
|
+
fi;
|
|
95
|
+
od;
|
|
96
|
+
else
|
|
97
|
+
opts := rec(treehashsize := SEMIGROUPS.OptionsRec(S).hashlen,
|
|
98
|
+
gradingfunc := {o, x} -> rhorank(x),
|
|
99
|
+
onlygrades := {x, y} -> x >= rank,
|
|
100
|
+
onlygradesdata := fail);
|
|
101
|
+
|
|
102
|
+
for name in RecNames(LambdaOrbOpts(S)) do
|
|
103
|
+
opts.(name) := LambdaOrbOpts(S).(name);
|
|
104
|
+
od;
|
|
105
|
+
gens := List(GeneratorsOfSemigroup(S),
|
|
106
|
+
x -> ConvertToInternalElement(S, x));
|
|
107
|
+
|
|
108
|
+
o := Enumerate(Orb(gens, RhoOrbSeed(S), RhoAct(S), opts));
|
|
109
|
+
|
|
110
|
+
grades := Grades(o);
|
|
111
|
+
rhos := EmptyPlist(Length(o));
|
|
112
|
+
for i in [2 .. Length(o)] do
|
|
113
|
+
if grades[i] = rank and tester(lambda, o[i]) then
|
|
114
|
+
j := j + 1;
|
|
115
|
+
rhos[j] := o[i];
|
|
116
|
+
fi;
|
|
117
|
+
od;
|
|
118
|
+
fi;
|
|
119
|
+
ShrinkAllocationPlist(rhos);
|
|
120
|
+
|
|
121
|
+
rho_x := RhoFunc(S)(x);
|
|
122
|
+
lambdarank := LambdaRank(S);
|
|
123
|
+
creator := IdempotentCreator(S);
|
|
124
|
+
inv := LambdaInverse(S);
|
|
125
|
+
|
|
126
|
+
out := [];
|
|
127
|
+
k := 0;
|
|
128
|
+
|
|
129
|
+
# Notes: it seems that LambdaOrb(S) is always closed at this point
|
|
130
|
+
o := LambdaOrb(S);
|
|
131
|
+
Enumerate(o); # just in case
|
|
132
|
+
for i in [2 .. Length(o)] do
|
|
133
|
+
if lambdarank(o[i]) = rank and tester(o[i], rho_x) then
|
|
134
|
+
for rho in rhos do
|
|
135
|
+
y := creator(lambda, rho) * inv(o[i], x);
|
|
136
|
+
if regular or y in S then
|
|
137
|
+
k := k + 1;
|
|
138
|
+
out[k] := ConvertToExternalElement(S, y);
|
|
139
|
+
fi;
|
|
140
|
+
od;
|
|
141
|
+
fi;
|
|
142
|
+
od;
|
|
143
|
+
return out;
|
|
144
|
+
end);
|
|
145
|
+
|
|
146
|
+
# same method for ideals
|
|
147
|
+
|
|
148
|
+
InstallMethod(MultiplicativeNeutralElement, "for an acting semigroup",
|
|
149
|
+
[IsActingSemigroup],
|
|
150
|
+
function(S)
|
|
151
|
+
local gens, rank, lambda, max, rep, r, e, lo, ro, lact, ract, ie;
|
|
152
|
+
|
|
153
|
+
gens := Generators(S);
|
|
154
|
+
rank := LambdaRank(S);
|
|
155
|
+
lambda := LambdaFunc(S);
|
|
156
|
+
max := 0;
|
|
157
|
+
rep := gens[1];
|
|
158
|
+
|
|
159
|
+
for e in gens do
|
|
160
|
+
r := rank(lambda(e));
|
|
161
|
+
if r > max then
|
|
162
|
+
max := r;
|
|
163
|
+
rep := e;
|
|
164
|
+
fi;
|
|
165
|
+
od;
|
|
166
|
+
|
|
167
|
+
if max = ActionDegree(S)
|
|
168
|
+
and (IsMultiplicativeElementWithOneCollection(S)
|
|
169
|
+
or IsFFECollCollColl(S)) then
|
|
170
|
+
return One(S);
|
|
171
|
+
fi;
|
|
172
|
+
|
|
173
|
+
r := GreensRClassOfElementNC(S, rep);
|
|
174
|
+
|
|
175
|
+
if NrIdempotents(r) <> 1 or NrHClasses(r) <> 1 or
|
|
176
|
+
NrHClasses(GreensLClassOfElementNC(S, rep)) <> 1 then
|
|
177
|
+
Info(InfoSemigroups, 2, "the D-class of the first maximum rank generator ",
|
|
178
|
+
"is not a group");
|
|
179
|
+
return fail;
|
|
180
|
+
fi;
|
|
181
|
+
|
|
182
|
+
e := Idempotents(r)[1];
|
|
183
|
+
|
|
184
|
+
if HasGeneratorsOfSemigroup(S) then
|
|
185
|
+
if ForAll(GeneratorsOfSemigroup(S), x -> x * e = x and e * x = x) then
|
|
186
|
+
return e;
|
|
187
|
+
fi;
|
|
188
|
+
return fail;
|
|
189
|
+
fi;
|
|
190
|
+
|
|
191
|
+
lo := LambdaOrb(S);
|
|
192
|
+
ro := RhoOrb(S);
|
|
193
|
+
lact := LambdaAct(S);
|
|
194
|
+
ract := RhoAct(S);
|
|
195
|
+
ie := ConvertToInternalElement(S, e);
|
|
196
|
+
|
|
197
|
+
# S is an ideal without GeneratorsOfSemigroup
|
|
198
|
+
if ForAll(gens, x -> x * e = x and e * x = x)
|
|
199
|
+
and ForAll([2 .. Length(Enumerate(lo))], i -> lact(lo[i], ie) = lo[i])
|
|
200
|
+
and ForAll([2 .. Length(Enumerate(ro))], i -> ract(ro[i], ie) = ro[i])
|
|
201
|
+
then
|
|
202
|
+
return e;
|
|
203
|
+
fi;
|
|
204
|
+
return fail;
|
|
205
|
+
end);
|
|
206
|
+
|
|
207
|
+
InstallMethod(RepresentativeOfMinimalIdealNC,
|
|
208
|
+
"for an acting semigroup with generators",
|
|
209
|
+
[IsActingSemigroup and HasGeneratorsOfSemigroup],
|
|
210
|
+
function(S)
|
|
211
|
+
local rank, o, pos, min, len, m, result, i;
|
|
212
|
+
|
|
213
|
+
rank := LambdaRank(S);
|
|
214
|
+
o := LambdaOrb(S);
|
|
215
|
+
pos := LookForInOrb(o, {o, x} -> rank(x) = MinActionRank(S), 2);
|
|
216
|
+
|
|
217
|
+
if pos = false then
|
|
218
|
+
min := rank(o[2]);
|
|
219
|
+
pos := 2;
|
|
220
|
+
len := Length(o);
|
|
221
|
+
for i in [3 .. len] do
|
|
222
|
+
m := rank(o[i]);
|
|
223
|
+
if m < min then
|
|
224
|
+
pos := i;
|
|
225
|
+
min := m;
|
|
226
|
+
fi;
|
|
227
|
+
od;
|
|
228
|
+
fi;
|
|
229
|
+
|
|
230
|
+
result := EvaluateWord(o, TraceSchreierTreeForward(o, pos));
|
|
231
|
+
return ConvertToExternalElement(S, result);
|
|
232
|
+
end);
|
|
233
|
+
|
|
234
|
+
InstallMethod(RightIdentity,
|
|
235
|
+
"for an acting semigroup with generators + mult. elt.",
|
|
236
|
+
[IsActingSemigroup and HasGeneratorsOfSemigroup, IsMultiplicativeElement],
|
|
237
|
+
function(S, x)
|
|
238
|
+
local o, l, m, scc, f, p;
|
|
239
|
+
|
|
240
|
+
if not x in S then
|
|
241
|
+
ErrorNoReturn("the 2nd argument (a mult. elt.) does not belong to ",
|
|
242
|
+
"the 1st argument (a semigroup)");
|
|
243
|
+
elif IsMonoid(S) then
|
|
244
|
+
return One(S);
|
|
245
|
+
elif IsMonoidAsSemigroup(S) then
|
|
246
|
+
return MultiplicativeNeutralElement(S);
|
|
247
|
+
elif IsIdempotent(x) then
|
|
248
|
+
return x;
|
|
249
|
+
fi;
|
|
250
|
+
|
|
251
|
+
x := ConvertToInternalElement(S, x);
|
|
252
|
+
o := Enumerate(LambdaOrb(S));
|
|
253
|
+
l := Position(o, LambdaFunc(S)(x));
|
|
254
|
+
m := OrbSCCLookup(o)[l];
|
|
255
|
+
scc := OrbSCC(o)[m];
|
|
256
|
+
|
|
257
|
+
if l <> scc[1] then
|
|
258
|
+
f := LambdaOrbMult(o, m, l);
|
|
259
|
+
return ConvertToExternalElement(S, f[2] * f[1]);
|
|
260
|
+
else
|
|
261
|
+
p := Factorization(o, m, LambdaIdentity(S)(true));
|
|
262
|
+
if p = fail then
|
|
263
|
+
return fail;
|
|
264
|
+
else
|
|
265
|
+
return ConvertToExternalElement(S, EvaluateWord(o!.gens, p));
|
|
266
|
+
fi;
|
|
267
|
+
fi;
|
|
268
|
+
end);
|
|
269
|
+
|
|
270
|
+
InstallMethod(LeftIdentity,
|
|
271
|
+
"for an acting semigroup with generators + mult. elt.",
|
|
272
|
+
[IsActingSemigroup and HasGeneratorsOfSemigroup, IsMultiplicativeElement],
|
|
273
|
+
function(S, x)
|
|
274
|
+
local l, D, p, result;
|
|
275
|
+
|
|
276
|
+
if not x in S then
|
|
277
|
+
ErrorNoReturn("the 2nd argument (a mult. elt.) does not belong to ",
|
|
278
|
+
"the 1st argument (a semigroup)");
|
|
279
|
+
elif IsMonoid(S) then
|
|
280
|
+
return One(S);
|
|
281
|
+
elif IsMonoidAsSemigroup(S) then
|
|
282
|
+
return MultiplicativeNeutralElement(S);
|
|
283
|
+
elif IsIdempotent(x) then
|
|
284
|
+
return x;
|
|
285
|
+
fi;
|
|
286
|
+
|
|
287
|
+
x := ConvertToInternalElement(S, x);
|
|
288
|
+
l := Position(Enumerate(RhoOrb(S)), RhoFunc(S)(x));
|
|
289
|
+
D := Digraph(OrbitGraph(RhoOrb(S)));
|
|
290
|
+
p := DigraphPath(D, l, l);
|
|
291
|
+
if p = fail then
|
|
292
|
+
return fail;
|
|
293
|
+
fi;
|
|
294
|
+
result := EvaluateWord(RhoOrb(S)!.gens, Reversed(p[2]));
|
|
295
|
+
result := ConvertToExternalElement(S, result);
|
|
296
|
+
return result ^ SmallestIdempotentPower(result);
|
|
297
|
+
end);
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
## attributes/attr.gd
|
|
4
|
+
## Copyright (C) 2013-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
# This file contains declarations for attributes of semigroups.
|
|
12
|
+
|
|
13
|
+
DeclareOperation("IrredundantGeneratingSubset",
|
|
14
|
+
[IsMultiplicativeElementCollection]);
|
|
15
|
+
|
|
16
|
+
DeclareAttribute("GroupOfUnits", IsSemigroup);
|
|
17
|
+
DeclareAttribute("IdempotentGeneratedSubsemigroup", IsSemigroup);
|
|
18
|
+
DeclareAttribute("InjectionPrincipalFactor", IsGreensDClass);
|
|
19
|
+
DeclareAttribute("InjectionNormalizedPrincipalFactor", IsGreensDClass);
|
|
20
|
+
DeclareAttribute("RepresentativeOfMinimalIdeal", IsSemigroup);
|
|
21
|
+
DeclareOperation("RepresentativeOfMinimalIdealNC", [IsSemigroup]);
|
|
22
|
+
DeclareSynonymAttr("RepresentativeOfMinimalDClass",
|
|
23
|
+
RepresentativeOfMinimalIdeal);
|
|
24
|
+
DeclareAttribute("MinimalIdeal", IsSemigroup);
|
|
25
|
+
DeclareAttribute("PrincipalFactor", IsGreensDClass);
|
|
26
|
+
DeclareAttribute("NormalizedPrincipalFactor", IsGreensDClass);
|
|
27
|
+
DeclareAttribute("MultiplicativeZero", IsSemigroup);
|
|
28
|
+
DeclareAttribute("LengthOfLongestDClassChain", IsSemigroup);
|
|
29
|
+
|
|
30
|
+
# We use IsListOrCollection here because some collections of semigroup
|
|
31
|
+
# generators (such as elements/congruence classes in a quotient semigroup) do
|
|
32
|
+
# not satisfy IsMultiplicativeElementCollection (although the classes
|
|
33
|
+
# themselves do satisfy IsMultiplicativeElement).
|
|
34
|
+
DeclareAttribute("SmallSemigroupGeneratingSet",
|
|
35
|
+
IsListOrCollection);
|
|
36
|
+
DeclareAttribute("SmallMonoidGeneratingSet",
|
|
37
|
+
IsMultiplicativeElementWithOneCollection);
|
|
38
|
+
DeclareAttribute("SmallInverseSemigroupGeneratingSet",
|
|
39
|
+
IsMultiplicativeElementCollection);
|
|
40
|
+
DeclareAttribute("SmallInverseMonoidGeneratingSet",
|
|
41
|
+
IsMultiplicativeElementWithOneCollection);
|
|
42
|
+
|
|
43
|
+
DeclareAttribute("MinimalSemigroupGeneratingSet",
|
|
44
|
+
IsSemigroup);
|
|
45
|
+
DeclareAttribute("MinimalMonoidGeneratingSet",
|
|
46
|
+
IsMonoid);
|
|
47
|
+
DeclareAttribute("MinimalInverseSemigroupGeneratingSet",
|
|
48
|
+
IsSemigroup);
|
|
49
|
+
DeclareAttribute("MinimalInverseMonoidGeneratingSet",
|
|
50
|
+
IsMonoid);
|
|
51
|
+
|
|
52
|
+
DeclareAttribute("SmallestElementSemigroup", IsSemigroup);
|
|
53
|
+
DeclareAttribute("LargestElementSemigroup", IsSemigroup);
|
|
54
|
+
|
|
55
|
+
DeclareAttribute("StructureDescription", IsBrandtSemigroup);
|
|
56
|
+
DeclareAttribute("StructureDescription", IsGroupAsSemigroup);
|
|
57
|
+
DeclareAttribute("StructureDescriptionMaximalSubgroups",
|
|
58
|
+
IsSemigroup);
|
|
59
|
+
DeclareAttribute("MaximalDClasses", IsSemigroup);
|
|
60
|
+
DeclareAttribute("MaximalLClasses", IsSemigroup);
|
|
61
|
+
DeclareAttribute("MaximalRClasses", IsSemigroup);
|
|
62
|
+
DeclareAttribute("MinimalDClass", IsSemigroup);
|
|
63
|
+
DeclareAttribute("IsGreensDGreaterThanFunc", IsSemigroup);
|
|
64
|
+
|
|
65
|
+
DeclareAttribute("UnderlyingSemigroupOfSemigroupWithAdjoinedZero",
|
|
66
|
+
IsSemigroup);
|
|
67
|
+
|
|
68
|
+
DeclareOperation("InversesOfSemigroupElementNC",
|
|
69
|
+
[IsSemigroup, IsMultiplicativeElement]);
|
|
70
|
+
DeclareOperation("OneInverseOfSemigroupElementNC",
|
|
71
|
+
[IsSemigroup, IsMultiplicativeElement]);
|
|
72
|
+
DeclareOperation("OneInverseOfSemigroupElement",
|
|
73
|
+
[IsSemigroup, IsMultiplicativeElement]);
|
|
74
|
+
|
|
75
|
+
DeclareAttribute("IndecomposableElements", IsSemigroup);
|
|
76
|
+
DeclareAttribute("NambooripadLeqRegularSemigroup", IsSemigroup);
|
|
77
|
+
DeclareAttribute("NambooripadPartialOrder", IsSemigroup);
|
|
78
|
+
|
|
79
|
+
DeclareOperation("LeftIdentity", [IsSemigroup, IsMultiplicativeElement]);
|
|
80
|
+
DeclareOperation("RightIdentity", [IsSemigroup, IsMultiplicativeElement]);
|
|
81
|
+
|
|
82
|
+
DeclareAttribute("MultiplicationTableWithCanonicalPositions",
|
|
83
|
+
IsSemigroup and CanUseFroidurePin);
|
|
84
|
+
DeclareAttribute("TransposedMultiplicationTableWithCanonicalPositions",
|
|
85
|
+
IsSemigroup and CanUseFroidurePin);
|
|
86
|
+
|
|
87
|
+
DeclareAttribute("MinimalFaithfulTransformationDegree", IsSemigroup);
|
|
88
|
+
DeclareAttribute("SmallerDegreeTransformationRepresentation", IsSemigroup);
|
|
89
|
+
|
|
90
|
+
# TODO(later)
|
|
91
|
+
# DeclareAttribute("MinimalFaithfulTransformationRepresentation", IsSemigroup);
|