passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-pc-linux-gnu-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1069 -0
- gap/pkg/semigroups/config.status +1133 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-6be12ad2.so.2.0.0 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,422 @@
|
|
|
1
|
+
############################################################################
|
|
2
|
+
##
|
|
3
|
+
## congsemigraph.tst
|
|
4
|
+
## Copyright (C) 2022 Marina Anagnostopoulou-Merkouri
|
|
5
|
+
## James Mitchell
|
|
6
|
+
##
|
|
7
|
+
## Licensing information can be found in the README file of this package.
|
|
8
|
+
##
|
|
9
|
+
############################################################################
|
|
10
|
+
#
|
|
11
|
+
|
|
12
|
+
#@local C, D, L, S, cong, cong1, cong2, e_1, e_3, i, j, join, meet, pos, val
|
|
13
|
+
gap> START_TEST("Semigroups package: standard/congruences/congsemigraph.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
# Set info levels and user preferences
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
|
|
19
|
+
# IsCongruenceByWangPair
|
|
20
|
+
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
|
|
21
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
22
|
+
gap> S := GraphInverseSemigroup(D);
|
|
23
|
+
<finite graph inverse semigroup with 4 vertices, 5 edges>
|
|
24
|
+
gap> cong := CongruenceByWangPair(S, [3, 4], []);
|
|
25
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
26
|
+
gap> IsCongruenceByWangPair(cong);
|
|
27
|
+
true
|
|
28
|
+
gap> cong := CongruenceByWangPair(S, [4], [2]);
|
|
29
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
30
|
+
gap> IsCongruenceByWangPair(cong);
|
|
31
|
+
true
|
|
32
|
+
gap> e_1 := S.1;
|
|
33
|
+
e_1
|
|
34
|
+
gap> e_3 := S.3;
|
|
35
|
+
e_3
|
|
36
|
+
gap> cong := SemigroupCongruence(S, [[e_1, e_3]]);
|
|
37
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
38
|
+
4 vertices, 5 edges> with 1 generating pairs>
|
|
39
|
+
gap> IsCongruenceByWangPair(cong);
|
|
40
|
+
false
|
|
41
|
+
|
|
42
|
+
# CongruenceByWangPair
|
|
43
|
+
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
|
|
44
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
45
|
+
gap> S := GraphInverseSemigroup(D);
|
|
46
|
+
<finite graph inverse semigroup with 4 vertices, 5 edges>
|
|
47
|
+
gap> cong := CongruenceByWangPair(S, [3, 4], []);
|
|
48
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
49
|
+
gap> cong := CongruenceByWangPair(S, [4], [2]);
|
|
50
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
51
|
+
gap> cong := CongruenceByWangPair(S, [3, 4], []);
|
|
52
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
53
|
+
gap> cong := CongruenceByWangPair(S, [4], [1]);
|
|
54
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>
|
|
55
|
+
gap> D := Digraph([[2], [3, 4], [4], []]);
|
|
56
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
57
|
+
gap> S := GraphInverseSemigroup(D);
|
|
58
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
59
|
+
gap> cong := CongruenceByWangPair(S, [4], [2]);
|
|
60
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
61
|
+
gap> cong := CongruenceByWangPair(S, [], [1, 3]);
|
|
62
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1, 3 ]>
|
|
63
|
+
gap> cong := CongruenceByWangPair(S, [4], [2]);
|
|
64
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
65
|
+
gap> cong := CongruenceByWangPair(S, [4], [1]);
|
|
66
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>
|
|
67
|
+
gap> cong := CongruenceByWangPair(S, [3, 4], []);
|
|
68
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
69
|
+
gap> cong := CongruenceByWangPair(S, [], [1, 3]);
|
|
70
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1, 3 ]>
|
|
71
|
+
gap> cong := CongruenceByWangPair(S, [3], []);
|
|
72
|
+
Error, the 2nd argument (a list) is not a valid hereditary set
|
|
73
|
+
gap> cong := CongruenceByWangPair(S, [], [4]);
|
|
74
|
+
Error, the 3rd argument (a list) is not a valid W-set
|
|
75
|
+
gap> D := Digraph([[2, 3], [3], [4], []]);
|
|
76
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
77
|
+
gap> S := GraphInverseSemigroup(D);
|
|
78
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
79
|
+
gap> CongruenceByWangPair(S, [4], []);
|
|
80
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ ]>
|
|
81
|
+
gap> CongruenceByWangPair(S, [3, 4], [1]);
|
|
82
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
|
|
83
|
+
gap> CongruenceByWangPair(S, [4], [2]);
|
|
84
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
85
|
+
gap> CongruenceByWangPair(S, [], []);
|
|
86
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ ]>
|
|
87
|
+
gap> CongruenceByWangPair(S, [3], [4]);
|
|
88
|
+
Error, the 2nd argument (a list) is not a valid hereditary set
|
|
89
|
+
|
|
90
|
+
# AsSemigroupCongruenceByGeneratingPairs
|
|
91
|
+
gap> D := Digraph([[2, 3], [3], [4], []]);
|
|
92
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
93
|
+
gap> S := GraphInverseSemigroup(D);
|
|
94
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
95
|
+
gap> C := CongruenceByWangPair(S, [4], [2]);
|
|
96
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
97
|
+
gap> AsSemigroupCongruenceByGeneratingPairs(C);
|
|
98
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
99
|
+
4 vertices, 4 edges> with 2 generating pairs>
|
|
100
|
+
gap> EquivalenceRelationPartition(C);
|
|
101
|
+
[ [ e_1, e_1e_3e_3^-1 ],
|
|
102
|
+
[ e_4, v_4, e_4^-1, 0, e_2e_4, e_3e_4, e_4e_4^-1, e_4^-1e_2^-1,
|
|
103
|
+
e_4^-1e_3^-1, e_1e_3e_4, e_2e_4e_4^-1, e_3e_4e_4^-1, e_4e_4^-1e_2^-1,
|
|
104
|
+
e_4e_4^-1e_3^-1, e_4^-1e_3^-1e_1^-1, e_1e_3e_4e_4^-1,
|
|
105
|
+
e_2e_4e_4^-1e_2^-1, e_2e_4e_4^-1e_3^-1, e_3e_4e_4^-1e_2^-1,
|
|
106
|
+
e_3e_4e_4^-1e_3^-1, e_4e_4^-1e_3^-1e_1^-1, e_1e_3e_4e_4^-1e_2^-1,
|
|
107
|
+
e_1e_3e_4e_4^-1e_3^-1, e_2e_4e_4^-1e_3^-1e_1^-1,
|
|
108
|
+
e_3e_4e_4^-1e_3^-1e_1^-1, e_1e_3e_4e_4^-1e_3^-1e_1^-1 ],
|
|
109
|
+
[ v_2, e_3e_3^-1 ], [ e_1^-1, e_3e_3^-1e_1^-1 ],
|
|
110
|
+
[ e_1e_1^-1, e_1e_3e_3^-1e_1^-1 ] ]
|
|
111
|
+
gap> D := ChainDigraph(4);
|
|
112
|
+
<immutable chain digraph with 4 vertices>
|
|
113
|
+
gap> S := GraphInverseSemigroup(D);
|
|
114
|
+
<finite graph inverse semigroup with 4 vertices, 3 edges>
|
|
115
|
+
gap> CongruenceByWangPair(S, [4], [1, 2]);
|
|
116
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1, 2 ]>
|
|
117
|
+
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
|
|
118
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
119
|
+
4 vertices, 3 edges> with 3 generating pairs>
|
|
120
|
+
gap> EquivalenceRelationPartition(cong);
|
|
121
|
+
[ [ e_1, e_1e_2e_2^-1 ],
|
|
122
|
+
[ e_3, v_4, e_3^-1, 0, e_2e_3, e_3e_3^-1, e_3^-1e_2^-1, e_1e_2e_3,
|
|
123
|
+
e_2e_3e_3^-1, e_3e_3^-1e_2^-1, e_3^-1e_2^-1e_1^-1, e_1e_2e_3e_3^-1,
|
|
124
|
+
e_2e_3e_3^-1e_2^-1, e_3e_3^-1e_2^-1e_1^-1, e_1e_2e_3e_3^-1e_2^-1,
|
|
125
|
+
e_2e_3e_3^-1e_2^-1e_1^-1, e_1e_2e_3e_3^-1e_2^-1e_1^-1 ],
|
|
126
|
+
[ v_1, e_1e_1^-1, e_1e_2e_2^-1e_1^-1 ], [ v_2, e_2e_2^-1 ],
|
|
127
|
+
[ e_1^-1, e_2e_2^-1e_1^-1 ] ]
|
|
128
|
+
gap> CongruenceByWangPair(S, [2, 3, 4], []);
|
|
129
|
+
<graph inverse semigroup congruence with H = [ 2, 3, 4 ] and W = [ ]>
|
|
130
|
+
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
|
|
131
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
132
|
+
4 vertices, 3 edges> with 3 generating pairs>
|
|
133
|
+
gap> EquivalenceRelationPartition(cong);
|
|
134
|
+
[ [ e_1, e_2, e_3, v_2, v_3, v_4, e_1^-1, e_2^-1, e_3^-1, 0, e_1e_2,
|
|
135
|
+
e_1e_1^-1, e_2e_3, e_2e_2^-1, e_3e_3^-1, e_2^-1e_1^-1, e_3^-1e_2^-1,
|
|
136
|
+
e_1e_2e_3, e_1e_2e_2^-1, e_2e_3e_3^-1, e_2e_2^-1e_1^-1, e_3e_3^-1e_2^-1,
|
|
137
|
+
e_3^-1e_2^-1e_1^-1, e_1e_2e_3e_3^-1, e_1e_2e_2^-1e_1^-1,
|
|
138
|
+
e_2e_3e_3^-1e_2^-1, e_3e_3^-1e_2^-1e_1^-1, e_1e_2e_3e_3^-1e_2^-1,
|
|
139
|
+
e_2e_3e_3^-1e_2^-1e_1^-1, e_1e_2e_3e_3^-1e_2^-1e_1^-1 ] ]
|
|
140
|
+
gap> CongruenceByWangPair(S, [], [1]);
|
|
141
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1 ]>
|
|
142
|
+
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
|
|
143
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
144
|
+
4 vertices, 3 edges> with 1 generating pairs>
|
|
145
|
+
gap> EquivalenceRelationPartition(cong);
|
|
146
|
+
[ [ v_1, e_1e_1^-1 ] ]
|
|
147
|
+
|
|
148
|
+
# GeneratingCongruencesOfSemigroup
|
|
149
|
+
gap> D := Digraph([[2], [3, 4], [4], []]);
|
|
150
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
151
|
+
gap> S := GraphInverseSemigroup(D);
|
|
152
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
153
|
+
gap> GeneratingCongruencesOfLattice(S)[1];
|
|
154
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1 ]>
|
|
155
|
+
gap> GeneratingCongruencesOfLattice(S)[2];
|
|
156
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
157
|
+
gap> GeneratingCongruencesOfLattice(S)[3];
|
|
158
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 3 ]>
|
|
159
|
+
gap> GeneratingCongruencesOfLattice(S)[4];
|
|
160
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ ]>
|
|
161
|
+
gap> D := Digraph([[2, 3, 4], [4], [4], []]);
|
|
162
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
163
|
+
gap> S := GraphInverseSemigroup(D);
|
|
164
|
+
<finite graph inverse semigroup with 4 vertices, 5 edges>
|
|
165
|
+
gap> GeneratingCongruencesOfLattice(S)[1];
|
|
166
|
+
<graph inverse semigroup congruence with H = [ 2, 4 ] and W = [ 1 ]>
|
|
167
|
+
gap> GeneratingCongruencesOfLattice(S)[2];
|
|
168
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
|
|
169
|
+
gap> GeneratingCongruencesOfLattice(S)[3];
|
|
170
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 2 ]>
|
|
171
|
+
gap> GeneratingCongruencesOfLattice(S)[4];
|
|
172
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 3 ]>
|
|
173
|
+
gap> D := Digraph([[3], [3, 4], [], []]);
|
|
174
|
+
<immutable digraph with 4 vertices, 3 edges>
|
|
175
|
+
gap> S := GraphInverseSemigroup(D);
|
|
176
|
+
<finite graph inverse semigroup with 4 vertices, 3 edges>
|
|
177
|
+
gap> GeneratingCongruencesOfLattice(S)[1];
|
|
178
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1 ]>
|
|
179
|
+
gap> GeneratingCongruencesOfLattice(S)[2];
|
|
180
|
+
<graph inverse semigroup congruence with H = [ 3 ] and W = [ 2 ]>
|
|
181
|
+
gap> GeneratingCongruencesOfLattice(S)[3];
|
|
182
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
183
|
+
gap> GeneratingCongruencesOfLattice(S)[4];
|
|
184
|
+
<graph inverse semigroup congruence with H = [ 3 ] and W = [ ]>
|
|
185
|
+
gap> D := Digraph([[2, 3, 4, 5], [3], [], [], []]);
|
|
186
|
+
<immutable digraph with 5 vertices, 5 edges>
|
|
187
|
+
gap> S := GraphInverseSemigroup(D);
|
|
188
|
+
<finite graph inverse semigroup with 5 vertices, 5 edges>
|
|
189
|
+
gap> GeneratingCongruencesOfLattice(S)[1];
|
|
190
|
+
<graph inverse semigroup congruence with H = [ 2, 3, 4 ] and W = [ 1 ]>
|
|
191
|
+
gap> GeneratingCongruencesOfLattice(S)[2];
|
|
192
|
+
<graph inverse semigroup congruence with H = [ 2, 3, 5 ] and W = [ 1 ]>
|
|
193
|
+
gap> GeneratingCongruencesOfLattice(S)[3];
|
|
194
|
+
<graph inverse semigroup congruence with H = [ 3, 4, 5 ] and W = [ 1 ]>
|
|
195
|
+
gap> GeneratingCongruencesOfLattice(S)[4];
|
|
196
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 2 ]>
|
|
197
|
+
gap> GeneratingCongruencesOfLattice(S)[5];
|
|
198
|
+
<graph inverse semigroup congruence with H = [ 3 ] and W = [ ]>
|
|
199
|
+
|
|
200
|
+
#AsCongruenceByWangPair
|
|
201
|
+
gap> D := Digraph([[2, 3], [3], [4], []]);
|
|
202
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
203
|
+
gap> S := GraphInverseSemigroup(D);
|
|
204
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
205
|
+
gap> CongruenceByWangPair(S, [4], [2]);
|
|
206
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
207
|
+
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
|
|
208
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
209
|
+
4 vertices, 4 edges> with 2 generating pairs>
|
|
210
|
+
gap> AsCongruenceByWangPair(cong);
|
|
211
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
212
|
+
gap> CongruenceByWangPair(S, [3, 4], [1]);
|
|
213
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
|
|
214
|
+
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
|
|
215
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
216
|
+
4 vertices, 4 edges> with 3 generating pairs>
|
|
217
|
+
gap> AsCongruenceByWangPair(cong);
|
|
218
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
|
|
219
|
+
gap> D := Digraph([[2], [3, 4], [4], []]);
|
|
220
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
221
|
+
gap> S := GraphInverseSemigroup(D);
|
|
222
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
223
|
+
gap> CongruenceByWangPair(S, [4], [1, 2]);
|
|
224
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1, 2 ]>
|
|
225
|
+
gap> cong := AsSemigroupCongruenceByGeneratingPairs(last);
|
|
226
|
+
<2-sided semigroup congruence over <finite graph inverse semigroup with
|
|
227
|
+
4 vertices, 4 edges> with 3 generating pairs>
|
|
228
|
+
gap> AsCongruenceByWangPair(cong);
|
|
229
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1, 2 ]>
|
|
230
|
+
|
|
231
|
+
#JoinSemigroupCongruences
|
|
232
|
+
gap> D := Digraph([[2], [3, 4], [4], []]);
|
|
233
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
234
|
+
gap> S := GraphInverseSemigroup(D);
|
|
235
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
236
|
+
gap> cong1 := CongruenceByWangPair(S, [4], [2]);
|
|
237
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
238
|
+
gap> cong2 := CongruenceByWangPair(S, [], [1, 3]);
|
|
239
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1, 3 ]>
|
|
240
|
+
gap> JoinSemigroupCongruences(cong1, cong2);
|
|
241
|
+
<graph inverse semigroup congruence with H = [ 1 .. 4 ] and W = [ ]>
|
|
242
|
+
gap> cong1 := CongruenceByWangPair(S, [4], [2]);
|
|
243
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
244
|
+
gap> cong2 := CongruenceByWangPair(S, [4], [1]);
|
|
245
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>
|
|
246
|
+
gap> JoinSemigroupCongruences(cong1, cong2);
|
|
247
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1, 2 ]>
|
|
248
|
+
gap> cong1 := CongruenceByWangPair(S, [3, 4], []);
|
|
249
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
250
|
+
gap> cong2 := CongruenceByWangPair(S, [], [1, 3]);
|
|
251
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1, 3 ]>
|
|
252
|
+
gap> JoinSemigroupCongruences(cong1, cong2);
|
|
253
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>
|
|
254
|
+
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
|
|
255
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
256
|
+
gap> S := GraphInverseSemigroup(D);
|
|
257
|
+
<finite graph inverse semigroup with 4 vertices, 5 edges>
|
|
258
|
+
gap> cong1 := CongruenceByWangPair(S, [3, 4], []);
|
|
259
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
260
|
+
gap> cong2 := CongruenceByWangPair(S, [4], [2]);
|
|
261
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>
|
|
262
|
+
gap> JoinSemigroupCongruences(cong1, cong2);
|
|
263
|
+
<graph inverse semigroup congruence with H = [ 2 .. 4 ] and W = [ ]>
|
|
264
|
+
gap> cong1 := CongruenceByWangPair(S, [3, 4], []);
|
|
265
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
266
|
+
gap> cong2 := CongruenceByWangPair(S, [4], [1]);
|
|
267
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>
|
|
268
|
+
gap> JoinSemigroupCongruences(cong1, cong2);
|
|
269
|
+
<graph inverse semigroup congruence with H = [ 1, 3, 4 ] and W = [ ]>
|
|
270
|
+
|
|
271
|
+
# IsSubRelation and IsSuperrelation
|
|
272
|
+
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
|
|
273
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
274
|
+
gap> S := GraphInverseSemigroup(D);
|
|
275
|
+
<finite graph inverse semigroup with 4 vertices, 5 edges>
|
|
276
|
+
gap> cong1 := CongruenceByWangPair(S, [3, 4], []);
|
|
277
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>
|
|
278
|
+
gap> cong2 := CongruenceByWangPair(S, [4], [1]);
|
|
279
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>
|
|
280
|
+
gap> IsSubrelation(cong1, cong2);
|
|
281
|
+
false
|
|
282
|
+
gap> cong2 := CongruenceByWangPair(S, [4], []);
|
|
283
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ ]>
|
|
284
|
+
gap> IsSubrelation(cong1, cong2);
|
|
285
|
+
true
|
|
286
|
+
gap> IsSuperrelation(cong1, cong2);
|
|
287
|
+
false
|
|
288
|
+
gap> IsSuperrelation(cong2, cong1);
|
|
289
|
+
true
|
|
290
|
+
gap> cong1 := CongruenceByWangPair(S, [2, 3, 4], []);
|
|
291
|
+
<graph inverse semigroup congruence with H = [ 2, 3, 4 ] and W = [ ]>
|
|
292
|
+
gap> cong2 := CongruenceByWangPair(S, [4], [1]);
|
|
293
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>
|
|
294
|
+
gap> IsSubrelation(cong1, cong2);
|
|
295
|
+
false
|
|
296
|
+
gap> IsSuperrelation(cong2, cong1);
|
|
297
|
+
false
|
|
298
|
+
|
|
299
|
+
# LatticeOfCongruences
|
|
300
|
+
gap> D := ChainDigraph(4);
|
|
301
|
+
<immutable chain digraph with 4 vertices>
|
|
302
|
+
gap> S := GraphInverseSemigroup(D);
|
|
303
|
+
<finite graph inverse semigroup with 4 vertices, 3 edges>
|
|
304
|
+
gap> LatticeOfCongruences(S);
|
|
305
|
+
<lattice of 16 two-sided congruences over
|
|
306
|
+
<finite graph inverse semigroup with 4 vertices, 3 edges>>
|
|
307
|
+
gap> D := Digraph([[2, 3], [3], [4], []]);
|
|
308
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
309
|
+
gap> S := GraphInverseSemigroup(D);
|
|
310
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
311
|
+
gap> LatticeOfCongruences(S);
|
|
312
|
+
<lattice of 10 two-sided congruences over
|
|
313
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>>
|
|
314
|
+
gap> D := Digraph([[2], [3, 4], [4], []]);
|
|
315
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
316
|
+
gap> S := GraphInverseSemigroup(D);
|
|
317
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
318
|
+
gap> LatticeOfCongruences(S);
|
|
319
|
+
<lattice of 12 two-sided congruences over
|
|
320
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>>
|
|
321
|
+
|
|
322
|
+
# Meet and join
|
|
323
|
+
gap> D := Digraph([[3, 4], [3, 4], [4], []]);
|
|
324
|
+
<immutable digraph with 4 vertices, 5 edges>
|
|
325
|
+
gap> S := GraphInverseSemigroup(D);
|
|
326
|
+
<finite graph inverse semigroup with 4 vertices, 5 edges>
|
|
327
|
+
gap> L := LatticeOfCongruences(S);
|
|
328
|
+
<lattice of 10 two-sided congruences over
|
|
329
|
+
<finite graph inverse semigroup with 4 vertices, 5 edges>>
|
|
330
|
+
gap> C := CongruencesOfSemigroup(S);; Set(C);
|
|
331
|
+
[ <graph inverse semigroup congruence with H = [ ] and W = [ ]>,
|
|
332
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 3 ]>,
|
|
333
|
+
<graph inverse semigroup congruence with H = [ 1 .. 4 ] and W = [ ]>,
|
|
334
|
+
<graph inverse semigroup congruence with H = [ 1, 3, 4 ] and W = [ ]>,
|
|
335
|
+
<graph inverse semigroup congruence with H = [ 2 .. 4 ] and W = [ ]>,
|
|
336
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>,
|
|
337
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ ]>,
|
|
338
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>,
|
|
339
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>,
|
|
340
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1, 2 ]> ]
|
|
341
|
+
gap> val := true;;
|
|
342
|
+
> for i in [1 .. Length(C)] do
|
|
343
|
+
> for j in [1 .. Length(C)] do
|
|
344
|
+
> pos := Position(C, JoinSemigroupCongruences(C[i], C[j]));
|
|
345
|
+
> join := PartialOrderDigraphJoinOfVertices(L, i, j);
|
|
346
|
+
> if pos <> join then
|
|
347
|
+
> Error(StringFormatted("the join of congruences {} and {} is {} but should be {}",
|
|
348
|
+
> i, j, pos, join));
|
|
349
|
+
> val := false;
|
|
350
|
+
> fi;
|
|
351
|
+
> od;
|
|
352
|
+
> od;
|
|
353
|
+
> val;
|
|
354
|
+
true
|
|
355
|
+
gap> val := true;;
|
|
356
|
+
> for i in [1 .. Length(C)] do
|
|
357
|
+
> for j in [1 .. Length(C)] do
|
|
358
|
+
> pos := Position(C, MeetSemigroupCongruences(C[i], C[j]));
|
|
359
|
+
> meet := PartialOrderDigraphMeetOfVertices(L, i, j);
|
|
360
|
+
> if pos <> meet then
|
|
361
|
+
> Error(StringFormatted("the meet of congruences {} and {} is {} but should be {}",
|
|
362
|
+
> i, j, pos, meet));
|
|
363
|
+
> val := false;
|
|
364
|
+
> fi;
|
|
365
|
+
> od;
|
|
366
|
+
> od;
|
|
367
|
+
> val;
|
|
368
|
+
true
|
|
369
|
+
|
|
370
|
+
# More meet and join
|
|
371
|
+
gap> D := Digraph([[2], [3, 4], [4], []]);
|
|
372
|
+
<immutable digraph with 4 vertices, 4 edges>
|
|
373
|
+
gap> S := GraphInverseSemigroup(D);
|
|
374
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>
|
|
375
|
+
gap> L := LatticeOfCongruences(S);
|
|
376
|
+
<lattice of 12 two-sided congruences over
|
|
377
|
+
<finite graph inverse semigroup with 4 vertices, 4 edges>>
|
|
378
|
+
gap> C := CongruencesOfSemigroup(S);; Set(C);
|
|
379
|
+
[ <graph inverse semigroup congruence with H = [ ] and W = [ ]>,
|
|
380
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1 ]>,
|
|
381
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 3 ]>,
|
|
382
|
+
<graph inverse semigroup congruence with H = [ ] and W = [ 1, 3 ]>,
|
|
383
|
+
<graph inverse semigroup congruence with H = [ 1 .. 4 ] and W = [ ]>,
|
|
384
|
+
<graph inverse semigroup congruence with H = [ 2 .. 4 ] and W = [ ]>,
|
|
385
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ ]>,
|
|
386
|
+
<graph inverse semigroup congruence with H = [ 3, 4 ] and W = [ 1 ]>,
|
|
387
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ ]>,
|
|
388
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1 ]>,
|
|
389
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 2 ]>,
|
|
390
|
+
<graph inverse semigroup congruence with H = [ 4 ] and W = [ 1, 2 ]> ]
|
|
391
|
+
gap> val := true;;
|
|
392
|
+
> for i in [1 .. Length(C)] do
|
|
393
|
+
> for j in [1 .. Length(C)] do
|
|
394
|
+
> pos := Position(C, JoinSemigroupCongruences(C[i], C[j]));
|
|
395
|
+
> join := PartialOrderDigraphJoinOfVertices(L, i, j);
|
|
396
|
+
> if pos <> join then
|
|
397
|
+
> Error(StringFormatted("the join of congruences {} and {} is {} but should be {}",
|
|
398
|
+
> i, j, pos, join));
|
|
399
|
+
> val := false;
|
|
400
|
+
> fi;
|
|
401
|
+
> od;
|
|
402
|
+
> od;
|
|
403
|
+
> val;
|
|
404
|
+
true
|
|
405
|
+
gap> val := true;;
|
|
406
|
+
> for i in [1 .. Length(C)] do
|
|
407
|
+
> for j in [1 .. Length(C)] do
|
|
408
|
+
> pos := Position(C, MeetSemigroupCongruences(C[i], C[j]));
|
|
409
|
+
> meet := PartialOrderDigraphMeetOfVertices(L, i, j);
|
|
410
|
+
> if pos <> meet then
|
|
411
|
+
> Error(StringFormatted("the meet of congruences {} and {} is {} but should be {}",
|
|
412
|
+
> i, j, pos, meet));
|
|
413
|
+
> val := false;
|
|
414
|
+
> fi;
|
|
415
|
+
> od;
|
|
416
|
+
> od;
|
|
417
|
+
> val;
|
|
418
|
+
true
|
|
419
|
+
|
|
420
|
+
#
|
|
421
|
+
gap> SEMIGROUPS.StopTest();
|
|
422
|
+
gap> STOP_TEST("Semigroups package: standard/congruences/cong.tst");
|