passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (356) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-unknown-linux-musl-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1021 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +356 -0
  349. passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +5 -0
  350. passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.libs/libgcc_s-2d945d6c.so.1 +0 -0
  352. passagemath_gap_pkg_semigroups.libs/libsemigroups-81d76771.so.2.0.0 +0 -0
  353. passagemath_gap_pkg_semigroups.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
  354. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  355. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  356. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,388 @@
1
+ #############################################################################
2
+ ##
3
+ #W standard/attributes/acting.tst
4
+ #Y Copyright (C) 2015-2022 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local D, I, L, R, S, Y, acting, an, foo, inj, inv, map, x, y, z
12
+ gap> START_TEST("Semigroups package: standard/attributes/acting.tst");
13
+ gap> LoadPackage("semigroups", false);;
14
+
15
+ #
16
+ gap> SEMIGROUPS.StartTest();
17
+ gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
18
+
19
+ # IsMultiplicativeZero
20
+ gap> S := InverseSemigroup([PartialPerm([1, 2, 5], [2, 1, 5]),
21
+ > PartialPerm([1, 2, 4, 5], [4, 2, 1, 3])]);;
22
+ gap> IsMultiplicativeZero(S, PartialPerm([]));
23
+ true
24
+
25
+ # IsGreensDGreaterThanFunc
26
+ gap> S := Semigroup([PartialPerm([1, 2, 3], [4, 5, 1]),
27
+ > PartialPerm([1, 2, 4], [1, 5, 4])]);;
28
+ gap> x := PartialPerm([1, 3], [4, 1]);;
29
+ gap> y := PartialPerm([1, 4], [1, 4]);;
30
+ gap> foo := IsGreensDGreaterThanFunc(S);;
31
+ gap> foo(x, x);
32
+ false
33
+ gap> foo(x, y);
34
+ false
35
+ gap> foo(y, x);
36
+ true
37
+ gap> S := InverseSemigroup(S);;
38
+ gap> foo := IsGreensDGreaterThanFunc(S);
39
+ function( x, y ) ... end
40
+ gap> foo(y, x);
41
+ false
42
+ gap> foo(x, y);
43
+ false
44
+ gap> z := RepresentativeOfMinimalIdeal(S);
45
+ <empty partial perm>
46
+ gap> foo(x, x);
47
+ false
48
+ gap> foo(x, z);
49
+ true
50
+ gap> foo(z, x);
51
+ false
52
+ gap> foo(z, y);
53
+ false
54
+ gap> foo(y, z);
55
+ true
56
+
57
+ # MaximalDClasses for non-regular semigroup
58
+ gap> S := Monoid([Bipartition([[1, -2], [2, -1], [3, -3]]),
59
+ > Bipartition([[1], [2], [3], [-1], [-2, -3]])]);;
60
+ gap> MaximalDClasses(S);
61
+ [ <Green's D-class: <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>> ]
62
+
63
+ # MaximalDClasses for regular semigroup
64
+ gap> S := FullTransformationMonoid(3);
65
+ <full transformation monoid of degree 3>
66
+ gap> MaximalDClasses(S);
67
+ [ <Green's D-class: IdentityTransformation> ]
68
+
69
+ # StructureDescriptionMaximalSubgroups
70
+ gap> S := Semigroup([Transformation([1, 3, 4, 1, 3]),
71
+ > Transformation([5, 5, 1, 1, 3])]);;
72
+ gap> StructureDescriptionSchutzenbergerGroups(S);
73
+ [ "1", "C2", "C3" ]
74
+
75
+ # IdempotentGeneratedSubsemigroup, for a semigroup
76
+ gap> S := Semigroup([PartialPerm([1, 2, 3], [2, 5, 3]),
77
+ > PartialPerm([1, 2, 3, 4], [2, 4, 1, 5])]);;
78
+ gap> IdempotentGeneratedSubsemigroup(S);
79
+ <inverse partial perm monoid of rank 1 with 2 generators>
80
+
81
+ # IdempotentGeneratedSubsemigroup, for an inverse semigroup
82
+ gap> S := InverseSemigroup([PartialPerm([1, 2], [4, 3]),
83
+ > PartialPerm([1, 2, 5], [1, 2, 4])]);;
84
+ gap> IdempotentGeneratedSubsemigroup(S);
85
+ <inverse partial perm semigroup of rank 5 with 5 generators>
86
+
87
+ # InjectionPrincipalFactor 1/6
88
+ gap> D := GreensDClassOfElement(
89
+ > Monoid([Bipartition([[1, 2, -2], [3, -3], [-1]]),
90
+ > Bipartition([[1, 2], [3], [-1, -3], [-2]]),
91
+ > Bipartition([[1, -1, -2], [2, 3], [-3]])]),
92
+ > Bipartition([[1, 2], [3], [-1, -3], [-2]]));;
93
+ gap> map := InjectionPrincipalFactor(D);
94
+ MappingByFunction( <Green's D-class: <bipartition: [ 1, 2 ], [ 3 ],
95
+ [ -1, -3 ], [ -2 ]>>, <Rees matrix semigroup 3x4 over Group(())>
96
+ , function( x ) ... end, function( x ) ... end )
97
+ gap> inv := InverseGeneralMapping(map);;
98
+ gap> ForAll(D, x -> (x ^ map) ^ inv = x);
99
+ true
100
+ gap> Bipartition([[1, 2, -2], [3, -3], [-1]]) ^ map;
101
+ fail
102
+ gap> Star(Bipartition([[1, 2, -2], [3, -3], [-1]])) ^ map;
103
+ fail
104
+
105
+ # InjectionPrincipalFactor 2/6
106
+ gap> R := PrincipalFactor(DClasses(FullTransformationMonoid(5))[2]);
107
+ <Rees 0-matrix semigroup 10x5 over Group([ (1,2,3,4), (1,2) ])>
108
+ gap> x := RMSElement(R, 9, (1, 3, 2, 4), 2);;
109
+ gap> y := RMSElement(R, 6, (1, 3, 4, 2), 5);;
110
+ gap> S := Semigroup(x, y);
111
+ <subsemigroup of 10x5 Rees 0-matrix semigroup with 2 generators>
112
+ gap> D := DClass(S, RMSElement(R, 6, (1, 3, 4, 2), 5));;
113
+ gap> InjectionPrincipalFactor(D);
114
+ Error, the argument (a Green's D-class) is not regular
115
+
116
+ # InjectionPrincipalFactor 3/6
117
+ gap> R := PrincipalFactor(DClasses(FullTransformationMonoid(5))[2]);
118
+ <Rees 0-matrix semigroup 10x5 over Group([ (1,2,3,4), (1,2) ])>
119
+ gap> x := RMSElement(R, 1, (1, 2, 3, 4), 1);;
120
+ gap> y := RMSElement(R, 6, (1, 3, 4, 2), 5);;
121
+ gap> S := Semigroup(x, y);;
122
+ gap> D := DClass(S, x);;
123
+ gap> inj := InjectionPrincipalFactor(D);;
124
+ gap> Source(inj) = D;
125
+ true
126
+ gap> Range(inj);
127
+ <Rees matrix semigroup 1x1 over Group([ (1,2,3,4) ])>
128
+
129
+ # InjectionPrincipalFactor 4/6
130
+ gap> D := GreensDClassOfElement(
131
+ > Semigroup([
132
+ > Transformation([1, 3, 4, 1, 3]),
133
+ > Transformation([5, 5, 1, 1, 3])]),
134
+ > Transformation([5, 5, 1, 1, 3]));;
135
+ gap> inj := InjectionPrincipalFactor(D);;
136
+ gap> Source(inj) = D;
137
+ true
138
+ gap> Range(inj);
139
+ <Rees matrix semigroup 1x1 over Group([ (1,5,3) ])>
140
+ gap> Transformation([5, 1, 1, 1, 3]) ^ inj;
141
+ fail
142
+
143
+ # InjectionPrincipalFactor 5/6
144
+ gap> D := GreensDClassOfElement(
145
+ > Semigroup([
146
+ > Transformation([1, 3, 4, 1, 3]),
147
+ > Transformation([5, 5, 1, 1, 3])]),
148
+ > Transformation([1, 4, 1, 1, 4]));;
149
+ gap> map := InverseGeneralMapping(InjectionPrincipalFactor(D));;
150
+ gap> MultiplicativeZero(Source(map)) ^ map;
151
+ fail
152
+
153
+ # InjectionPrincipalFactor 6/6
154
+ gap> S := ReesZeroMatrixSemigroup(Group(()), [[(), 0], [0, ()]]);;
155
+ gap> S := Semigroup(RMSElement(S, 2, (), 2),
156
+ > RMSElement(S, 1, (), 2));;
157
+ gap> MaximalSubsemigroups(S);;
158
+
159
+ # InversesOfSemigroupElement, none, 1/2
160
+ # This test gives the wrong result in Semigroups 2.7.1!!!
161
+ gap> S := Semigroup([Bipartition([[1, 2, -2], [3, -3], [-1]]),
162
+ > Bipartition([[1, -1, -2], [2, 3], [-3]])]);;
163
+ gap> x := Bipartition([[1, 2, 3], [-1, -2], [-3]]);;
164
+ gap> Y := InversesOfSemigroupElement(S, x);
165
+ [ <bipartition: [ 1, 2, 3 ], [ -1, -2 ], [ -3 ]>,
166
+ <bipartition: [ 1 ], [ 2, 3 ], [ -1, -2 ], [ -3 ]>,
167
+ <bipartition: [ 1, 2, 3 ], [ -1 ], [ -2 ], [ -3 ]>,
168
+ <bipartition: [ 1 ], [ 2, 3 ], [ -1 ], [ -2 ], [ -3 ]> ]
169
+ gap> ForAll(Y, y -> y in S);
170
+ true
171
+ gap> ForAll(Y, y -> x * y * x = x and y * x * y = y);
172
+ true
173
+ gap> Set(Y) = Set(Filtered(AsList(S), y -> x * y * x = x and y * x * y = y));
174
+ true
175
+
176
+ # InversesOfSemigroupElement, fail, 2/2
177
+ gap> S := Semigroup([PartialPerm([1, 2, 3, 4], [1, 2, 5, 3]),
178
+ > PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
179
+ > PartialPerm([1, 2, 4, 5], [2, 3, 1, 5]),
180
+ > PartialPerm([1, 2, 3, 5], [4, 1, 3, 5]),
181
+ > PartialPerm([1, 2, 3, 5], [4, 3, 5, 1])]);;
182
+ gap> x := PartialPerm([1, 2, 3, 5], [5, 2, 6, 4]);;
183
+ gap> InversesOfSemigroupElement(S, x);
184
+ Error, the 2nd argument (a mult. element) must belong to the 1st argument (a s\
185
+ emigroup)
186
+
187
+ # InversesOfSemigroupElementNC, closed rho orb
188
+ gap> S := Semigroup([
189
+ > Transformation([2, 2, 13, 14, 3, 4, 15, 19, 22, 17, 22, 22, 11, 12, 18, 22,
190
+ > 16, 16, 21, 22, 20, 22, 10]),
191
+ > Transformation([2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
192
+ > 22, 22, 22, 22, 22, 22, 2]),
193
+ > Transformation([1, 1, 5, 6, 9, 9, 9, 9, 9, 5, 5, 6, 9, 9, 7, 7, 8, 9, 8, 8,
194
+ > 9, 9, 6])]);;
195
+ gap> Size(S);;
196
+ gap> x := Transformation([1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
197
+ > 9, 9, 9, 9, 9, 9]);;
198
+ gap> InversesOfSemigroupElementNC(S, x);
199
+ [ Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
200
+ 22, 22, 22, 22, 22, 22, 22, 2 ] ),
201
+ Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
202
+ 22, 22, 22, 22, 22, 22, 22, 22 ] ),
203
+ Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
204
+ 9, 9, 9, 1 ] ), Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
205
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ] ) ]
206
+
207
+ # InversesOfSemigroupElementNC, non-closed rho orb
208
+ gap> S := Semigroup([
209
+ > Transformation([2, 2, 13, 14, 3, 4, 15, 19, 22, 17, 22, 22, 11, 12, 18, 22,
210
+ > 16, 16, 21, 22, 20, 22, 10]),
211
+ > Transformation([2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
212
+ > 22, 22, 22, 22, 22, 22, 2]),
213
+ > Transformation([1, 1, 5, 6, 9, 9, 9, 9, 9, 5, 5, 6, 9, 9, 7, 7, 8, 9, 8, 8,
214
+ > 9, 9, 6])]);;
215
+ gap> x := Transformation([1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
216
+ > 9, 9, 9, 9, 9, 9]);;
217
+ gap> InversesOfSemigroupElementNC(S, x);
218
+ [ Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
219
+ 22, 22, 22, 22, 22, 22, 22, 2 ] ),
220
+ Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
221
+ 22, 22, 22, 22, 22, 22, 22, 22 ] ),
222
+ Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
223
+ 9, 9, 9, 1 ] ), Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
224
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ] ) ]
225
+
226
+ # InversesOfSemigroupElementNC non-regular element
227
+ gap> S := Semigroup(Transformation([2, 4, 3, 4]),
228
+ > Transformation([3, 3, 2, 3, 3]),
229
+ > Transformation([5, 5, 5, 4, 4]),
230
+ > Transformation([5, 1, 4, 1, 1]),
231
+ > Transformation([5, 3, 3, 4, 5]));;
232
+ gap> IsRegularSemigroup(S);
233
+ false
234
+ gap> x := Transformation([5, 1, 4, 1, 1]);
235
+ Transformation( [ 5, 1, 4, 1, 1 ] )
236
+ gap> IsRegularSemigroupElement(S, x);
237
+ false
238
+ gap> InversesOfSemigroupElementNC(S, x);
239
+ [ ]
240
+
241
+ # MultiplicativeNeutralElement, 1/4
242
+ gap> S := Semigroup(Transformation([2, 3, 1]));
243
+ <commutative transformation semigroup of degree 3 with 1 generator>
244
+ gap> MultiplicativeNeutralElement(S);
245
+ IdentityTransformation
246
+
247
+ # MultiplicativeNeutralElement, 2/4
248
+ gap> S := Semigroup(Transformation([1, 2, 1]), Transformation([2, 2, 3]));;
249
+ gap> MultiplicativeNeutralElement(S);
250
+ fail
251
+
252
+ # MultiplicativeNeutralElement, 3/4
253
+ gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
254
+ > Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
255
+ gap> MultiplicativeNeutralElement(S);
256
+ Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 9 ] )
257
+
258
+ # MultiplicativeNeutralElement, 4/4
259
+ gap> S := Semigroup(Transformation([1, 1, 3]), Transformation([2, 2, 3]));
260
+ <transformation semigroup of degree 2 with 2 generators>
261
+ gap> MultiplicativeNeutralElement(S);
262
+ fail
263
+
264
+ # MultiplicativeNeutralElement, 5
265
+ gap> S := SingularFactorisableDualSymmetricInverseMonoid(3);
266
+ <inverse bipartition semigroup ideal of degree 3 with 1 generator>
267
+ gap> IsMonoidAsSemigroup(S);
268
+ false
269
+
270
+ # MultiplicativeNeutralElement, 6
271
+ gap> S := Semigroup([Transformation([3, 2, 3]),
272
+ > Transformation([3, 4, 2, 5, 5])]);
273
+ <transformation semigroup of degree 5 with 2 generators>
274
+ gap> MultiplicativeNeutralElement(S);
275
+ fail
276
+ gap> S := SemigroupIdeal(S, S.1);
277
+ <non-regular transformation semigroup ideal of degree 5 with 1 generator>
278
+ gap> MultiplicativeNeutralElement(S);
279
+ fail
280
+
281
+ # MultiplicativeNeutralElement, 7
282
+ gap> S := FullTransformationMonoid(3);
283
+ <full transformation monoid of degree 3>
284
+ gap> S := SemigroupIdeal(S, IdentityTransformation);
285
+ <regular transformation semigroup ideal of degree 3 with 1 generator>
286
+ gap> MultiplicativeNeutralElement(S);
287
+ IdentityTransformation
288
+
289
+ # MultiplicativeNeutralElement, 8
290
+ gap> S := Semigroup(
291
+ > Transformation([2, 3, 1, 4, 4]),
292
+ > Transformation([2, 1, 3, 4, 4]),
293
+ > Transformation([1, 2, 1, 4, 4]));
294
+ <transformation semigroup of degree 5 with 3 generators>
295
+ gap> MultiplicativeNeutralElement(S);
296
+ Transformation( [ 1, 2, 3, 4, 4 ] )
297
+ gap> S := SemigroupIdeal(S, S.1);
298
+ <regular transformation semigroup ideal of degree 5 with 1 generator>
299
+ gap> MultiplicativeNeutralElement(S);
300
+ Transformation( [ 1, 2, 3, 4, 4 ] )
301
+
302
+ # RepresentativeOfMinimalIdeal, 1/3
303
+ gap> S := Semigroup(Transformation([1, 2, 1]), Transformation([2, 2, 3]));;
304
+ gap> RepresentativeOfMinimalIdeal(S);
305
+ Transformation( [ 2, 2, 2 ] )
306
+
307
+ # RepresentativeOfMinimalIdeal, 2/3
308
+ gap> S := Semigroup(
309
+ > Bipartition([[1, -2], [2, -1], [3, -3], [4, -4], [5, -5]]),
310
+ > Bipartition([[1, -1], [2, -2], [3, -3], [4, -5], [5, -4]]),
311
+ > Bipartition([[1, 2, -1], [3, -3], [4, -4], [5, -2], [-5]]),
312
+ > Bipartition([[1, -1], [2, 4, -2], [3, -3], [5, -4], [-5]]),
313
+ > Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -2], [-5]]),
314
+ > Bipartition([[1, -1], [2, -2], [3, -3], [4, 5, -4], [-5]]),
315
+ > Bipartition([[1, -1], [2, -2], [3, 5, -3], [4, -4], [-5]]),
316
+ > Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -5], [-2]]));;
317
+ gap> RepresentativeOfMinimalIdeal(S);
318
+ <bipartition: [ 1, 2, 4, 5, -1 ], [ 3, -3 ], [ -2 ], [ -4 ], [ -5 ]>
319
+
320
+ # RepresentativeOfMinimalIdeal, 3/3
321
+ gap> S := Semigroup(
322
+ > Bipartition([[1, -2], [2, -1], [3, -3], [4, -4], [5, -5]]),
323
+ > Bipartition([[1, -1], [2, -2], [3, -3], [4, -5], [5, -4]]),
324
+ > Bipartition([[1, 2, -1], [3, -3], [4, -4], [5, -2], [-5]]),
325
+ > Bipartition([[1, -1], [2, 4, -2], [3, -3], [5, -4], [-5]]),
326
+ > Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -2], [-5]]),
327
+ > Bipartition([[1, -1], [2, -2], [3, -3], [4, 5, -4], [-5]]),
328
+ > Bipartition([[1, -1], [2, -2], [3, 5, -3], [4, -4], [-5]]),
329
+ > Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -5], [-2]]));;
330
+ gap> I := SemigroupIdeal(S, RepresentativeOfMinimalIdeal(S));;
331
+ gap> RepresentativeOfMinimalIdeal(I);
332
+ <bipartition: [ 1, 2, 4, 5, -1 ], [ 3, -3 ], [ -2 ], [ -4 ], [ -5 ]>
333
+
334
+ # Left/RightIdentity
335
+ gap> S := Semigroup(Transformation([2, 4, 3, 4]),
336
+ > Transformation([3, 3, 2, 3, 3]),
337
+ > Transformation([5, 5, 5, 4, 4]),
338
+ > Transformation([5, 1, 4, 1, 1]),
339
+ > Transformation([5, 3, 3, 4, 5]));;
340
+ gap> ForAll(S, x -> RightIdentity(S, x) = fail or x * RightIdentity(S, x) = x);
341
+ true
342
+ gap> ForAll(S, x -> RightIdentity(S, x) = fail or RightIdentity(S, x) in S);
343
+ true
344
+ gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) * x = x);
345
+ true
346
+ gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) in S);
347
+ true
348
+ gap> L := Filtered(S, x -> LeftIdentity(S, x) = fail);
349
+ [ Transformation( [ 2, 4, 3, 4 ] ), Transformation( [ 5, 5, 5, 4, 4 ] ),
350
+ Transformation( [ 5, 1, 4, 1, 1 ] ), Transformation( [ 5, 2, 4, 2, 2 ] ),
351
+ Transformation( [ 5, 4, 4, 4, 4 ] ), Transformation( [ 5, 3, 4, 3, 3 ] ) ]
352
+ gap> Length(L) = 6;
353
+ true
354
+ gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
355
+ true
356
+ gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
357
+ true
358
+ gap> R := Filtered(S, x -> RightIdentity(S, x) = fail);
359
+ [ Transformation( [ 2, 4, 3, 4 ] ), Transformation( [ 5, 1, 4, 1, 1 ] ),
360
+ Transformation( [ 5, 2, 4, 2, 2 ] ) ]
361
+ gap> Length(R) = 3;
362
+ true
363
+ gap> ForAll(R, y -> ForAll(S, x -> y * x <> y));
364
+ true
365
+ gap> RightIdentity(S, Transformation([7, 6, 8, 10, 5, 5, 9, 2, 7, 8]));
366
+ Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
367
+ semigroup)
368
+ gap> LeftIdentity(S, Transformation([7, 6, 8, 10, 5, 5, 9, 2, 7, 8]));
369
+ Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
370
+ semigroup)
371
+ gap> S := Semigroup(Transformation([1, 2, 3, 3]), Transformation([2, 3, 1, 1]));
372
+ <transformation semigroup of degree 4 with 2 generators>
373
+ gap> IsMonoidAsSemigroup(S);
374
+ true
375
+ gap> RightIdentity(S, Transformation([3, 1, 2, 2])) = MultiplicativeNeutralElement(S);
376
+ true
377
+ gap> LeftIdentity(S, Transformation([3, 1, 2, 2])) = MultiplicativeNeutralElement(S);
378
+ true
379
+ gap> S := Monoid(Transformation([1, 2, 3, 3]), Transformation([2, 3, 1, 1]));
380
+ <transformation monoid of degree 4 with 2 generators>
381
+ gap> RightIdentity(S, Transformation([3, 1, 2, 2])) = One(S);
382
+ true
383
+ gap> LeftIdentity(S, Transformation([3, 1, 2, 2])) = One(S);
384
+ true
385
+
386
+ #
387
+ gap> SEMIGROUPS.StopTest();
388
+ gap> STOP_TEST("Semigroups package: standard/attributes/acting.tst");