passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-pc-linux-gnu-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1069 -0
- gap/pkg/semigroups/config.status +1133 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-6be12ad2.so.2.0.0 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,4236 @@
|
|
|
1
|
+
###########################################################################
|
|
2
|
+
##
|
|
3
|
+
#W extreme/misc.tst
|
|
4
|
+
#Y Copyright (C) 2011-15 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local D, H, K18g, L, P, a1, a2, a3, a4, a5, a6, acting, cosets, d, data, dd
|
|
12
|
+
#@local e, enum, f, g, gens, h, hh, i, iter, l, lambda_schutz, lambda_stab, m
|
|
13
|
+
#@local o, p, r, rep, reps, rho_schutz, rho_stab, rr, s, scc, schutz
|
|
14
|
+
gap> START_TEST("Semigroups package: extreme/misc.tst");
|
|
15
|
+
gap> LoadPackage("semigroups", false);;
|
|
16
|
+
|
|
17
|
+
#
|
|
18
|
+
gap> SEMIGROUPS.StartTest();
|
|
19
|
+
gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
|
|
20
|
+
|
|
21
|
+
# MiscTest0
|
|
22
|
+
gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
|
|
23
|
+
> Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
|
|
24
|
+
> Transformation([4, 1, 8, 3, 5, 7, 3, 5]),
|
|
25
|
+
> Transformation([4, 3, 4, 5, 6, 4, 1, 2]),
|
|
26
|
+
> Transformation([5, 4, 8, 8, 5, 6, 1, 5]),
|
|
27
|
+
> Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
|
|
28
|
+
> Transformation([7, 1, 2, 2, 2, 7, 4, 5]),
|
|
29
|
+
> Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
|
|
30
|
+
gap> s := Semigroup(gens);
|
|
31
|
+
<transformation semigroup of degree 8 with 8 generators>
|
|
32
|
+
gap> Size(s);
|
|
33
|
+
597369
|
|
34
|
+
gap> f := Transformation([8, 1, 5, 5, 8, 3, 7, 8]);;
|
|
35
|
+
gap> l := LClassNC(s, f);
|
|
36
|
+
<Green's L-class: Transformation( [ 8, 1, 5, 5, 8, 3, 7, 8 ] )>
|
|
37
|
+
gap> Transformation([8, 1, 5, 5, 8, 3, 7, 8]) in last;
|
|
38
|
+
true
|
|
39
|
+
gap> RhoOrbStabChain(l);
|
|
40
|
+
true
|
|
41
|
+
gap> Size(l);
|
|
42
|
+
4560
|
|
43
|
+
gap> RhoOrbSCC(l);
|
|
44
|
+
[ 1, 2, 5, 9, 10, 13, 14, 18, 24, 25, 22, 28, 34, 21, 11, 16, 12, 33, 32, 36,
|
|
45
|
+
3, 6, 39, 35, 37, 38, 29, 17, 23, 4, 7, 15, 19, 26, 30, 31, 27, 20 ]
|
|
46
|
+
gap> SchutzenbergerGroup(l);
|
|
47
|
+
Sym( [ 1, 3, 5, 7, 8 ] )
|
|
48
|
+
gap> ForAll(l, x -> x in l);
|
|
49
|
+
true
|
|
50
|
+
gap> d := DClass(s, f);
|
|
51
|
+
<Green's D-class: Transformation( [ 8, 1, 5, 5, 8, 3, 7, 8 ] )>
|
|
52
|
+
gap> Transformation([8, 1, 5, 5, 8, 3, 7, 8]) in last;
|
|
53
|
+
true
|
|
54
|
+
gap> iter := Iterator(d);
|
|
55
|
+
<iterator>
|
|
56
|
+
gap> for i in iter do od;
|
|
57
|
+
|
|
58
|
+
# MiscTest1
|
|
59
|
+
gap> gens := [PartialPermNC([1, 2, 3, 5, 7, 10], [12, 3, 1, 11, 9, 5]),
|
|
60
|
+
> PartialPermNC([1, 2, 3, 4, 5, 7, 8], [4, 3, 11, 12, 6, 2, 1]),
|
|
61
|
+
> PartialPermNC([1, 2, 3, 4, 5, 9, 11], [11, 6, 9, 2, 4, 8, 12]),
|
|
62
|
+
> PartialPermNC([1, 2, 3, 4, 7, 9, 12], [7, 1, 12, 2, 9, 4, 5]),
|
|
63
|
+
> PartialPermNC([1, 2, 3, 5, 7, 8, 9], [5, 4, 8, 11, 6, 12, 1]),
|
|
64
|
+
> PartialPermNC([1, 2, 4, 6, 8, 9, 10], [8, 5, 2, 12, 4, 7, 11])];;
|
|
65
|
+
gap> s := Semigroup(gens);
|
|
66
|
+
<partial perm semigroup of rank 12 with 6 generators>
|
|
67
|
+
gap> f := PartialPermNC([3, 4, 5, 11], [4, 1, 2, 5]);;
|
|
68
|
+
gap> l := LClassNC(s, f);
|
|
69
|
+
<Green's L-class: [3,4,1][11,5,2]>
|
|
70
|
+
gap> l := LClass(s, f);
|
|
71
|
+
<Green's L-class: [3,4,1][11,5,2]>
|
|
72
|
+
gap> d := DClass(s, f);
|
|
73
|
+
<Green's D-class: [3,4,1][11,5,2]>
|
|
74
|
+
gap> Size(l);
|
|
75
|
+
1
|
|
76
|
+
gap> Number(d, x -> x in l);
|
|
77
|
+
1
|
|
78
|
+
gap> Number(s, x -> x in l);
|
|
79
|
+
1
|
|
80
|
+
gap> s := Semigroup(gens);
|
|
81
|
+
<partial perm semigroup of rank 12 with 6 generators>
|
|
82
|
+
gap> l := LClass(s, f);
|
|
83
|
+
<Green's L-class: [3,4,1][11,5,2]>
|
|
84
|
+
gap> d := DClass(s, f);
|
|
85
|
+
<Green's D-class: [3,4,1][11,5,2]>
|
|
86
|
+
gap> Number(d, x -> x in l);
|
|
87
|
+
1
|
|
88
|
+
gap> Number(s, x -> x in l);
|
|
89
|
+
1
|
|
90
|
+
gap> SchutzenbergerGroup(l);
|
|
91
|
+
Group(())
|
|
92
|
+
gap> ForAll(l, x -> x in l);
|
|
93
|
+
true
|
|
94
|
+
gap> d := DClassNC(s, f);
|
|
95
|
+
<Green's D-class: [3,4,1][11,5,2]>
|
|
96
|
+
gap> d := DClassNC(s, Representative(l));
|
|
97
|
+
<Green's D-class: [3,4,1][11,5,2]>
|
|
98
|
+
gap> ForAll(l, x -> x in d);
|
|
99
|
+
true
|
|
100
|
+
gap> Number(d, x -> x in l);
|
|
101
|
+
1
|
|
102
|
+
gap> Number(s, x -> x in l);
|
|
103
|
+
1
|
|
104
|
+
|
|
105
|
+
# MiscTest2
|
|
106
|
+
gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
|
|
107
|
+
> Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
|
|
108
|
+
> Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
|
|
109
|
+
> Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
|
|
110
|
+
gap> s := Semigroup(gens);
|
|
111
|
+
<transformation semigroup of degree 8 with 4 generators>
|
|
112
|
+
gap> f := Transformation([5, 2, 7, 2, 7, 2, 5, 8]);;
|
|
113
|
+
gap> l := LClassNC(s, f);
|
|
114
|
+
<Green's L-class: Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )>
|
|
115
|
+
gap> Transformation([5, 2, 7, 2, 7, 2, 5]) in last;
|
|
116
|
+
true
|
|
117
|
+
gap> enum := Enumerator(l);
|
|
118
|
+
<enumerator of <Green's L-class: Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )>>
|
|
119
|
+
gap> enum[1];
|
|
120
|
+
Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )
|
|
121
|
+
gap> enum[2];
|
|
122
|
+
Transformation( [ 5, 8, 7, 8, 7, 8, 5, 2 ] )
|
|
123
|
+
gap> Position(enum, enum[2]);
|
|
124
|
+
2
|
|
125
|
+
gap> Position(enum, enum[1]);
|
|
126
|
+
1
|
|
127
|
+
gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
|
|
128
|
+
true
|
|
129
|
+
gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
|
|
130
|
+
true
|
|
131
|
+
gap> Length(enum);
|
|
132
|
+
1728
|
|
133
|
+
gap> ForAll(enum, x -> x in s);
|
|
134
|
+
true
|
|
135
|
+
gap> ForAll(l, x -> x in enum);
|
|
136
|
+
true
|
|
137
|
+
gap> Number(s, x -> x in enum);
|
|
138
|
+
1728
|
|
139
|
+
gap> Number(s, x -> x in l);
|
|
140
|
+
1728
|
|
141
|
+
gap> AsSet(l) = AsSet(enum);
|
|
142
|
+
true
|
|
143
|
+
gap> f := Transformation([7, 2, 4, 2, 2, 1, 7, 6]);;
|
|
144
|
+
gap> Position(enum, f);
|
|
145
|
+
fail
|
|
146
|
+
gap> GreensHClasses(l);
|
|
147
|
+
[ <Green's H-class: Transformation( [ 5, 2, 7, 2, 7, 2, 5 ] )>,
|
|
148
|
+
<Green's H-class: Transformation( [ 2, 8, 7, 5, 5, 7, 2, 2 ] )>,
|
|
149
|
+
<Green's H-class: Transformation( [ 8, 2, 7, 2, 2, 5, 8, 7 ] )>,
|
|
150
|
+
<Green's H-class: Transformation( [ 2, 7, 7, 8, 8, 2, 2, 5 ] )>,
|
|
151
|
+
<Green's H-class: Transformation( [ 8, 8, 7, 5, 5, 7, 2, 8 ] )>,
|
|
152
|
+
<Green's H-class: Transformation( [ 7, 5, 2, 8, 5, 7, 7, 8 ] )>,
|
|
153
|
+
<Green's H-class: Transformation( [ 5, 8, 2, 7, 7, 5, 5, 7 ] )>,
|
|
154
|
+
<Green's H-class: Transformation( [ 8, 7, 2, 5, 5, 7, 8, 5 ] )>,
|
|
155
|
+
<Green's H-class: Transformation( [ 7, 5, 2, 8, 8, 5, 7, 7 ] )>,
|
|
156
|
+
<Green's H-class: Transformation( [ 7, 2, 8, 2, 2, 5, 7, 7 ] )>,
|
|
157
|
+
<Green's H-class: Transformation( [ 2, 7, 8, 7, 7, 2, 2, 5 ] )>,
|
|
158
|
+
<Green's H-class: Transformation( [ 2, 5, 7, 5, 5, 7, 2 ] )>,
|
|
159
|
+
<Green's H-class: Transformation( [ 5, 8, 7, 2, 2, 5, 5, 7 ] )>,
|
|
160
|
+
<Green's H-class: Transformation( [ 8, 7, 7, 5, 5, 2, 8, 5 ] )>,
|
|
161
|
+
<Green's H-class: Transformation( [ 7, 5, 7, 8, 8, 5, 7, 2 ] )>,
|
|
162
|
+
<Green's H-class: Transformation( [ 5, 2, 7, 7, 7, 8, 5, 5 ] )>,
|
|
163
|
+
<Green's H-class: Transformation( [ 7, 8, 7, 5, 8, 5, 7, 2 ] )>,
|
|
164
|
+
<Green's H-class: Transformation( [ 8, 2, 7, 7, 7, 8, 8, 5 ] )>,
|
|
165
|
+
<Green's H-class: Transformation( [ 2, 5, 7, 8, 8, 7, 2, 8 ] )>,
|
|
166
|
+
<Green's H-class: Transformation( [ 5, 8, 7, 2, 2, 8, 5, 7 ] )>,
|
|
167
|
+
<Green's H-class: Transformation( [ 8, 7, 7, 5, 5, 2, 8, 8 ] )>,
|
|
168
|
+
<Green's H-class: Transformation( [ 7, 8, 7, 8, 8, 5, 7, 2 ] )>,
|
|
169
|
+
<Green's H-class: Transformation( [ 7, 5, 8, 7, 5, 2, 7, 8 ] )>,
|
|
170
|
+
<Green's H-class: Transformation( [ 7, 2, 5, 8, 2, 8, 7, 7 ] )>,
|
|
171
|
+
<Green's H-class: Transformation( [ 7, 5, 8, 7, 5, 2, 7, 5 ] )>,
|
|
172
|
+
<Green's H-class: Transformation( [ 5, 5, 8, 2, 2, 5, 5, 7 ] )>,
|
|
173
|
+
<Green's H-class: Transformation( [ 5, 7, 8, 5, 5, 2, 5, 5 ] )>,
|
|
174
|
+
<Green's H-class: Transformation( [ 7, 5, 8, 5, 5, 5, 7, 2 ] )>,
|
|
175
|
+
<Green's H-class: Transformation( [ 5, 2, 8, 7, 7, 5, 5, 5 ] )>,
|
|
176
|
+
<Green's H-class: Transformation( [ 8, 5, 2, 5, 5, 7, 8, 5 ] )>,
|
|
177
|
+
<Green's H-class: Transformation( [ 8, 7, 5, 2, 7, 5, 8, 5 ] )>,
|
|
178
|
+
<Green's H-class: Transformation( [ 8, 5, 5, 7, 5, 2, 8, 5 ] )>,
|
|
179
|
+
<Green's H-class: Transformation( [ 8, 2, 5, 5, 2, 5, 8, 7 ] )>,
|
|
180
|
+
<Green's H-class: Transformation( [ 7, 2, 5, 8, 2, 5, 7, 7 ] )>,
|
|
181
|
+
<Green's H-class: Transformation( [ 2, 8, 7, 5, 8, 5, 2, 7 ] )>,
|
|
182
|
+
<Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 7, 2, 5 ] )>,
|
|
183
|
+
<Green's H-class: Transformation( [ 2, 7, 5, 8, 7, 5, 2, 7 ] )>,
|
|
184
|
+
<Green's H-class: Transformation( [ 7, 2, 5, 8, 5, 8, 7, 8 ] )>,
|
|
185
|
+
<Green's H-class: Transformation( [ 2, 8, 5, 7, 7, 5, 2, 8 ] )>,
|
|
186
|
+
<Green's H-class: Transformation( [ 8, 8, 5, 2, 2, 7, 8, 5 ] )>,
|
|
187
|
+
<Green's H-class: Transformation( [ 8, 5, 5, 8, 8, 2, 8, 7 ] )>,
|
|
188
|
+
<Green's H-class: Transformation( [ 5, 7, 5, 8, 8, 8, 5, 2 ] )>,
|
|
189
|
+
<Green's H-class: Transformation( [ 7, 2, 5, 5, 5, 8, 7, 8 ] )>,
|
|
190
|
+
<Green's H-class: Transformation( [ 5, 8, 8, 5, 8, 2, 5, 7 ] )>,
|
|
191
|
+
<Green's H-class: Transformation( [ 7, 8, 7, 5, 5, 7, 7, 2 ] )>,
|
|
192
|
+
<Green's H-class: Transformation( [ 8, 2, 7, 7, 7, 5, 8, 7 ] )>,
|
|
193
|
+
<Green's H-class: Transformation( [ 2, 7, 7, 8, 8, 7, 2, 5 ] )>,
|
|
194
|
+
<Green's H-class: Transformation( [ 7, 5, 7, 2, 2, 8, 7, 7 ] )>,
|
|
195
|
+
<Green's H-class: Transformation( [ 5, 7, 7, 7, 7, 2, 5 ] )>,
|
|
196
|
+
<Green's H-class: Transformation( [ 7, 7, 5, 7, 7, 2, 7 ] )>,
|
|
197
|
+
<Green's H-class: Transformation( [ 7, 8, 5, 7, 7, 7, 7, 2 ] )>,
|
|
198
|
+
<Green's H-class: Transformation( [ 8, 2, 5, 7, 7, 7, 8, 7 ] )>,
|
|
199
|
+
<Green's H-class: Transformation( [ 2, 7, 5, 8, 8, 7, 2, 7 ] )>,
|
|
200
|
+
<Green's H-class: Transformation( [ 7, 7, 5, 2, 2, 8, 7, 7 ] )>,
|
|
201
|
+
<Green's H-class: Transformation( [ 5, 2, 7, 7, 2, 8, 5, 7 ] )>,
|
|
202
|
+
<Green's H-class: Transformation( [ 5, 8, 2, 7, 8, 7, 5, 7 ] )>,
|
|
203
|
+
<Green's H-class: Transformation( [ 8, 7, 2, 5, 5, 8, 8, 7 ] )>,
|
|
204
|
+
<Green's H-class: Transformation( [ 7, 7, 2, 8, 8, 5, 7, 8 ] )>,
|
|
205
|
+
<Green's H-class: Transformation( [ 7, 8, 2, 7, 7, 8, 7, 5 ] )>,
|
|
206
|
+
<Green's H-class: Transformation( [ 8, 5, 2, 7, 7, 7, 8, 8 ] )>,
|
|
207
|
+
<Green's H-class: Transformation( [ 2, 8, 5, 8, 8, 7, 2, 7 ] )>,
|
|
208
|
+
<Green's H-class: Transformation( [ 2, 7, 7, 8, 7, 8, 2, 5 ] )>,
|
|
209
|
+
<Green's H-class: Transformation( [ 2, 8, 7, 7, 8, 5, 2, 8 ] )>,
|
|
210
|
+
<Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 8, 2, 7 ] )>,
|
|
211
|
+
<Green's H-class: Transformation( [ 7, 2, 7, 5, 2, 8, 7, 7 ] )>,
|
|
212
|
+
<Green's H-class: Transformation( [ 7, 8, 2, 7, 8, 7, 7, 5 ] )>,
|
|
213
|
+
<Green's H-class: Transformation( [ 5, 2, 8, 8, 2, 7, 5, 5 ] )>,
|
|
214
|
+
<Green's H-class: Transformation( [ 7, 5, 7, 2, 2, 8, 7, 2 ] )>,
|
|
215
|
+
<Green's H-class: Transformation( [ 5, 2, 7, 7, 7, 2, 5 ] )>,
|
|
216
|
+
<Green's H-class: Transformation( [ 7, 7, 5, 2, 7, 2, 7 ] )>,
|
|
217
|
+
<Green's H-class: Transformation( [ 7, 2, 7, 5, 2, 8, 7, 2 ] )>,
|
|
218
|
+
<Green's H-class: Transformation( [ 7, 8, 2, 7, 8, 2, 7, 5 ] )> ]
|
|
219
|
+
gap> Length(last);
|
|
220
|
+
72
|
|
221
|
+
|
|
222
|
+
# MiscTest3
|
|
223
|
+
gap> gens := [
|
|
224
|
+
> PartialPermNC([1, 2, 3, 5, 7, 10], [12, 3, 1, 11, 9, 5]),
|
|
225
|
+
> PartialPermNC([1, 2, 3, 4, 5, 7, 8], [4, 3, 11, 12, 6, 2, 1]),
|
|
226
|
+
> PartialPermNC([1, 2, 3, 4, 5, 9, 11], [11, 6, 9, 2, 4, 8, 12]),
|
|
227
|
+
> PartialPermNC([1, 2, 3, 4, 7, 9, 12], [7, 1, 12, 2, 9, 4, 5]),
|
|
228
|
+
> PartialPermNC([1, 2, 3, 5, 7, 8, 9], [5, 4, 8, 11, 6, 12, 1]),
|
|
229
|
+
> PartialPermNC([1, 2, 4, 6, 8, 9, 10], [8, 5, 2, 12, 4, 7, 11])];;
|
|
230
|
+
gap> s := Semigroup(gens);
|
|
231
|
+
<partial perm semigroup of rank 12 with 6 generators>
|
|
232
|
+
gap> Size(s);
|
|
233
|
+
4857
|
|
234
|
+
gap> f := PartialPerm([6, 9], [12, 6]);;
|
|
235
|
+
gap> l := LClass(s, f);
|
|
236
|
+
<Green's L-class: [9,6,12]>
|
|
237
|
+
gap> NrHClasses(l);
|
|
238
|
+
66
|
|
239
|
+
gap> Size(l);
|
|
240
|
+
66
|
|
241
|
+
gap> SchutzenbergerGroup(l);
|
|
242
|
+
Group([ (6,12) ])
|
|
243
|
+
gap> o := RhoOrb(l);
|
|
244
|
+
<closed orbit, 147 points with Schreier tree with log>
|
|
245
|
+
gap> d := DClassOfLClass(l);
|
|
246
|
+
<Green's D-class: [2,6][7,12]>
|
|
247
|
+
gap> Size(d);
|
|
248
|
+
66
|
|
249
|
+
gap> NrLClasses(d);
|
|
250
|
+
1
|
|
251
|
+
gap> NrRClasses(d);
|
|
252
|
+
66
|
|
253
|
+
gap> SchutzenbergerGroup(d);
|
|
254
|
+
Group(())
|
|
255
|
+
gap> Length(RhoOrbSCC(l));
|
|
256
|
+
33
|
|
257
|
+
gap> HClasses(l);
|
|
258
|
+
[ <Green's H-class: [2,6][7,12]>, <Green's H-class: [4,6][9,12]>,
|
|
259
|
+
<Green's H-class: [7,12][9,6]>, <Green's H-class: [1,12][7,6]>,
|
|
260
|
+
<Green's H-class: [1,12][2,6]>, <Green's H-class: [7,6][8,12]>,
|
|
261
|
+
<Green's H-class: [1,6][9,12]>, <Green's H-class: [2,12][4,6]>,
|
|
262
|
+
<Green's H-class: [4,12][8,6]>, <Green's H-class: [2,12][3,6]>,
|
|
263
|
+
<Green's H-class: [1,6][8,12]>, <Green's H-class: [3,12][9,6]>,
|
|
264
|
+
<Green's H-class: [5,12][9,6]>, <Green's H-class: [7,6](12)>,
|
|
265
|
+
<Green's H-class: [1,6][3,12]>, <Green's H-class: [2,6][8,12]>,
|
|
266
|
+
<Green's H-class: [1,12][4,6]>, <Green's H-class: [2,12][9,6]>,
|
|
267
|
+
<Green's H-class: [3,6][4,12]>, <Green's H-class: [4,12][7,6]>,
|
|
268
|
+
<Green's H-class: [8,12][9,6]>, <Green's H-class: [9,6,12]>,
|
|
269
|
+
<Green's H-class: [4,12][5,6]>, <Green's H-class: [9,12,6]>,
|
|
270
|
+
<Green's H-class: [3,12][11,6]>, <Green's H-class: [2,12][5,6]>,
|
|
271
|
+
<Green's H-class: [4,12,6]>, <Green's H-class: [5,12][11,6]>,
|
|
272
|
+
<Green's H-class: [1,12][5,6]>, <Green's H-class: [2,12,6]>,
|
|
273
|
+
<Green's H-class: [4,12](6)>, <Green's H-class: [4,12][11,6]>,
|
|
274
|
+
<Green's H-class: [8,12](6)>, <Green's H-class: [2,12][7,6]>,
|
|
275
|
+
<Green's H-class: [4,12][9,6]>, <Green's H-class: [7,6][9,12]>,
|
|
276
|
+
<Green's H-class: [1,6][7,12]>, <Green's H-class: [1,6][2,12]>,
|
|
277
|
+
<Green's H-class: [7,12][8,6]>, <Green's H-class: [1,12][9,6]>,
|
|
278
|
+
<Green's H-class: [2,6][4,12]>, <Green's H-class: [4,6][8,12]>,
|
|
279
|
+
<Green's H-class: [2,6][3,12]>, <Green's H-class: [1,12][8,6]>,
|
|
280
|
+
<Green's H-class: [3,6][9,12]>, <Green's H-class: [5,6][9,12]>,
|
|
281
|
+
<Green's H-class: [7,12,6]>, <Green's H-class: [1,12][3,6]>,
|
|
282
|
+
<Green's H-class: [2,12][8,6]>, <Green's H-class: [1,6][4,12]>,
|
|
283
|
+
<Green's H-class: [2,6][9,12]>, <Green's H-class: [3,12][4,6]>,
|
|
284
|
+
<Green's H-class: [4,6][7,12]>, <Green's H-class: [8,6][9,12]>,
|
|
285
|
+
<Green's H-class: [9,12](6)>, <Green's H-class: [4,6][5,12]>,
|
|
286
|
+
<Green's H-class: [9,6](12)>, <Green's H-class: [3,6][11,12]>,
|
|
287
|
+
<Green's H-class: [2,6][5,12]>, <Green's H-class: [4,6](12)>,
|
|
288
|
+
<Green's H-class: [5,6][11,12]>, <Green's H-class: [1,6][5,12]>,
|
|
289
|
+
<Green's H-class: [2,6](12)>, <Green's H-class: [4,6,12]>,
|
|
290
|
+
<Green's H-class: [4,6][11,12]>, <Green's H-class: [8,6,12]> ]
|
|
291
|
+
gap> IsDuplicateFreeList(last);
|
|
292
|
+
true
|
|
293
|
+
gap> IsRegularGreensClass(l);
|
|
294
|
+
false
|
|
295
|
+
gap> H := HClasses(l);;
|
|
296
|
+
gap> ForAll(H, x -> Representative(x) in l);
|
|
297
|
+
true
|
|
298
|
+
gap> ForAll(H, x -> Representative(x) in d);
|
|
299
|
+
true
|
|
300
|
+
gap> d;
|
|
301
|
+
<Green's D-class: [2,6][7,12]>
|
|
302
|
+
gap> Representative(l) in d;
|
|
303
|
+
true
|
|
304
|
+
gap> First(H, x -> not Representative(x) in d);
|
|
305
|
+
fail
|
|
306
|
+
gap> ForAll(l, x -> x in d);
|
|
307
|
+
true
|
|
308
|
+
gap> rep := Representative(d);
|
|
309
|
+
[2,6][7,12]
|
|
310
|
+
gap> s := Parent(d);
|
|
311
|
+
<partial perm semigroup of size 4857, rank 12 with 6 generators>
|
|
312
|
+
gap> ElementsFamily(FamilyObj(s)) <> FamilyObj(f)
|
|
313
|
+
> or RankOfPartialPerm(f) <> RankOfPartialPerm(rep);
|
|
314
|
+
false
|
|
315
|
+
gap> g := f;
|
|
316
|
+
[9,6,12]
|
|
317
|
+
gap> m := LambdaOrbSCCIndex(d);
|
|
318
|
+
54
|
|
319
|
+
gap> o := LambdaOrb(d);
|
|
320
|
+
<closed orbit, 184 points with Schreier tree with log>
|
|
321
|
+
gap> scc := OrbSCC(o);
|
|
322
|
+
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ], [ 10 ],
|
|
323
|
+
[ 11 ], [ 12 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ], [ 18 ], [ 19 ], [ 21 ],
|
|
324
|
+
[ 22 ], [ 23 ], [ 24 ], [ 25 ], [ 26 ], [ 27 ], [ 28 ], [ 29 ], [ 30 ],
|
|
325
|
+
[ 31 ], [ 32 ], [ 33 ], [ 34 ], [ 35 ], [ 36 ], [ 37 ], [ 38 ], [ 39 ],
|
|
326
|
+
[ 40 ], [ 41 ], [ 42 ], [ 43, 46, 44, 50, 20, 47, 69, 61, 63, 86, 78 ],
|
|
327
|
+
[ 45 ], [ 48 ],
|
|
328
|
+
[ 49, 83, 66, 82, 108, 87, 99, 80, 145, 84, 56, 64, 133, 147, 74, 96, 85,
|
|
329
|
+
146, 135, 62, 107, 110, 13, 154, 125, 101, 168, 159, 152, 137, 134,
|
|
330
|
+
171, 175 ], [ 51 ], [ 52 ], [ 53, 127, 121, 164, 177 ], [ 54 ], [ 55 ],
|
|
331
|
+
[ 57 ], [ 58 ], [ 59 ], [ 60 ], [ 65 ], [ 67 ], [ 68 ], [ 70 ], [ 71 ],
|
|
332
|
+
[ 72 ], [ 73 ], [ 75 ], [ 76 ], [ 77 ], [ 79 ], [ 81 ], [ 88 ], [ 89 ],
|
|
333
|
+
[ 90 ], [ 91 ], [ 94 ], [ 95 ], [ 97 ], [ 98 ], [ 100 ], [ 102 ], [ 103 ],
|
|
334
|
+
[ 104 ], [ 105 ], [ 106 ], [ 109 ], [ 111 ], [ 113 ], [ 114 ], [ 115 ],
|
|
335
|
+
[ 116 ], [ 117 ], [ 118 ], [ 119 ], [ 120 ], [ 122 ], [ 123 ], [ 124 ],
|
|
336
|
+
[ 126 ], [ 128 ], [ 129 ], [ 130 ], [ 131 ], [ 132 ], [ 136 ], [ 138 ],
|
|
337
|
+
[ 139 ], [ 140 ], [ 141 ], [ 142, 173, 179, 92, 150 ], [ 143 ],
|
|
338
|
+
[ 144, 112, 93 ], [ 148 ], [ 149 ], [ 151 ], [ 153 ], [ 155 ], [ 156 ],
|
|
339
|
+
[ 157 ], [ 158 ], [ 160 ], [ 161 ], [ 162 ], [ 163 ], [ 165 ], [ 166 ],
|
|
340
|
+
[ 167 ], [ 169 ], [ 170 ], [ 172 ], [ 174 ], [ 176 ], [ 178 ], [ 180 ],
|
|
341
|
+
[ 181 ], [ 182 ], [ 183 ], [ 184 ] ]
|
|
342
|
+
gap> l := Position(o, LambdaFunc(s)(g));
|
|
343
|
+
65
|
|
344
|
+
gap> l = fail or OrbSCCLookup(o)[l] <> m ;
|
|
345
|
+
false
|
|
346
|
+
gap> l <> scc[m][1];
|
|
347
|
+
false
|
|
348
|
+
gap> m := RhoOrbSCCIndex(d);
|
|
349
|
+
38
|
|
350
|
+
gap> o := RhoOrb(d);
|
|
351
|
+
<closed orbit, 147 points with Schreier tree with log>
|
|
352
|
+
gap> scc := OrbSCC(o);
|
|
353
|
+
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ], [ 9 ],
|
|
354
|
+
[ 10, 42, 45, 50, 48, 52, 53, 51, 115, 134, 144 ], [ 11 ], [ 14 ], [ 15 ],
|
|
355
|
+
[ 16 ], [ 17 ], [ 18 ], [ 19 ], [ 20 ], [ 21 ], [ 22 ], [ 23 ], [ 24 ],
|
|
356
|
+
[ 25 ], [ 26 ], [ 27 ], [ 28 ], [ 29 ], [ 30 ], [ 31 ], [ 32 ], [ 33 ],
|
|
357
|
+
[ 34 ], [ 36 ], [ 37 ], [ 38 ], [ 40 ], [ 41 ],
|
|
358
|
+
[ 43, 46, 102, 59, 69, 63, 12, 89, 62, 81, 103, 65, 112, 143, 54, 70, 47,
|
|
359
|
+
98, 74, 100, 120, 123, 121, 94, 122, 145, 132, 124, 93, 133, 128, 138,
|
|
360
|
+
125 ], [ 44 ], [ 49, 113, 85, 84, 75 ], [ 55 ], [ 56, 95, 135 ],
|
|
361
|
+
[ 57 ], [ 58 ], [ 60 ], [ 61, 119, 108, 64, 13 ], [ 66 ], [ 67 ], [ 68 ],
|
|
362
|
+
[ 71 ], [ 72 ], [ 73 ], [ 76 ], [ 77 ], [ 78 ], [ 79 ], [ 80 ], [ 82 ],
|
|
363
|
+
[ 83 ], [ 86 ], [ 87 ], [ 88 ], [ 90 ], [ 91 ], [ 92 ], [ 96 ], [ 97 ],
|
|
364
|
+
[ 99 ], [ 101 ], [ 104 ], [ 105 ], [ 106 ], [ 107 ], [ 109 ], [ 110 ],
|
|
365
|
+
[ 111, 129, 147, 35, 39 ], [ 114 ], [ 116 ], [ 117 ], [ 118 ], [ 126 ],
|
|
366
|
+
[ 127 ], [ 130 ], [ 131 ], [ 136 ], [ 137 ], [ 139 ], [ 140 ], [ 141 ],
|
|
367
|
+
[ 142 ], [ 146 ] ]
|
|
368
|
+
gap> l := Position(o, RhoFunc(s)(g));
|
|
369
|
+
123
|
|
370
|
+
gap> l = fail or OrbSCCLookup(o)[l] <> m;
|
|
371
|
+
false
|
|
372
|
+
gap> g := RhoOrbMult(o, m, l)[2] * g;;
|
|
373
|
+
gap> schutz := RhoOrbStabChain(d);
|
|
374
|
+
<stabilizer chain record, Base [ 12 ], Orbit length 2, Size: 2>
|
|
375
|
+
gap> l <> scc[m][1];
|
|
376
|
+
true
|
|
377
|
+
gap> cosets := LambdaCosets(d);
|
|
378
|
+
<enumerator of perm group>
|
|
379
|
+
gap> LambdaOrbStabChain(LambdaOrb(d), LambdaOrbSCCIndex(d));
|
|
380
|
+
false
|
|
381
|
+
gap> g := LambdaPerm(s)(rep, g);
|
|
382
|
+
()
|
|
383
|
+
gap> schutz <> false;
|
|
384
|
+
true
|
|
385
|
+
gap> o := LambdaOrb(d);
|
|
386
|
+
<closed orbit, 184 points with Schreier tree with log>
|
|
387
|
+
gap> m := LambdaOrbSCCIndex(d);
|
|
388
|
+
54
|
|
389
|
+
gap> lambda_schutz := LambdaOrbSchutzGp(o, m);
|
|
390
|
+
Group(())
|
|
391
|
+
gap> lambda_stab := LambdaOrbStabChain(o, m);
|
|
392
|
+
false
|
|
393
|
+
gap> o := RhoOrb(d);
|
|
394
|
+
<closed orbit, 147 points with Schreier tree with log>
|
|
395
|
+
gap> m := RhoOrbSCCIndex(d);
|
|
396
|
+
38
|
|
397
|
+
gap> rho_schutz := RhoOrbSchutzGp(o, m);
|
|
398
|
+
Group([ (1,12) ])
|
|
399
|
+
gap> rho_stab := RhoOrbStabChain(o, m);
|
|
400
|
+
true
|
|
401
|
+
gap> rho_stab = true;
|
|
402
|
+
true
|
|
403
|
+
gap> schutz := lambda_schutz;
|
|
404
|
+
Group(())
|
|
405
|
+
gap> lambda_stab = true;
|
|
406
|
+
false
|
|
407
|
+
gap> Parent(d) = s;
|
|
408
|
+
true
|
|
409
|
+
gap> PartialPerm([1, 9], [6, 12]) in d;
|
|
410
|
+
true
|
|
411
|
+
gap> RhoOrbRep(o, m);
|
|
412
|
+
[2,12][7,1]
|
|
413
|
+
gap> Representative(d);
|
|
414
|
+
[2,6][7,12]
|
|
415
|
+
gap> p := LambdaConjugator(Parent(d))(RhoOrbRep(o, m), Representative(d));;
|
|
416
|
+
gap> LambdaFunc(s)(RhoOrbRep(o, m));
|
|
417
|
+
[ 1, 12 ]
|
|
418
|
+
gap> OnSets(last, p);
|
|
419
|
+
[ 6, 12 ]
|
|
420
|
+
gap> LambdaFunc(s)(Representative(d));
|
|
421
|
+
[ 6, 12 ]
|
|
422
|
+
gap> rho_schutz := rho_schutz ^ p;
|
|
423
|
+
Group([ (6,12) ])
|
|
424
|
+
gap> f := PartialPermNC([6, 9], [12, 6]);
|
|
425
|
+
[9,6,12]
|
|
426
|
+
gap> s := Semigroup(gens);
|
|
427
|
+
<partial perm semigroup of rank 12 with 6 generators>
|
|
428
|
+
gap> l := LClass(s, f);
|
|
429
|
+
<Green's L-class: [9,6,12]>
|
|
430
|
+
gap> d := DClassOfLClass(l);
|
|
431
|
+
<Green's D-class: [9,6,12]>
|
|
432
|
+
gap> ForAll(l, x -> x in d);
|
|
433
|
+
true
|
|
434
|
+
gap> NrHClasses(l);
|
|
435
|
+
66
|
|
436
|
+
gap> RhoCosets(d);
|
|
437
|
+
<enumerator of perm group>
|
|
438
|
+
gap> Length(last);
|
|
439
|
+
2
|
|
440
|
+
gap> H := HClasses(l);;
|
|
441
|
+
gap> ForAll(H, x -> Representative(x) in l);
|
|
442
|
+
true
|
|
443
|
+
gap> ForAll(H, x -> Representative(x) in d);
|
|
444
|
+
true
|
|
445
|
+
gap> ForAll(H, x -> Representative(x) in s);
|
|
446
|
+
true
|
|
447
|
+
gap> ForAll(l, x -> x in l);
|
|
448
|
+
true
|
|
449
|
+
|
|
450
|
+
# MiscTest4
|
|
451
|
+
gap> gens := [Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
|
|
452
|
+
> Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
|
|
453
|
+
> Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
|
|
454
|
+
> Transformation([8, 8, 5, 1, 7, 5, 2, 8])];;
|
|
455
|
+
gap> s := Semigroup(gens);
|
|
456
|
+
<transformation semigroup of degree 8 with 4 generators>
|
|
457
|
+
gap> Size(s);
|
|
458
|
+
95540
|
|
459
|
+
gap> f := Transformation([2, 2, 7, 7, 7, 1, 2, 7]);;
|
|
460
|
+
gap> l := LClassNC(s, f);
|
|
461
|
+
<Green's L-class: Transformation( [ 2, 2, 7, 7, 7, 1, 2, 7 ] )>
|
|
462
|
+
gap> Transformation([2, 2, 7, 7, 7, 1, 2, 7]) in last;
|
|
463
|
+
true
|
|
464
|
+
gap> g := Transformation([2, 2, 7, 7, 7, 1, 2, 1]);;
|
|
465
|
+
gap> Size(l);
|
|
466
|
+
936
|
|
467
|
+
gap> h := GreensHClassOfElement(l, g);
|
|
468
|
+
<Green's H-class: Transformation( [ 2, 2, 7, 7, 7, 1, 2, 1 ] )>
|
|
469
|
+
gap> Transformation([2, 2, 7, 7, 7, 1, 2, 1]) in last;
|
|
470
|
+
true
|
|
471
|
+
gap> Size(h);
|
|
472
|
+
1
|
|
473
|
+
gap> SchutzenbergerGroup(l);
|
|
474
|
+
Sym( [ 1, 2, 7 ] )
|
|
475
|
+
gap> IsRegularGreensClass(l);
|
|
476
|
+
false
|
|
477
|
+
gap> IsGreensClassNC(h);
|
|
478
|
+
true
|
|
479
|
+
gap> ForAll(h, x -> x in l);
|
|
480
|
+
true
|
|
481
|
+
gap> ForAll(h, x -> x in s);
|
|
482
|
+
true
|
|
483
|
+
gap> SchutzenbergerGroup(h);
|
|
484
|
+
Group(())
|
|
485
|
+
gap> Idempotents(h);
|
|
486
|
+
[ ]
|
|
487
|
+
gap> IsGroupHClass(h);
|
|
488
|
+
false
|
|
489
|
+
gap> IsGreensHClass(h);
|
|
490
|
+
true
|
|
491
|
+
gap> GreensHRelation(s) = EquivalenceClassRelation(h);
|
|
492
|
+
true
|
|
493
|
+
gap> gens := [PartialPermNC([1, 2, 4, 5, 9], [3, 6, 2, 10, 5]),
|
|
494
|
+
> PartialPermNC([1, 2, 3, 4, 7, 8], [10, 6, 7, 9, 4, 1]),
|
|
495
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 9], [7, 2, 5, 6, 9, 3, 8, 10]),
|
|
496
|
+
> PartialPermNC([1, 2, 3, 5, 6, 7, 8, 9], [10, 3, 7, 1, 5, 9, 2, 6]),
|
|
497
|
+
> PartialPermNC([2, 3, 5, 6, 10], [4, 1, 9, 2, 5]),
|
|
498
|
+
> PartialPermNC([1, 4, 6, 7, 9, 10], [8, 7, 2, 3, 4, 1])];;
|
|
499
|
+
gap> s := Semigroup(gens);
|
|
500
|
+
<partial perm semigroup of rank 10 with 6 generators>
|
|
501
|
+
gap> f := PartialPerm([]);;
|
|
502
|
+
gap> l := LClass(s, f);
|
|
503
|
+
<Green's L-class: <empty partial perm>>
|
|
504
|
+
gap> Size(s);
|
|
505
|
+
55279
|
|
506
|
+
gap> NrIdempotents(s);
|
|
507
|
+
141
|
|
508
|
+
gap> NrDClasses(s);
|
|
509
|
+
2064
|
|
510
|
+
gap> NrRClasses(s);
|
|
511
|
+
9568
|
|
512
|
+
gap> NrLClasses(s);
|
|
513
|
+
8369
|
|
514
|
+
gap> NrHClasses(s);
|
|
515
|
+
25175
|
|
516
|
+
gap> IsRegularSemigroup(s);
|
|
517
|
+
false
|
|
518
|
+
gap> l := LClass(s, f);
|
|
519
|
+
<Green's L-class: <empty partial perm>>
|
|
520
|
+
gap> h := HClassNC(l, f);
|
|
521
|
+
<Green's H-class: <empty partial perm>>
|
|
522
|
+
gap> Size(h);
|
|
523
|
+
1
|
|
524
|
+
gap> ForAll(h, x -> x in l);
|
|
525
|
+
true
|
|
526
|
+
gap> ForAll(h, x -> x in s);
|
|
527
|
+
true
|
|
528
|
+
gap> IsGreensClassNC(h);
|
|
529
|
+
true
|
|
530
|
+
gap> f := PartialPermNC([2, 8, 9], [8, 10, 5]);;
|
|
531
|
+
gap> l := LClass(s, f);
|
|
532
|
+
<Green's L-class: [2,8,10][9,5]>
|
|
533
|
+
gap> h := HClassNC(l, f);
|
|
534
|
+
<Green's H-class: [2,8,10][9,5]>
|
|
535
|
+
gap> ForAll(h, x -> x in s);
|
|
536
|
+
true
|
|
537
|
+
gap> ForAll(h, x -> x in l);
|
|
538
|
+
true
|
|
539
|
+
gap> Size(h);
|
|
540
|
+
1
|
|
541
|
+
|
|
542
|
+
# MiscTest5
|
|
543
|
+
gap> gens := [Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
|
|
544
|
+
> Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
|
|
545
|
+
> Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
|
|
546
|
+
> Transformation([7, 1, 7, 4, 2, 5, 6, 3])];;
|
|
547
|
+
gap> s := Monoid(gens);
|
|
548
|
+
<transformation monoid of degree 8 with 4 generators>
|
|
549
|
+
gap> f := Transformation([5, 4, 7, 2, 2, 2, 2, 5]);;
|
|
550
|
+
gap> f in s;
|
|
551
|
+
true
|
|
552
|
+
gap> l := LClass(s, f);
|
|
553
|
+
<Green's L-class: Transformation( [ 5, 4, 7, 2, 2, 2, 2, 5 ] )>
|
|
554
|
+
gap> Transformation([5, 4, 7, 2, 2, 2, 2, 5]) in last;
|
|
555
|
+
true
|
|
556
|
+
gap> IsGreensClassNC(l);
|
|
557
|
+
false
|
|
558
|
+
gap> Size(l);
|
|
559
|
+
1
|
|
560
|
+
gap> f := Transformation([4, 3, 2, 7, 7, 6, 6, 5]);;
|
|
561
|
+
gap> l := LClass(s, f);
|
|
562
|
+
<Green's L-class: Transformation( [ 4, 3, 2, 7, 7, 6, 6, 5 ] )>
|
|
563
|
+
gap> Transformation([4, 3, 2, 7, 7, 6, 6, 5]) in last;
|
|
564
|
+
true
|
|
565
|
+
gap> Size(l);
|
|
566
|
+
1
|
|
567
|
+
|
|
568
|
+
# MiscTest6
|
|
569
|
+
gap> gens := [PartialPermNC([1, 2, 3], [1, 4, 3]),
|
|
570
|
+
> PartialPermNC([1, 2, 3], [2, 3, 4]),
|
|
571
|
+
> PartialPermNC([1, 2, 3], [4, 2, 1]),
|
|
572
|
+
> PartialPermNC([1, 2, 4], [1, 4, 3])];;
|
|
573
|
+
gap> s := Semigroup(gens);
|
|
574
|
+
<partial perm semigroup of rank 4 with 4 generators>
|
|
575
|
+
gap> List(LClasses(s), IsRegularGreensClass);
|
|
576
|
+
[ false, false, false, false, true, true, false, false, true, true, false,
|
|
577
|
+
false, false, false, true, true, true, true, false, true ]
|
|
578
|
+
gap> Number(last, x -> x = true);
|
|
579
|
+
9
|
|
580
|
+
gap> GroupOfUnits(s);
|
|
581
|
+
fail
|
|
582
|
+
gap> List(LClasses(s), NrIdempotents);
|
|
583
|
+
[ 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ]
|
|
584
|
+
gap> NrIdempotents(s);
|
|
585
|
+
9
|
|
586
|
+
gap> List(LClasses(s), Size);
|
|
587
|
+
[ 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 1 ]
|
|
588
|
+
gap> Sum(last);
|
|
589
|
+
62
|
|
590
|
+
gap> Size(s);
|
|
591
|
+
62
|
|
592
|
+
gap> f := PartialPerm([2, 3], [2, 4]);;
|
|
593
|
+
gap> l := LClassNC(s, f);
|
|
594
|
+
<Green's L-class: [3,4](2)>
|
|
595
|
+
gap> HClassReps(l);
|
|
596
|
+
[ [3,4](2), [1,2,4], [3,2,4], [1,4](2) ]
|
|
597
|
+
gap> IsRegularGreensClass(l);
|
|
598
|
+
false
|
|
599
|
+
gap> NrHClasses(l);
|
|
600
|
+
4
|
|
601
|
+
gap> l := LClass(s, f);
|
|
602
|
+
<Green's L-class: [3,4](2)>
|
|
603
|
+
gap> HClassReps(l);
|
|
604
|
+
[ [1,4](2), [3,4](2), [1,2,4], [3,2,4] ]
|
|
605
|
+
gap> IsRegularGreensClass(l);
|
|
606
|
+
false
|
|
607
|
+
gap> ForAll(HClassReps(l), x -> x in l);
|
|
608
|
+
true
|
|
609
|
+
gap> d := DClassOfLClass(l);
|
|
610
|
+
<Green's D-class: [1,4](2)>
|
|
611
|
+
gap> Size(d);
|
|
612
|
+
4
|
|
613
|
+
gap> Size(l);
|
|
614
|
+
4
|
|
615
|
+
gap> AsSSortedList(l) = AsSortedList(d);
|
|
616
|
+
true
|
|
617
|
+
gap> AsSSortedList(d) = AsSSortedList(l);
|
|
618
|
+
true
|
|
619
|
+
gap> l < d;
|
|
620
|
+
false
|
|
621
|
+
gap> ForAll(l, x -> x in d);
|
|
622
|
+
true
|
|
623
|
+
gap> ForAll(d, x -> x in l);
|
|
624
|
+
true
|
|
625
|
+
gap> HClassReps(d) = HClassReps(l);
|
|
626
|
+
true
|
|
627
|
+
gap> NrRClasses(d);
|
|
628
|
+
4
|
|
629
|
+
gap> NrLClasses(d);
|
|
630
|
+
1
|
|
631
|
+
gap> NrHClasses(d);
|
|
632
|
+
4
|
|
633
|
+
|
|
634
|
+
# MiscTest7
|
|
635
|
+
gap> gens := [Transformation([1, 5, 6, 2, 5, 2, 1]),
|
|
636
|
+
> Transformation([1, 7, 5, 4, 3, 5, 7]),
|
|
637
|
+
> Transformation([2, 7, 7, 2, 4, 1, 1]),
|
|
638
|
+
> Transformation([3, 2, 2, 4, 1, 7, 6]),
|
|
639
|
+
> Transformation([3, 3, 5, 1, 7, 1, 6]),
|
|
640
|
+
> Transformation([3, 3, 6, 1, 7, 5, 2]),
|
|
641
|
+
> Transformation([3, 4, 6, 5, 4, 4, 7]),
|
|
642
|
+
> Transformation([5, 2, 4, 5, 1, 4, 5]),
|
|
643
|
+
> Transformation([5, 5, 2, 2, 6, 7, 2]),
|
|
644
|
+
> Transformation([7, 7, 5, 4, 5, 3, 2])];;
|
|
645
|
+
gap> s := Semigroup(gens);;
|
|
646
|
+
gap> l := LClasses(s)[1154];
|
|
647
|
+
<Green's L-class: Transformation( [ 7, 2, 2, 3, 6, 1, 2 ] )>
|
|
648
|
+
gap> Transformation([7, 2, 2, 3, 6, 1, 2]) in last;
|
|
649
|
+
true
|
|
650
|
+
gap> IsRegularGreensClass(l);
|
|
651
|
+
false
|
|
652
|
+
gap> d := DClassOfLClass(l);
|
|
653
|
+
<Green's D-class: Transformation( [ 7, 2, 2, 3, 6, 1, 2 ] )>
|
|
654
|
+
gap> Transformation([7, 2, 2, 3, 6, 1, 2]) in last;
|
|
655
|
+
true
|
|
656
|
+
gap> Size(l);
|
|
657
|
+
1
|
|
658
|
+
gap> Size(d);
|
|
659
|
+
1
|
|
660
|
+
gap> NrHClasses(d);
|
|
661
|
+
1
|
|
662
|
+
gap> NrLClasses(d);
|
|
663
|
+
1
|
|
664
|
+
gap> NrRClasses(d);
|
|
665
|
+
1
|
|
666
|
+
gap> l := LClasses(s)[523];
|
|
667
|
+
<Green's L-class: Transformation( [ 5, 5, 5, 1, 7, 3, 6 ] )>
|
|
668
|
+
gap> Transformation([5, 5, 5, 1, 7, 3, 6]) in last;
|
|
669
|
+
true
|
|
670
|
+
gap> Size(l);
|
|
671
|
+
1
|
|
672
|
+
|
|
673
|
+
# MiscTest8
|
|
674
|
+
gap> gens := [PartialPermNC([1, 2, 3, 5], [5, 7, 3, 4]),
|
|
675
|
+
> PartialPermNC([1, 2, 3, 4, 5], [6, 4, 1, 2, 7]),
|
|
676
|
+
> PartialPermNC([1, 2, 3, 4, 7], [2, 7, 4, 5, 8]),
|
|
677
|
+
> PartialPermNC([1, 2, 3, 5, 6], [5, 6, 1, 4, 3]),
|
|
678
|
+
> PartialPermNC([1, 2, 4, 6, 7], [2, 1, 6, 7, 4]),
|
|
679
|
+
> PartialPermNC([1, 3, 5, 6, 7], [6, 2, 3, 5, 7]),
|
|
680
|
+
> PartialPermNC([1, 2, 3, 4, 5, 7], [4, 1, 6, 2, 8, 5]),
|
|
681
|
+
> PartialPermNC([1, 2, 3, 4, 5, 8], [5, 6, 3, 8, 2, 7]),
|
|
682
|
+
> PartialPermNC([1, 2, 3, 4, 6, 7], [1, 5, 2, 6, 7, 4]),
|
|
683
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 8], [7, 5, 2, 8, 4, 1, 3])];;
|
|
684
|
+
gap> s := Semigroup(gens);
|
|
685
|
+
<partial perm semigroup of rank 8 with 10 generators>
|
|
686
|
+
gap> Size(s);
|
|
687
|
+
72713
|
|
688
|
+
gap> NrRClasses(s);
|
|
689
|
+
25643
|
|
690
|
+
gap> NrDClasses(s);
|
|
691
|
+
4737
|
|
692
|
+
gap> NrLClasses(s);
|
|
693
|
+
11323
|
|
694
|
+
gap> NrIdempotents(s);
|
|
695
|
+
121
|
|
696
|
+
gap> IsRegularSemigroup(s);
|
|
697
|
+
false
|
|
698
|
+
gap> f := PartialPerm([3, 4, 7], [4, 7, 8]);;
|
|
699
|
+
gap> d := DClass(s, f);
|
|
700
|
+
<Green's D-class: [3,4,7,8]>
|
|
701
|
+
gap> Size(d);
|
|
702
|
+
282
|
|
703
|
+
gap> NrRClasses(d);
|
|
704
|
+
282
|
|
705
|
+
gap> NrLClasses(d);
|
|
706
|
+
1
|
|
707
|
+
gap> IsRegularDClass(d);
|
|
708
|
+
false
|
|
709
|
+
gap> RhoCosets(d);
|
|
710
|
+
<enumerator of perm group>
|
|
711
|
+
gap> Length(last);
|
|
712
|
+
6
|
|
713
|
+
gap> AsList(last2);
|
|
714
|
+
[ (), (4,8), (4,7,8), (7,8), (4,8,7), (4,7) ]
|
|
715
|
+
gap> SchutzenbergerGroup(d);
|
|
716
|
+
Group(())
|
|
717
|
+
gap> RhoOrbStabChain(d);
|
|
718
|
+
<stabilizer chain record, Base [ 7, 8 ], Orbit length 3, Size: 6>
|
|
719
|
+
gap> data := SemigroupData(Parent(d));
|
|
720
|
+
<closed semigroup data with 25643 reps, 178 lambda-values, 150 rho-values>
|
|
721
|
+
gap> OrbSCC(data)[OrbSCCLookup(data)[SemigroupDataIndex(d)]];
|
|
722
|
+
[ 33, 144, 340, 568, 35, 151, 353, 540, 1088, 1900, 1342, 2195, 1043, 1151,
|
|
723
|
+
1336, 2189, 1361, 1902, 713, 1346, 561, 711, 1343, 519, 706, 1333, 553,
|
|
724
|
+
720, 539, 1086, 571, 1158, 560, 1134, 1973, 1337, 1842, 1040, 725, 1362,
|
|
725
|
+
1904, 1357, 1202, 1102, 1367, 2196, 1840, 717, 1181, 1339, 2192, 544, 1103,
|
|
726
|
+
1932, 2888, 1360, 729, 1366, 1124, 1958, 2214, 1126, 715, 1352, 2204, 1340,
|
|
727
|
+
1013, 1368, 503, 1014, 1801, 2750, 3674, 1335, 2188, 2997, 1344, 356, 727,
|
|
728
|
+
1090, 1905, 358, 731, 1139, 1911, 1041, 712, 1347, 1371, 721, 1359, 2213,
|
|
729
|
+
1838, 2788, 1045, 1837, 357, 728, 1364, 1349, 2052, 2009, 1903, 2859, 2873,
|
|
730
|
+
707, 718, 341, 708, 1338, 345, 719, 147, 344, 1356, 2208, 1978, 2203, 1369,
|
|
731
|
+
2217, 2862, 1091, 1907, 710, 1341, 2193, 3127, 343, 714, 1351, 2202, 2191,
|
|
732
|
+
3126, 724, 2037, 4041, 726, 1363, 2215, 3767, 2057, 2198, 2058, 2039, 2990,
|
|
733
|
+
709, 1137, 1976, 1841, 2794, 2936, 2973, 1974, 1089, 1901, 2855, 2210,
|
|
734
|
+
1899, 1831, 2209, 3132, 2866, 730, 1370, 2218, 1348, 2199, 1136, 1975,
|
|
735
|
+
3137, 1358, 2212, 3133, 4044, 1365, 2795, 1928, 2065, 3019, 2884, 1898,
|
|
736
|
+
1909, 1046, 1839, 342, 1977, 2938, 2792, 148, 346, 1908, 2861, 2939, 3850,
|
|
737
|
+
2010, 2974, 3891, 2920, 2051, 3003, 1929, 2885, 2216, 3135, 1910, 2863,
|
|
738
|
+
3004, 3124, 3704, 3916, 2791, 3708, 4573, 5517, 4042, 2190, 3125, 4040,
|
|
739
|
+
2749, 4043, 4703, 4807, 3925, 2889, 3766, 2783, 2782, 3910, 2789, 2206,
|
|
740
|
+
3130, 1979, 3706, 1355, 2207, 3131, 2194, 3128, 2856, 3765, 2857, 2201,
|
|
741
|
+
2937, 2790, 3707, 2205, 2200, 1092, 2864, 1913, 1345, 2197, 1833, 3136,
|
|
742
|
+
3134, 1960, 2921, 3831, 2865, 1906, 2860, 1832, 1918, 1140, 1800, 1353,
|
|
743
|
+
1959, 1933, 1354, 2793, 1105, 2211, 1135, 1087, 1334, 1350, 2858, 1157,
|
|
744
|
+
3129, 355, 152, 146 ]
|
|
745
|
+
gap> Position(DClasses(s), d);
|
|
746
|
+
17
|
|
747
|
+
gap> d := DClasses(s)[18];
|
|
748
|
+
<Green's D-class: [1,2][3,7,5][6,8]>
|
|
749
|
+
gap> OrbSCC(data)[OrbSCCLookup(data)[SemigroupDataIndex(d)]];
|
|
750
|
+
[ 36 ]
|
|
751
|
+
gap> LambdaCosets(d);
|
|
752
|
+
<enumerator of perm group>
|
|
753
|
+
gap> LambdaOrbSCC(d);
|
|
754
|
+
[ 22 ]
|
|
755
|
+
gap> RhoOrbSCC(d);
|
|
756
|
+
[ 35 ]
|
|
757
|
+
gap> ForAll(d, x -> x in d);
|
|
758
|
+
true
|
|
759
|
+
gap> enum := Enumerator(d);
|
|
760
|
+
<enumerator of <Green's D-class: [1,2][3,7,5][6,8]>>
|
|
761
|
+
gap> enum[1];
|
|
762
|
+
[1,2][3,7,5][6,8]
|
|
763
|
+
gap> Length(enum);
|
|
764
|
+
1
|
|
765
|
+
gap> Size(d);
|
|
766
|
+
1
|
|
767
|
+
gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
|
|
768
|
+
true
|
|
769
|
+
gap> s := Semigroup(gens);
|
|
770
|
+
<partial perm semigroup of rank 8 with 10 generators>
|
|
771
|
+
gap> d := DClass(s, PartialPerm([1, 3, 6], [7, 4, 8]));
|
|
772
|
+
<Green's D-class: [1,7][3,4][6,8]>
|
|
773
|
+
gap> enum := Enumerator(d);
|
|
774
|
+
<enumerator of <Green's D-class: [1,7][3,4][6,8]>>
|
|
775
|
+
gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
|
|
776
|
+
true
|
|
777
|
+
gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
|
|
778
|
+
true
|
|
779
|
+
gap> enum[1];
|
|
780
|
+
[1,7][3,4][6,8]
|
|
781
|
+
gap> enum[2];
|
|
782
|
+
[2,8][3,7][6,4]
|
|
783
|
+
gap> Position(enum, enum[2]);
|
|
784
|
+
2
|
|
785
|
+
gap> Position(enum, enum[3]);
|
|
786
|
+
3
|
|
787
|
+
gap> enum[3];
|
|
788
|
+
[1,4][3,8][5,7]
|
|
789
|
+
gap> enum[4];
|
|
790
|
+
[2,7][6,4](8)
|
|
791
|
+
gap> for d in DClasses(s) do
|
|
792
|
+
> enum := Enumerator(d);
|
|
793
|
+
> if not ForAll(enum, x -> enum[Position(enum, x)] = x) then
|
|
794
|
+
> Print("problem with enumerator of a D-class 1\n");
|
|
795
|
+
> fi;
|
|
796
|
+
> od;
|
|
797
|
+
gap> Size(s);
|
|
798
|
+
72713
|
|
799
|
+
gap> NrRClasses(s);
|
|
800
|
+
25643
|
|
801
|
+
gap> NrLClasses(s);
|
|
802
|
+
11323
|
|
803
|
+
gap> NrDClasses(s);
|
|
804
|
+
4737
|
|
805
|
+
gap> NrIdempotents(s);
|
|
806
|
+
121
|
|
807
|
+
|
|
808
|
+
# MiscTest9
|
|
809
|
+
gap> gens := [Transformation([3, 4, 1, 2, 1]),
|
|
810
|
+
> Transformation([4, 2, 1, 5, 5]),
|
|
811
|
+
> Transformation([4, 2, 2, 2, 4])];;
|
|
812
|
+
gap> s := Semigroup(gens);;
|
|
813
|
+
gap> for d in DClasses(s) do
|
|
814
|
+
> enum := Enumerator(d);
|
|
815
|
+
> if not ForAll(enum, x -> enum[Position(enum, x)] = x) then
|
|
816
|
+
> Print("problem with enumerator of a D-class 1\n");
|
|
817
|
+
> fi;
|
|
818
|
+
> od;
|
|
819
|
+
gap> gens := [PartialPermNC([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
|
|
820
|
+
> PartialPermNC([1, 2, 3, 4, 5, 8, 10], [7, 1, 4, 3, 2, 6, 5]),
|
|
821
|
+
> PartialPermNC([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6])];;
|
|
822
|
+
gap> s := Semigroup(gens);;
|
|
823
|
+
gap> f := PartialPerm([2, 4], [6, 5]);;
|
|
824
|
+
gap> d := DClassNC(s, f);
|
|
825
|
+
<Green's D-class: [2,6][4,5]>
|
|
826
|
+
gap> GreensHClasses(d);
|
|
827
|
+
[ <Green's H-class: [2,6][4,5]> ]
|
|
828
|
+
gap> Size(d);
|
|
829
|
+
1
|
|
830
|
+
|
|
831
|
+
# MiscTest10
|
|
832
|
+
gap> gens :=
|
|
833
|
+
> [PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19,
|
|
834
|
+
> 20, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 43, 45, 46, 49,
|
|
835
|
+
> 50, 51, 53, 55, 56, 57, 58, 59, 60, 61, 64, 66, 68, 69, 70, 72, 73, 74, 77,
|
|
836
|
+
> 80, 81, 83, 86, 87, 89, 91, 98], [89, 70, 79, 27, 84, 99, 9, 73, 33, 77,
|
|
837
|
+
> 69, 41, 18, 63, 29, 42, 75, 56, 90, 64, 98, 49, 35, 100, 71, 3, 20, 2, 26,
|
|
838
|
+
> 11, 39, 7, 48, 85, 8, 10, 61, 25, 55, 92, 62, 21, 34, 57, 44, 14, 53, 59,
|
|
839
|
+
> 12, 87, 78, 83, 30, 32, 68, 86, 23, 47, 93, 15, 76, 97, 91]),
|
|
840
|
+
> PartialPermNC([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
|
841
|
+
> 19, 20, 22, 23, 24, 25, 28, 30, 31, 33, 34, 35, 36, 39, 40, 42, 43, 44, 45,
|
|
842
|
+
> 46, 47, 50, 53, 54, 55, 58, 59, 64, 65, 67, 69, 70, 71, 72, 73, 76, 77, 78,
|
|
843
|
+
> 81, 82, 84, 85, 86, 87, 89, 92, 94, 95], [5, 13, 94, 44, 80, 54, 99, 81,
|
|
844
|
+
> 31, 7, 90, 30, 46, 68, 36, 11, 100, 17, 87, 72, 14, 29, 9, 61, 91, 32, 43,
|
|
845
|
+
> 64, 60, 41, 26, 40, 8, 23, 63, 38, 57, 12, 59, 83, 92, 96, 18, 3, 65, 2,
|
|
846
|
+
> 37, 21, 49, 16, 75, 24, 27, 1, 48, 6, 35, 79, 82, 51, 39, 25, 77, 62, 22]),
|
|
847
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
848
|
+
> 18, 19, 20, 21, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
|
849
|
+
> 40, 42, 44, 48, 51, 52, 53, 55, 56, 57, 58, 60, 63, 64, 65, 66, 67, 71, 73,
|
|
850
|
+
> 75, 77, 80, 82, 83, 85, 86, 90, 91, 96, 97, 98, 99],
|
|
851
|
+
> [67, 93, 18, 59, 86, 16, 99, 73, 60, 74, 17, 95, 85, 49, 79, 4, 33, 66, 15,
|
|
852
|
+
> 44, 77, 41, 55, 84, 68, 69, 94, 31, 2, 29, 5, 42, 10, 63, 58, 34, 72, 53,
|
|
853
|
+
> 89, 57, 62, 76, 20, 52, 22, 35, 75, 98, 78, 40, 46, 28, 6, 90, 12, 65, 26,
|
|
854
|
+
> 36, 25, 61, 83, 38, 39, 87, 92, 97, 43, 30])];;
|
|
855
|
+
gap> s := Semigroup(gens);;
|
|
856
|
+
gap> f := PartialPerm([12, 27, 37, 40, 46, 50, 51, 53],
|
|
857
|
+
> [98, 3, 84, 99, 100, 21, 70, 89]);;
|
|
858
|
+
gap> d := DClassNC(s, f);
|
|
859
|
+
<Green's D-class: [12,98][27,3][37,84][40,99][46,100][50,21][51,70][53,89]>
|
|
860
|
+
gap> Size(d);
|
|
861
|
+
1
|
|
862
|
+
gap> GreensHClasses(d);
|
|
863
|
+
[ <Green's H-class: [12,98][27,3][37,84][40,99][46,100][50,21][51,70][53,89]>
|
|
864
|
+
]
|
|
865
|
+
gap> iter := IteratorOfDClasses(s);
|
|
866
|
+
<iterator>
|
|
867
|
+
gap> repeat d := NextIterator(iter); until Size(d) > 1;
|
|
868
|
+
gap> d;
|
|
869
|
+
<Green's D-class: [8,63][57,87]>
|
|
870
|
+
gap> Size(d);
|
|
871
|
+
2036
|
|
872
|
+
gap> IsRegularDClass(d);
|
|
873
|
+
false
|
|
874
|
+
gap> GreensHClasses(d);;
|
|
875
|
+
gap> NrHClasses(d);
|
|
876
|
+
2036
|
|
877
|
+
gap> GreensLClasses(d);
|
|
878
|
+
[ <Green's L-class: [8,63][57,87]> ]
|
|
879
|
+
|
|
880
|
+
# MiscTest11
|
|
881
|
+
gap> gens := [Transformation([1, 3, 4, 1]),
|
|
882
|
+
> Transformation([2, 4, 1, 2]),
|
|
883
|
+
> Transformation([3, 1, 1, 3]),
|
|
884
|
+
> Transformation([3, 3, 4, 1])];;
|
|
885
|
+
gap> s := Monoid(gens);;
|
|
886
|
+
gap> List(GreensDClasses(s), LClasses);
|
|
887
|
+
[ [ <Green's L-class: IdentityTransformation> ],
|
|
888
|
+
[ <Green's L-class: Transformation( [ 1, 3, 4, 1 ] )>,
|
|
889
|
+
<Green's L-class: Transformation( [ 4, 1, 3, 4 ] )>,
|
|
890
|
+
<Green's L-class: Transformation( [ 3, 4, 1, 3 ] )> ],
|
|
891
|
+
[ <Green's L-class: Transformation( [ 2, 4, 1, 2 ] )> ],
|
|
892
|
+
[ <Green's L-class: Transformation( [ 3, 1, 1, 3 ] )>,
|
|
893
|
+
<Green's L-class: Transformation( [ 1, 4, 4, 1 ] )>,
|
|
894
|
+
<Green's L-class: Transformation( [ 2, 1, 1, 2 ] )>,
|
|
895
|
+
<Green's L-class: Transformation( [ 2, 4, 4, 2 ] )>,
|
|
896
|
+
<Green's L-class: Transformation( [ 4, 3, 3, 4 ] )> ],
|
|
897
|
+
[ <Green's L-class: Transformation( [ 3, 3, 4, 1 ] )> ],
|
|
898
|
+
[ <Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
|
|
899
|
+
<Green's L-class: Transformation( [ 2, 2, 2, 2 ] )>,
|
|
900
|
+
<Green's L-class: Transformation( [ 3, 3, 3, 3 ] )>,
|
|
901
|
+
<Green's L-class: Transformation( [ 4, 4, 4, 4 ] )> ] ]
|
|
902
|
+
gap> List(Concatenation(last), Size);
|
|
903
|
+
[ 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 3, 1, 1, 1, 1 ]
|
|
904
|
+
gap> Sum(last);
|
|
905
|
+
62
|
|
906
|
+
gap> Size(s);
|
|
907
|
+
62
|
|
908
|
+
gap> l := Concatenation(List(GreensDClasses(s), LClasses));
|
|
909
|
+
[ <Green's L-class: IdentityTransformation>,
|
|
910
|
+
<Green's L-class: Transformation( [ 1, 3, 4, 1 ] )>,
|
|
911
|
+
<Green's L-class: Transformation( [ 4, 1, 3, 4 ] )>,
|
|
912
|
+
<Green's L-class: Transformation( [ 3, 4, 1, 3 ] )>,
|
|
913
|
+
<Green's L-class: Transformation( [ 2, 4, 1, 2 ] )>,
|
|
914
|
+
<Green's L-class: Transformation( [ 3, 1, 1, 3 ] )>,
|
|
915
|
+
<Green's L-class: Transformation( [ 1, 4, 4, 1 ] )>,
|
|
916
|
+
<Green's L-class: Transformation( [ 2, 1, 1, 2 ] )>,
|
|
917
|
+
<Green's L-class: Transformation( [ 2, 4, 4, 2 ] )>,
|
|
918
|
+
<Green's L-class: Transformation( [ 4, 3, 3, 4 ] )>,
|
|
919
|
+
<Green's L-class: Transformation( [ 3, 3, 4, 1 ] )>,
|
|
920
|
+
<Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
|
|
921
|
+
<Green's L-class: Transformation( [ 2, 2, 2, 2 ] )>,
|
|
922
|
+
<Green's L-class: Transformation( [ 3, 3, 3, 3 ] )>,
|
|
923
|
+
<Green's L-class: Transformation( [ 4, 4, 4, 4 ] )> ]
|
|
924
|
+
gap> List(last, Elements);
|
|
925
|
+
[ [ IdentityTransformation ], [ Transformation( [ 1, 3, 4, 1 ] ) ],
|
|
926
|
+
[ Transformation( [ 4, 1, 3, 4 ] ) ], [ Transformation( [ 3, 4, 1, 3 ] ) ],
|
|
927
|
+
[ Transformation( [ 2, 4, 1, 2 ] ) ],
|
|
928
|
+
[ Transformation( [ 1, 1, 1, 3 ] ), Transformation( [ 1, 1, 3, 1 ] ),
|
|
929
|
+
Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3, 1, 1 ] ),
|
|
930
|
+
Transformation( [ 1, 3, 3, 1 ] ), Transformation( [ 3, 1, 1, 3 ] ),
|
|
931
|
+
Transformation( [ 3, 1, 3, 3 ] ), Transformation( [ 3, 3, 1, 1 ] ),
|
|
932
|
+
Transformation( [ 3, 3, 1, 3 ] ), Transformation( [ 3, 3, 3, 1 ] ) ],
|
|
933
|
+
[ Transformation( [ 1, 1, 1 ] ), Transformation( [ 1, 1, 4, 1 ] ),
|
|
934
|
+
Transformation( [ 1, 1, 4, 4 ] ), Transformation( [ 1, 4, 1, 1 ] ),
|
|
935
|
+
Transformation( [ 1, 4, 4, 1 ] ), Transformation( [ 4, 1, 1, 4 ] ),
|
|
936
|
+
Transformation( [ 4, 1, 4, 4 ] ), Transformation( [ 4, 4, 1, 1 ] ),
|
|
937
|
+
Transformation( [ 4, 4, 1, 4 ] ), Transformation( [ 4, 4, 4, 1 ] ) ],
|
|
938
|
+
[ Transformation( [ 1, 1, 1, 2 ] ), Transformation( [ 1, 1, 2, 1 ] ),
|
|
939
|
+
Transformation( [ 1, 1, 2, 2 ] ), Transformation( [ 1, 2, 1, 1 ] ),
|
|
940
|
+
Transformation( [ 1, 2, 2, 1 ] ), Transformation( [ 2, 1, 1, 2 ] ),
|
|
941
|
+
Transformation( [ 2, 1, 2, 2 ] ), Transformation( [ 2, 2, 1, 1 ] ),
|
|
942
|
+
Transformation( [ 2, 2, 1, 2 ] ), Transformation( [ 2, 2, 2, 1 ] ) ],
|
|
943
|
+
[ Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 2, 4, 2 ] ),
|
|
944
|
+
Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 2, 4, 2, 2 ] ),
|
|
945
|
+
Transformation( [ 2, 4, 4, 2 ] ), Transformation( [ 4, 2, 2, 4 ] ),
|
|
946
|
+
Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 4, 2, 2 ] ),
|
|
947
|
+
Transformation( [ 4, 4, 2, 4 ] ), Transformation( [ 4, 4, 4, 2 ] ) ],
|
|
948
|
+
[ Transformation( [ 3, 3, 3 ] ), Transformation( [ 3, 3, 4, 3 ] ),
|
|
949
|
+
Transformation( [ 3, 3, 4, 4 ] ), Transformation( [ 3, 4, 3, 3 ] ),
|
|
950
|
+
Transformation( [ 3, 4, 4, 3 ] ), Transformation( [ 4, 3, 3, 4 ] ),
|
|
951
|
+
Transformation( [ 4, 3, 4, 4 ] ), Transformation( [ 4, 4, 3, 3 ] ),
|
|
952
|
+
Transformation( [ 4, 4, 3, 4 ] ), Transformation( [ 4, 4, 4, 3 ] ) ],
|
|
953
|
+
[ Transformation( [ 1, 1 ] ), Transformation( [ 3, 3, 4, 1 ] ),
|
|
954
|
+
Transformation( [ 4, 4, 1, 3 ] ) ], [ Transformation( [ 1, 1, 1, 1 ] ) ]
|
|
955
|
+
, [ Transformation( [ 2, 2, 2, 2 ] ) ],
|
|
956
|
+
[ Transformation( [ 3, 3, 3, 3 ] ) ], [ Transformation( [ 4, 4, 4, 4 ] ) ] ]
|
|
957
|
+
gap> Union(last);
|
|
958
|
+
[ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 1, 1, 2 ] ),
|
|
959
|
+
Transformation( [ 1, 1, 1, 3 ] ), Transformation( [ 1, 1, 1 ] ),
|
|
960
|
+
Transformation( [ 1, 1, 2, 1 ] ), Transformation( [ 1, 1, 2, 2 ] ),
|
|
961
|
+
Transformation( [ 1, 1, 3, 1 ] ), Transformation( [ 1, 1, 3, 3 ] ),
|
|
962
|
+
Transformation( [ 1, 1 ] ), Transformation( [ 1, 1, 4, 1 ] ),
|
|
963
|
+
Transformation( [ 1, 1, 4, 4 ] ), Transformation( [ 1, 2, 1, 1 ] ),
|
|
964
|
+
Transformation( [ 1, 2, 2, 1 ] ), IdentityTransformation,
|
|
965
|
+
Transformation( [ 1, 3, 1, 1 ] ), Transformation( [ 1, 3, 3, 1 ] ),
|
|
966
|
+
Transformation( [ 1, 3, 4, 1 ] ), Transformation( [ 1, 4, 1, 1 ] ),
|
|
967
|
+
Transformation( [ 1, 4, 4, 1 ] ), Transformation( [ 2, 1, 1, 2 ] ),
|
|
968
|
+
Transformation( [ 2, 1, 2, 2 ] ), Transformation( [ 2, 2, 1, 1 ] ),
|
|
969
|
+
Transformation( [ 2, 2, 1, 2 ] ), Transformation( [ 2, 2, 2, 1 ] ),
|
|
970
|
+
Transformation( [ 2, 2, 2, 2 ] ), Transformation( [ 2, 2, 2 ] ),
|
|
971
|
+
Transformation( [ 2, 2, 4, 2 ] ), Transformation( [ 2, 2, 4, 4 ] ),
|
|
972
|
+
Transformation( [ 2, 4, 1, 2 ] ), Transformation( [ 2, 4, 2, 2 ] ),
|
|
973
|
+
Transformation( [ 2, 4, 4, 2 ] ), Transformation( [ 3, 1, 1, 3 ] ),
|
|
974
|
+
Transformation( [ 3, 1, 3, 3 ] ), Transformation( [ 3, 3, 1, 1 ] ),
|
|
975
|
+
Transformation( [ 3, 3, 1, 3 ] ), Transformation( [ 3, 3, 3, 1 ] ),
|
|
976
|
+
Transformation( [ 3, 3, 3, 3 ] ), Transformation( [ 3, 3, 3 ] ),
|
|
977
|
+
Transformation( [ 3, 3, 4, 1 ] ), Transformation( [ 3, 3, 4, 3 ] ),
|
|
978
|
+
Transformation( [ 3, 3, 4, 4 ] ), Transformation( [ 3, 4, 1, 3 ] ),
|
|
979
|
+
Transformation( [ 3, 4, 3, 3 ] ), Transformation( [ 3, 4, 4, 3 ] ),
|
|
980
|
+
Transformation( [ 4, 1, 1, 4 ] ), Transformation( [ 4, 1, 3, 4 ] ),
|
|
981
|
+
Transformation( [ 4, 1, 4, 4 ] ), Transformation( [ 4, 2, 2, 4 ] ),
|
|
982
|
+
Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 3, 3, 4 ] ),
|
|
983
|
+
Transformation( [ 4, 3, 4, 4 ] ), Transformation( [ 4, 4, 1, 1 ] ),
|
|
984
|
+
Transformation( [ 4, 4, 1, 3 ] ), Transformation( [ 4, 4, 1, 4 ] ),
|
|
985
|
+
Transformation( [ 4, 4, 2, 2 ] ), Transformation( [ 4, 4, 2, 4 ] ),
|
|
986
|
+
Transformation( [ 4, 4, 3, 3 ] ), Transformation( [ 4, 4, 3, 4 ] ),
|
|
987
|
+
Transformation( [ 4, 4, 4, 1 ] ), Transformation( [ 4, 4, 4, 2 ] ),
|
|
988
|
+
Transformation( [ 4, 4, 4, 3 ] ), Transformation( [ 4, 4, 4, 4 ] ) ]
|
|
989
|
+
gap> last = AsSSortedList(s);
|
|
990
|
+
true
|
|
991
|
+
|
|
992
|
+
# MiscTest12
|
|
993
|
+
gap> gens := [PartialPermNC([1, 2, 3, 4], [5, 7, 1, 6]),
|
|
994
|
+
> PartialPermNC([1, 2, 3, 5], [5, 2, 7, 3]),
|
|
995
|
+
> PartialPermNC([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
|
|
996
|
+
> PartialPermNC([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])];;
|
|
997
|
+
gap> s := Semigroup(gens);;
|
|
998
|
+
gap> Size(s);
|
|
999
|
+
840
|
|
1000
|
+
gap> NrDClasses(s);
|
|
1001
|
+
176
|
|
1002
|
+
|
|
1003
|
+
# MiscTest13
|
|
1004
|
+
gap> gens := [PartialPermNC([1, 2, 3, 4], [5, 7, 1, 6]),
|
|
1005
|
+
> PartialPermNC([1, 2, 3, 5], [5, 2, 7, 3]),
|
|
1006
|
+
> PartialPermNC([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
|
|
1007
|
+
> PartialPermNC([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])];;
|
|
1008
|
+
gap> s := Semigroup(gens);;
|
|
1009
|
+
gap> Size(s);
|
|
1010
|
+
840
|
|
1011
|
+
gap> NrDClasses(s);
|
|
1012
|
+
176
|
|
1013
|
+
gap> List(DClasses(s), RClasses);
|
|
1014
|
+
[ [ <Green's R-class: [2,7][3,1,5][4,6]> ],
|
|
1015
|
+
[ <Green's R-class: [1,5,3,7](2)> ],
|
|
1016
|
+
[ <Green's R-class: [2,3,4][6,7,5](1)> ],
|
|
1017
|
+
[ <Green's R-class: [7,5,1,3,4,6](2)> ],
|
|
1018
|
+
[ <Green's R-class: [3,5]>,
|
|
1019
|
+
<Green's R-class: <identity partial perm on [ 5 ]>>,
|
|
1020
|
+
<Green's R-class: [1,5]>, <Green's R-class: [7,5]>,
|
|
1021
|
+
<Green's R-class: [6,5]>, <Green's R-class: [4,5]> ],
|
|
1022
|
+
[ <Green's R-class: [1,3][2,5]>, <Green's R-class: [2,5,3]>,
|
|
1023
|
+
<Green's R-class: [2,5][7,3]>, <Green's R-class: [2,5](3)> ],
|
|
1024
|
+
[ <Green's R-class: [2,1,5,6]>, <Green's R-class: [2,1][7,6](5)>,
|
|
1025
|
+
<Green's R-class: [2,1,5][3,6]>, <Green's R-class: [2,1,6](5)>,
|
|
1026
|
+
<Green's R-class: [2,1][7,5,6]>, <Green's R-class: [2,1,6][3,5]> ],
|
|
1027
|
+
[ <Green's R-class: [2,7][3,6](1)(5)> ],
|
|
1028
|
+
[ <Green's R-class: [1,3,5]>, <Green's R-class: [1,5,3]>,
|
|
1029
|
+
<Green's R-class: [1,5][7,3]>, <Green's R-class: [1,5][6,3]>,
|
|
1030
|
+
<Green's R-class: [4,3,5]>, <Green's R-class: [4,3](5)>,
|
|
1031
|
+
<Green's R-class: [7,5](3)>, <Green's R-class: (3,5)>,
|
|
1032
|
+
<Green's R-class: [7,3](5)> ],
|
|
1033
|
+
[ <Green's R-class: [1,3][5,7](2)>, <Green's R-class: [5,3](2)(7)>,
|
|
1034
|
+
<Green's R-class: [1,3,7](2)>, <Green's R-class: [1,7][5,3](2)>,
|
|
1035
|
+
<Green's R-class: [5,7,3](2)>, <Green's R-class: [1,7](2)(3)> ],
|
|
1036
|
+
[ <Green's R-class: [1,5][2,7,3]> ], [ <Green's R-class: [1,7,3](2)(5)> ],
|
|
1037
|
+
[ <Green's R-class: [2,5][3,1][4,7]> ], [ <Green's R-class: [2,3,5,4]> ],
|
|
1038
|
+
[ <Green's R-class: [2,4][6,5](1)> ], [ <Green's R-class: [2,3][5,1,4,7]> ],
|
|
1039
|
+
[ <Green's R-class: [2,5,3](1)>, <Green's R-class: [2,5,1][7,3]>,
|
|
1040
|
+
<Green's R-class: [2,5](1)(3)>, <Green's R-class: [2,5,1,3]>,
|
|
1041
|
+
<Green's R-class: [2,5,3][7,1]>, <Green's R-class: [2,5](1,3)> ],
|
|
1042
|
+
[ <Green's R-class: [3,5,4](1)(2)> ],
|
|
1043
|
+
[ <Green's R-class: [2,4][7,1,3,6,5]> ],
|
|
1044
|
+
[ <Green's R-class: [5,3,6][7,1,4](2)> ],
|
|
1045
|
+
[ <Green's R-class: <empty partial perm>> ], [ <Green's R-class: [2,5]> ],
|
|
1046
|
+
[ <Green's R-class: [1,5][2,6]>, <Green's R-class: [2,6](5)>,
|
|
1047
|
+
<Green's R-class: [2,6][7,5]>, <Green's R-class: [2,6][3,5]> ],
|
|
1048
|
+
[ <Green's R-class: [1,5,6][2,7]>, <Green's R-class: [2,7,6](5)>,
|
|
1049
|
+
<Green's R-class: [1,5][2,7][3,6]>, <Green's R-class: [1,6][2,7](5)>,
|
|
1050
|
+
<Green's R-class: [2,7,5,6]>, <Green's R-class: [1,6][2,7][3,5]> ],
|
|
1051
|
+
[ <Green's R-class: [2,6][7,5](1)> ], [ <Green's R-class: [2,7,5,1,6]> ],
|
|
1052
|
+
[ <Green's R-class: [1,7](2)>, <Green's R-class: [5,7](2)>,
|
|
1053
|
+
<Green's R-class: <identity partial perm on [ 2, 7 ]>>,
|
|
1054
|
+
<Green's R-class: [3,7](2)> ],
|
|
1055
|
+
[ <Green's R-class: [1,5,7][2,3]>, <Green's R-class: [2,3](5)(7)>,
|
|
1056
|
+
<Green's R-class: [1,5][2,3,7]>, <Green's R-class: [1,7][2,3](5)>,
|
|
1057
|
+
<Green's R-class: [2,3](5,7)>, <Green's R-class: [1,7][2,3,5]> ],
|
|
1058
|
+
[ <Green's R-class: [1,5,3](2)>, <Green's R-class: [7,3](2)(5)>,
|
|
1059
|
+
<Green's R-class: [1,5](2)(3)>, <Green's R-class: [1,3](2)(5)>,
|
|
1060
|
+
<Green's R-class: [7,5,3](2)>, <Green's R-class: [1,3,5](2)> ],
|
|
1061
|
+
[ <Green's R-class: [1,7,5][6,3]> ],
|
|
1062
|
+
[ <Green's R-class: [1,7](2)(5)>, <Green's R-class: (2)(5,7)>,
|
|
1063
|
+
<Green's R-class: [1,7][3,5](2)> ],
|
|
1064
|
+
[ <Green's R-class: [2,5,7](1)>, <Green's R-class: [2,5,1](7)>,
|
|
1065
|
+
<Green's R-class: [2,5][3,7](1)>, <Green's R-class: [2,5,1,7]>,
|
|
1066
|
+
<Green's R-class: [2,5,7,1]>, <Green's R-class: [2,5][3,1,7]> ],
|
|
1067
|
+
[ <Green's R-class: [1,4][2,3](5)>, <Green's R-class: [2,3][7,5,4]>,
|
|
1068
|
+
<Green's R-class: [1,4][2,3,5]>, <Green's R-class: [1,5,4][2,3]>,
|
|
1069
|
+
<Green's R-class: [2,3][7,4](5)>, <Green's R-class: [1,5][2,3,4]> ],
|
|
1070
|
+
[ <Green's R-class: [1,5][2,3][7,4]> ], [ <Green's R-class: [2,4,5,1]> ],
|
|
1071
|
+
[ <Green's R-class: [3,4](1)>, <Green's R-class: [5,1,4]>,
|
|
1072
|
+
<Green's R-class: [7,1,4]>, <Green's R-class: [6,1,4]>,
|
|
1073
|
+
<Green's R-class: [3,4,1]>, <Green's R-class: [5,4,1]>,
|
|
1074
|
+
<Green's R-class: [3,1][7,4]>, <Green's R-class: [3,4][5,1]>,
|
|
1075
|
+
<Green's R-class: [5,4][7,1]>, <Green's R-class: [3,1,4]>,
|
|
1076
|
+
<Green's R-class: [5,4](1)>, <Green's R-class: [7,4](1)>,
|
|
1077
|
+
<Green's R-class: [6,4](1)>, <Green's R-class: [3,1](4)>,
|
|
1078
|
+
<Green's R-class: [5,1](4)>, <Green's R-class: [3,4][7,1]>,
|
|
1079
|
+
<Green's R-class: [3,1][5,4]>, <Green's R-class: [5,1][7,4]> ],
|
|
1080
|
+
[ <Green's R-class: [3,7,1,4]> ], [ <Green's R-class: [2,3,7,1][5,4]> ],
|
|
1081
|
+
[ <Green's R-class: [1,4](2)(5)>, <Green's R-class: [7,5,4](2)>,
|
|
1082
|
+
<Green's R-class: [1,4][3,5](2)>, <Green's R-class: [1,5,4](2)>,
|
|
1083
|
+
<Green's R-class: [7,4](2)(5)>, <Green's R-class: [1,5][3,4](2)> ],
|
|
1084
|
+
[ <Green's R-class: [2,5][7,4](1)> ], [ <Green's R-class: [7,4](1,5)(2)> ],
|
|
1085
|
+
[ <Green's R-class: [2,1][4,5](3)> ], [ <Green's R-class: [2,4][3,1][5,6]> ]
|
|
1086
|
+
, [ <Green's R-class: [2,6,1,3]> ], [ <Green's R-class: [1,6][2,4,5,3]> ],
|
|
1087
|
+
[ <Green's R-class: [2,1,3][5,4]>, <Green's R-class: [2,1][5,3][7,4]>,
|
|
1088
|
+
<Green's R-class: [2,1,3,4]>, <Green's R-class: [2,1,4][5,3]>,
|
|
1089
|
+
<Green's R-class: [2,1][5,4][7,3]>, <Green's R-class: [2,1,4](3)> ],
|
|
1090
|
+
[ <Green's R-class: [5,6](1,3)(2)> ], [ <Green's R-class: [2,6,1,4][7,3]> ],
|
|
1091
|
+
[ <Green's R-class: [1,6][5,4][7,3](2)> ],
|
|
1092
|
+
[ <Green's R-class: [1,5][3,6]>, <Green's R-class: [1,6](5)>,
|
|
1093
|
+
<Green's R-class: [1,6][7,5]>, <Green's R-class: [1,6,5]>,
|
|
1094
|
+
<Green's R-class: [3,6][4,5]>, <Green's R-class: [4,5,6]>,
|
|
1095
|
+
<Green's R-class: [3,5][7,6]>, <Green's R-class: [3,6](5)>,
|
|
1096
|
+
<Green's R-class: [7,5,6]>, <Green's R-class: [1,6][3,5]>,
|
|
1097
|
+
<Green's R-class: [1,5,6]>, <Green's R-class: [1,5][7,6]>,
|
|
1098
|
+
<Green's R-class: [1,5](6)>, <Green's R-class: [3,5][4,6]>,
|
|
1099
|
+
<Green's R-class: [4,6](5)>, <Green's R-class: [3,6][7,5]>,
|
|
1100
|
+
<Green's R-class: [3,5,6]>, <Green's R-class: [7,6](5)> ],
|
|
1101
|
+
[ <Green's R-class: [1,6][2,7]>, <Green's R-class: [2,7][5,6]>,
|
|
1102
|
+
<Green's R-class: [2,7,6]>, <Green's R-class: [2,7][3,6]> ],
|
|
1103
|
+
[ <Green's R-class: [2,5,6](1)>, <Green's R-class: [2,5,1][7,6]>,
|
|
1104
|
+
<Green's R-class: [2,5][3,6](1)>, <Green's R-class: [2,5,1,6]>,
|
|
1105
|
+
<Green's R-class: [2,5,6][7,1]>, <Green's R-class: [2,5][3,1,6]> ],
|
|
1106
|
+
[ <Green's R-class: [2,7](1)(5)>, <Green's R-class: [2,7,5,1]>,
|
|
1107
|
+
<Green's R-class: [2,7][3,5](1)>, <Green's R-class: [2,7](1,5)>,
|
|
1108
|
+
<Green's R-class: [2,7,1](5)>, <Green's R-class: [2,7][3,1,5]> ],
|
|
1109
|
+
[ <Green's R-class: [7,1,6,5]> ],
|
|
1110
|
+
[ <Green's R-class: [2,7][5,1,6]>, <Green's R-class: [2,7,1][5,6]>,
|
|
1111
|
+
<Green's R-class: [2,7][3,1,6]>, <Green's R-class: [2,7][5,6](1)>,
|
|
1112
|
+
<Green's R-class: [2,7,6][5,1]>, <Green's R-class: [2,7][3,6](1)> ],
|
|
1113
|
+
[ <Green's R-class: <identity partial perm on [ 2 ]>> ],
|
|
1114
|
+
[ <Green's R-class: [6,3][7,5]> ], [ <Green's R-class: [2,5][4,3,7]> ],
|
|
1115
|
+
[ <Green's R-class: [2,4](1)>, <Green's R-class: [2,4][5,1]>,
|
|
1116
|
+
<Green's R-class: [2,4][7,1]>, <Green's R-class: [2,4][3,1]> ],
|
|
1117
|
+
[ <Green's R-class: [2,4][3,5][7,1]> ],
|
|
1118
|
+
[ <Green's R-class: [2,1,4]>, <Green's R-class: [2,1][5,4]>,
|
|
1119
|
+
<Green's R-class: [2,1][7,4]>, <Green's R-class: [2,1][3,4]> ],
|
|
1120
|
+
[ <Green's R-class: [2,7][6,1,4]> ],
|
|
1121
|
+
[ <Green's R-class: [1,4][3,7]>, <Green's R-class: [1,7][5,4]>,
|
|
1122
|
+
<Green's R-class: [1,7,4]>, <Green's R-class: [1,7][6,4]>,
|
|
1123
|
+
<Green's R-class: [3,7](4)>, <Green's R-class: [5,7](4)>,
|
|
1124
|
+
<Green's R-class: [3,4](7)>, <Green's R-class: [3,7][5,4]>,
|
|
1125
|
+
<Green's R-class: [5,7,4]>, <Green's R-class: [1,7][3,4]>,
|
|
1126
|
+
<Green's R-class: [1,4][5,7]>, <Green's R-class: [1,4](7)>,
|
|
1127
|
+
<Green's R-class: [1,4][6,7]>, <Green's R-class: [3,4,7]>,
|
|
1128
|
+
<Green's R-class: [5,4,7]>, <Green's R-class: [3,7,4]>,
|
|
1129
|
+
<Green's R-class: [3,4][5,7]>, <Green's R-class: [5,4](7)> ],
|
|
1130
|
+
[ <Green's R-class: [2,3,1,4][5,7]> ], [ <Green's R-class: [2,7,4][6,1]> ],
|
|
1131
|
+
[ <Green's R-class: [1,7,4][2,3]> ],
|
|
1132
|
+
[ <Green's R-class: [5,4](1)(2)>, <Green's R-class: [5,1][7,4](2)>,
|
|
1133
|
+
<Green's R-class: [3,4](1)(2)>, <Green's R-class: [5,1,4](2)>,
|
|
1134
|
+
<Green's R-class: [5,4][7,1](2)>, <Green's R-class: [3,1,4](2)> ],
|
|
1135
|
+
[ <Green's R-class: [6,4][7,1,5]> ],
|
|
1136
|
+
[ <Green's R-class: [2,1,3](5)>, <Green's R-class: [2,1][7,5,3]>,
|
|
1137
|
+
<Green's R-class: [2,1,3,5]>, <Green's R-class: [2,1,5,3]>,
|
|
1138
|
+
<Green's R-class: [2,1][7,3](5)>, <Green's R-class: [2,1,5](3)> ],
|
|
1139
|
+
[ <Green's R-class: [2,4][5,1,6]>, <Green's R-class: [2,4][5,6][7,1]>,
|
|
1140
|
+
<Green's R-class: [2,4][3,1,6]>, <Green's R-class: [2,4][5,6](1)>,
|
|
1141
|
+
<Green's R-class: [2,4][5,1][7,6]>, <Green's R-class: [2,4][3,6](1)> ],
|
|
1142
|
+
[ <Green's R-class: [2,4][7,6](1)> ], [ <Green's R-class: [2,6][4,1][5,3]> ]
|
|
1143
|
+
,
|
|
1144
|
+
[ <Green's R-class: [1,3,6]>, <Green's R-class: [1,6][5,3]>,
|
|
1145
|
+
<Green's R-class: [1,6][7,3]>, <Green's R-class: [1,6,3]>,
|
|
1146
|
+
<Green's R-class: [4,3,6]>, <Green's R-class: [4,3][5,6]>,
|
|
1147
|
+
<Green's R-class: [7,6](3)>, <Green's R-class: [5,3,6]>,
|
|
1148
|
+
<Green's R-class: [5,6][7,3]>, <Green's R-class: [1,6](3)>,
|
|
1149
|
+
<Green's R-class: [1,3][5,6]>, <Green's R-class: [1,3][7,6]>,
|
|
1150
|
+
<Green's R-class: [1,3](6)>, <Green's R-class: [4,6](3)>,
|
|
1151
|
+
<Green's R-class: [4,6][5,3]>, <Green's R-class: [7,3,6]>,
|
|
1152
|
+
<Green's R-class: [5,6](3)>, <Green's R-class: [5,3][7,6]> ],
|
|
1153
|
+
[ <Green's R-class: [1,6][7,3,5]> ], [ <Green's R-class: [2,4][7,3,5,6]> ],
|
|
1154
|
+
[ <Green's R-class: [5,1,6](2)>, <Green's R-class: [5,6][7,1](2)>,
|
|
1155
|
+
<Green's R-class: [3,1,6](2)>, <Green's R-class: [5,6](1)(2)>,
|
|
1156
|
+
<Green's R-class: [5,1][7,6](2)>, <Green's R-class: [3,6](1)(2)> ],
|
|
1157
|
+
[ <Green's R-class: [2,1,3][7,6]> ], [ <Green's R-class: [5,3][7,6](1)(2)> ]
|
|
1158
|
+
, [ <Green's R-class: [2,3,4,1]> ], [ <Green's R-class: [2,6][5,4,1]> ],
|
|
1159
|
+
[ <Green's R-class: [1,4][2,3][5,6]>, <Green's R-class: [2,3][5,4][7,6]>,
|
|
1160
|
+
<Green's R-class: [1,4][2,3,6]>, <Green's R-class: [1,6][2,3][5,4]>,
|
|
1161
|
+
<Green's R-class: [2,3][5,6][7,4]>, <Green's R-class: [1,6][2,3,4]> ],
|
|
1162
|
+
[ <Green's R-class: [1,4][5,3](2)>, <Green's R-class: [5,4][7,3](2)>,
|
|
1163
|
+
<Green's R-class: [1,4](2)(3)>, <Green's R-class: [1,3][5,4](2)>,
|
|
1164
|
+
<Green's R-class: [5,3][7,4](2)>, <Green's R-class: [1,3,4](2)> ],
|
|
1165
|
+
[ <Green's R-class: [1,6,3][7,4]> ],
|
|
1166
|
+
[ <Green's R-class: [1,6][5,4](2)>, <Green's R-class: [5,6][7,4](2)>,
|
|
1167
|
+
<Green's R-class: [1,6][3,4](2)>, <Green's R-class: [1,4][5,6](2)>,
|
|
1168
|
+
<Green's R-class: [5,4][7,6](2)>, <Green's R-class: [1,4][3,6](2)> ],
|
|
1169
|
+
[ <Green's R-class: [1,6][2,5]>, <Green's R-class: [2,5,6]>,
|
|
1170
|
+
<Green's R-class: [2,5][7,6]>, <Green's R-class: [2,5][3,6]> ],
|
|
1171
|
+
[ <Green's R-class: [7,6,5]> ], [ <Green's R-class: [7,5](6)> ],
|
|
1172
|
+
[ <Green's R-class: [2,1][3,6][4,5]> ], [ <Green's R-class: [2,5][4,3]> ],
|
|
1173
|
+
[ <Green's R-class: [1,7][2,5,3]>, <Green's R-class: [2,5,7,3]>,
|
|
1174
|
+
<Green's R-class: [1,7][2,5](3)>, <Green's R-class: [1,3][2,5,7]>,
|
|
1175
|
+
<Green's R-class: [2,5,3](7)>, <Green's R-class: [1,3,7][2,5]> ],
|
|
1176
|
+
[ <Green's R-class: [2,3][6,5]> ], [ <Green's R-class: [2,4][3,1](5)> ],
|
|
1177
|
+
[ <Green's R-class: [2,7][5,4,1]> ],
|
|
1178
|
+
[ <Green's R-class: [2,3][5,1,7]>, <Green's R-class: [2,3][5,7,1]>,
|
|
1179
|
+
<Green's R-class: [2,3,1,7]>, <Green's R-class: [2,3][5,7](1)>,
|
|
1180
|
+
<Green's R-class: [2,3][5,1](7)>, <Green's R-class: [2,3,7](1)> ],
|
|
1181
|
+
[ <Green's R-class: [2,1,4](7)> ], [ <Green's R-class: [2,3][5,4](1)(7)> ],
|
|
1182
|
+
[ <Green's R-class: [2,4,1]> ],
|
|
1183
|
+
[ <Green's R-class: [1,7][2,4]>, <Green's R-class: [2,4][5,7]>,
|
|
1184
|
+
<Green's R-class: [2,4](7)>, <Green's R-class: [2,4][3,7]> ],
|
|
1185
|
+
[ <Green's R-class: [2,4](1,5)>, <Green's R-class: [2,4][7,1](5)>,
|
|
1186
|
+
<Green's R-class: [2,4][3,1,5]>, <Green's R-class: [2,4](1)(5)>,
|
|
1187
|
+
<Green's R-class: [2,4][7,5,1]>, <Green's R-class: [2,4][3,5](1)> ],
|
|
1188
|
+
[ <Green's R-class: [2,1][3,5](4)> ],
|
|
1189
|
+
[ <Green's R-class: [1,3][2,6]>, <Green's R-class: [2,6][5,3]>,
|
|
1190
|
+
<Green's R-class: [2,6][7,3]>, <Green's R-class: [2,6](3)> ],
|
|
1191
|
+
[ <Green's R-class: [2,6][7,3,1]> ],
|
|
1192
|
+
[ <Green's R-class: [1,6][2,3]>, <Green's R-class: [2,3][5,6]>,
|
|
1193
|
+
<Green's R-class: [2,3][7,6]>, <Green's R-class: [2,3,6]> ],
|
|
1194
|
+
[ <Green's R-class: [1,6,3][2,5]> ], [ <Green's R-class: [1,6][2,4](3)(5)> ]
|
|
1195
|
+
, [ <Green's R-class: [2,5][7,6,3]> ],
|
|
1196
|
+
[ <Green's R-class: [1,5][2,4][7,6]> ],
|
|
1197
|
+
[ <Green's R-class: [1,3][5,6](2)>, <Green's R-class: [5,3][7,6](2)>,
|
|
1198
|
+
<Green's R-class: [1,3,6](2)>, <Green's R-class: [1,6][5,3](2)>,
|
|
1199
|
+
<Green's R-class: [5,6][7,3](2)>, <Green's R-class: [1,6](2)(3)> ],
|
|
1200
|
+
[ <Green's R-class: [7,3](1)(6)> ],
|
|
1201
|
+
[ <Green's R-class: [1,4][2,6]>, <Green's R-class: [2,6][5,4]>,
|
|
1202
|
+
<Green's R-class: [2,6][7,4]>, <Green's R-class: [2,6][3,4]> ],
|
|
1203
|
+
[ <Green's R-class: [2,6][3,1][7,4]> ], [ <Green's R-class: [2,4,3,6]> ],
|
|
1204
|
+
[ <Green's R-class: [1,6][2,4]>, <Green's R-class: [2,4][5,6]>,
|
|
1205
|
+
<Green's R-class: [2,4][7,6]>, <Green's R-class: [2,4][3,6]> ],
|
|
1206
|
+
[ <Green's R-class: [7,6,4]> ],
|
|
1207
|
+
[ <Green's R-class: [1,6](2)>, <Green's R-class: [5,6](2)>,
|
|
1208
|
+
<Green's R-class: [7,6](2)>, <Green's R-class: [3,6](2)> ],
|
|
1209
|
+
[ <Green's R-class: [2,6][4,5]> ], [ <Green's R-class: [2,5][4,6]> ],
|
|
1210
|
+
[ <Green's R-class: [2,4][7,5](1)> ], [ <Green's R-class: [6,1][7,4]> ],
|
|
1211
|
+
[ <Green's R-class: [1,4][2,7]>, <Green's R-class: [2,7][5,4]>,
|
|
1212
|
+
<Green's R-class: [2,7,4]>, <Green's R-class: [2,7][3,4]> ],
|
|
1213
|
+
[ <Green's R-class: [2,7,4][3,1]> ], [ <Green's R-class: [6,4](7)> ],
|
|
1214
|
+
[ <Green's R-class: [1,4][2,3][5,7]>, <Green's R-class: [2,3][5,4](7)>,
|
|
1215
|
+
<Green's R-class: [1,4][2,3,7]>, <Green's R-class: [1,7][2,3][5,4]>,
|
|
1216
|
+
<Green's R-class: [2,3][5,7,4]>, <Green's R-class: [1,7][2,3,4]> ],
|
|
1217
|
+
[ <Green's R-class: [6,7,4](1)> ],
|
|
1218
|
+
[ <Green's R-class: [2,3][5,4](1)>, <Green's R-class: [2,3][5,1][7,4]>,
|
|
1219
|
+
<Green's R-class: [2,3,4](1)>, <Green's R-class: [2,3][5,1,4]>,
|
|
1220
|
+
<Green's R-class: [2,3][5,4][7,1]>, <Green's R-class: [2,3,1,4]> ],
|
|
1221
|
+
[ <Green's R-class: [6,4][7,1]> ],
|
|
1222
|
+
[ <Green's R-class: [1,4](2)>, <Green's R-class: [5,4](2)>,
|
|
1223
|
+
<Green's R-class: [7,4](2)>, <Green's R-class: [3,4](2)> ],
|
|
1224
|
+
[ <Green's R-class: [2,1,5,4]>, <Green's R-class: [2,1][7,4](5)>,
|
|
1225
|
+
<Green's R-class: [2,1,5][3,4]>, <Green's R-class: [2,1,4](5)>,
|
|
1226
|
+
<Green's R-class: [2,1][7,5,4]>, <Green's R-class: [2,1,4][3,5]> ],
|
|
1227
|
+
[ <Green's R-class: [2,6][5,1](3)> ], [ <Green's R-class: [2,5,6][4,3]> ],
|
|
1228
|
+
[ <Green's R-class: [1,5,3][2,4]>, <Green's R-class: [2,4][7,3](5)>,
|
|
1229
|
+
<Green's R-class: [1,5][2,4](3)>, <Green's R-class: [1,3][2,4](5)>,
|
|
1230
|
+
<Green's R-class: [2,4][7,5,3]>, <Green's R-class: [1,3,5][2,4]> ],
|
|
1231
|
+
[ <Green's R-class: [1,6][2,3][7,5]> ],
|
|
1232
|
+
[ <Green's R-class: [1,3][2,4][7,5,6]> ], [ <Green's R-class: [2,6][4,3]> ],
|
|
1233
|
+
[ <Green's R-class: [2,6][5,3](1)>, <Green's R-class: [2,6][5,1][7,3]>,
|
|
1234
|
+
<Green's R-class: [2,6](1)(3)>, <Green's R-class: [2,6][5,1,3]>,
|
|
1235
|
+
<Green's R-class: [2,6][5,3][7,1]>, <Green's R-class: [2,6](1,3)> ],
|
|
1236
|
+
[ <Green's R-class: [2,3,1][4,6]> ], [ <Green's R-class: [2,1][6,4]> ],
|
|
1237
|
+
[ <Green's R-class: [2,6][3,4][5,1]> ],
|
|
1238
|
+
[ <Green's R-class: [1,4][3,6]>, <Green's R-class: [1,6][5,4]>,
|
|
1239
|
+
<Green's R-class: [1,6][7,4]>, <Green's R-class: [1,6,4]>,
|
|
1240
|
+
<Green's R-class: [3,6](4)>, <Green's R-class: [5,6](4)>,
|
|
1241
|
+
<Green's R-class: [3,4][7,6]>, <Green's R-class: [3,6][5,4]>,
|
|
1242
|
+
<Green's R-class: [5,6][7,4]>, <Green's R-class: [1,6][3,4]>,
|
|
1243
|
+
<Green's R-class: [1,4][5,6]>, <Green's R-class: [1,4][7,6]>,
|
|
1244
|
+
<Green's R-class: [1,4](6)>, <Green's R-class: [3,4,6]>,
|
|
1245
|
+
<Green's R-class: [5,4,6]>, <Green's R-class: [3,6][7,4]>,
|
|
1246
|
+
<Green's R-class: [3,4][5,6]>, <Green's R-class: [5,4][7,6]> ],
|
|
1247
|
+
[ <Green's R-class: [2,6](4)> ], [ <Green's R-class: [2,5](6)> ],
|
|
1248
|
+
[ <Green's R-class: [2,7][3,4][5,1]> ], [ <Green's R-class: [2,7](4)> ],
|
|
1249
|
+
[ <Green's R-class: [2,7][5,4](1)>, <Green's R-class: [2,7,4][5,1]>,
|
|
1250
|
+
<Green's R-class: [2,7][3,4](1)>, <Green's R-class: [2,7][5,1,4]>,
|
|
1251
|
+
<Green's R-class: [2,7,1][5,4]>, <Green's R-class: [2,7][3,1,4]> ],
|
|
1252
|
+
[ <Green's R-class: [2,4,7][3,1]> ], [ <Green's R-class: [2,1](4)> ],
|
|
1253
|
+
[ <Green's R-class: [2,4][6,1]> ], [ <Green's R-class: [2,6][7,1,3]> ],
|
|
1254
|
+
[ <Green's R-class: [7,6,3]> ], [ <Green's R-class: [2,5][7,6](3)> ],
|
|
1255
|
+
[ <Green's R-class: [1,6][2,4](5)>, <Green's R-class: [2,4][7,5,6]>,
|
|
1256
|
+
<Green's R-class: [1,6][2,4][3,5]>, <Green's R-class: [1,5,6][2,4]>,
|
|
1257
|
+
<Green's R-class: [2,4][7,6](5)>, <Green's R-class: [1,5][2,4][3,6]> ],
|
|
1258
|
+
[ <Green's R-class: [1,3][7,6,5]> ],
|
|
1259
|
+
[ <Green's R-class: [1,3][2,4][5,6]>, <Green's R-class: [2,4][5,3][7,6]>,
|
|
1260
|
+
<Green's R-class: [1,3,6][2,4]>, <Green's R-class: [1,6][2,4][5,3]>,
|
|
1261
|
+
<Green's R-class: [2,4][5,6][7,3]>, <Green's R-class: [1,6][2,4](3)> ],
|
|
1262
|
+
[ <Green's R-class: [7,3](6)> ],
|
|
1263
|
+
[ <Green's R-class: [2,3][5,6](1)>, <Green's R-class: [2,3][5,1][7,6]>,
|
|
1264
|
+
<Green's R-class: [2,3,6](1)>, <Green's R-class: [2,3][5,1,6]>,
|
|
1265
|
+
<Green's R-class: [2,3][5,6][7,1]>, <Green's R-class: [2,3,1,6]> ],
|
|
1266
|
+
[ <Green's R-class: [2,6][5,4](1)>, <Green's R-class: [2,6][5,1][7,4]>,
|
|
1267
|
+
<Green's R-class: [2,6][3,4](1)>, <Green's R-class: [2,6][5,1,4]>,
|
|
1268
|
+
<Green's R-class: [2,6][5,4][7,1]>, <Green's R-class: [2,6][3,1,4]> ],
|
|
1269
|
+
[ <Green's R-class: [2,6][7,1,4]> ], [ <Green's R-class: [2,3](6)> ],
|
|
1270
|
+
[ <Green's R-class: [2,6,5]> ], [ <Green's R-class: [2,7,1,4]> ],
|
|
1271
|
+
[ <Green's R-class: [6,7,4]> ],
|
|
1272
|
+
[ <Green's R-class: [2,4][5,7](1)>, <Green's R-class: [2,4][5,1](7)>,
|
|
1273
|
+
<Green's R-class: [2,4][3,7](1)>, <Green's R-class: [2,4][5,1,7]>,
|
|
1274
|
+
<Green's R-class: [2,4][5,7,1]>, <Green's R-class: [2,4][3,1,7]> ],
|
|
1275
|
+
[ <Green's R-class: [2,4][6,7]> ], [ <Green's R-class: [2,5,3,6]> ],
|
|
1276
|
+
[ <Green's R-class: [1,3][2,5,6]>, <Green's R-class: [2,5,3][7,6]>,
|
|
1277
|
+
<Green's R-class: [1,3,6][2,5]>, <Green's R-class: [1,6][2,5,3]>,
|
|
1278
|
+
<Green's R-class: [2,5,6][7,3]>, <Green's R-class: [1,6][2,5](3)> ],
|
|
1279
|
+
[ <Green's R-class: [2,6][4,5](3)> ], [ <Green's R-class: [2,3][4,6]> ],
|
|
1280
|
+
[ <Green's R-class: [2,6,3]> ], [ <Green's R-class: [2,4](6)> ],
|
|
1281
|
+
[ <Green's R-class: [7,4](6)> ], [ <Green's R-class: [2,4,7]> ],
|
|
1282
|
+
[ <Green's R-class: [2,7][6,4]> ], [ <Green's R-class: [1,6][2,5][7,3]> ],
|
|
1283
|
+
[ <Green's R-class: [1,3][2,6](5)>, <Green's R-class: [2,6][7,5,3]>,
|
|
1284
|
+
<Green's R-class: [1,3,5][2,6]>, <Green's R-class: [1,5,3][2,6]>,
|
|
1285
|
+
<Green's R-class: [2,6][7,3](5)>, <Green's R-class: [1,5][2,6](3)> ],
|
|
1286
|
+
[ <Green's R-class: [2,4,6]> ], [ <Green's R-class: [2,6,4]> ] ]
|
|
1287
|
+
gap> ForAll(Union(List(Union(last), Elements)), x -> x in s);
|
|
1288
|
+
true
|
|
1289
|
+
gap> Union(List(last2, Elements));
|
|
1290
|
+
[ <Green's R-class: [2,7][3,1,5][4,6]>, <Green's R-class: [1,5,3,7](2)>,
|
|
1291
|
+
<Green's R-class: [2,3,4][6,7,5](1)>, <Green's R-class: [7,5,1,3,4,6](2)>,
|
|
1292
|
+
<Green's R-class: [3,5]>, <Green's R-class: [2,5,3]>,
|
|
1293
|
+
<Green's R-class: [2,1,5][3,6]>, <Green's R-class: [2,7][3,6](1)(5)>,
|
|
1294
|
+
<Green's R-class: [1,3,5]>, <Green's R-class: [1,3][5,7](2)>,
|
|
1295
|
+
<Green's R-class: [1,5][2,7,3]>, <Green's R-class: [1,7,3](2)(5)>,
|
|
1296
|
+
<Green's R-class: [2,5][3,1][4,7]>, <Green's R-class: [2,3,5,4]>,
|
|
1297
|
+
<Green's R-class: [2,4][6,5](1)>, <Green's R-class: [2,3][5,1,4,7]>,
|
|
1298
|
+
<Green's R-class: [2,5](1)(3)>, <Green's R-class: [3,5,4](1)(2)>,
|
|
1299
|
+
<Green's R-class: [2,4][7,1,3,6,5]>, <Green's R-class: [5,3,6][7,1,4](2)>,
|
|
1300
|
+
<Green's R-class: <empty partial perm>>,
|
|
1301
|
+
<Green's R-class: <identity partial perm on [ 5 ]>>,
|
|
1302
|
+
<Green's R-class: [2,5]>, <Green's R-class: [1,5]>,
|
|
1303
|
+
<Green's R-class: [1,3][2,5]>, <Green's R-class: [7,5]>,
|
|
1304
|
+
<Green's R-class: [2,5][7,3]>, <Green's R-class: [1,5][2,6]>,
|
|
1305
|
+
<Green's R-class: [2,1,6](5)>, <Green's R-class: [1,5,6][2,7]>,
|
|
1306
|
+
<Green's R-class: [2,6][7,5](1)>, <Green's R-class: [2,7,5,1,6]>,
|
|
1307
|
+
<Green's R-class: [1,5,3]>, <Green's R-class: [1,7](2)>,
|
|
1308
|
+
<Green's R-class: [1,5][7,3]>, <Green's R-class: [5,3](2)(7)>,
|
|
1309
|
+
<Green's R-class: [2,5](3)>, <Green's R-class: [1,5][6,3]>,
|
|
1310
|
+
<Green's R-class: [1,5][2,3,7]>, <Green's R-class: [1,5](2)(3)>,
|
|
1311
|
+
<Green's R-class: [1,7,5][6,3]>, <Green's R-class: (2)(5,7)>,
|
|
1312
|
+
<Green's R-class: [2,5][3,7](1)>, <Green's R-class: [1,4][2,3](5)>,
|
|
1313
|
+
<Green's R-class: [1,5][2,3][7,4]>, <Green's R-class: [4,3,5]>,
|
|
1314
|
+
<Green's R-class: [2,4,5,1]>, <Green's R-class: [3,4](1)>,
|
|
1315
|
+
<Green's R-class: [3,7,1,4]>, <Green's R-class: [2,3,7,1][5,4]>,
|
|
1316
|
+
<Green's R-class: [2,5,1,3]>, <Green's R-class: [3,1,4]>,
|
|
1317
|
+
<Green's R-class: [1,4](2)(5)>, <Green's R-class: [2,5][7,4](1)>,
|
|
1318
|
+
<Green's R-class: [7,4](1,5)(2)>, <Green's R-class: [2,1][4,5](3)>,
|
|
1319
|
+
<Green's R-class: [2,4][3,1][5,6]>, <Green's R-class: [2,6,1,3]>,
|
|
1320
|
+
<Green's R-class: [1,6][2,4,5,3]>, <Green's R-class: [2,1,3,4]>,
|
|
1321
|
+
<Green's R-class: [5,6](1,3)(2)>, <Green's R-class: [2,6,1,4][7,3]>,
|
|
1322
|
+
<Green's R-class: [1,6][5,4][7,3](2)>, <Green's R-class: [6,5]>,
|
|
1323
|
+
<Green's R-class: [2,6](5)>, <Green's R-class: [1,5][3,6]>,
|
|
1324
|
+
<Green's R-class: [1,6][7,5]>, <Green's R-class: [2,1][7,5,6]>,
|
|
1325
|
+
<Green's R-class: [1,6][3,5]>, <Green's R-class: [1,6][2,7]>,
|
|
1326
|
+
<Green's R-class: [1,5][7,6]>, <Green's R-class: [2,7,6](5)>,
|
|
1327
|
+
<Green's R-class: [2,6][3,5]>, <Green's R-class: [2,5][3,6](1)>,
|
|
1328
|
+
<Green's R-class: [2,7][3,5](1)>, <Green's R-class: [7,1,6,5]>,
|
|
1329
|
+
<Green's R-class: [2,7,1][5,6]>, <Green's R-class: [7,3](5)>,
|
|
1330
|
+
<Green's R-class: <identity partial perm on [ 2 ]>>,
|
|
1331
|
+
<Green's R-class: [5,7](2)>, <Green's R-class: [1,3,7](2)>,
|
|
1332
|
+
<Green's R-class: [6,3][7,5]>,
|
|
1333
|
+
<Green's R-class: <identity partial perm on [ 2, 7 ]>>,
|
|
1334
|
+
<Green's R-class: [4,3](5)>, <Green's R-class: [1,7][2,3](5)>,
|
|
1335
|
+
<Green's R-class: [1,3](2)(5)>, <Green's R-class: [2,5][4,3,7]>,
|
|
1336
|
+
<Green's R-class: [1,7][3,5](2)>, <Green's R-class: [2,5,1,7]>,
|
|
1337
|
+
<Green's R-class: [2,3][7,5,4]>, <Green's R-class: [2,4](1)>,
|
|
1338
|
+
<Green's R-class: [7,5](3)>, <Green's R-class: [2,4][3,5][7,1]>,
|
|
1339
|
+
<Green's R-class: [5,1,4]>, <Green's R-class: [2,1][3,4]>,
|
|
1340
|
+
<Green's R-class: (3,5)>, <Green's R-class: [2,7][6,1,4]>,
|
|
1341
|
+
<Green's R-class: [1,7][5,4]>, <Green's R-class: [2,1,4]>,
|
|
1342
|
+
<Green's R-class: [2,3,1,4][5,7]>, <Green's R-class: [2,7,4][6,1]>,
|
|
1343
|
+
<Green's R-class: [1,7,4][2,3]>, <Green's R-class: [2,5,3][7,1]>,
|
|
1344
|
+
<Green's R-class: [5,4](1)>, <Green's R-class: [7,5,4](2)>,
|
|
1345
|
+
<Green's R-class: [2,4][3,1]>, <Green's R-class: [6,4](1)>,
|
|
1346
|
+
<Green's R-class: [2,4][3,5](1)>, <Green's R-class: [3,4](1)(2)>,
|
|
1347
|
+
<Green's R-class: [6,4][7,1,5]>, <Green's R-class: [2,1,3,5]>,
|
|
1348
|
+
<Green's R-class: [2,4][5,1,6]>, <Green's R-class: [2,4][7,6](1)>,
|
|
1349
|
+
<Green's R-class: [2,6][4,1][5,3]>, <Green's R-class: [1,3,6]>,
|
|
1350
|
+
<Green's R-class: [1,6][7,3,5]>, <Green's R-class: [2,4][7,3,5,6]>,
|
|
1351
|
+
<Green's R-class: [2,1][5,4]>, <Green's R-class: [2,1,4][5,3]>,
|
|
1352
|
+
<Green's R-class: [1,6](3)>, <Green's R-class: [5,1,6](2)>,
|
|
1353
|
+
<Green's R-class: [2,1,3][7,6]>, <Green's R-class: [5,3][7,6](1)(2)>,
|
|
1354
|
+
<Green's R-class: [2,3,4,1]>, <Green's R-class: [2,6](3)>,
|
|
1355
|
+
<Green's R-class: [2,6][5,4,1]>, <Green's R-class: [1,4][2,3,6]>,
|
|
1356
|
+
<Green's R-class: [1,4](2)(3)>, <Green's R-class: [1,6,3][7,4]>,
|
|
1357
|
+
<Green's R-class: [5,6][7,4](2)>, <Green's R-class: [4,5]>,
|
|
1358
|
+
<Green's R-class: [2,6][7,5]>, <Green's R-class: [1,6](5)>,
|
|
1359
|
+
<Green's R-class: [2,5][3,6]>, <Green's R-class: [1,6,5]>,
|
|
1360
|
+
<Green's R-class: [1,6][2,5]>, <Green's R-class: [2,1,6][3,5]>,
|
|
1361
|
+
<Green's R-class: [7,6,5]>, <Green's R-class: [1,5,6]>,
|
|
1362
|
+
<Green's R-class: [2,7][5,6]>, <Green's R-class: [1,5](6)>,
|
|
1363
|
+
<Green's R-class: [1,5][2,7][3,6]>, <Green's R-class: [7,5](6)>,
|
|
1364
|
+
<Green's R-class: [2,5,6]>, <Green's R-class: [2,5,1,6]>,
|
|
1365
|
+
<Green's R-class: [2,7](1,5)>, <Green's R-class: [2,1][3,6][4,5]>,
|
|
1366
|
+
<Green's R-class: [4,5,6]>, <Green's R-class: [2,7][3,1,6]>,
|
|
1367
|
+
<Green's R-class: [2,7,6]>, <Green's R-class: [1,7][5,3](2)>,
|
|
1368
|
+
<Green's R-class: [2,5][4,3]>, <Green's R-class: [3,7](2)>,
|
|
1369
|
+
<Green's R-class: [2,3](5,7)>, <Green's R-class: [7,5,3](2)>,
|
|
1370
|
+
<Green's R-class: [1,7][2,5](3)>, <Green's R-class: [1,7](2)(5)>,
|
|
1371
|
+
<Green's R-class: [2,5,7,1]>, <Green's R-class: [1,4][2,3,5]>,
|
|
1372
|
+
<Green's R-class: [2,4][5,1]>, <Green's R-class: [2,3][6,5]>,
|
|
1373
|
+
<Green's R-class: [2,4][3,1](5)>, <Green's R-class: [7,1,4]>,
|
|
1374
|
+
<Green's R-class: [5,4][7,1]>, <Green's R-class: [3,4,1]>,
|
|
1375
|
+
<Green's R-class: [2,7][5,4,1]>, <Green's R-class: [1,4][3,7]>,
|
|
1376
|
+
<Green's R-class: [1,7,4]>, <Green's R-class: [5,7,4]>,
|
|
1377
|
+
<Green's R-class: [1,7][3,4]>, <Green's R-class: [2,3][5,1,7]>,
|
|
1378
|
+
<Green's R-class: [2,1,4](7)>, <Green's R-class: [2,3][5,4](1)(7)>,
|
|
1379
|
+
<Green's R-class: [2,4,1]>, <Green's R-class: [2,7][3,4]>,
|
|
1380
|
+
<Green's R-class: [2,4][3,7]>, <Green's R-class: [1,7][6,4]>,
|
|
1381
|
+
<Green's R-class: [2,5](1,3)>, <Green's R-class: [7,4](1)>,
|
|
1382
|
+
<Green's R-class: [5,1][7,4]>, <Green's R-class: [1,4][3,5](2)>,
|
|
1383
|
+
<Green's R-class: [7,4](2)>, <Green's R-class: [3,1](4)>,
|
|
1384
|
+
<Green's R-class: [5,1](4)>, <Green's R-class: [2,4](1,5)>,
|
|
1385
|
+
<Green's R-class: [5,4](2)>, <Green's R-class: [5,1,4](2)>,
|
|
1386
|
+
<Green's R-class: [2,1][3,5](4)>, <Green's R-class: [2,1,5,3]>,
|
|
1387
|
+
<Green's R-class: [2,4][5,6][7,1]>, <Green's R-class: [2,4][3,6]>,
|
|
1388
|
+
<Green's R-class: [1,3][2,6]>, <Green's R-class: [2,6][7,3,1]>,
|
|
1389
|
+
<Green's R-class: [1,6][5,3]>, <Green's R-class: [2,3,6]>,
|
|
1390
|
+
<Green's R-class: [1,6,3][2,5]>, <Green's R-class: [1,6][2,3]>,
|
|
1391
|
+
<Green's R-class: [1,6][2,4](3)(5)>, <Green's R-class: [2,5][7,6,3]>,
|
|
1392
|
+
<Green's R-class: [1,5][2,4][7,6]>, <Green's R-class: [2,1][7,4]>,
|
|
1393
|
+
<Green's R-class: [2,1][5,4][7,3]>, <Green's R-class: [1,3][5,6]>,
|
|
1394
|
+
<Green's R-class: [5,6][7,1](2)>, <Green's R-class: [1,3](6)>,
|
|
1395
|
+
<Green's R-class: [2,6](1,3)>, <Green's R-class: [1,3,6](2)>,
|
|
1396
|
+
<Green's R-class: [7,3](1)(6)>, <Green's R-class: [2,3,1,4]>,
|
|
1397
|
+
<Green's R-class: [2,6][5,3]>, <Green's R-class: [1,4][2,6]>,
|
|
1398
|
+
<Green's R-class: [3,1][7,4]>, <Green's R-class: [2,6][3,1][7,4]>,
|
|
1399
|
+
<Green's R-class: [2,3][5,6]>, <Green's R-class: [1,6][2,3][5,4]>,
|
|
1400
|
+
<Green's R-class: [1,3][5,4](2)>, <Green's R-class: [2,4,3,6]>,
|
|
1401
|
+
<Green's R-class: [1,6,4]>, <Green's R-class: [4,3][5,6]>,
|
|
1402
|
+
<Green's R-class: [1,6][2,4]>, <Green's R-class: [1,6][3,4](2)>,
|
|
1403
|
+
<Green's R-class: [7,6,4]>, <Green's R-class: [7,6](2)>,
|
|
1404
|
+
<Green's R-class: [7,5,6]>, <Green's R-class: [3,6][4,5]>,
|
|
1405
|
+
<Green's R-class: [2,1,5,6]>, <Green's R-class: [2,6][4,5]>,
|
|
1406
|
+
<Green's R-class: [7,6](5)>, <Green's R-class: [3,5][4,6]>,
|
|
1407
|
+
<Green's R-class: [4,6](5)>, <Green's R-class: [1,6][2,7](5)>,
|
|
1408
|
+
<Green's R-class: [2,5][4,6]>, <Green's R-class: [2,5][7,6]>,
|
|
1409
|
+
<Green's R-class: [2,5,6][7,1]>, <Green's R-class: [2,7,1](5)>,
|
|
1410
|
+
<Green's R-class: [3,5][7,6]>, <Green's R-class: [2,7][5,6](1)>,
|
|
1411
|
+
<Green's R-class: [2,7][3,6]>, <Green's R-class: [5,7,3](2)>,
|
|
1412
|
+
<Green's R-class: [1,7][2,3,5]>, <Green's R-class: [1,3,5](2)>,
|
|
1413
|
+
<Green's R-class: [1,3][2,5,7]>, <Green's R-class: [2,5][3,1,7]>,
|
|
1414
|
+
<Green's R-class: [1,5,4][2,3]>, <Green's R-class: [2,4][7,1]>,
|
|
1415
|
+
<Green's R-class: [2,4][7,5](1)>, <Green's R-class: [6,1,4]>,
|
|
1416
|
+
<Green's R-class: [6,1][7,4]>, <Green's R-class: [1,4][2,7]>,
|
|
1417
|
+
<Green's R-class: [2,7,4][3,1]>, <Green's R-class: [1,7][2,4]>,
|
|
1418
|
+
<Green's R-class: [6,4](7)>, <Green's R-class: [1,4][5,7]>,
|
|
1419
|
+
<Green's R-class: [2,3][5,7,1]>, <Green's R-class: [1,4][6,7]>,
|
|
1420
|
+
<Green's R-class: [2,7][3,1,4]>, <Green's R-class: [1,4][2,3,7]>,
|
|
1421
|
+
<Green's R-class: [6,7,4](1)>, <Green's R-class: [2,3][5,1][7,4]>,
|
|
1422
|
+
<Green's R-class: [2,7][5,4]>, <Green's R-class: [2,4][5,7]>,
|
|
1423
|
+
<Green's R-class: [3,7](4)>, <Green's R-class: [5,7](4)>,
|
|
1424
|
+
<Green's R-class: [2,5,3](1)>, <Green's R-class: [6,4][7,1]>,
|
|
1425
|
+
<Green's R-class: [1,5,4](2)>, <Green's R-class: [3,4](2)>,
|
|
1426
|
+
<Green's R-class: [3,4][7,1]>, <Green's R-class: [2,4][7,1](5)>,
|
|
1427
|
+
<Green's R-class: [1,4](2)>, <Green's R-class: [5,4][7,1](2)>,
|
|
1428
|
+
<Green's R-class: [2,1,5][3,4]>, <Green's R-class: [2,1][7,3](5)>,
|
|
1429
|
+
<Green's R-class: [2,4][3,1,6]>, <Green's R-class: [2,4][7,6]>,
|
|
1430
|
+
<Green's R-class: [2,4][5,6]>, <Green's R-class: [2,6][5,1](3)>,
|
|
1431
|
+
<Green's R-class: [1,6][7,3]>, <Green's R-class: [5,6][7,3]>,
|
|
1432
|
+
<Green's R-class: [4,3,6]>, <Green's R-class: [2,5,6][4,3]>,
|
|
1433
|
+
<Green's R-class: [1,5,3][2,4]>, <Green's R-class: [1,6][2,3][7,5]>,
|
|
1434
|
+
<Green's R-class: [1,3][2,4][7,5,6]>, <Green's R-class: [2,6][4,3]>,
|
|
1435
|
+
<Green's R-class: [2,1,4](3)>, <Green's R-class: [1,3][7,6]>,
|
|
1436
|
+
<Green's R-class: [5,3][7,6]>, <Green's R-class: [3,1,6](2)>,
|
|
1437
|
+
<Green's R-class: [4,6](3)>, <Green's R-class: [4,6][5,3]>,
|
|
1438
|
+
<Green's R-class: [2,6][5,3](1)>, <Green's R-class: [5,6](2)>,
|
|
1439
|
+
<Green's R-class: [1,6][5,3](2)>, <Green's R-class: [2,3,1][4,6]>,
|
|
1440
|
+
<Green's R-class: [2,3][5,4](1)>, <Green's R-class: [2,6][7,3]>,
|
|
1441
|
+
<Green's R-class: [2,6][5,4]>, <Green's R-class: [3,4][5,1]>,
|
|
1442
|
+
<Green's R-class: [2,1][6,4]>, <Green's R-class: [2,6][3,4][5,1]>,
|
|
1443
|
+
<Green's R-class: [2,3][7,6]>, <Green's R-class: [1,4][3,6]>,
|
|
1444
|
+
<Green's R-class: [1,6][7,4]>, <Green's R-class: [2,3][5,6][7,4]>,
|
|
1445
|
+
<Green's R-class: [5,3][7,4](2)>, <Green's R-class: [1,6][2,4](3)>,
|
|
1446
|
+
<Green's R-class: [3,6](4)>, <Green's R-class: [5,6](4)>,
|
|
1447
|
+
<Green's R-class: [7,6](3)>, <Green's R-class: [1,4][5,6](2)>,
|
|
1448
|
+
<Green's R-class: [2,6](4)>, <Green's R-class: [3,6](2)>,
|
|
1449
|
+
<Green's R-class: [2,1][7,6](5)>, <Green's R-class: [3,6][7,5]>,
|
|
1450
|
+
<Green's R-class: [2,7,5,6]>, <Green's R-class: [2,5][3,1,6]>,
|
|
1451
|
+
<Green's R-class: [2,7][3,1,5]>, <Green's R-class: [3,6](5)>,
|
|
1452
|
+
<Green's R-class: [2,5](6)>, <Green's R-class: [2,7,6][5,1]>,
|
|
1453
|
+
<Green's R-class: [1,7](2)(3)>, <Green's R-class: [1,5,7][2,3]>,
|
|
1454
|
+
<Green's R-class: [1,5,3](2)>, <Green's R-class: [2,5,3](7)>,
|
|
1455
|
+
<Green's R-class: [2,5,7](1)>, <Green's R-class: [2,3][7,4](5)>,
|
|
1456
|
+
<Green's R-class: [5,4,1]>, <Green's R-class: [2,7][3,4][5,1]>,
|
|
1457
|
+
<Green's R-class: [2,7](4)>, <Green's R-class: [1,4](7)>,
|
|
1458
|
+
<Green's R-class: [5,4](7)>, <Green's R-class: [2,3,1,7]>,
|
|
1459
|
+
<Green's R-class: [3,4,7]>, <Green's R-class: [5,4,7]>,
|
|
1460
|
+
<Green's R-class: [2,7][5,4](1)>, <Green's R-class: [1,7][2,3][5,4]>,
|
|
1461
|
+
<Green's R-class: [2,4,7][3,1]>, <Green's R-class: [2,3,4](1)>,
|
|
1462
|
+
<Green's R-class: [2,7,4]>, <Green's R-class: [2,4](7)>,
|
|
1463
|
+
<Green's R-class: [3,4](7)>, <Green's R-class: [2,5,1][7,3]>,
|
|
1464
|
+
<Green's R-class: [2,1](4)>, <Green's R-class: [7,4](2)(5)>,
|
|
1465
|
+
<Green's R-class: [3,1][5,4]>, <Green's R-class: [2,4][6,1]>,
|
|
1466
|
+
<Green's R-class: [2,4][3,1,5]>, <Green's R-class: [3,1,4](2)>,
|
|
1467
|
+
<Green's R-class: [2,1,4](5)>, <Green's R-class: [2,1,5](3)>,
|
|
1468
|
+
<Green's R-class: [2,4][5,6](1)>, <Green's R-class: [2,6][7,1,3]>,
|
|
1469
|
+
<Green's R-class: [1,6,3]>, <Green's R-class: [7,6,3]>,
|
|
1470
|
+
<Green's R-class: [2,5][7,6](3)>, <Green's R-class: [2,4][7,3](5)>,
|
|
1471
|
+
<Green's R-class: [1,6][2,5](3)>, <Green's R-class: [1,6][2,4][3,5]>,
|
|
1472
|
+
<Green's R-class: [1,3][7,6,5]>, <Green's R-class: [2,4][5,3][7,6]>,
|
|
1473
|
+
<Green's R-class: [2,1,3][5,4]>, <Green's R-class: [7,3](6)>,
|
|
1474
|
+
<Green's R-class: [5,6](1)(2)>, <Green's R-class: [7,3,6]>,
|
|
1475
|
+
<Green's R-class: [2,6][5,1][7,3]>, <Green's R-class: [1,6](2)>,
|
|
1476
|
+
<Green's R-class: [5,6][7,3](2)>, <Green's R-class: [2,3,6](1)>,
|
|
1477
|
+
<Green's R-class: [2,6][7,4]>, <Green's R-class: [2,6][5,4](1)>,
|
|
1478
|
+
<Green's R-class: [2,6][7,1,4]>, <Green's R-class: [1,6][5,4]>,
|
|
1479
|
+
<Green's R-class: [1,6][2,3,4]>, <Green's R-class: [1,3,4](2)>,
|
|
1480
|
+
<Green's R-class: [1,3][2,4][5,6]>, <Green's R-class: [2,6][3,4]>,
|
|
1481
|
+
<Green's R-class: [1,6][3,4]>, <Green's R-class: [3,4][7,6]>,
|
|
1482
|
+
<Green's R-class: [5,3,6]>, <Green's R-class: [2,3](6)>,
|
|
1483
|
+
<Green's R-class: [1,4][7,6]>, <Green's R-class: [5,4][7,6](2)>,
|
|
1484
|
+
<Green's R-class: [3,5,6]>, <Green's R-class: [2,6,5]>,
|
|
1485
|
+
<Green's R-class: [1,6][2,7][3,5]>, <Green's R-class: [2,5,6](1)>,
|
|
1486
|
+
<Green's R-class: [2,7](1)(5)>, <Green's R-class: [2,7][3,6](1)>,
|
|
1487
|
+
<Green's R-class: [2,3](5)(7)>, <Green's R-class: [7,3](2)(5)>,
|
|
1488
|
+
<Green's R-class: [1,3,7][2,5]>, <Green's R-class: [2,5,1](7)>,
|
|
1489
|
+
<Green's R-class: [1,5][2,3,4]>, <Green's R-class: [2,7,1,4]>,
|
|
1490
|
+
<Green's R-class: [6,7,4]>, <Green's R-class: [2,3][5,7](1)>,
|
|
1491
|
+
<Green's R-class: [3,7,4]>, <Green's R-class: [2,7,4][5,1]>,
|
|
1492
|
+
<Green's R-class: [2,3][5,7,4]>, <Green's R-class: [2,4][3,7](1)>,
|
|
1493
|
+
<Green's R-class: [2,3][5,1,4]>, <Green's R-class: [3,7][5,4]>,
|
|
1494
|
+
<Green's R-class: [2,4][6,7]>, <Green's R-class: [1,5][3,4](2)>,
|
|
1495
|
+
<Green's R-class: [2,4](1)(5)>, <Green's R-class: [5,4](1)(2)>,
|
|
1496
|
+
<Green's R-class: [2,1][7,5,4]>, <Green's R-class: [2,1,3](5)>,
|
|
1497
|
+
<Green's R-class: [2,4][5,1][7,6]>, <Green's R-class: [2,5,3,6]>,
|
|
1498
|
+
<Green's R-class: [1,5][2,4](3)>, <Green's R-class: [1,3][2,5,6]>,
|
|
1499
|
+
<Green's R-class: [1,5,6][2,4]>, <Green's R-class: [2,6][4,5](3)>,
|
|
1500
|
+
<Green's R-class: [1,3,6][2,4]>, <Green's R-class: [2,1][5,3][7,4]>,
|
|
1501
|
+
<Green's R-class: [2,3][4,6]>, <Green's R-class: [5,1][7,6](2)>,
|
|
1502
|
+
<Green's R-class: [5,6](3)>, <Green's R-class: [2,6,3]>,
|
|
1503
|
+
<Green's R-class: [2,6](1)(3)>, <Green's R-class: [1,6](2)(3)>,
|
|
1504
|
+
<Green's R-class: [2,3][5,1,6]>, <Green's R-class: [2,6][5,1][7,4]>,
|
|
1505
|
+
<Green's R-class: [5,6][7,4]>, <Green's R-class: [1,4][2,3][5,6]>,
|
|
1506
|
+
<Green's R-class: [1,4][5,3](2)>, <Green's R-class: [1,4][5,6]>,
|
|
1507
|
+
<Green's R-class: [3,6][5,4]>, <Green's R-class: [2,4](6)>,
|
|
1508
|
+
<Green's R-class: [1,4](6)>, <Green's R-class: [1,4][3,6](2)>,
|
|
1509
|
+
<Green's R-class: [7,4](6)>, <Green's R-class: [2,5,1][7,6]>,
|
|
1510
|
+
<Green's R-class: [2,7,5,1]>, <Green's R-class: [2,7][5,1,6]>,
|
|
1511
|
+
<Green's R-class: [1,7][2,5,3]>, <Green's R-class: [2,4,7]>,
|
|
1512
|
+
<Green's R-class: [2,3][5,1](7)>, <Green's R-class: [3,4][5,7]>,
|
|
1513
|
+
<Green's R-class: [2,7][6,4]>, <Green's R-class: [2,7][3,4](1)>,
|
|
1514
|
+
<Green's R-class: [1,7][2,3,4]>, <Green's R-class: [2,4][5,1,7]>,
|
|
1515
|
+
<Green's R-class: [2,3][5,4][7,1]>, <Green's R-class: [2,4][7,5,1]>,
|
|
1516
|
+
<Green's R-class: [5,1][7,4](2)>, <Green's R-class: [2,1,4][3,5]>,
|
|
1517
|
+
<Green's R-class: [2,1][7,5,3]>, <Green's R-class: [2,4][3,6](1)>,
|
|
1518
|
+
<Green's R-class: [1,6][2,5][7,3]>, <Green's R-class: [1,3][2,4](5)>,
|
|
1519
|
+
<Green's R-class: [2,5,3][7,6]>, <Green's R-class: [2,4][7,6](5)>,
|
|
1520
|
+
<Green's R-class: [1,3,5][2,6]>, <Green's R-class: [1,6][2,4][5,3]>,
|
|
1521
|
+
<Green's R-class: [3,6](1)(2)>, <Green's R-class: [2,6][5,1,3]>,
|
|
1522
|
+
<Green's R-class: [1,3][5,6](2)>, <Green's R-class: [2,3][5,6][7,1]>,
|
|
1523
|
+
<Green's R-class: [2,6][3,4](1)>, <Green's R-class: [2,3][5,4][7,6]>,
|
|
1524
|
+
<Green's R-class: [5,4][7,3](2)>, <Green's R-class: [5,4][7,6]>,
|
|
1525
|
+
<Green's R-class: [2,4,6]>, <Green's R-class: [3,4,6]>,
|
|
1526
|
+
<Green's R-class: [5,4,6]>, <Green's R-class: [1,6][5,4](2)>,
|
|
1527
|
+
<Green's R-class: [2,5,7,3]>, <Green's R-class: [2,3,7](1)>,
|
|
1528
|
+
<Green's R-class: [2,7][5,1,4]>, <Green's R-class: [1,4][2,3][5,7]>,
|
|
1529
|
+
<Green's R-class: [2,4][5,7,1]>, <Green's R-class: [2,1,5,4]>,
|
|
1530
|
+
<Green's R-class: [2,4][7,5,3]>, <Green's R-class: [1,3,6][2,5]>,
|
|
1531
|
+
<Green's R-class: [1,5][2,4][3,6]>, <Green's R-class: [1,5,3][2,6]>,
|
|
1532
|
+
<Green's R-class: [2,4][5,6][7,3]>, <Green's R-class: [2,6][5,3][7,1]>,
|
|
1533
|
+
<Green's R-class: [5,3][7,6](2)>, <Green's R-class: [2,3,1,6]>,
|
|
1534
|
+
<Green's R-class: [2,6][5,1,4]>, <Green's R-class: [3,6][7,4]>,
|
|
1535
|
+
<Green's R-class: [2,7,1][5,4]>, <Green's R-class: [2,3][5,4](7)>,
|
|
1536
|
+
<Green's R-class: [2,4][3,1,7]>, <Green's R-class: [2,1][7,4](5)>,
|
|
1537
|
+
<Green's R-class: [1,3,5][2,4]>, <Green's R-class: [1,6][2,5,3]>,
|
|
1538
|
+
<Green's R-class: [1,6][2,4](5)>, <Green's R-class: [2,6][7,3](5)>,
|
|
1539
|
+
<Green's R-class: [2,3][5,6](1)>, <Green's R-class: [2,6][5,4][7,1]>,
|
|
1540
|
+
<Green's R-class: [3,4][5,6]>, <Green's R-class: [2,6,4]>,
|
|
1541
|
+
<Green's R-class: [2,4][5,7](1)>, <Green's R-class: [2,5,6][7,3]>,
|
|
1542
|
+
<Green's R-class: [2,4][7,5,6]>, <Green's R-class: [1,5][2,6](3)>,
|
|
1543
|
+
<Green's R-class: [2,3][5,1][7,6]>, <Green's R-class: [2,6][3,1,4]>,
|
|
1544
|
+
<Green's R-class: [2,4][5,1](7)>, <Green's R-class: [1,3][2,6](5)>,
|
|
1545
|
+
<Green's R-class: [2,6][7,5,3]> ]
|
|
1546
|
+
gap> Union(List(last, Elements));
|
|
1547
|
+
[ <empty partial perm>, <identity partial perm on [ 1 ]>, [1,3], [1,4],
|
|
1548
|
+
[1,5], [1,6], [1,7], [2,1], <identity partial perm on [ 2 ]>, [2,3], [2,4],
|
|
1549
|
+
[2,5], [2,6], [2,7], <identity partial perm on [ 1, 2 ]>, [2,3](1),
|
|
1550
|
+
[2,4](1), [2,5](1), [2,6](1), [2,7](1), [2,1,3], [1,3](2), [1,3][2,4],
|
|
1551
|
+
[1,3][2,5], [1,3][2,6], [1,3][2,7], [2,1,4], [1,4](2), [1,4][2,3],
|
|
1552
|
+
[1,4][2,5], [1,4][2,6], [1,4][2,7], [2,1,5], [1,5](2), [1,5][2,3],
|
|
1553
|
+
[1,5][2,4], [1,5][2,6], [1,5][2,7], [2,1,6], [1,6](2), [1,6][2,3],
|
|
1554
|
+
[1,6][2,4], [1,6][2,5], [1,6][2,7], [2,1,7], [1,7](2), [1,7][2,3],
|
|
1555
|
+
[1,7][2,4], [1,7][2,5], [3,1], <identity partial perm on [ 3 ]>, [3,4],
|
|
1556
|
+
[3,5], [3,6], [3,7], [2,1](3), [2,1][3,4], [2,1][3,5], [2,1][3,6],
|
|
1557
|
+
[2,1][3,7], [3,1](2), <identity partial perm on [ 2, 3 ]>, [3,4](2),
|
|
1558
|
+
[3,5](2), [3,6](2), [3,7](2), [2,3,1], [2,3,4], [2,3,5], [2,3,6], [2,3,7],
|
|
1559
|
+
[2,4][3,1], [2,4](3), [2,4][3,5], [2,4][3,6], [2,4][3,7], [2,5][3,1],
|
|
1560
|
+
[2,5](3), [2,5][3,4], [2,5][3,6], [2,5][3,7], [2,6][3,1], [2,6](3),
|
|
1561
|
+
[2,6][3,4], [2,6][3,5], [2,7][3,1], [2,7](3), [2,7][3,4], [2,7][3,5],
|
|
1562
|
+
[2,7][3,6], <identity partial perm on [ 1, 3 ]>, [3,4](1), [3,5](1),
|
|
1563
|
+
[3,6](1), [3,7](1), <identity partial perm on [ 1, 2, 3 ]>, [3,4](1)(2),
|
|
1564
|
+
[3,5](1)(2), [3,6](1)(2), [2,3,4](1), [2,3,6](1), [2,3,7](1),
|
|
1565
|
+
[2,4][3,5](1), [2,4][3,6](1), [2,4][3,7](1), [2,5](1)(3), [2,5][3,6](1),
|
|
1566
|
+
[2,5][3,7](1), [2,6](1)(3), [2,6][3,4](1), [2,7][3,4](1), [2,7][3,5](1),
|
|
1567
|
+
[2,7][3,6](1), (1,3), [1,3,4], [1,3,5], [1,3,6], [1,3,7], [2,1,3,4],
|
|
1568
|
+
[2,1,3,5], (1,3)(2), [1,3,4](2), [1,3,5](2), [1,3,6](2), [1,3,7](2),
|
|
1569
|
+
[1,3,5][2,4], [1,3,6][2,4], [2,5](1,3), [1,3,6][2,5], [1,3,7][2,5],
|
|
1570
|
+
[2,6](1,3), [1,3,5][2,6], [3,1,4], [1,4](3), [1,4][3,5], [1,4][3,6],
|
|
1571
|
+
[1,4][3,7], [2,1,4](3), [2,1,4][3,5], [3,1,4](2), [1,4](2)(3),
|
|
1572
|
+
[1,4][3,5](2), [1,4][3,6](2), [2,3,1,4], [1,4][2,3,5], [1,4][2,3,6],
|
|
1573
|
+
[1,4][2,3,7], [2,6][3,1,4], [2,7][3,1,4], [3,1,5], [1,5](3), [1,5][3,4],
|
|
1574
|
+
[1,5][3,6], [1,5][3,7], [2,1,5](3), [2,1,5][3,4], [2,1,5][3,6], [3,1,5](2),
|
|
1575
|
+
[1,5](2)(3), [1,5][3,4](2), [1,5][3,7](2), [1,5][2,3,4], [1,5][2,3,7],
|
|
1576
|
+
[2,4][3,1,5], [1,5][2,4](3), [1,5][2,4][3,6], [1,5][2,6](3), [2,7][3,1,5],
|
|
1577
|
+
[1,5][2,7][3,6], [3,1,6], [1,6](3), [1,6][3,4], [1,6][3,5], [2,1,6][3,5],
|
|
1578
|
+
[3,1,6](2), [1,6](2)(3), [1,6][3,4](2), [2,3,1,6], [1,6][2,3,4],
|
|
1579
|
+
[2,4][3,1,6], [1,6][2,4](3), [1,6][2,4][3,5], [2,5][3,1,6], [1,6][2,5](3),
|
|
1580
|
+
[2,7][3,1,6], [1,6][2,7][3,5], [3,1,7], [1,7](3), [1,7][3,4], [1,7][3,5],
|
|
1581
|
+
[1,7](2)(3), [1,7][3,5](2), [2,3,1,7], [1,7][2,3,4], [1,7][2,3,5],
|
|
1582
|
+
[2,4][3,1,7], [2,5][3,1,7], [1,7][2,5](3), [4,1], [4,3],
|
|
1583
|
+
<identity partial perm on [ 4 ]>, [4,5], [4,6], [4,7], [4,3,1], [3,1](4),
|
|
1584
|
+
[3,1][4,5], [3,1][4,6], [3,1][4,7], [4,1](3),
|
|
1585
|
+
<identity partial perm on [ 3, 4 ]>, [4,5](3), [4,6](3), [4,7](3), [3,4,1],
|
|
1586
|
+
(3,4), [3,4,5], [3,4,6], [3,4,7], [3,5][4,1], [4,3,5], [3,5](4),
|
|
1587
|
+
[3,5][4,6], [3,5][4,7], [3,6][4,1], [4,3,6], [3,6](4), [3,6][4,5],
|
|
1588
|
+
[3,7][4,1], [4,3,7], [3,7](4), [3,7][4,5], [2,1][4,3], [2,1](4),
|
|
1589
|
+
[2,1][4,5], [2,1][4,6], [2,1][4,7], [2,1][4,5](3), [2,1][3,5](4),
|
|
1590
|
+
[2,1][3,6][4,5], [2,3][4,1], [2,3](4), [2,3][4,5], [2,3][4,6], [2,3][4,7],
|
|
1591
|
+
[2,3,1][4,6], [2,3,4,1], [2,4,1], [2,4,3], [2,4,5], [2,4,6], [2,4,7],
|
|
1592
|
+
[2,4,7][3,1], [2,4,3,6], [2,5][4,1], [2,5][4,3], [2,5](4), [2,5][4,6],
|
|
1593
|
+
[2,5][4,7], [2,5][3,1][4,7], [2,5][4,3,7], [2,6][4,1], [2,6][4,3],
|
|
1594
|
+
[2,6](4), [2,6][4,5], [2,6][4,5](3), [2,7][4,1], [2,7][4,3], [2,7](4),
|
|
1595
|
+
[2,7][4,5], [2,7][3,1,5][4,6], [5,1], [5,3], [5,4],
|
|
1596
|
+
<identity partial perm on [ 5 ]>, [5,6], [5,7], [4,1][5,3], [5,4,1],
|
|
1597
|
+
[4,1](5), [4,1][5,6], [4,1][5,7], [4,3][5,1], [5,4,3], [4,3](5),
|
|
1598
|
+
[4,3][5,6], [4,3][5,7], [5,1](4), [5,3](4),
|
|
1599
|
+
<identity partial perm on [ 4, 5 ]>, [5,6](4), [5,7](4), [4,5,1], [4,5,3],
|
|
1600
|
+
(4,5), [4,5,6], [4,5,7], [4,6][5,1], [4,6][5,3], [5,4,6], [4,6](5),
|
|
1601
|
+
[4,7][5,1], [4,7][5,3], [5,4,7], [4,7](5), [5,3,1], [3,1][5,4], [3,1](5),
|
|
1602
|
+
[3,1][5,6], [3,1][5,7], [5,1](3), [5,4](3),
|
|
1603
|
+
<identity partial perm on [ 3, 5 ]>, [5,6](3), [5,7](3), [3,4][5,1],
|
|
1604
|
+
[5,3,4], [3,4](5), [3,4][5,6], [3,4][5,7], [3,5,1], (3,5), [3,5,4],
|
|
1605
|
+
[3,5,6], [3,5,7], [3,6][5,1], [5,3,6], [3,6][5,4], [3,6](5), [3,7][5,1],
|
|
1606
|
+
[5,3,7], [3,7][5,4], [3,7](5), [2,1][5,3], [2,1][5,4], [2,1](5),
|
|
1607
|
+
[2,1][5,6], [2,1][5,7], [5,1](2), [5,3](2), [5,4](2),
|
|
1608
|
+
<identity partial perm on [ 2, 5 ]>, [5,6](2), [5,7](2), [2,3][5,1],
|
|
1609
|
+
[2,3][5,4], [2,3](5), [2,3][5,6], [2,3][5,7], [2,3,5,4], [2,4][5,1],
|
|
1610
|
+
[2,4][5,3], [2,4](5), [2,4][5,6], [2,4][5,7], [2,4,5,1], [2,4][3,1](5),
|
|
1611
|
+
[2,4][3,1][5,6], [2,5,1], [2,5,3], [2,5,4], [2,5,6], [2,5,7], [2,5,6][4,3],
|
|
1612
|
+
[2,5,3,6], [2,6][5,1], [2,6][5,3], [2,6][5,4], [2,6](5), [2,6][4,1][5,3],
|
|
1613
|
+
[2,6][5,4,1], [2,6][5,1](3), [2,6][3,4][5,1], [2,7][5,1], [2,7][5,3],
|
|
1614
|
+
[2,7][5,4], [2,7](5), [2,7][5,6], [2,7][5,4,1], [2,7][3,4][5,1], [5,3](1),
|
|
1615
|
+
[5,4](1), <identity partial perm on [ 1, 5 ]>, [5,6](1), [5,7](1),
|
|
1616
|
+
[5,3](1)(2), [5,4](1)(2), <identity partial perm on [ 1, 2, 5 ]>,
|
|
1617
|
+
[5,6](1)(2), [3,5,4](1)(2), [2,3][5,4](1), [2,3][5,6](1), [2,3][5,7](1),
|
|
1618
|
+
[2,4](1)(5), [2,4][5,6](1), [2,4][5,7](1), [2,5,3](1), [2,5,6](1),
|
|
1619
|
+
[2,5,7](1), [2,6][5,3](1), [2,6][5,4](1), [2,7][5,4](1), [2,7](1)(5),
|
|
1620
|
+
[2,7][5,6](1), [2,7][3,6](1)(5), [5,1,3], [1,3][5,4], [1,3](5), [1,3][5,6],
|
|
1621
|
+
[1,3][5,7], [2,1,3][5,4], [2,1,3](5), [5,1,3](2), [1,3][5,4](2),
|
|
1622
|
+
[1,3](2)(5), [1,3][5,6](2), [1,3][5,7](2), [5,6](1,3)(2), [1,3][2,4](5),
|
|
1623
|
+
[1,3][2,4][5,6], [2,5,1,3], [1,3][2,5,6], [1,3][2,5,7], [2,6][5,1,3],
|
|
1624
|
+
[1,3][2,6](5), [5,1,4], [1,4][5,3], [1,4](5), [1,4][5,6], [1,4][5,7],
|
|
1625
|
+
[2,1,4][5,3], [2,1,4](5), [5,1,4](2), [1,4][5,3](2), [1,4](2)(5),
|
|
1626
|
+
[1,4][5,6](2), [2,3][5,1,4], [1,4][2,3](5), [1,4][2,3][5,6],
|
|
1627
|
+
[1,4][2,3][5,7], [2,3][5,1,4,7], [2,3,1,4][5,7], [2,6][5,1,4],
|
|
1628
|
+
[2,7][5,1,4], (1,5), [1,5,3], [1,5,4], [1,5,6], [1,5,7], [2,1,5,3],
|
|
1629
|
+
[2,1,5,4], [2,1,5,6], (1,5)(2), [1,5,3](2), [1,5,4](2), [1,5,7](2),
|
|
1630
|
+
[1,5,3,7](2), [1,5,4][2,3], [1,5,7][2,3], [2,4](1,5), [1,5,3][2,4],
|
|
1631
|
+
[1,5,6][2,4], [1,5,3][2,6], [2,7](1,5), [1,5,6][2,7], [5,1,6], [1,6][5,3],
|
|
1632
|
+
[1,6][5,4], [1,6](5), [2,1,6](5), [5,1,6](2), [1,6][5,3](2), [1,6][5,4](2),
|
|
1633
|
+
[2,3][5,1,6], [1,6][2,3][5,4], [2,4][5,1,6], [1,6][2,4][5,3],
|
|
1634
|
+
[1,6][2,4](5), [1,6][2,4,5,3], [1,6][2,4](3)(5), [2,5,1,6], [1,6][2,5,3],
|
|
1635
|
+
[2,7][5,1,6], [1,6][2,7](5), [5,1,7], [1,7][5,3], [1,7][5,4], [1,7](5),
|
|
1636
|
+
[1,7][5,3](2), [1,7](2)(5), [2,3][5,1,7], [1,7][2,3][5,4], [1,7][2,3](5),
|
|
1637
|
+
[2,4][5,1,7], [2,5,1,7], [1,7][2,5,3], [6,1], [6,3], [6,4], [6,5],
|
|
1638
|
+
<identity partial perm on [ 6 ]>, [6,7], [2,1][6,3], [2,1][6,4],
|
|
1639
|
+
[2,1][6,5], [2,1](6), [2,1][6,7], [2,3][6,1], [2,3][6,4], [2,3][6,5],
|
|
1640
|
+
[2,3](6), [2,3][6,7], [2,4][6,1], [2,4][6,3], [2,4][6,5], [2,4](6),
|
|
1641
|
+
[2,4][6,7], [2,5][6,1], [2,5][6,3], [2,5][6,4], [2,5](6), [2,5][6,7],
|
|
1642
|
+
[2,6,1], [2,6,3], [2,6,4], [2,6,5], [2,7][6,1], [2,7][6,3], [2,7][6,4],
|
|
1643
|
+
[2,7][6,5], [6,3](1), [6,4](1), [6,5](1), <identity partial perm on [ 1, 6 ]
|
|
1644
|
+
>, [6,7](1), [2,4][6,5](1), [6,1,3], [1,3][6,4], [1,3][6,5], [1,3](6),
|
|
1645
|
+
[1,3][6,7], [2,6,1,3], [6,1,4], [1,4][6,3], [1,4][6,5], [1,4](6),
|
|
1646
|
+
[1,4][6,7], [2,7][6,1,4], [6,1,5], [1,5][6,3], [1,5][6,4], [1,5](6),
|
|
1647
|
+
[1,5][6,7], (1,6), [1,6,3], [1,6,4], [1,6,5], [1,6,3][2,5], [6,1,7],
|
|
1648
|
+
[1,7][6,3], [1,7][6,4], [1,7][6,5], [7,1], [7,3], [7,4], [7,5], [7,6],
|
|
1649
|
+
<identity partial perm on [ 7 ]>, [6,1][7,3], [6,1][7,4], [6,1][7,5],
|
|
1650
|
+
[7,6,1], [6,1](7), [6,3][7,1], [6,3][7,4], [6,3][7,5], [7,6,3], [6,3](7),
|
|
1651
|
+
[6,4][7,1], [6,4][7,3], [6,4][7,5], [7,6,4], [6,4](7), [6,5][7,1],
|
|
1652
|
+
[6,5][7,3], [6,5][7,4], [7,6,5], [6,5](7), [7,1](6), [7,3](6), [7,4](6),
|
|
1653
|
+
[7,5](6), [6,7,1], [6,7,3], [6,7,4], [6,7,5], [5,1][7,3], [5,1][7,4],
|
|
1654
|
+
[7,5,1], [5,1][7,6], [5,1](7), [5,3][7,1], [5,3][7,4], [7,5,3], [5,3][7,6],
|
|
1655
|
+
[5,3](7), [5,4][7,1], [5,4][7,3], [7,5,4], [5,4][7,6], [5,4](7), [7,1](5),
|
|
1656
|
+
[7,3](5), [7,4](5), [7,6](5), <identity partial perm on [ 5, 7 ]>,
|
|
1657
|
+
[5,6][7,1], [5,6][7,3], [5,6][7,4], [7,5,6], [5,7,1], [5,7,3], [5,7,4],
|
|
1658
|
+
(5,7), [7,3,1], [3,1][7,4], [3,1][7,5], [3,1][7,6], [3,1](7), [7,1](3),
|
|
1659
|
+
[7,4](3), [7,5](3), [7,6](3), <identity partial perm on [ 3, 7 ]>,
|
|
1660
|
+
[3,4][7,1], [7,3,4], [3,4][7,5], [3,4][7,6], [3,4](7), [3,5][7,1], [7,3,5],
|
|
1661
|
+
[3,5][7,4], [3,5][7,6], [3,5](7), [3,6][7,1], [7,3,6], [3,6][7,4],
|
|
1662
|
+
[3,6][7,5], [3,7,1], (3,7), [3,7,4], [3,7,5], [2,1][7,3], [2,1][7,4],
|
|
1663
|
+
[2,1][7,5], [2,1][7,6], [2,1](7), [2,1][5,3][7,4], [2,1][7,5,3],
|
|
1664
|
+
[2,1][5,4][7,3], [2,1][7,5,4], [2,1][7,3](5), [2,1][7,4](5), [2,1][7,6](5),
|
|
1665
|
+
[2,1][7,5,6], [7,1](2), [7,3](2), [7,4](2), [7,5](2), [7,6](2),
|
|
1666
|
+
<identity partial perm on [ 2, 7 ]>, [5,1][7,3](2), [5,1][7,4](2),
|
|
1667
|
+
[7,5,1](2), [5,1][7,6](2), [5,3][7,1](2), [5,3][7,4](2), [7,5,3](2),
|
|
1668
|
+
[5,3][7,6](2), [5,3](2)(7), [5,4][7,1](2), [5,4][7,3](2), [7,5,4](2),
|
|
1669
|
+
[5,4][7,6](2), [7,1](2)(5), [7,3](2)(5), [7,4](2)(5),
|
|
1670
|
+
<identity partial perm on [ 2, 5, 7 ]>, [5,6][7,1](2), [5,6][7,3](2),
|
|
1671
|
+
[5,6][7,4](2), [5,7,3](2), (2)(5,7), [2,3][7,1], [2,3][7,4], [2,3][7,5],
|
|
1672
|
+
[2,3][7,6], [2,3](7), [2,3][5,1][7,4], [2,3][5,1][7,6], [2,3][5,1](7),
|
|
1673
|
+
[2,3][5,4][7,1], [2,3][7,5,4], [2,3][5,4][7,6], [2,3][5,4](7),
|
|
1674
|
+
[2,3][7,4](5), [2,3](5)(7), [2,3][5,6][7,1], [2,3][5,6][7,4], [2,3][5,7,1],
|
|
1675
|
+
[2,3][5,7,4], [2,3](5,7), [2,3,7,1][5,4], [2,4][7,1], [2,4][7,3],
|
|
1676
|
+
[2,4][7,5], [2,4][7,6], [2,4](7), [2,4][7,5,1], [2,4][5,1][7,6],
|
|
1677
|
+
[2,4][5,1](7), [2,4][7,5,3], [2,4][5,3][7,6], [2,4][7,1](5), [2,4][7,3](5),
|
|
1678
|
+
[2,4][7,6](5), [2,4][5,6][7,1], [2,4][5,6][7,3], [2,4][7,5,6],
|
|
1679
|
+
[2,4][5,7,1], [2,4][3,5][7,1], [2,4][7,3,5,6], [2,5][7,1], [2,5][7,3],
|
|
1680
|
+
[2,5][7,4], [2,5][7,6], [2,5](7), [2,5][7,6,3], [2,5,1][7,3], [2,5,1][7,6],
|
|
1681
|
+
[2,5,1](7), [2,5,3][7,1], [2,5,3][7,6], [2,5,3](7), [2,5,6][7,1],
|
|
1682
|
+
[2,5,6][7,3], [2,5,7,1], [2,5,7,3], [2,5][7,6](3), [2,6][7,1], [2,6][7,3],
|
|
1683
|
+
[2,6][7,4], [2,6][7,5], [2,6][5,1][7,3], [2,6][5,1][7,4], [2,6][5,3][7,1],
|
|
1684
|
+
[2,6][7,5,3], [2,6][5,4][7,1], [2,6][7,3](5), [2,6][7,3,1], [2,6][3,1][7,4],
|
|
1685
|
+
[2,7,1], [2,7,3], [2,7,4], [2,7,5], [2,7,6], [2,7,4][6,1], [2,7,4][5,1],
|
|
1686
|
+
[2,7,5,1], [2,7,6][5,1], [2,7,1][5,4], [2,7,1](5), [2,7,6](5),
|
|
1687
|
+
[2,7,1][5,6], [2,7,5,6], [2,7,4][3,1], [7,3](1), [7,4](1), [7,5](1),
|
|
1688
|
+
[7,6](1), <identity partial perm on [ 1, 7 ]>, [7,3](1)(6), [6,7,4](1),
|
|
1689
|
+
[5,3][7,6](1)(2), [2,3][5,4](1)(7), [2,3,4][6,7,5](1), [2,4][7,5](1),
|
|
1690
|
+
[2,4][7,6](1), [2,5][7,4](1), [2,6][7,5](1), [7,1,3], [1,3][7,4],
|
|
1691
|
+
[1,3][7,5], [1,3][7,6], [1,3](7), [1,3][7,6,5], [2,1,3][7,6],
|
|
1692
|
+
[7,5,1,3,4,6](2), [1,3][2,4][7,5,6], [2,4][7,1,3,6,5], [2,6][7,1,3],
|
|
1693
|
+
[7,1,4], [1,4][7,3], [1,4][7,5], [1,4][7,6], [1,4](7), [3,7,1,4],
|
|
1694
|
+
[2,1,4](7), [5,3,6][7,1,4](2), [2,6][7,1,4], [2,6,1,4][7,3], [2,7,1,4],
|
|
1695
|
+
[7,1,5], [1,5][7,3], [1,5][7,4], [1,5][7,6], [1,5](7), [6,4][7,1,5],
|
|
1696
|
+
[7,4](1,5)(2), [1,5][2,3][7,4], [1,5][2,4][7,6], [1,5][2,7,3], [7,1,6],
|
|
1697
|
+
[1,6][7,3], [1,6][7,4], [1,6][7,5], [1,6,3][7,4], [7,1,6,5], [1,6][7,3,5],
|
|
1698
|
+
[1,6][5,4][7,3](2), [1,6][2,3][7,5], [1,6][2,5][7,3], [2,7,5,1,6], (1,7),
|
|
1699
|
+
[1,7,3], [1,7,4], [1,7,5], [1,7,5][6,3], [1,7,3](2)(5), [1,7,4][2,3] ]
|
|
1700
|
+
gap> ForAll(last, x -> x in s);
|
|
1701
|
+
true
|
|
1702
|
+
gap> Set(last2) = AsSSortedList(s);
|
|
1703
|
+
true
|
|
1704
|
+
|
|
1705
|
+
# MiscTest14
|
|
1706
|
+
gap> gens := [Transformation([1, 3, 2, 3]),
|
|
1707
|
+
> Transformation([1, 4, 1, 2]),
|
|
1708
|
+
> Transformation([2, 4, 1, 1]),
|
|
1709
|
+
> Transformation([3, 4, 2, 2])];;
|
|
1710
|
+
gap> s := Semigroup(gens);;
|
|
1711
|
+
gap> Size(s);
|
|
1712
|
+
114
|
|
1713
|
+
gap> NrRClasses(s);
|
|
1714
|
+
11
|
|
1715
|
+
gap> NrDClasses(s);
|
|
1716
|
+
5
|
|
1717
|
+
gap> NrLClasses(s);
|
|
1718
|
+
19
|
|
1719
|
+
gap> NrIdempotents(s);
|
|
1720
|
+
28
|
|
1721
|
+
gap> IsRegularSemigroup(s);
|
|
1722
|
+
false
|
|
1723
|
+
gap> f := Transformation([4, 2, 4, 3]);;
|
|
1724
|
+
gap> d := First(DClasses(s), x -> f in x);
|
|
1725
|
+
<Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>
|
|
1726
|
+
gap> Transformation([1, 4, 1, 2]) in last;
|
|
1727
|
+
true
|
|
1728
|
+
gap> h := HClass(d, f);
|
|
1729
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 3 ] )>
|
|
1730
|
+
gap> Transformation([4, 2, 4, 3]) in last;
|
|
1731
|
+
true
|
|
1732
|
+
gap> Size(h);
|
|
1733
|
+
6
|
|
1734
|
+
gap> IsGroupHClass(h);
|
|
1735
|
+
true
|
|
1736
|
+
gap> SchutzenbergerGroup(h);
|
|
1737
|
+
Group([ (2,4), (2,3,4) ])
|
|
1738
|
+
gap> ForAll(Elements(h), x -> x in h);
|
|
1739
|
+
true
|
|
1740
|
+
gap> ForAll(Elements(h), x -> x in d);
|
|
1741
|
+
true
|
|
1742
|
+
gap> IsGreensClassNC(h);
|
|
1743
|
+
false
|
|
1744
|
+
gap> gens := [PartialPermNC([1, 2, 4], [4, 5, 6]),
|
|
1745
|
+
> PartialPermNC([1, 2, 5], [2, 1, 3]),
|
|
1746
|
+
> PartialPermNC([1, 2, 4, 6], [2, 4, 3, 5]),
|
|
1747
|
+
> PartialPermNC([1, 2, 3, 4, 5], [4, 3, 6, 5, 1])];;
|
|
1748
|
+
gap> s := Semigroup(gens);;
|
|
1749
|
+
gap> Size(s);
|
|
1750
|
+
201
|
|
1751
|
+
gap> f := PartialPerm([1 .. 5], [4, 3, 6, 5, 1]);;
|
|
1752
|
+
gap> d := DClassNC(s, f);
|
|
1753
|
+
<Green's D-class: [2,3,6](1,4,5)>
|
|
1754
|
+
gap> h := HClassNC(d, f);
|
|
1755
|
+
<Green's H-class: [2,3,6](1,4,5)>
|
|
1756
|
+
gap> Size(h);
|
|
1757
|
+
1
|
|
1758
|
+
gap> Size(d);
|
|
1759
|
+
1
|
|
1760
|
+
gap> AsSSortedList(h) = AsSSortedList(d);
|
|
1761
|
+
true
|
|
1762
|
+
|
|
1763
|
+
# MiscTest15
|
|
1764
|
+
gap> gens :=
|
|
1765
|
+
> [PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18,
|
|
1766
|
+
> 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 40, 42, 44,
|
|
1767
|
+
> 46, 47, 51, 53, 54, 58, 59, 60, 61, 63, 65, 66, 67, 69, 71, 72, 76, 79, 84,
|
|
1768
|
+
> 86, 88, 94, 95, 100], [46, 47, 33, 32, 70, 97, 29, 30, 34, 11, 37, 89,
|
|
1769
|
+
> 77, 52, 73, 2, 96, 66, 88, 69, 93, 87, 85, 68, 48, 25, 28, 43, 49, 95, 40,
|
|
1770
|
+
> 24, 16, 94, 76, 63, 58, 23, 100, 38, 27, 78, 21, 71, 4, 72, 36, 13, 99, 90,
|
|
1771
|
+
> 17, 41, 98, 10, 35, 91, 53, 45, 82, 42]),
|
|
1772
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19,
|
|
1773
|
+
> 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43,
|
|
1774
|
+
> 44, 46, 48, 49, 51, 52, 54, 56, 58, 59, 61, 64, 65, 67, 68, 70, 73, 74, 76,
|
|
1775
|
+
> 78, 79, 80, 82, 88, 90, 97], [63, 38, 57, 12, 9, 91, 59, 32, 54, 83, 92,
|
|
1776
|
+
> 96, 99, 18, 3, 81, 5, 65, 2, 37, 21, 49, 16, 75, 24, 23, 43, 27, 1, 48, 6,
|
|
1777
|
+
> 35, 30, 79, 82, 51, 39, 25, 61, 77, 62, 22, 64, 14, 72, 7, 50, 8, 80, 19,
|
|
1778
|
+
> 94, 69, 10, 40, 67, 28, 88, 93, 66, 36, 70, 56]),
|
|
1779
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
1780
|
+
> 18, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 42,
|
|
1781
|
+
> 43, 44, 46, 48, 49, 51, 52, 53, 55, 58, 60, 63, 64, 66, 67, 68, 69, 71, 73,
|
|
1782
|
+
> 75, 80, 86, 87, 88, 90, 91, 94, 95, 97], [89, 85, 8, 56, 42, 10, 61, 25,
|
|
1783
|
+
> 98, 55, 39, 92, 62, 21, 34, 57, 44, 14, 53, 64, 59, 84, 12, 87, 78, 83, 30,
|
|
1784
|
+
> 32, 68, 73, 2, 86, 23, 48, 47, 79, 93, 15, 76, 97, 77, 11, 33, 100, 91, 67,
|
|
1785
|
+
> 18, 16, 99, 60, 74, 17, 95, 49, 4, 66, 41, 69, 94, 31, 29, 5, 63, 58, 72]),
|
|
1786
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 20, 21,
|
|
1787
|
+
> 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47,
|
|
1788
|
+
> 48, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 72, 74,
|
|
1789
|
+
> 75, 79, 80, 82, 87, 88, 91, 92, 99, 100], [89, 67, 34, 15, 57, 29, 4, 62,
|
|
1790
|
+
> 76, 20, 52, 22, 35, 75, 98, 78, 40, 46, 28, 6, 55, 90, 16, 12, 65, 26, 66,
|
|
1791
|
+
> 36, 25, 61, 83, 38, 41, 93, 2, 39, 87, 85, 17, 92, 97, 43, 30, 5, 13, 94,
|
|
1792
|
+
> 44, 80, 54, 99, 81, 31, 7, 68, 11, 100, 72, 14, 9, 91, 32, 64, 60, 8,
|
|
1793
|
+
> 23])];;
|
|
1794
|
+
gap> s := Semigroup(gens);;
|
|
1795
|
+
gap> f := PartialPerm([2, 63], [28, 89]);;
|
|
1796
|
+
gap> d := DClassNC(s, f);
|
|
1797
|
+
<Green's D-class: [2,28][63,89]>
|
|
1798
|
+
gap> Size(d);
|
|
1799
|
+
4752
|
|
1800
|
+
gap> RhoOrb(d);
|
|
1801
|
+
<closed orbit, 2874 points with Schreier tree with log with grading>
|
|
1802
|
+
gap> 2874 * 2;
|
|
1803
|
+
5748
|
|
1804
|
+
gap> LambdaOrb(d);
|
|
1805
|
+
<closed orbit, 1 points with Schreier tree with log with grading>
|
|
1806
|
+
gap> NrLClasses(d);
|
|
1807
|
+
1
|
|
1808
|
+
gap> NrRClasses(d);
|
|
1809
|
+
4752
|
|
1810
|
+
gap> f := PartialPerm([4, 29], [28, 89]);;
|
|
1811
|
+
gap> f in d;
|
|
1812
|
+
true
|
|
1813
|
+
gap> h := HClass(d, f);
|
|
1814
|
+
<Green's H-class: [4,28][29,89]>
|
|
1815
|
+
gap> hh := HClassNC(d, f);
|
|
1816
|
+
<Green's H-class: [4,28][29,89]>
|
|
1817
|
+
gap> hh = h;
|
|
1818
|
+
true
|
|
1819
|
+
gap> Size(h);
|
|
1820
|
+
1
|
|
1821
|
+
|
|
1822
|
+
# MiscTest16
|
|
1823
|
+
gap> gens := [Transformation([1, 3, 2, 3]),
|
|
1824
|
+
> Transformation([1, 4, 1, 2]),
|
|
1825
|
+
> Transformation([3, 4, 2, 2]),
|
|
1826
|
+
> Transformation([4, 1, 2, 1])];;
|
|
1827
|
+
gap> s := Monoid(gens);;
|
|
1828
|
+
gap> List(DClasses(s), RClassReps);
|
|
1829
|
+
[ [ IdentityTransformation ], [ Transformation( [ 1, 3, 2, 3 ] ) ],
|
|
1830
|
+
[ Transformation( [ 1, 4, 1, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ) ],
|
|
1831
|
+
[ Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ) ],
|
|
1832
|
+
[ Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 2, 2, 2 ] ),
|
|
1833
|
+
Transformation( [ 3, 3, 2, 3 ] ) ], [ Transformation( [ 1, 4, 2, 4 ] ) ]
|
|
1834
|
+
, [ Transformation( [ 4, 4, 2, 2 ] ), Transformation( [ 4, 2, 4, 4 ] ),
|
|
1835
|
+
Transformation( [ 4, 4, 4, 2 ] ) ], [ Transformation( [ 1, 1, 1, 1 ] ) ]
|
|
1836
|
+
, [ Transformation( [ 4, 2, 4, 2 ] ), Transformation( [ 4, 2, 2, 2 ] ),
|
|
1837
|
+
Transformation( [ 4, 4, 2, 4 ] ) ] ]
|
|
1838
|
+
gap> reps := Concatenation(last);
|
|
1839
|
+
[ IdentityTransformation, Transformation( [ 1, 3, 2, 3 ] ),
|
|
1840
|
+
Transformation( [ 1, 4, 1, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ),
|
|
1841
|
+
Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ),
|
|
1842
|
+
Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 2, 2, 2 ] ),
|
|
1843
|
+
Transformation( [ 3, 3, 2, 3 ] ), Transformation( [ 1, 4, 2, 4 ] ),
|
|
1844
|
+
Transformation( [ 4, 4, 2, 2 ] ), Transformation( [ 4, 2, 4, 4 ] ),
|
|
1845
|
+
Transformation( [ 4, 4, 4, 2 ] ), Transformation( [ 1, 1, 1, 1 ] ),
|
|
1846
|
+
Transformation( [ 4, 2, 4, 2 ] ), Transformation( [ 4, 2, 2, 2 ] ),
|
|
1847
|
+
Transformation( [ 4, 4, 2, 4 ] ) ]
|
|
1848
|
+
gap> Length(last);
|
|
1849
|
+
17
|
|
1850
|
+
gap> IsDuplicateFree(last2);
|
|
1851
|
+
true
|
|
1852
|
+
gap> Size(s);
|
|
1853
|
+
69
|
|
1854
|
+
gap> NrDClasses(s);
|
|
1855
|
+
9
|
|
1856
|
+
gap> NrLClasses(s);
|
|
1857
|
+
21
|
|
1858
|
+
gap> List(reps, x -> DClass(s, x));
|
|
1859
|
+
[ <Green's D-class: IdentityTransformation>,
|
|
1860
|
+
<Green's D-class: Transformation( [ 1, 3, 2, 3 ] )>,
|
|
1861
|
+
<Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>,
|
|
1862
|
+
<Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>,
|
|
1863
|
+
<Green's D-class: Transformation( [ 4, 1, 2, 1 ] )>,
|
|
1864
|
+
<Green's D-class: Transformation( [ 4, 2, 1, 2 ] )>,
|
|
1865
|
+
<Green's D-class: Transformation( [ 3, 2, 3, 2 ] )>,
|
|
1866
|
+
<Green's D-class: Transformation( [ 3, 2, 2, 2 ] )>,
|
|
1867
|
+
<Green's D-class: Transformation( [ 3, 3, 2, 3 ] )>,
|
|
1868
|
+
<Green's D-class: Transformation( [ 1, 4, 2, 4 ] )>,
|
|
1869
|
+
<Green's D-class: Transformation( [ 4, 4, 2, 2 ] )>,
|
|
1870
|
+
<Green's D-class: Transformation( [ 4, 2, 4, 4 ] )>,
|
|
1871
|
+
<Green's D-class: Transformation( [ 4, 4, 4, 2 ] )>,
|
|
1872
|
+
<Green's D-class: Transformation( [ 1, 1, 1, 1 ] )>,
|
|
1873
|
+
<Green's D-class: Transformation( [ 4, 2, 4, 2 ] )>,
|
|
1874
|
+
<Green's D-class: Transformation( [ 4, 2, 2, 2 ] )>,
|
|
1875
|
+
<Green's D-class: Transformation( [ 4, 4, 2, 4 ] )> ]
|
|
1876
|
+
gap> d := DClass(s, Transformation([1, 2, 4, 4]));
|
|
1877
|
+
<Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>
|
|
1878
|
+
gap> Transformation([1, 4, 1, 2]) in last;
|
|
1879
|
+
true
|
|
1880
|
+
gap> f := Transformation([1, 2, 4, 4]);
|
|
1881
|
+
Transformation( [ 1, 2, 4, 4 ] )
|
|
1882
|
+
gap> o := LambdaOrb(s);
|
|
1883
|
+
<closed orbit, 15 points with Schreier tree with log>
|
|
1884
|
+
gap> HasRhoOrb(s) and IsClosedOrbit(RhoOrb(s));
|
|
1885
|
+
true
|
|
1886
|
+
gap> o := RhoOrb(s);
|
|
1887
|
+
<closed orbit, 12 points with Schreier tree with log>
|
|
1888
|
+
gap> List(reps, x -> DClass(s, x));
|
|
1889
|
+
[ <Green's D-class: IdentityTransformation>,
|
|
1890
|
+
<Green's D-class: Transformation( [ 1, 3, 2, 3 ] )>,
|
|
1891
|
+
<Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>,
|
|
1892
|
+
<Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>,
|
|
1893
|
+
<Green's D-class: Transformation( [ 4, 1, 2, 1 ] )>,
|
|
1894
|
+
<Green's D-class: Transformation( [ 4, 2, 1, 2 ] )>,
|
|
1895
|
+
<Green's D-class: Transformation( [ 3, 2, 3, 2 ] )>,
|
|
1896
|
+
<Green's D-class: Transformation( [ 3, 2, 2, 2 ] )>,
|
|
1897
|
+
<Green's D-class: Transformation( [ 3, 3, 2, 3 ] )>,
|
|
1898
|
+
<Green's D-class: Transformation( [ 1, 4, 2, 4 ] )>,
|
|
1899
|
+
<Green's D-class: Transformation( [ 4, 4, 2, 2 ] )>,
|
|
1900
|
+
<Green's D-class: Transformation( [ 4, 2, 4, 4 ] )>,
|
|
1901
|
+
<Green's D-class: Transformation( [ 4, 4, 4, 2 ] )>,
|
|
1902
|
+
<Green's D-class: Transformation( [ 1, 1, 1, 1 ] )>,
|
|
1903
|
+
<Green's D-class: Transformation( [ 4, 2, 4, 2 ] )>,
|
|
1904
|
+
<Green's D-class: Transformation( [ 4, 2, 2, 2 ] )>,
|
|
1905
|
+
<Green's D-class: Transformation( [ 4, 4, 2, 4 ] )> ]
|
|
1906
|
+
gap> Union(List(last, x -> LClass(x, Representative(x))));
|
|
1907
|
+
[ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 2, 1 ] ),
|
|
1908
|
+
Transformation( [ 1, 2, 3, 2 ] ), IdentityTransformation,
|
|
1909
|
+
Transformation( [ 1, 2, 4, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ),
|
|
1910
|
+
Transformation( [ 1, 3, 2, 3 ] ), Transformation( [ 1, 4, 1, 2 ] ),
|
|
1911
|
+
Transformation( [ 1, 4, 2, 2 ] ), Transformation( [ 1, 4, 2, 4 ] ),
|
|
1912
|
+
Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 2, 3, 2 ] ),
|
|
1913
|
+
Transformation( [ 2, 2, 4, 2 ] ), Transformation( [ 2, 2, 4, 4 ] ),
|
|
1914
|
+
Transformation( [ 2, 3, 2, 3 ] ), Transformation( [ 2, 3, 3, 3 ] ),
|
|
1915
|
+
Transformation( [ 2, 4, 2, 2 ] ), Transformation( [ 2, 4, 2, 4 ] ),
|
|
1916
|
+
Transformation( [ 2, 4, 4, 4 ] ), Transformation( [ 3, 2, 2, 2 ] ),
|
|
1917
|
+
Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 3, 2, 3 ] ),
|
|
1918
|
+
Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ),
|
|
1919
|
+
Transformation( [ 4, 2, 2, 2 ] ), Transformation( [ 4, 2, 4, 2 ] ),
|
|
1920
|
+
Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 4, 2, 2 ] ),
|
|
1921
|
+
Transformation( [ 4, 4, 2, 4 ] ), Transformation( [ 4, 4, 4, 2 ] ) ]
|
|
1922
|
+
gap> Length(last);
|
|
1923
|
+
30
|
|
1924
|
+
gap> D := List(reps, x -> DClass(s, x));
|
|
1925
|
+
[ <Green's D-class: IdentityTransformation>,
|
|
1926
|
+
<Green's D-class: Transformation( [ 1, 3, 2, 3 ] )>,
|
|
1927
|
+
<Green's D-class: Transformation( [ 1, 4, 1, 2 ] )>,
|
|
1928
|
+
<Green's D-class: Transformation( [ 1, 2, 4, 4 ] )>,
|
|
1929
|
+
<Green's D-class: Transformation( [ 4, 1, 2, 1 ] )>,
|
|
1930
|
+
<Green's D-class: Transformation( [ 4, 2, 1, 2 ] )>,
|
|
1931
|
+
<Green's D-class: Transformation( [ 3, 2, 3, 2 ] )>,
|
|
1932
|
+
<Green's D-class: Transformation( [ 3, 2, 2, 2 ] )>,
|
|
1933
|
+
<Green's D-class: Transformation( [ 3, 3, 2, 3 ] )>,
|
|
1934
|
+
<Green's D-class: Transformation( [ 1, 4, 2, 4 ] )>,
|
|
1935
|
+
<Green's D-class: Transformation( [ 4, 4, 2, 2 ] )>,
|
|
1936
|
+
<Green's D-class: Transformation( [ 4, 2, 4, 4 ] )>,
|
|
1937
|
+
<Green's D-class: Transformation( [ 4, 4, 4, 2 ] )>,
|
|
1938
|
+
<Green's D-class: Transformation( [ 1, 1, 1, 1 ] )>,
|
|
1939
|
+
<Green's D-class: Transformation( [ 4, 2, 4, 2 ] )>,
|
|
1940
|
+
<Green's D-class: Transformation( [ 4, 2, 2, 2 ] )>,
|
|
1941
|
+
<Green's D-class: Transformation( [ 4, 4, 2, 4 ] )> ]
|
|
1942
|
+
gap> Length(Set(D));
|
|
1943
|
+
9
|
|
1944
|
+
gap> List(D, x -> LClass(x, Representative(x)));
|
|
1945
|
+
[ <Green's L-class: IdentityTransformation>,
|
|
1946
|
+
<Green's L-class: Transformation( [ 1, 3, 2, 3 ] )>,
|
|
1947
|
+
<Green's L-class: Transformation( [ 1, 4, 1, 2 ] )>,
|
|
1948
|
+
<Green's L-class: Transformation( [ 1, 2, 4, 4 ] )>,
|
|
1949
|
+
<Green's L-class: Transformation( [ 4, 1, 2, 1 ] )>,
|
|
1950
|
+
<Green's L-class: Transformation( [ 4, 2, 1, 2 ] )>,
|
|
1951
|
+
<Green's L-class: Transformation( [ 3, 2, 3, 2 ] )>,
|
|
1952
|
+
<Green's L-class: Transformation( [ 3, 2, 2, 2 ] )>,
|
|
1953
|
+
<Green's L-class: Transformation( [ 3, 3, 2, 3 ] )>,
|
|
1954
|
+
<Green's L-class: Transformation( [ 1, 4, 2, 4 ] )>,
|
|
1955
|
+
<Green's L-class: Transformation( [ 4, 4, 2, 2 ] )>,
|
|
1956
|
+
<Green's L-class: Transformation( [ 4, 2, 4, 4 ] )>,
|
|
1957
|
+
<Green's L-class: Transformation( [ 4, 4, 4, 2 ] )>,
|
|
1958
|
+
<Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
|
|
1959
|
+
<Green's L-class: Transformation( [ 4, 2, 4, 2 ] )>,
|
|
1960
|
+
<Green's L-class: Transformation( [ 4, 2, 2, 2 ] )>,
|
|
1961
|
+
<Green's L-class: Transformation( [ 4, 4, 2, 4 ] )> ]
|
|
1962
|
+
gap> Union(last);
|
|
1963
|
+
[ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 2, 1 ] ),
|
|
1964
|
+
Transformation( [ 1, 2, 3, 2 ] ), IdentityTransformation,
|
|
1965
|
+
Transformation( [ 1, 2, 4, 2 ] ), Transformation( [ 1, 2, 4, 4 ] ),
|
|
1966
|
+
Transformation( [ 1, 3, 2, 3 ] ), Transformation( [ 1, 4, 1, 2 ] ),
|
|
1967
|
+
Transformation( [ 1, 4, 2, 2 ] ), Transformation( [ 1, 4, 2, 4 ] ),
|
|
1968
|
+
Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 2, 3, 2 ] ),
|
|
1969
|
+
Transformation( [ 2, 2, 4, 2 ] ), Transformation( [ 2, 2, 4, 4 ] ),
|
|
1970
|
+
Transformation( [ 2, 3, 2, 3 ] ), Transformation( [ 2, 3, 3, 3 ] ),
|
|
1971
|
+
Transformation( [ 2, 4, 2, 2 ] ), Transformation( [ 2, 4, 2, 4 ] ),
|
|
1972
|
+
Transformation( [ 2, 4, 4, 4 ] ), Transformation( [ 3, 2, 2, 2 ] ),
|
|
1973
|
+
Transformation( [ 3, 2, 3, 2 ] ), Transformation( [ 3, 3, 2, 3 ] ),
|
|
1974
|
+
Transformation( [ 4, 1, 2, 1 ] ), Transformation( [ 4, 2, 1, 2 ] ),
|
|
1975
|
+
Transformation( [ 4, 2, 2, 2 ] ), Transformation( [ 4, 2, 4, 2 ] ),
|
|
1976
|
+
Transformation( [ 4, 2, 4, 4 ] ), Transformation( [ 4, 4, 2, 2 ] ),
|
|
1977
|
+
Transformation( [ 4, 4, 2, 4 ] ), Transformation( [ 4, 4, 4, 2 ] ) ]
|
|
1978
|
+
gap> Set(last2) = Set(LClasses(s));
|
|
1979
|
+
false
|
|
1980
|
+
gap> L := Set(last3);
|
|
1981
|
+
[ <Green's L-class: Transformation( [ 1, 1, 1, 1 ] )>,
|
|
1982
|
+
<Green's L-class: Transformation( [ 1, 4, 1, 2 ] )>,
|
|
1983
|
+
<Green's L-class: Transformation( [ 1, 3, 2, 3 ] )>,
|
|
1984
|
+
<Green's L-class: IdentityTransformation>,
|
|
1985
|
+
<Green's L-class: Transformation( [ 1, 4, 2, 4 ] )>,
|
|
1986
|
+
<Green's L-class: Transformation( [ 4, 4, 2, 2 ] )>,
|
|
1987
|
+
<Green's L-class: Transformation( [ 3, 2, 3, 2 ] )>,
|
|
1988
|
+
<Green's L-class: Transformation( [ 4, 2, 4, 2 ] )>,
|
|
1989
|
+
<Green's L-class: Transformation( [ 4, 1, 2, 1 ] )> ]
|
|
1990
|
+
|
|
1991
|
+
# MiscTest17
|
|
1992
|
+
gap> gens :=
|
|
1993
|
+
> [PartialPermNC([1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18,
|
|
1994
|
+
> 20, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 44, 45,
|
|
1995
|
+
> 50, 51, 52, 54, 55, 60, 62, 64, 65, 66, 68, 71, 73, 75, 77, 78, 79, 83, 84,
|
|
1996
|
+
> 94, 95, 96, 97], [30, 56, 33, 17, 43, 34, 28, 78, 91, 24, 44, 84, 71, 81,
|
|
1997
|
+
> 57, 90, 20, 69, 70, 6, 82, 26, 53, 86, 32, 22, 12, 95, 59, 40, 73, 76, 98,
|
|
1998
|
+
> 48, 80, 51, 9, 27, 49, 93, 52, 60, 94, 11, 75, 96, 72, 4, 87, 37, 29, 50,
|
|
1999
|
+
> 39, 45, 88, 67, 14, 99]),
|
|
2000
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19,
|
|
2001
|
+
> 20, 21, 23, 24, 25, 26, 28, 30, 32, 35, 36, 37, 41, 42, 43, 47, 48, 49, 50,
|
|
2002
|
+
> 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 68, 69, 71, 72, 74, 76,
|
|
2003
|
+
> 81, 82, 83, 84, 86, 87, 92, 93], [56, 4, 87, 14, 67, 82, 17, 73, 18, 12,
|
|
2004
|
+
> 35, 43, 80, 99, 7, 96, 58, 76, 36, 30, 98, 26, 62, 1, 75, 27, 10, 74, 55,
|
|
2005
|
+
> 47, 37, 95, 39, 52, 84, 72, 50, 53, 77, 24, 59, 66, 9, 49, 70, 6, 51, 89,
|
|
2006
|
+
> 21, 11, 85, 15, 19, 28, 79, 40, 34, 71, 5, 29, 88, 16, 8]),
|
|
2007
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18,
|
|
2008
|
+
> 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42,
|
|
2009
|
+
> 44, 46, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 68, 70, 71, 72,
|
|
2010
|
+
> 77, 81, 84, 88, 89, 91, 93, 95, 97, 99, 100],
|
|
2011
|
+
> [53, 10, 43, 41, 57, 14, 68, 20, 54, 62, 5, 49, 86, 56, 91, 48, 9, 87, 33,
|
|
2012
|
+
> 64, 60, 13, 70, 92, 80, 69, 35, 88, 98, 4, 96, 79, 94, 71, 61, 27, 89, 97,
|
|
2013
|
+
> 46, 28, 40, 3, 100, 17, 19, 39, 82, 52, 6, 16, 77, 76, 45, 67, 23, 31, 29,
|
|
2014
|
+
> 12, 95, 72, 85, 7, 26, 38, 18, 24]),
|
|
2015
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 20, 21, 23,
|
|
2016
|
+
> 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 47,
|
|
2017
|
+
> 48, 49, 50, 53, 54, 55, 56, 58, 59, 62, 64, 65, 66, 68, 69, 70, 72, 74, 76,
|
|
2018
|
+
> 78, 83, 84, 86, 90, 91, 92, 93, 94, 99, 100],
|
|
2019
|
+
> [3, 77, 85, 63, 47, 30, 68, 21, 95, 13, 49, 33, 62, 6, 78, 81, 83, 35, 69,
|
|
2020
|
+
> 50, 26, 61, 27, 93, 56, 39, 48, 5, 19, 52, 73, 12, 8, 89, 25, 86, 84, 14,
|
|
2021
|
+
> 70, 29, 58, 88, 43, 37, 10, 92, 65, 22, 76, 38, 74, 34, 4, 94, 82, 67, 60,
|
|
2022
|
+
> 2, 23, 59, 80, 11, 40, 98, 51, 28])];;
|
|
2023
|
+
gap> s := Semigroup(gens);
|
|
2024
|
+
<partial perm semigroup of rank 97 with 4 generators>
|
|
2025
|
+
gap> f :=
|
|
2026
|
+
> PartialPermNC([5, 7, 11, 12, 14, 24, 25, 26, 27, 29, 31, 32, 34, 35, 41,
|
|
2027
|
+
> 42, 44, 47, 48, 49, 50, 53, 62, 69, 70, 86, 92],
|
|
2028
|
+
> [23, 52, 39, 62, 11, 47, 94, 34, 70, 50, 73, 89, 2, 86, 14, 81, 74, 83, 77,
|
|
2029
|
+
> 92, 48, 26, 13, 98, 84, 60, 33]);;
|
|
2030
|
+
gap> d := DClass(s, f);
|
|
2031
|
+
<Green's D-class: [5,23][7,52][12,62,13][24,47,83][25,94][27,70,84]
|
|
2032
|
+
[29,50,48,77][31,73][32,89][35,86,60][41,14,11,39][42,81][44,74][49,92,33]
|
|
2033
|
+
[53,26,34,2][69,98]>
|
|
2034
|
+
gap> Size(d);
|
|
2035
|
+
1
|
|
2036
|
+
gap> RhoOrb(d);
|
|
2037
|
+
<closed orbit, 1 points with Schreier tree with log with grading>
|
|
2038
|
+
gap> LambdaOrb(d);
|
|
2039
|
+
<closed orbit, 35494 points with Schreier tree with log>
|
|
2040
|
+
gap> f := PartialPerm([5, 7, 56, 83, 92], [30, 52, 16, 21, 29]);;
|
|
2041
|
+
gap> d := DClassNC(s, f);
|
|
2042
|
+
<Green's D-class: [5,30][7,52][56,16][83,21][92,29]>
|
|
2043
|
+
gap> Size(d);
|
|
2044
|
+
1
|
|
2045
|
+
gap> iter := IteratorOfDClasses(s);
|
|
2046
|
+
<iterator>
|
|
2047
|
+
gap> repeat d := NextIterator(iter); until Size(d) > 1;
|
|
2048
|
+
gap> d;
|
|
2049
|
+
<Green's D-class: [74,16][84,34]>
|
|
2050
|
+
gap> Size(d);
|
|
2051
|
+
6793298
|
|
2052
|
+
gap> f := PartialPerm([1, 88], [78, 48]);;
|
|
2053
|
+
gap> f in d;
|
|
2054
|
+
true
|
|
2055
|
+
gap> r := RClass(d, f);
|
|
2056
|
+
<Green's R-class: [1,78][88,48]>
|
|
2057
|
+
gap> ForAll(r, x -> x in d);
|
|
2058
|
+
true
|
|
2059
|
+
gap> Size(r);
|
|
2060
|
+
3686
|
|
2061
|
+
gap> NrLClasses(d) * last;
|
|
2062
|
+
6793298
|
|
2063
|
+
gap> SchutzenbergerGroup(r);
|
|
2064
|
+
Group([ (16,34) ])
|
|
2065
|
+
gap> SchutzenbergerGroup(d);
|
|
2066
|
+
Group([ (16,34) ])
|
|
2067
|
+
gap> IsRegularDClass(d);
|
|
2068
|
+
true
|
|
2069
|
+
gap> IsRegularGreensClass(r);
|
|
2070
|
+
true
|
|
2071
|
+
gap> ForAll(r, x -> x in r);
|
|
2072
|
+
true
|
|
2073
|
+
gap> repeat d := NextIterator(iter); until Size(d) > 1;
|
|
2074
|
+
gap> d;
|
|
2075
|
+
<Green's D-class: [41,34][50,16]>
|
|
2076
|
+
gap> Size(d);
|
|
2077
|
+
3686
|
|
2078
|
+
gap> f := PartialPerm([41, 50], [17, 32]);;
|
|
2079
|
+
gap> r := RClassNC(d, f);
|
|
2080
|
+
<Green's R-class: [41,17][50,32]>
|
|
2081
|
+
gap> Size(r);
|
|
2082
|
+
3686
|
|
2083
|
+
gap> ForAll(r, x -> x in d);
|
|
2084
|
+
true
|
|
2085
|
+
gap> ForAll(d, x -> x in r);
|
|
2086
|
+
true
|
|
2087
|
+
gap> rr := RClass(s, f);
|
|
2088
|
+
<Green's R-class: [41,17][50,32]>
|
|
2089
|
+
gap> AsSSortedList(rr) = AsSSortedList(r);
|
|
2090
|
+
true
|
|
2091
|
+
gap> d;
|
|
2092
|
+
<Green's D-class: [41,34][50,16]>
|
|
2093
|
+
gap> GroupHClass(d);
|
|
2094
|
+
fail
|
|
2095
|
+
|
|
2096
|
+
# MiscTest18
|
|
2097
|
+
gap> gens := [Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]),
|
|
2098
|
+
> Transformation([3, 1, 4, 2, 5, 2, 1, 6, 1, 7]),
|
|
2099
|
+
> Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6]),
|
|
2100
|
+
> Transformation([4, 7, 6, 9, 10, 1, 3, 6, 6, 2]),
|
|
2101
|
+
> Transformation([5, 9, 10, 9, 6, 3, 8, 4, 6, 5]),
|
|
2102
|
+
> Transformation([6, 2, 2, 7, 8, 8, 2, 10, 2, 4]),
|
|
2103
|
+
> Transformation([6, 2, 8, 4, 7, 5, 8, 3, 5, 8]),
|
|
2104
|
+
> Transformation([7, 1, 4, 3, 2, 7, 7, 6, 6, 5]),
|
|
2105
|
+
> Transformation([7, 10, 10, 1, 7, 9, 10, 4, 2, 10]),
|
|
2106
|
+
> Transformation([10, 7, 10, 8, 8, 7, 5, 9, 1, 9])];;
|
|
2107
|
+
gap> s := Semigroup(gens);
|
|
2108
|
+
<transformation semigroup of degree 10 with 10 generators>
|
|
2109
|
+
gap> f := Transformation([6, 6, 6, 6, 6, 10, 6, 6, 6, 6]);;
|
|
2110
|
+
gap> d := DClassNC(s, f);
|
|
2111
|
+
<Green's D-class: Transformation( [ 6, 6, 6, 6, 6, 10, 6, 6, 6, 6 ] )>
|
|
2112
|
+
gap> Transformation([6, 6, 6, 6, 6, 10, 6, 6, 6, 6]) in last;
|
|
2113
|
+
true
|
|
2114
|
+
gap> Size(d);
|
|
2115
|
+
31680
|
|
2116
|
+
gap> IsRegularDClass(d);
|
|
2117
|
+
true
|
|
2118
|
+
gap> GroupHClass(d);
|
|
2119
|
+
<Green's H-class: Transformation( [ 10, 10, 10, 10, 10, 6, 10, 10, 10, 10 ] )>
|
|
2120
|
+
gap> Transformation([10, 10, 10, 10, 10, 6, 10, 10, 10, 10]) in last;
|
|
2121
|
+
true
|
|
2122
|
+
|
|
2123
|
+
# MiscTest19
|
|
2124
|
+
gap> gens := [PartialPermNC([1, 3, 4, 6, 10], [3, 4, 1, 6, 10]),
|
|
2125
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6], [10, 3, 9, 1, 5, 8]),
|
|
2126
|
+
> PartialPermNC([1, 2, 3, 4, 6, 10], [1, 8, 2, 3, 4, 9]),
|
|
2127
|
+
> PartialPermNC([1, 2, 3, 4, 8, 9, 10], [5, 8, 9, 7, 2, 6, 10])];;
|
|
2128
|
+
gap> s := Semigroup(gens);
|
|
2129
|
+
<partial perm semigroup of rank 9 with 4 generators>
|
|
2130
|
+
gap> Size(s);
|
|
2131
|
+
789
|
|
2132
|
+
gap> NrDClasses(s);
|
|
2133
|
+
251
|
|
2134
|
+
gap> d := DClasses(s)[251];
|
|
2135
|
+
<Green's D-class: [4,7](2)>
|
|
2136
|
+
gap> Size(d);
|
|
2137
|
+
1
|
|
2138
|
+
gap> First(DClasses(s), IsRegularDClass);
|
|
2139
|
+
<Green's D-class: (1,3,4)(6)(10)>
|
|
2140
|
+
gap> d := last;
|
|
2141
|
+
<Green's D-class: (1,3,4)(6)(10)>
|
|
2142
|
+
gap> Size(d);
|
|
2143
|
+
3
|
|
2144
|
+
gap> h := GroupHClass(d);
|
|
2145
|
+
<Green's H-class: <identity partial perm on [ 1, 3, 4, 6, 10 ]>>
|
|
2146
|
+
gap> PartialPerm([1, 3, 4, 6, 10], [1, 3, 4, 6, 10]) in last;
|
|
2147
|
+
true
|
|
2148
|
+
gap> Size(h);
|
|
2149
|
+
3
|
|
2150
|
+
gap> AsSSortedList(h) = AsSSortedList(d);
|
|
2151
|
+
true
|
|
2152
|
+
gap> Elements(h);
|
|
2153
|
+
[ <identity partial perm on [ 1, 3, 4, 6, 10 ]>, (1,3,4)(6)(10),
|
|
2154
|
+
(1,4,3)(6)(10) ]
|
|
2155
|
+
gap> Number(DClasses(s), IsRegularDClass);
|
|
2156
|
+
6
|
|
2157
|
+
gap> List(DClasses(s), Idempotents);
|
|
2158
|
+
[ [ <identity partial perm on [ 1, 3, 4, 6, 10 ]> ], [ ], [ ], [ ], [ ],
|
|
2159
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2160
|
+
[ ], [ ], [ ],
|
|
2161
|
+
[ <identity partial perm on [ 8 ]>, <identity partial perm on [ 2 ]>,
|
|
2162
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]>,
|
|
2163
|
+
<identity partial perm on [ 6 ]>, <identity partial perm on [ 9 ]>,
|
|
2164
|
+
<identity partial perm on [ 10 ]>, <identity partial perm on [ 1 ]> ],
|
|
2165
|
+
[ ], [ ], [ ], [ ], [ ], [ <identity partial perm on [ 5 ]> ], [ ],
|
|
2166
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2167
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2168
|
+
[ ], [ ], [ ], [ <identity partial perm on [ 2, 8, 10 ]> ],
|
|
2169
|
+
[ <empty partial perm> ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2170
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2171
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2172
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2173
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2174
|
+
[ <identity partial perm on [ 3, 4 ]>, <identity partial perm on [ 1, 3 ]>,
|
|
2175
|
+
<identity partial perm on [ 1, 4 ]> ], [ ], [ ], [ ], [ ], [ ],
|
|
2176
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2177
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2178
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2179
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2180
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2181
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2182
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2183
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2184
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2185
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2186
|
+
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
|
|
2187
|
+
[ ] ]
|
|
2188
|
+
gap> Concatenation(last);
|
|
2189
|
+
[ <identity partial perm on [ 1, 3, 4, 6, 10 ]>,
|
|
2190
|
+
<identity partial perm on [ 8 ]>, <identity partial perm on [ 2 ]>,
|
|
2191
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]>,
|
|
2192
|
+
<identity partial perm on [ 6 ]>, <identity partial perm on [ 9 ]>,
|
|
2193
|
+
<identity partial perm on [ 10 ]>, <identity partial perm on [ 1 ]>,
|
|
2194
|
+
<identity partial perm on [ 5 ]>, <identity partial perm on [ 2, 8, 10 ]>,
|
|
2195
|
+
<empty partial perm>, <identity partial perm on [ 3, 4 ]>,
|
|
2196
|
+
<identity partial perm on [ 1, 3 ]>, <identity partial perm on [ 1, 4 ]> ]
|
|
2197
|
+
gap> ForAll(last, x -> x in s);
|
|
2198
|
+
true
|
|
2199
|
+
gap> Set(last2) = Idempotents(s);
|
|
2200
|
+
false
|
|
2201
|
+
gap> Set(last3) = Set(Idempotents(s));
|
|
2202
|
+
true
|
|
2203
|
+
|
|
2204
|
+
# MiscTest20
|
|
2205
|
+
gap> gens := [Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
|
|
2206
|
+
> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7])];;
|
|
2207
|
+
gap> s := Monoid(gens);;
|
|
2208
|
+
gap> List(DClasses(s), Idempotents);
|
|
2209
|
+
[ [ IdentityTransformation ],
|
|
2210
|
+
[ Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ],
|
|
2211
|
+
[ Transformation( [ 4, 2, 2, 4, 5, 6, 7, 7, 7 ] ),
|
|
2212
|
+
Transformation( [ 2, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2213
|
+
Transformation( [ 6, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2214
|
+
Transformation( [ 7, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2215
|
+
Transformation( [ 5, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2216
|
+
Transformation( [ 10, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2217
|
+
Transformation( [ 11, 2, 4, 4, 5, 6, 7, 6, 10, 10, 11 ] ),
|
|
2218
|
+
Transformation( [ 4, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ] ]
|
|
2219
|
+
gap> Concatenation(last);
|
|
2220
|
+
[ IdentityTransformation, Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] )
|
|
2221
|
+
, Transformation( [ 4, 2, 2, 4, 5, 6, 7, 7, 7 ] ),
|
|
2222
|
+
Transformation( [ 2, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2223
|
+
Transformation( [ 6, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2224
|
+
Transformation( [ 7, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2225
|
+
Transformation( [ 5, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2226
|
+
Transformation( [ 10, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2227
|
+
Transformation( [ 11, 2, 4, 4, 5, 6, 7, 6, 10, 10, 11 ] ),
|
|
2228
|
+
Transformation( [ 4, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ]
|
|
2229
|
+
gap> e := last;
|
|
2230
|
+
[ IdentityTransformation, Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] )
|
|
2231
|
+
, Transformation( [ 4, 2, 2, 4, 5, 6, 7, 7, 7 ] ),
|
|
2232
|
+
Transformation( [ 2, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2233
|
+
Transformation( [ 6, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2234
|
+
Transformation( [ 7, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2235
|
+
Transformation( [ 5, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2236
|
+
Transformation( [ 10, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ),
|
|
2237
|
+
Transformation( [ 11, 2, 4, 4, 5, 6, 7, 6, 10, 10, 11 ] ),
|
|
2238
|
+
Transformation( [ 4, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] ) ]
|
|
2239
|
+
gap> IsDuplicateFree(e);
|
|
2240
|
+
true
|
|
2241
|
+
gap> ForAll(e, x -> x in s);
|
|
2242
|
+
true
|
|
2243
|
+
gap> Set(Idempotents(s)) = Set(e);
|
|
2244
|
+
true
|
|
2245
|
+
|
|
2246
|
+
# MiscTest21
|
|
2247
|
+
gap> gens :=
|
|
2248
|
+
> [PartialPermNC([1, 2, 3, 4, 5, 6], [7, 10, 8, 6, 4, 2]),
|
|
2249
|
+
> PartialPermNC([1, 2, 3, 4, 5, 9], [6, 8, 3, 10, 4, 2]),
|
|
2250
|
+
> PartialPermNC([1, 2, 3, 5, 6, 7], [8, 7, 5, 6, 2, 9]),
|
|
2251
|
+
> PartialPermNC([1, 2, 3, 5, 6, 8], [9, 3, 4, 7, 8, 6])];;
|
|
2252
|
+
gap> s := Semigroup(gens);;
|
|
2253
|
+
gap> Size(s);
|
|
2254
|
+
489
|
|
2255
|
+
gap> First(DClasses(s), IsRegularDClass);
|
|
2256
|
+
<Green's D-class: <empty partial perm>>
|
|
2257
|
+
gap> NrRegularDClasses(s);
|
|
2258
|
+
5
|
|
2259
|
+
gap> PositionsProperty(DClasses(s), IsRegularDClass);
|
|
2260
|
+
[ 25, 26, 32, 35, 63 ]
|
|
2261
|
+
gap> d := DClasses(s)[26];
|
|
2262
|
+
<Green's D-class: [3,8]>
|
|
2263
|
+
gap> NrLClasses(d);
|
|
2264
|
+
8
|
|
2265
|
+
gap> NrRClasses(d);
|
|
2266
|
+
8
|
|
2267
|
+
gap> Size(d);
|
|
2268
|
+
64
|
|
2269
|
+
gap> Idempotents(d);
|
|
2270
|
+
[ <identity partial perm on [ 3 ]>, <identity partial perm on [ 2 ]>,
|
|
2271
|
+
<identity partial perm on [ 6 ]>, <identity partial perm on [ 4 ]>,
|
|
2272
|
+
<identity partial perm on [ 5 ]>, <identity partial perm on [ 8 ]>,
|
|
2273
|
+
<identity partial perm on [ 9 ]>, <identity partial perm on [ 7 ]> ]
|
|
2274
|
+
gap> ForAll(last, x -> x in d);
|
|
2275
|
+
true
|
|
2276
|
+
gap> dd := DClassNC(s, PartialPermNC([8], [9]));
|
|
2277
|
+
<Green's D-class: [8,9]>
|
|
2278
|
+
gap> dd = d;
|
|
2279
|
+
true
|
|
2280
|
+
gap> Size(dd);
|
|
2281
|
+
64
|
|
2282
|
+
gap> Idempotents(dd);
|
|
2283
|
+
[ <identity partial perm on [ 8 ]>, <identity partial perm on [ 3 ]>,
|
|
2284
|
+
<identity partial perm on [ 2 ]>, <identity partial perm on [ 6 ]>,
|
|
2285
|
+
<identity partial perm on [ 4 ]>, <identity partial perm on [ 5 ]>,
|
|
2286
|
+
<identity partial perm on [ 9 ]>, <identity partial perm on [ 7 ]> ]
|
|
2287
|
+
gap> Set(LClassReps(dd)) = Set(LClassReps(d));
|
|
2288
|
+
false
|
|
2289
|
+
gap> LClassReps(dd);
|
|
2290
|
+
[ [8,9], [8,2], <identity partial perm on [ 8 ]>, [8,6], [8,7], [8,3], [8,5],
|
|
2291
|
+
[8,4] ]
|
|
2292
|
+
gap> LClassReps(d);
|
|
2293
|
+
[ [3,8], [3,6], [3,2], <identity partial perm on [ 3 ]>, [3,5], [3,7], [3,9],
|
|
2294
|
+
[3,4] ]
|
|
2295
|
+
gap> Set(List(LClassReps(d), x -> LClass(d, x))) =
|
|
2296
|
+
> Set(List(LClassReps(dd), x -> LClass(d, x)));
|
|
2297
|
+
true
|
|
2298
|
+
gap> Set(List(LClassReps(d), x -> LClass(d, x))) = Set(List(LClassReps(dd),
|
|
2299
|
+
> x -> LClass(dd, x)));
|
|
2300
|
+
true
|
|
2301
|
+
gap> ForAll(LClassReps(dd), x -> x in d);
|
|
2302
|
+
true
|
|
2303
|
+
gap> ForAll(LClassReps(d), x -> x in dd);
|
|
2304
|
+
true
|
|
2305
|
+
|
|
2306
|
+
# MiscTest22
|
|
2307
|
+
gap> gens :=
|
|
2308
|
+
> [PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
|
|
2309
|
+
> [2, 3, 4, 5, 6, 7, 8, 9, 10, 1]),
|
|
2310
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
|
|
2311
|
+
> [2, 1, 3, 4, 5, 6, 7, 8, 9, 10]),
|
|
2312
|
+
> PartialPermNC([1, 2, 4, 7, 10], [8, 5, 9, 6, 7])];;
|
|
2313
|
+
gap> s := Semigroup(gens);;
|
|
2314
|
+
gap> Size(s);
|
|
2315
|
+
12398231
|
|
2316
|
+
gap> NrRClasses(s);
|
|
2317
|
+
639
|
|
2318
|
+
gap> f := PartialPerm([3, 9], [5, 4]);;
|
|
2319
|
+
gap> d := DClass(s, f);
|
|
2320
|
+
<Green's D-class: [3,5][9,4]>
|
|
2321
|
+
gap> Position(LambdaOrb(d), ImageSetOfPartialPerm(d!.rep));
|
|
2322
|
+
7
|
|
2323
|
+
gap> OrbSCC(RhoOrb(d))[RhoOrbSCCIndex(d)];
|
|
2324
|
+
[ 61, 38, 60, 92, 39, 62, 94, 93, 133, 184, 64, 96, 136, 134, 160, 211, 8,
|
|
2325
|
+
15, 24, 40, 273, 146, 185, 158, 209, 270, 339, 407, 271, 240, 305, 63, 95,
|
|
2326
|
+
135, 371, 435, 239, 304, 370, 434, 132, 183, 238, 303, 369 ]
|
|
2327
|
+
gap> OrbSCC(LambdaOrb(d))[LambdaOrbSCCIndex(d)];
|
|
2328
|
+
[ 7, 13, 20, 27, 36, 48, 65, 67, 90, 53, 73, 95, 45, 62, 86, 110, 49, 34,
|
|
2329
|
+
139, 170, 115, 143, 172, 208, 66, 71, 92, 116, 119, 147, 177, 173, 209,
|
|
2330
|
+
244, 278, 245, 120, 137, 148, 178, 214, 114, 142, 89, 113 ]
|
|
2331
|
+
gap> NrIdempotents(d);
|
|
2332
|
+
45
|
|
2333
|
+
gap> Number(Idempotents(s), x -> x in d);
|
|
2334
|
+
45
|
|
2335
|
+
gap> s := Semigroup(gens);
|
|
2336
|
+
<partial perm semigroup of rank 10 with 3 generators>
|
|
2337
|
+
gap> d := DClass(s, f);
|
|
2338
|
+
<Green's D-class: [3,5][9,4]>
|
|
2339
|
+
gap> s := Semigroup(gens);
|
|
2340
|
+
<partial perm semigroup of rank 10 with 3 generators>
|
|
2341
|
+
gap> d := DClassNC(s, f);
|
|
2342
|
+
<Green's D-class: [3,5][9,4]>
|
|
2343
|
+
gap> NrIdempotents(d);
|
|
2344
|
+
45
|
|
2345
|
+
gap> Number(Idempotents(s), x -> x in d);
|
|
2346
|
+
45
|
|
2347
|
+
gap> s := Semigroup(gens);
|
|
2348
|
+
<partial perm semigroup of rank 10 with 3 generators>
|
|
2349
|
+
gap> l := LClass(s, f);
|
|
2350
|
+
<Green's L-class: [3,5][9,4]>
|
|
2351
|
+
gap> d := DClassOfLClass(l);
|
|
2352
|
+
<Green's D-class: [3,5][9,4]>
|
|
2353
|
+
gap> NrIdempotents(d);
|
|
2354
|
+
45
|
|
2355
|
+
gap> s := Semigroup(gens);
|
|
2356
|
+
<partial perm semigroup of rank 10 with 3 generators>
|
|
2357
|
+
gap> l := LClass(s, f);
|
|
2358
|
+
<Green's L-class: [3,5][9,4]>
|
|
2359
|
+
gap> s := Semigroup(gens);
|
|
2360
|
+
<partial perm semigroup of rank 10 with 3 generators>
|
|
2361
|
+
gap> l := LClassNC(s, f);
|
|
2362
|
+
<Green's L-class: [3,5][9,4]>
|
|
2363
|
+
gap> d := DClassOfLClass(l);
|
|
2364
|
+
<Green's D-class: [3,5][9,4]>
|
|
2365
|
+
gap> NrIdempotents(d);
|
|
2366
|
+
45
|
|
2367
|
+
gap> s := Semigroup(gens);
|
|
2368
|
+
<partial perm semigroup of rank 10 with 3 generators>
|
|
2369
|
+
gap> r := RClass(s, f);
|
|
2370
|
+
<Green's R-class: [3,5][9,4]>
|
|
2371
|
+
gap> d := DClassOfRClass(r);
|
|
2372
|
+
<Green's D-class: [3,7][9,6]>
|
|
2373
|
+
gap> NrIdempotents(d);
|
|
2374
|
+
45
|
|
2375
|
+
gap> s := Semigroup(gens);
|
|
2376
|
+
<partial perm semigroup of rank 10 with 3 generators>
|
|
2377
|
+
gap> r := RClassNC(s, f);
|
|
2378
|
+
<Green's R-class: [3,5][9,4]>
|
|
2379
|
+
gap> d := DClassOfRClass(r);
|
|
2380
|
+
<Green's D-class: [3,5][9,4]>
|
|
2381
|
+
gap> NrIdempotents(d);
|
|
2382
|
+
45
|
|
2383
|
+
gap> r := RClassNC(s, f);
|
|
2384
|
+
<Green's R-class: [3,5][9,4]>
|
|
2385
|
+
gap> d := DClassOfRClass(r);
|
|
2386
|
+
<Green's D-class: [3,5][9,4]>
|
|
2387
|
+
gap> NrIdempotents(d);
|
|
2388
|
+
45
|
|
2389
|
+
gap> IsGreensClassNC(d);
|
|
2390
|
+
true
|
|
2391
|
+
gap> IsGreensClassNC(r);
|
|
2392
|
+
true
|
|
2393
|
+
gap> NrRegularDClasses(s);
|
|
2394
|
+
7
|
|
2395
|
+
gap> NrDClasses(s);
|
|
2396
|
+
7
|
|
2397
|
+
gap> IsRegularSemigroup(s);
|
|
2398
|
+
true
|
|
2399
|
+
|
|
2400
|
+
# MiscTest23
|
|
2401
|
+
gap> gens := [Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
|
|
2402
|
+
> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7])];;
|
|
2403
|
+
gap> s := Monoid(gens);;
|
|
2404
|
+
gap> NrRegularDClasses(s);
|
|
2405
|
+
3
|
|
2406
|
+
gap> NrDClasses(s);
|
|
2407
|
+
3
|
|
2408
|
+
gap> IsRegularSemigroup(s);
|
|
2409
|
+
true
|
|
2410
|
+
gap> d := DClasses(s)[2];
|
|
2411
|
+
<Green's D-class: Transformation( [ 1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10 ] )>
|
|
2412
|
+
gap> Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]) in last;
|
|
2413
|
+
true
|
|
2414
|
+
gap> NrHClasses(d);
|
|
2415
|
+
1
|
|
2416
|
+
gap> h := GroupHClass(d);
|
|
2417
|
+
<Green's H-class: Transformation( [ 1, 2, 4, 4, 5, 6, 7, 6, 10, 10 ] )>
|
|
2418
|
+
gap> Transformation([1, 2, 4, 4, 5, 6, 7, 6, 10, 10]) in last;
|
|
2419
|
+
true
|
|
2420
|
+
gap> AsSSortedList(h) = AsSSortedList(d);
|
|
2421
|
+
true
|
|
2422
|
+
gap> Size(d);
|
|
2423
|
+
7
|
|
2424
|
+
gap> Size(h);
|
|
2425
|
+
7
|
|
2426
|
+
|
|
2427
|
+
# MiscTest24
|
|
2428
|
+
gap> gens :=
|
|
2429
|
+
> [PartialPermNC([1, 2, 3, 5, 6, 7, 12], [11, 10, 3, 4, 6, 2, 8]),
|
|
2430
|
+
> PartialPermNC([1, 2, 4, 5, 6, 8, 9, 10, 11],
|
|
2431
|
+
> [2, 8, 1, 10, 11, 4, 7, 6, 9])];;
|
|
2432
|
+
gap> s := Semigroup(gens);
|
|
2433
|
+
<partial perm semigroup of rank 12 with 2 generators>
|
|
2434
|
+
gap> Size(s);
|
|
2435
|
+
251
|
|
2436
|
+
gap> d := DClass(s, PartialPerm([5, 12], [6, 9]));;
|
|
2437
|
+
gap> NrHClasses(d);
|
|
2438
|
+
1
|
|
2439
|
+
gap> List(DClasses(s), NrHClasses);
|
|
2440
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2441
|
+
9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 4,
|
|
2442
|
+
1, 9, 1, 4, 1, 1, 1, 1, 1, 10, 1, 1, 4, 1, 1, 10, 1, 1, 1, 4, 1, 1, 1 ]
|
|
2443
|
+
gap> Sum(last);
|
|
2444
|
+
223
|
|
2445
|
+
gap> NrHClasses(s);
|
|
2446
|
+
223
|
|
2447
|
+
|
|
2448
|
+
# MiscTest25
|
|
2449
|
+
gap> gens :=
|
|
2450
|
+
> [PartialPermNC([1, 2, 3, 4, 9, 10, 11], [4, 1, 7, 12, 3, 9, 6]),
|
|
2451
|
+
> PartialPermNC([1, 3, 4, 5, 7, 8, 11, 12], [4, 11, 2, 7, 9, 8, 1, 6])];;
|
|
2452
|
+
gap> s := Semigroup(gens);;
|
|
2453
|
+
gap> f := PartialPerm([4, 7, 11], [2, 9, 6]);;
|
|
2454
|
+
gap> d := DClassNC(s, f);
|
|
2455
|
+
<Green's D-class: [4,2][7,9][11,6]>
|
|
2456
|
+
gap> NrHClasses(s);
|
|
2457
|
+
125
|
|
2458
|
+
gap> d := DClass(s, f);
|
|
2459
|
+
<Green's D-class: [4,2][7,9][11,6]>
|
|
2460
|
+
gap> NrHClasses(s);
|
|
2461
|
+
125
|
|
2462
|
+
gap> NrHClasses(d);
|
|
2463
|
+
1
|
|
2464
|
+
gap> d := DClassNC(s, f);
|
|
2465
|
+
<Green's D-class: [4,2][7,9][11,6]>
|
|
2466
|
+
gap> NrHClasses(d);
|
|
2467
|
+
1
|
|
2468
|
+
gap> d := DClass(LClass(s, f));
|
|
2469
|
+
<Green's D-class: [4,2][7,9][11,6]>
|
|
2470
|
+
gap> NrHClasses(d);
|
|
2471
|
+
1
|
|
2472
|
+
gap> d := DClass(RClass(s, f));
|
|
2473
|
+
<Green's D-class: [4,2][7,9][11,6]>
|
|
2474
|
+
gap> NrHClasses(d);
|
|
2475
|
+
1
|
|
2476
|
+
gap> NrRegularDClasses(s);
|
|
2477
|
+
4
|
|
2478
|
+
gap> NrDClasses(s);
|
|
2479
|
+
65
|
|
2480
|
+
gap> RClassReps(d);
|
|
2481
|
+
[ [4,2][7,9][11,6] ]
|
|
2482
|
+
gap> iter := IteratorOfDClasses(s);
|
|
2483
|
+
<iterator>
|
|
2484
|
+
gap> repeat
|
|
2485
|
+
> d := NextIterator(iter);
|
|
2486
|
+
> until IsDoneIterator(iter) or Size(d) > 1000;
|
|
2487
|
+
gap> d;
|
|
2488
|
+
<Green's D-class: [1,6][5,4]>
|
|
2489
|
+
gap> Size(d);
|
|
2490
|
+
1
|
|
2491
|
+
gap> List(DClasses(s), Size);
|
|
2492
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 1, 3, 1, 1, 1, 1,
|
|
2493
|
+
1, 3, 1, 3, 3, 3, 3, 1, 9, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 3, 1, 3,
|
|
2494
|
+
9, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1 ]
|
|
2495
|
+
gap> Position(last, 9);
|
|
2496
|
+
17
|
|
2497
|
+
gap> d := DClasses(s)[17];
|
|
2498
|
+
<Green's D-class: [1,4][3,7]>
|
|
2499
|
+
gap> Size(d);
|
|
2500
|
+
9
|
|
2501
|
+
gap> IsRegularDClass(d);
|
|
2502
|
+
true
|
|
2503
|
+
gap> RClassReps(d);
|
|
2504
|
+
[ [1,4][3,7], [2,4][9,7], <identity partial perm on [ 4, 7 ]> ]
|
|
2505
|
+
gap> d := DClassNC(s, Representative(d));
|
|
2506
|
+
<Green's D-class: [1,4][3,7]>
|
|
2507
|
+
gap> RClassReps(d);
|
|
2508
|
+
[ [1,4][3,7], [2,4][9,7], <identity partial perm on [ 4, 7 ]> ]
|
|
2509
|
+
gap> s := Semigroup(Generators(s));
|
|
2510
|
+
<partial perm semigroup of rank 11 with 2 generators>
|
|
2511
|
+
gap> d := DClass(HClass(s, Representative(d)));
|
|
2512
|
+
<Green's D-class: [1,4][3,7]>
|
|
2513
|
+
gap> RClassReps(d);
|
|
2514
|
+
[ [1,4][3,7], [2,4][9,7], <identity partial perm on [ 4, 7 ]> ]
|
|
2515
|
+
gap> Size(d);
|
|
2516
|
+
9
|
|
2517
|
+
gap> Number(s, x -> x in d);
|
|
2518
|
+
9
|
|
2519
|
+
gap> ForAll(d, x -> x in d);
|
|
2520
|
+
true
|
|
2521
|
+
gap> HClassReps(d);
|
|
2522
|
+
[ [1,4][3,7], [1,2][3,9], <identity partial perm on [ 1, 3 ]>, [2,4][9,7],
|
|
2523
|
+
<identity partial perm on [ 2, 9 ]>, [2,1][9,3],
|
|
2524
|
+
<identity partial perm on [ 4, 7 ]>, [4,2][7,9], [4,1][7,3] ]
|
|
2525
|
+
gap> Set(last) = Elements(d);
|
|
2526
|
+
true
|
|
2527
|
+
|
|
2528
|
+
# MiscTest26
|
|
2529
|
+
gap> gens := [Transformation([2, 1, 4, 5, 3, 7, 8, 9, 10, 6]),
|
|
2530
|
+
> Transformation([1, 2, 4, 3, 5, 6, 7, 8, 9, 10]),
|
|
2531
|
+
> Transformation([1, 2, 3, 4, 5, 6, 10, 9, 8, 7]),
|
|
2532
|
+
> Transformation([9, 1, 4, 3, 6, 9, 3, 4, 3, 9])];;
|
|
2533
|
+
gap> s := Monoid(gens);;
|
|
2534
|
+
gap> f := Transformation([2, 1, 3, 5, 4, 10, 9, 8, 7, 6]);;
|
|
2535
|
+
gap> d := DClass(HClass(s, f));
|
|
2536
|
+
<Green's D-class: Transformation( [ 2, 1, 3, 5, 4, 10, 9, 8, 7, 6 ] )>
|
|
2537
|
+
gap> Transformation([2, 1, 3, 5, 4, 10, 9, 8, 7, 6]) in last;
|
|
2538
|
+
true
|
|
2539
|
+
gap> Size(d);
|
|
2540
|
+
120
|
|
2541
|
+
gap> HClassReps(d);
|
|
2542
|
+
[ Transformation( [ 2, 1, 3, 5, 4, 10, 9, 8, 7, 6 ] ) ]
|
|
2543
|
+
gap> h := GroupHClass(d);
|
|
2544
|
+
<Green's H-class: IdentityTransformation>
|
|
2545
|
+
gap> ForAll(h, x -> x in d) and ForAll(d, x -> x in h);
|
|
2546
|
+
true
|
|
2547
|
+
gap> Size(s);
|
|
2548
|
+
491558
|
|
2549
|
+
gap> f := Transformation([6, 6, 3, 6, 4, 6, 6, 6, 6, 4]);;
|
|
2550
|
+
gap> d := DClass(HClass(s, f));
|
|
2551
|
+
<Green's D-class: Transformation( [ 6, 6, 3, 6, 4, 6, 6, 6, 6, 4 ] )>
|
|
2552
|
+
gap> Transformation([9, 4, 9, 6, 4, 9, 6, 9, 6, 9]) in last;
|
|
2553
|
+
true
|
|
2554
|
+
gap> Size(d);
|
|
2555
|
+
121500
|
|
2556
|
+
gap> NrHClasses(d);
|
|
2557
|
+
20250
|
|
2558
|
+
gap> Length(HClassReps(d));
|
|
2559
|
+
20250
|
|
2560
|
+
gap> ForAll(HClassReps(d), x -> x in d);
|
|
2561
|
+
true
|
|
2562
|
+
gap> d := DClass(RClass(s, f));
|
|
2563
|
+
<Green's D-class: Transformation( [ 9, 9, 6, 9, 4, 9, 9, 9, 9, 4 ] )>
|
|
2564
|
+
gap> Transformation([9, 4, 9, 6, 4, 9, 6, 9, 6, 9]) in last;
|
|
2565
|
+
true
|
|
2566
|
+
gap> Size(d);
|
|
2567
|
+
121500
|
|
2568
|
+
gap> ForAll(d, x -> x in d);
|
|
2569
|
+
true
|
|
2570
|
+
gap> NrIdempotents(d);
|
|
2571
|
+
5550
|
|
2572
|
+
gap> ForAll(Idempotents(d), x -> x in d);
|
|
2573
|
+
true
|
|
2574
|
+
|
|
2575
|
+
# MiscTest27: R-class
|
|
2576
|
+
gap> gens := [
|
|
2577
|
+
> Transformation([2, 2, 3, 5, 5, 6, 7, 8, 14, 16, 16, 17, 18, 14, 16, 16, 17,
|
|
2578
|
+
> 18]),
|
|
2579
|
+
> Transformation([1, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
2580
|
+
> 18]),
|
|
2581
|
+
> Transformation([1, 2, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15, 16, 17,
|
|
2582
|
+
> 18]),
|
|
2583
|
+
> Transformation([1, 2, 3, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 17,
|
|
2584
|
+
> 18]),
|
|
2585
|
+
> Transformation([1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18,
|
|
2586
|
+
> 18]),
|
|
2587
|
+
> Transformation([1, 2, 3, 4, 5, 6, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
2588
|
+
> 2]),
|
|
2589
|
+
> Transformation([1, 2, 9, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 14, 15, 16,
|
|
2590
|
+
> 17, 18])];;
|
|
2591
|
+
gap> s := Semigroup(gens);;
|
|
2592
|
+
gap> f := Transformation([1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15,
|
|
2593
|
+
> 17, 17, 18]);;
|
|
2594
|
+
gap> r := RClassNC(s, f);
|
|
2595
|
+
<Green's R-class: Transformation( [ 1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13,
|
|
2596
|
+
15, 15, 17, 17 ] )>
|
|
2597
|
+
gap> Size(r);
|
|
2598
|
+
1
|
|
2599
|
+
gap> SchutzenbergerGroup(r);
|
|
2600
|
+
Group(())
|
|
2601
|
+
gap> f := Transformation([1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 15,
|
|
2602
|
+
> 15, 16, 17, 18]);;
|
|
2603
|
+
gap> r := RClass(s, f);
|
|
2604
|
+
<Green's R-class: Transformation( [ 1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11,
|
|
2605
|
+
12, 13, 15, 15 ] )>
|
|
2606
|
+
gap> Size(r);
|
|
2607
|
+
1
|
|
2608
|
+
gap> SchutzenbergerGroup(r);
|
|
2609
|
+
Group(())
|
|
2610
|
+
|
|
2611
|
+
# MiscTest28
|
|
2612
|
+
gap> gens := [
|
|
2613
|
+
> Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),
|
|
2614
|
+
> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),
|
|
2615
|
+
> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
|
|
2616
|
+
> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
|
|
2617
|
+
gap> s := Semigroup(gens);;
|
|
2618
|
+
gap> f := Transformation([9, 10, 10, 3, 10, 9, 9, 9, 9, 9]);;
|
|
2619
|
+
gap> r := RClass(s, f);
|
|
2620
|
+
<Green's R-class: Transformation( [ 9, 10, 10, 3, 10, 9, 9, 9, 9, 9 ] )>
|
|
2621
|
+
gap> Transformation([9, 8, 8, 1, 8, 9, 9, 9, 9, 9]) in last;
|
|
2622
|
+
true
|
|
2623
|
+
gap> Size(r);
|
|
2624
|
+
546
|
|
2625
|
+
gap> SchutzenbergerGroup(r);
|
|
2626
|
+
Group([ (1,9,8), (1,8) ])
|
|
2627
|
+
gap> ForAll(r, x -> x in r);
|
|
2628
|
+
true
|
|
2629
|
+
gap> f := Transformation([8, 8, 8, 8, 8, 8, 7, 7, 8, 8]);;
|
|
2630
|
+
gap> r := RClass(s, f);
|
|
2631
|
+
<Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
|
|
2632
|
+
gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
|
|
2633
|
+
true
|
|
2634
|
+
gap> Size(r);
|
|
2635
|
+
86
|
|
2636
|
+
gap> iter := IteratorOfRClasses(s);
|
|
2637
|
+
<iterator>
|
|
2638
|
+
gap> repeat r := NextIterator(iter); until Size(r) > 1000;
|
|
2639
|
+
gap> r;
|
|
2640
|
+
<Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>
|
|
2641
|
+
gap> Transformation([9, 1, 8, 2, 1, 8, 9, 9, 9, 8]) in last;
|
|
2642
|
+
true
|
|
2643
|
+
gap> Size(r);
|
|
2644
|
+
1992
|
|
2645
|
+
gap> SchutzenbergerGroup(r);
|
|
2646
|
+
Group([ (2,8), (1,8), (1,2,8,9) ])
|
|
2647
|
+
gap> enum := Enumerator(r);
|
|
2648
|
+
<enumerator of <Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9,
|
|
2649
|
+
8 ] )>>
|
|
2650
|
+
gap> ForAll(enum, x -> x in r);
|
|
2651
|
+
true
|
|
2652
|
+
gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
|
|
2653
|
+
true
|
|
2654
|
+
gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
|
|
2655
|
+
true
|
|
2656
|
+
gap> NrHClasses(r);
|
|
2657
|
+
83
|
|
2658
|
+
gap> GreensHClasses(r);
|
|
2659
|
+
[ <Green's H-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>,
|
|
2660
|
+
<Green's H-class: Transformation( [ 8, 2, 4, 3, 2, 4, 8, 8, 8, 4 ] )>,
|
|
2661
|
+
<Green's H-class: Transformation( [ 1, 5, 4, 3, 5, 4, 1, 1, 1, 4 ] )>,
|
|
2662
|
+
<Green's H-class: Transformation( [ 5, 4, 1, 2, 4, 1, 5, 5, 5, 1 ] )>,
|
|
2663
|
+
<Green's H-class: Transformation( [ 10, 5, 9, 3, 5, 9, 10, 10, 10, 9 ] )>,
|
|
2664
|
+
<Green's H-class: Transformation( [ 9, 1, 2, 5, 1, 2, 9, 9, 9, 2 ] )>,
|
|
2665
|
+
<Green's H-class: Transformation( [ 4, 10, 7, 1, 10, 7, 4, 4, 4, 7 ] )>,
|
|
2666
|
+
<Green's H-class: Transformation( [ 5, 1, 7, 2, 1, 7, 5, 5, 5, 7 ] )>,
|
|
2667
|
+
<Green's H-class: Transformation( [ 10, 9, 4, 3, 9, 4, 10, 10, 10, 4 ] )>,
|
|
2668
|
+
<Green's H-class: Transformation( [ 5, 9, 8, 2, 9, 8, 5, 5, 5, 8 ] )>,
|
|
2669
|
+
<Green's H-class: Transformation( [ 1, 4, 8, 7, 4, 8, 1, 1, 1, 8 ] )>,
|
|
2670
|
+
<Green's H-class: Transformation( [ 7, 5, 2, 3, 5, 2, 7, 7, 7, 2 ] )>,
|
|
2671
|
+
<Green's H-class: Transformation( [ 10, 1, 4, 3, 1, 4, 10, 10, 10, 4 ] )>,
|
|
2672
|
+
<Green's H-class: Transformation( [ 8, 1, 7, 3, 1, 7, 8, 8, 8, 7 ] )>,
|
|
2673
|
+
<Green's H-class: Transformation( [ 3, 2, 7, 1, 2, 7, 3, 3, 3, 7 ] )>,
|
|
2674
|
+
<Green's H-class: Transformation( [ 1, 4, 7, 2, 4, 7, 1, 1, 1, 7 ] )>,
|
|
2675
|
+
<Green's H-class: Transformation( [ 5, 4, 7, 2, 4, 7, 5, 5, 5, 7 ] )>,
|
|
2676
|
+
<Green's H-class: Transformation( [ 10, 5, 4, 3, 5, 4, 10, 10, 10, 4 ] )>,
|
|
2677
|
+
<Green's H-class: Transformation( [ 1, 7, 3, 10, 7, 3, 1, 1, 1, 3 ] )>,
|
|
2678
|
+
<Green's H-class: Transformation( [ 9, 4, 1, 2, 4, 1, 9, 9, 9, 1 ] )>,
|
|
2679
|
+
<Green's H-class: Transformation( [ 5, 8, 4, 2, 8, 4, 5, 5, 5, 4 ] )>,
|
|
2680
|
+
<Green's H-class: Transformation( [ 10, 6, 5, 3, 6, 5, 10, 10, 10, 5 ] )>,
|
|
2681
|
+
<Green's H-class: Transformation( [ 2, 3, 10, 1, 3, 10, 2, 2, 2, 10 ] )>,
|
|
2682
|
+
<Green's H-class: Transformation( [ 3, 1, 2, 9, 1, 2, 3, 3, 3, 2 ] )>,
|
|
2683
|
+
<Green's H-class: Transformation( [ 10, 1, 9, 3, 1, 9, 10, 10, 10, 9 ] )>,
|
|
2684
|
+
<Green's H-class: Transformation( [ 2, 9, 10, 1, 9, 10, 2, 2, 2, 10 ] )>,
|
|
2685
|
+
<Green's H-class: Transformation( [ 2, 4, 1, 8, 4, 1, 2, 2, 2, 1 ] )>,
|
|
2686
|
+
<Green's H-class: Transformation( [ 5, 3, 4, 2, 3, 4, 5, 5, 5, 4 ] )>,
|
|
2687
|
+
<Green's H-class: Transformation( [ 10, 1, 5, 3, 1, 5, 10, 10, 10, 5 ] )>,
|
|
2688
|
+
<Green's H-class: Transformation( [ 3, 5, 9, 6, 5, 9, 3, 3, 3, 9 ] )>,
|
|
2689
|
+
<Green's H-class: Transformation( [ 3, 1, 4, 9, 1, 4, 3, 3, 3, 4 ] )>,
|
|
2690
|
+
<Green's H-class: Transformation( [ 1, 5, 10, 9, 5, 10, 1, 1, 1, 10 ] )>,
|
|
2691
|
+
<Green's H-class: Transformation( [ 3, 10, 7, 4, 10, 7, 3, 3, 3, 7 ] )>,
|
|
2692
|
+
<Green's H-class: Transformation( [ 3, 10, 8, 7, 10, 8, 3, 3, 3, 8 ] )>,
|
|
2693
|
+
<Green's H-class: Transformation( [ 1, 2, 6, 4, 2, 6, 1, 1, 1, 6 ] )>,
|
|
2694
|
+
<Green's H-class: Transformation( [ 9, 1, 5, 8, 1, 5, 9, 9, 9, 5 ] )>,
|
|
2695
|
+
<Green's H-class: Transformation( [ 4, 1, 8, 10, 1, 8, 4, 4, 4, 8 ] )>,
|
|
2696
|
+
<Green's H-class: Transformation( [ 5, 3, 1, 2, 3, 1, 5, 5, 5, 1 ] )>,
|
|
2697
|
+
<Green's H-class: Transformation( [ 5, 9, 6, 2, 9, 6, 5, 5, 5, 6 ] )>,
|
|
2698
|
+
<Green's H-class: Transformation( [ 1, 4, 9, 7, 4, 9, 1, 1, 1, 9 ] )>,
|
|
2699
|
+
<Green's H-class: Transformation( [ 8, 4, 7, 10, 4, 7, 8, 8, 8, 7 ] )>,
|
|
2700
|
+
<Green's H-class: Transformation( [ 3, 5, 7, 1, 5, 7, 3, 3, 3, 7 ] )>,
|
|
2701
|
+
<Green's H-class: Transformation( [ 4, 10, 9, 1, 10, 9, 4, 4, 4, 9 ] )>,
|
|
2702
|
+
<Green's H-class: Transformation( [ 5, 1, 8, 2, 1, 8, 5, 5, 5, 8 ] )>,
|
|
2703
|
+
<Green's H-class: Transformation( [ 10, 6, 9, 3, 6, 9, 10, 10, 10, 9 ] )>,
|
|
2704
|
+
<Green's H-class: Transformation( [ 1, 10, 8, 7, 10, 8, 1, 1, 1, 8 ] )>,
|
|
2705
|
+
<Green's H-class: Transformation( [ 9, 2, 6, 4, 2, 6, 9, 9, 9, 6 ] )>,
|
|
2706
|
+
<Green's H-class: Transformation( [ 9, 10, 2, 5, 10, 2, 9, 9, 9, 2 ] )>,
|
|
2707
|
+
<Green's H-class: Transformation( [ 10, 3, 1, 8, 3, 1, 10, 10, 10, 1 ] )>,
|
|
2708
|
+
<Green's H-class: Transformation( [ 2, 1, 9, 6, 1, 9, 2, 2, 2, 9 ] )>,
|
|
2709
|
+
<Green's H-class: Transformation( [ 7, 10, 4, 9, 10, 4, 7, 7, 7, 4 ] )>,
|
|
2710
|
+
<Green's H-class: Transformation( [ 7, 1, 5, 8, 1, 5, 7, 7, 7, 5 ] )>,
|
|
2711
|
+
<Green's H-class: Transformation( [ 7, 2, 4, 3, 2, 4, 7, 7, 7, 4 ] )>,
|
|
2712
|
+
<Green's H-class: Transformation( [ 1, 4, 5, 7, 4, 5, 1, 1, 1, 5 ] )>,
|
|
2713
|
+
<Green's H-class: Transformation( [ 9, 5, 10, 4, 5, 10, 9, 9, 9, 10 ] )>,
|
|
2714
|
+
<Green's H-class: Transformation( [ 5, 1, 8, 4, 1, 8, 5, 5, 5, 8 ] )>,
|
|
2715
|
+
<Green's H-class: Transformation( [ 9, 10, 6, 5, 10, 6, 9, 9, 9, 6 ] )>,
|
|
2716
|
+
<Green's H-class: Transformation( [ 4, 10, 9, 6, 10, 9, 4, 4, 4, 9 ] )>,
|
|
2717
|
+
<Green's H-class: Transformation( [ 10, 2, 5, 3, 2, 5, 10, 10, 10, 5 ] )>,
|
|
2718
|
+
<Green's H-class: Transformation( [ 5, 10, 4, 2, 10, 4, 5, 5, 5, 4 ] )>,
|
|
2719
|
+
<Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 8, 2, 2, 2, 8 ] )>,
|
|
2720
|
+
<Green's H-class: Transformation( [ 3, 10, 6, 4, 10, 6, 3, 3, 3, 6 ] )>,
|
|
2721
|
+
<Green's H-class: Transformation( [ 3, 10, 9, 7, 10, 9, 3, 3, 3, 9 ] )>,
|
|
2722
|
+
<Green's H-class: Transformation( [ 1, 2, 10, 4, 2, 10, 1, 1, 1, 10 ] )>,
|
|
2723
|
+
<Green's H-class: Transformation( [ 3, 5, 2, 9, 5, 2, 3, 3, 3, 2 ] )>,
|
|
2724
|
+
<Green's H-class: Transformation( [ 3, 1, 7, 4, 1, 7, 3, 3, 3, 7 ] )>,
|
|
2725
|
+
<Green's H-class: Transformation( [ 9, 1, 4, 5, 1, 4, 9, 9, 9, 4 ] )>,
|
|
2726
|
+
<Green's H-class: Transformation( [ 3, 10, 8, 4, 10, 8, 3, 3, 3, 8 ] )>,
|
|
2727
|
+
<Green's H-class: Transformation( [ 2, 1, 5, 6, 1, 5, 2, 2, 2, 5 ] )>,
|
|
2728
|
+
<Green's H-class: Transformation( [ 7, 10, 1, 9, 10, 1, 7, 7, 7, 1 ] )>,
|
|
2729
|
+
<Green's H-class: Transformation( [ 7, 1, 2, 8, 1, 2, 7, 7, 7, 2 ] )>,
|
|
2730
|
+
<Green's H-class: Transformation( [ 4, 3, 9, 6, 3, 9, 4, 4, 4, 9 ] )>,
|
|
2731
|
+
<Green's H-class: Transformation( [ 7, 3, 4, 9, 3, 4, 7, 7, 7, 4 ] )>,
|
|
2732
|
+
<Green's H-class: Transformation( [ 1, 5, 10, 4, 5, 10, 1, 1, 1, 10 ] )>,
|
|
2733
|
+
<Green's H-class: Transformation( [ 3, 4, 8, 7, 4, 8, 3, 3, 3, 8 ] )>,
|
|
2734
|
+
<Green's H-class: Transformation( [ 1, 5, 6, 4, 5, 6, 1, 1, 1, 6 ] )>,
|
|
2735
|
+
<Green's H-class: Transformation( [ 9, 2, 10, 4, 2, 10, 9, 9, 9, 10 ] )>,
|
|
2736
|
+
<Green's H-class: Transformation( [ 3, 10, 2, 9, 10, 2, 3, 3, 3, 2 ] )>,
|
|
2737
|
+
<Green's H-class: Transformation( [ 2, 5, 10, 1, 5, 10, 2, 2, 2, 10 ] )>,
|
|
2738
|
+
<Green's H-class: Transformation( [ 9, 5, 4, 3, 5, 4, 9, 9, 9, 4 ] )>,
|
|
2739
|
+
<Green's H-class: Transformation( [ 4, 1, 9, 6, 1, 9, 4, 4, 4, 9 ] )>,
|
|
2740
|
+
<Green's H-class: Transformation( [ 9, 5, 6, 4, 5, 6, 9, 9, 9, 6 ] )>,
|
|
2741
|
+
<Green's H-class: Transformation( [ 1, 5, 3, 6, 5, 3, 1, 1, 1, 3 ] )> ]
|
|
2742
|
+
gap> List(last, x -> Representative(x) in s);
|
|
2743
|
+
[ true, true, true, true, true, true, true, true, true, true, true, true,
|
|
2744
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
2745
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
2746
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
2747
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
2748
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
2749
|
+
true, true, true, true, true, true, true, true, true, true, true ]
|
|
2750
|
+
gap> ForAll(last2, x -> Representative(x) in r);
|
|
2751
|
+
true
|
|
2752
|
+
gap> Semigroup(gens);;
|
|
2753
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
2754
|
+
<Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
|
|
2755
|
+
gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
|
|
2756
|
+
true
|
|
2757
|
+
gap> f := Transformation([9, 9, 5, 9, 5, 9, 5, 5, 5, 5]);;
|
|
2758
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
2759
|
+
<Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
|
|
2760
|
+
gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
|
|
2761
|
+
true
|
|
2762
|
+
gap> Size(r);
|
|
2763
|
+
86
|
|
2764
|
+
gap> NrHClasses(r);
|
|
2765
|
+
43
|
|
2766
|
+
gap> s := Semigroup(gens);;
|
|
2767
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
2768
|
+
<Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
|
|
2769
|
+
gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
|
|
2770
|
+
true
|
|
2771
|
+
gap> GreensHClasses(r);
|
|
2772
|
+
[ <Green's H-class: Transformation( [ 9, 9, 1, 9, 1, 9, 1, 1, 1, 1 ] )>,
|
|
2773
|
+
<Green's H-class: Transformation( [ 8, 8, 2, 8, 2, 8, 2, 2, 2, 2 ] )>,
|
|
2774
|
+
<Green's H-class: Transformation( [ 4, 4, 3, 4, 3, 4, 3, 3, 3, 3 ] )>,
|
|
2775
|
+
<Green's H-class: Transformation( [ 1, 1, 5, 1, 5, 1, 5, 5, 5, 5 ] )>,
|
|
2776
|
+
<Green's H-class: Transformation( [ 9, 9, 10, 9, 10, 9, 10, 10, 10, 10 ] )>,
|
|
2777
|
+
<Green's H-class: Transformation( [ 10, 10, 4, 10, 4, 10, 4, 4, 4, 4 ] )>,
|
|
2778
|
+
<Green's H-class: Transformation( [ 8, 8, 5, 8, 5, 8, 5, 5, 5, 5 ] )>,
|
|
2779
|
+
<Green's H-class: Transformation( [ 8, 8, 1, 8, 1, 8, 1, 1, 1, 1 ] )>,
|
|
2780
|
+
<Green's H-class: Transformation( [ 8, 8, 10, 8, 10, 8, 10, 10, 10, 10 ] )>,
|
|
2781
|
+
<Green's H-class: Transformation( [ 1, 1, 3, 1, 3, 1, 3, 3, 3, 3 ] )>,
|
|
2782
|
+
<Green's H-class: Transformation( [ 3, 3, 10, 3, 10, 3, 10, 10, 10, 10 ] )>,
|
|
2783
|
+
<Green's H-class: Transformation( [ 2, 2, 5, 2, 5, 2, 5, 5, 5, 5 ] )>,
|
|
2784
|
+
<Green's H-class: Transformation( [ 7, 7, 1, 7, 1, 7, 1, 1, 1, 1 ] )>,
|
|
2785
|
+
<Green's H-class: Transformation( [ 9, 9, 4, 9, 4, 9, 4, 4, 4, 4 ] )>,
|
|
2786
|
+
<Green's H-class: Transformation( [ 9, 9, 8, 9, 8, 9, 8, 8, 8, 8 ] )>,
|
|
2787
|
+
<Green's H-class: Transformation( [ 8, 8, 4, 8, 4, 8, 4, 4, 4, 4 ] )>,
|
|
2788
|
+
<Green's H-class: Transformation( [ 7, 7, 8, 7, 8, 7, 8, 8, 8, 8 ] )>,
|
|
2789
|
+
<Green's H-class: Transformation( [ 7, 7, 3, 7, 3, 7, 3, 3, 3, 3 ] )>,
|
|
2790
|
+
<Green's H-class: Transformation( [ 9, 9, 2, 9, 2, 9, 2, 2, 2, 2 ] )>,
|
|
2791
|
+
<Green's H-class: Transformation( [ 7, 7, 4, 7, 4, 7, 4, 4, 4, 4 ] )>,
|
|
2792
|
+
<Green's H-class: Transformation( [ 4, 4, 5, 4, 5, 4, 5, 5, 5, 5 ] )>,
|
|
2793
|
+
<Green's H-class: Transformation( [ 5, 5, 10, 5, 10, 5, 10, 10, 10, 10 ] )>,
|
|
2794
|
+
<Green's H-class: Transformation( [ 2, 2, 10, 2, 10, 2, 10, 10, 10, 10 ] )>,
|
|
2795
|
+
<Green's H-class: Transformation( [ 7, 7, 10, 7, 10, 7, 10, 10, 10, 10 ] )>,
|
|
2796
|
+
<Green's H-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>,
|
|
2797
|
+
<Green's H-class: Transformation( [ 1, 1, 4, 1, 4, 1, 4, 4, 4, 4 ] )>,
|
|
2798
|
+
<Green's H-class: Transformation( [ 4, 4, 2, 4, 2, 4, 2, 2, 2, 2 ] )>,
|
|
2799
|
+
<Green's H-class: Transformation( [ 5, 5, 3, 5, 3, 5, 3, 3, 3, 3 ] )>,
|
|
2800
|
+
<Green's H-class: Transformation( [ 1, 1, 2, 1, 2, 1, 2, 2, 2, 2 ] )>,
|
|
2801
|
+
<Green's H-class: Transformation( [ 9, 9, 3, 9, 3, 9, 3, 3, 3, 3 ] )>,
|
|
2802
|
+
<Green's H-class: Transformation( [ 1, 1, 10, 1, 10, 1, 10, 10, 10, 10 ] )>,
|
|
2803
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 2, 3, 2, 3, 3, 3, 3 ] )>,
|
|
2804
|
+
<Green's H-class: Transformation( [ 7, 7, 5, 7, 5, 7, 5, 5, 5, 5 ] )>,
|
|
2805
|
+
<Green's H-class: Transformation( [ 8, 8, 3, 8, 3, 8, 3, 3, 3, 3 ] )>,
|
|
2806
|
+
<Green's H-class: Transformation( [ 1, 1, 6, 1, 6, 1, 6, 6, 6, 6 ] )>,
|
|
2807
|
+
<Green's H-class: Transformation( [ 4, 4, 6, 4, 6, 4, 6, 6, 6, 6 ] )>,
|
|
2808
|
+
<Green's H-class: Transformation( [ 9, 9, 7, 9, 7, 9, 7, 7, 7, 7 ] )>,
|
|
2809
|
+
<Green's H-class: Transformation( [ 6, 6, 5, 6, 5, 6, 5, 5, 5, 5 ] )>,
|
|
2810
|
+
<Green's H-class: Transformation( [ 6, 6, 10, 6, 10, 6, 10, 10, 10, 10 ] )>,
|
|
2811
|
+
<Green's H-class: Transformation( [ 7, 7, 2, 7, 2, 7, 2, 2, 2, 2 ] )>,
|
|
2812
|
+
<Green's H-class: Transformation( [ 2, 2, 6, 2, 6, 2, 6, 6, 6, 6 ] )>,
|
|
2813
|
+
<Green's H-class: Transformation( [ 9, 9, 6, 9, 6, 9, 6, 6, 6, 6 ] )>,
|
|
2814
|
+
<Green's H-class: Transformation( [ 3, 3, 6, 3, 6, 3, 6, 6, 6, 6 ] )> ]
|
|
2815
|
+
gap> Length(last);
|
|
2816
|
+
43
|
|
2817
|
+
gap> ForAll(last2, x -> Representative(x) in r);
|
|
2818
|
+
true
|
|
2819
|
+
gap> ForAll(last3, x -> Representative(x) in s);
|
|
2820
|
+
true
|
|
2821
|
+
gap> h := Random(GreensHClasses(r));;
|
|
2822
|
+
gap> f := Representative(h);;
|
|
2823
|
+
gap> hh := HClass(r, f);;
|
|
2824
|
+
gap> hh = h;
|
|
2825
|
+
true
|
|
2826
|
+
gap> h = hh;
|
|
2827
|
+
true
|
|
2828
|
+
gap> Elements(h) = Elements(hh);
|
|
2829
|
+
true
|
|
2830
|
+
gap> f := Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]);;
|
|
2831
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
2832
|
+
<Green's R-class: Transformation( [ 10, 1, 9, 10, 2, 1, 5, 3, 2, 3 ] )>
|
|
2833
|
+
gap> Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]) in last;
|
|
2834
|
+
true
|
|
2835
|
+
gap> Size(r);
|
|
2836
|
+
1
|
|
2837
|
+
gap> f := Transformation([10, 10, 3, 10, 10, 10, 10, 10, 6, 10]);;
|
|
2838
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
2839
|
+
<Green's R-class: Transformation( [ 10, 10, 3, 10, 10, 10, 10, 10, 6, 10 ] )>
|
|
2840
|
+
gap> Transformation([8, 8, 1, 8, 8, 8, 8, 8, 9, 8]) in last;
|
|
2841
|
+
true
|
|
2842
|
+
gap> Size(r);
|
|
2843
|
+
546
|
|
2844
|
+
gap> f := Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]);;
|
|
2845
|
+
gap> f in r;
|
|
2846
|
+
true
|
|
2847
|
+
gap> h := HClass(r, f);
|
|
2848
|
+
<Green's H-class: Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] )>
|
|
2849
|
+
gap> Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]) in last;
|
|
2850
|
+
true
|
|
2851
|
+
gap> f in h;
|
|
2852
|
+
true
|
|
2853
|
+
gap> ForAll(h, x -> x in r);
|
|
2854
|
+
true
|
|
2855
|
+
gap> Size(h);
|
|
2856
|
+
6
|
|
2857
|
+
gap> Elements(h);
|
|
2858
|
+
[ Transformation( [ 3, 3, 4, 3, 3, 3, 3, 3, 6, 3 ] ),
|
|
2859
|
+
Transformation( [ 3, 3, 6, 3, 3, 3, 3, 3, 4, 3 ] ),
|
|
2860
|
+
Transformation( [ 4, 4, 3, 4, 4, 4, 4, 4, 6, 4 ] ),
|
|
2861
|
+
Transformation( [ 4, 4, 6, 4, 4, 4, 4, 4, 3, 4 ] ),
|
|
2862
|
+
Transformation( [ 6, 6, 3, 6, 6, 6, 6, 6, 4, 6 ] ),
|
|
2863
|
+
Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] ) ]
|
|
2864
|
+
|
|
2865
|
+
# MiscTest29
|
|
2866
|
+
gap> gens :=
|
|
2867
|
+
> [PartialPermNC([1, 2, 3, 5, 9, 10], [5, 10, 7, 8, 9, 1]),
|
|
2868
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 9], [9, 3, 1, 4, 2, 5, 6]),
|
|
2869
|
+
> PartialPermNC([1, 2, 3, 4, 5, 7, 9], [7, 6, 2, 8, 4, 5, 3]),
|
|
2870
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
|
|
2871
|
+
> [8, 7, 4, 3, 10, 9, 5, 6, 1, 2])];;
|
|
2872
|
+
gap> s := Semigroup(gens);;
|
|
2873
|
+
gap> Size(s);
|
|
2874
|
+
1422787
|
|
2875
|
+
gap> f := PartialPermNC([1, 4, 7, 9, 10], [5, 10, 9, 8, 7]);;
|
|
2876
|
+
gap> r := GreensRClassOfElementNC(s, f);
|
|
2877
|
+
<Green's R-class: [1,5][4,10,7,9,8]>
|
|
2878
|
+
gap> Size(r);
|
|
2879
|
+
4
|
|
2880
|
+
gap> f in r;
|
|
2881
|
+
true
|
|
2882
|
+
gap> f := PartialPermNC([1, 7, 8, 9], [10, 9, 6, 5]);;
|
|
2883
|
+
gap> r := GreensRClassOfElementNC(s, f);
|
|
2884
|
+
<Green's R-class: [1,10][7,9,5][8,6]>
|
|
2885
|
+
gap> Size(r);
|
|
2886
|
+
4
|
|
2887
|
+
gap> iter := IteratorOfRClasses(s);
|
|
2888
|
+
<iterator>
|
|
2889
|
+
gap> repeat r := NextIterator(iter); until Size(r) > 1000;
|
|
2890
|
+
gap> r;
|
|
2891
|
+
<Green's R-class: [1,4][9,3,5][10,7]>
|
|
2892
|
+
gap> Size(r);
|
|
2893
|
+
3792
|
|
2894
|
+
gap> r := RClassNC(s, Representative(r));
|
|
2895
|
+
<Green's R-class: [1,4][9,3,5][10,7]>
|
|
2896
|
+
gap> h := HClassNC(r, Random(r));;
|
|
2897
|
+
gap> Size(h);
|
|
2898
|
+
24
|
|
2899
|
+
gap> ForAll(h, x -> x in r);
|
|
2900
|
+
true
|
|
2901
|
+
gap> IsRegularGreensClass(r);
|
|
2902
|
+
true
|
|
2903
|
+
gap> IsRegularSemigroup(s);
|
|
2904
|
+
false
|
|
2905
|
+
gap> NrIdempotents(r);
|
|
2906
|
+
1
|
|
2907
|
+
gap> Idempotents(r);
|
|
2908
|
+
[ <identity partial perm on [ 1, 3, 9, 10 ]> ]
|
|
2909
|
+
gap> ForAll(last, x -> x in r);
|
|
2910
|
+
true
|
|
2911
|
+
|
|
2912
|
+
# MiscTest30
|
|
2913
|
+
gap> gens := [Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1,
|
|
2914
|
+
> 13, 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 1]),
|
|
2915
|
+
> Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1, 11, 1,
|
|
2916
|
+
> 1, 1, 23, 1, 16, 19, 1, 1, 1]),
|
|
2917
|
+
> Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1, 20, 1,
|
|
2918
|
+
> 22, 1, 8, 1, 1, 1, 1, 1]),
|
|
2919
|
+
> Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1, 6, 1,
|
|
2920
|
+
> 1, 24, 1, 1, 1, 1, 6])];;
|
|
2921
|
+
gap> s := Semigroup(gens);;
|
|
2922
|
+
gap> First(DClasses(s), IsRegularDClass);
|
|
2923
|
+
<Green's D-class: Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2924
|
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
|
|
2925
|
+
gap> NrDClasses(s);
|
|
2926
|
+
31
|
|
2927
|
+
gap> PositionsProperty(DClasses(s), IsRegularDClass);
|
|
2928
|
+
[ 6, 7 ]
|
|
2929
|
+
gap> d := DClasses(s)[7];
|
|
2930
|
+
<Green's D-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
|
|
2931
|
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
|
|
2932
|
+
gap> r := RClassNC(s, Representative(d));
|
|
2933
|
+
<Green's R-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
|
|
2934
|
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
|
|
2935
|
+
gap> Size(r);
|
|
2936
|
+
20
|
|
2937
|
+
gap> ForAll(Idempotents(r), x -> x in s);
|
|
2938
|
+
true
|
|
2939
|
+
gap> ForAll(Idempotents(r), x -> x in r);
|
|
2940
|
+
true
|
|
2941
|
+
gap> ForAll(Idempotents(r), x -> x in d);
|
|
2942
|
+
true
|
|
2943
|
+
gap> ForAll(r, x -> x in d);
|
|
2944
|
+
true
|
|
2945
|
+
gap> Number(GreensRClasses(s), IsRegularGreensClass);
|
|
2946
|
+
21
|
|
2947
|
+
gap> NrRegularDClasses(s);
|
|
2948
|
+
2
|
|
2949
|
+
|
|
2950
|
+
# MiscTest31
|
|
2951
|
+
gap> gens := [Transformation([1, 2, 3, 5, 4, 6, 7, 8]),
|
|
2952
|
+
> Transformation([4, 4, 3, 1, 5, 6, 3, 8]),
|
|
2953
|
+
> Transformation([3, 6, 1, 7, 3, 4, 8, 3]),
|
|
2954
|
+
> Transformation([1, 2, 3, 4, 5, 3, 7, 8]),
|
|
2955
|
+
> Transformation([1, 2, 3, 4, 1, 6, 7, 8]),
|
|
2956
|
+
> Transformation([8, 8, 3, 4, 5, 7, 6, 1])];;
|
|
2957
|
+
gap> s := Monoid(gens);
|
|
2958
|
+
<transformation monoid of degree 8 with 6 generators>
|
|
2959
|
+
gap> f := Transformation([4, 4, 3, 8, 5, 3, 3, 1]);;
|
|
2960
|
+
gap> Size(s);
|
|
2961
|
+
998
|
|
2962
|
+
gap> r := RClass(s, f);
|
|
2963
|
+
<Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
|
|
2964
|
+
gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
|
|
2965
|
+
true
|
|
2966
|
+
gap> IsRegularGreensClass(r);
|
|
2967
|
+
true
|
|
2968
|
+
gap> Idempotents(r);
|
|
2969
|
+
[ Transformation( [ 1, 1, 3, 4, 5, 3, 3 ] ) ]
|
|
2970
|
+
gap> IsRegularSemigroup(s);
|
|
2971
|
+
false
|
|
2972
|
+
gap> ForAll(r, x -> x in s);
|
|
2973
|
+
true
|
|
2974
|
+
gap> iter := Iterator(r);
|
|
2975
|
+
<iterator>
|
|
2976
|
+
gap> for i in iter do od;
|
|
2977
|
+
gap> Size(r);
|
|
2978
|
+
24
|
|
2979
|
+
gap> IsDoneIterator(iter);
|
|
2980
|
+
true
|
|
2981
|
+
gap> iter := Iterator(r);
|
|
2982
|
+
<iterator>
|
|
2983
|
+
gap> for i in [1 .. 23] do NextIterator(iter); od;
|
|
2984
|
+
gap> IsDoneIterator(iter);
|
|
2985
|
+
false
|
|
2986
|
+
gap> NextIterator(iter);
|
|
2987
|
+
Transformation( [ 5, 5, 3, 1, 4, 3, 3 ] )
|
|
2988
|
+
gap> IsDoneIterator(iter);
|
|
2989
|
+
true
|
|
2990
|
+
gap> Transformation([4, 4, 3, 8, 1, 3, 3, 5]) in r;
|
|
2991
|
+
true
|
|
2992
|
+
gap> r;
|
|
2993
|
+
<Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
|
|
2994
|
+
gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
|
|
2995
|
+
true
|
|
2996
|
+
gap> NrIdempotents(r);
|
|
2997
|
+
1
|
|
2998
|
+
|
|
2999
|
+
# MiscTest32
|
|
3000
|
+
gap> gens := [PartialPermNC([1, 2, 3, 4, 7], [8, 3, 5, 7, 4]),
|
|
3001
|
+
> PartialPermNC([1, 2, 5, 6, 7], [4, 1, 6, 2, 8]),
|
|
3002
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6], [3, 7, 1, 5, 2, 6]),
|
|
3003
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6], [7, 2, 5, 6, 3, 8]),
|
|
3004
|
+
> PartialPermNC([1, 2, 3, 5, 6, 7], [4, 5, 6, 1, 2, 7]),
|
|
3005
|
+
> PartialPermNC([1, 2, 3, 5, 6, 7], [5, 1, 7, 2, 8, 4])];;
|
|
3006
|
+
gap> s := Semigroup(gens);;
|
|
3007
|
+
gap> Size(s);
|
|
3008
|
+
9954
|
|
3009
|
+
gap> f := PartialPerm([2, 3, 6], [1, 4, 8]);;
|
|
3010
|
+
gap> r := RClass(s, f);
|
|
3011
|
+
<Green's R-class: [2,1][3,4][6,8]>
|
|
3012
|
+
gap> NrIdempotents(r);
|
|
3013
|
+
0
|
|
3014
|
+
gap> Sum(List(RClasses(s), NrIdempotents));
|
|
3015
|
+
53
|
|
3016
|
+
gap> NrIdempotents(s);
|
|
3017
|
+
53
|
|
3018
|
+
gap> gens := [Transformation([1, 2, 4, 3, 6, 5]),
|
|
3019
|
+
> Transformation([1, 2, 3, 4, 5, 6]),
|
|
3020
|
+
> Transformation([6, 4, 3, 2, 5, 3]),
|
|
3021
|
+
> Transformation([5, 3, 4, 2, 2, 1]),
|
|
3022
|
+
> Transformation([2, 4, 6, 4, 5, 3]),
|
|
3023
|
+
> Transformation([4, 2, 4, 3, 6, 5]),
|
|
3024
|
+
> Transformation([2, 4, 4, 3, 6, 5]),
|
|
3025
|
+
> Transformation([5, 6, 4, 4, 3, 2]),
|
|
3026
|
+
> Transformation([2, 2, 3, 4, 5, 6]),
|
|
3027
|
+
> Transformation([3, 4, 2, 2, 2, 1]),
|
|
3028
|
+
> Transformation([1, 2, 4, 2, 3, 3]),
|
|
3029
|
+
> Transformation([1, 2, 3, 4, 3, 2]),
|
|
3030
|
+
> Transformation([6, 4, 2, 3, 2, 3]),
|
|
3031
|
+
> Transformation([6, 4, 2, 2, 1, 1]),
|
|
3032
|
+
> Transformation([6, 4, 2, 3, 4, 4]),
|
|
3033
|
+
> Transformation([5, 3, 3, 2, 4, 2])];;
|
|
3034
|
+
gap> s := Semigroup(gens);;
|
|
3035
|
+
gap> Size(s);
|
|
3036
|
+
1888
|
|
3037
|
+
gap> f := Transformation([2, 4, 6, 6, 5, 6]);;
|
|
3038
|
+
gap> r := RClass(s, f);
|
|
3039
|
+
<Green's R-class: Transformation( [ 2, 4, 6, 6, 5, 6 ] )>
|
|
3040
|
+
gap> Transformation([2, 4, 6, 6, 5, 6]) in last;
|
|
3041
|
+
true
|
|
3042
|
+
gap> h := HClassNC(s, f);
|
|
3043
|
+
<Green's H-class: Transformation( [ 2, 4, 6, 6, 5, 6 ] )>
|
|
3044
|
+
gap> Transformation([2, 4, 6, 6, 5, 6]) in last;
|
|
3045
|
+
true
|
|
3046
|
+
gap> hh := HClass(r, f);
|
|
3047
|
+
<Green's H-class: Transformation( [ 2, 4, 6, 6, 5, 6 ] )>
|
|
3048
|
+
gap> Transformation([2, 4, 6, 6, 5, 6]) in last;
|
|
3049
|
+
true
|
|
3050
|
+
gap> hh = h;
|
|
3051
|
+
true
|
|
3052
|
+
gap> ForAll(h, x -> x in r);
|
|
3053
|
+
true
|
|
3054
|
+
gap> ForAll(hh, x -> x in r);
|
|
3055
|
+
true
|
|
3056
|
+
gap> RClassOfHClass(h) = r;
|
|
3057
|
+
true
|
|
3058
|
+
gap> RClassOfHClass(hh) = r;
|
|
3059
|
+
true
|
|
3060
|
+
gap> r = RClassOfHClass(hh);
|
|
3061
|
+
true
|
|
3062
|
+
gap> Size(r);
|
|
3063
|
+
2
|
|
3064
|
+
gap> HClassReps(r);
|
|
3065
|
+
[ Transformation( [ 2, 4, 6, 6, 5, 6 ] ),
|
|
3066
|
+
Transformation( [ 2, 3, 5, 5, 6, 5 ] ) ]
|
|
3067
|
+
gap> ForAll(last, x -> x in r);
|
|
3068
|
+
true
|
|
3069
|
+
gap> ForAll(last2, x -> x in s);
|
|
3070
|
+
true
|
|
3071
|
+
|
|
3072
|
+
# MiscTest33
|
|
3073
|
+
gap> gens :=
|
|
3074
|
+
> [PartialPermNC([1, 2, 3], [2, 3, 4]),
|
|
3075
|
+
> PartialPermNC([1, 2, 3], [3, 6, 1]),
|
|
3076
|
+
> PartialPermNC([1, 2, 3], [6, 2, 1]),
|
|
3077
|
+
> PartialPermNC([1, 2, 4], [4, 2, 6]),
|
|
3078
|
+
> PartialPermNC([1, 3, 5], [2, 6, 3]),
|
|
3079
|
+
> PartialPermNC([1, 4, 5], [1, 6, 3]),
|
|
3080
|
+
> PartialPermNC([1, 2, 3, 5], [2, 3, 5, 1]),
|
|
3081
|
+
> PartialPermNC([1, 2, 3, 5], [3, 2, 4, 6]),
|
|
3082
|
+
> PartialPermNC([1, 2, 4, 6], [4, 3, 1, 6]),
|
|
3083
|
+
> PartialPermNC([1, 3, 5, 6], [1, 4, 6, 2]),
|
|
3084
|
+
> PartialPermNC([1, 2, 3, 4, 5], [5, 4, 6, 2, 1]),
|
|
3085
|
+
> PartialPermNC([1, 2, 3, 4, 5], [6, 2, 3, 5, 1]),
|
|
3086
|
+
> PartialPermNC([1, 2, 3, 4, 5], [6, 3, 5, 1, 2]),
|
|
3087
|
+
> PartialPermNC([1, 2, 3, 4, 6], [4, 1, 5, 2, 3]),
|
|
3088
|
+
> PartialPermNC([1, 2, 3, 4, 6], [5, 1, 6, 3, 2]),
|
|
3089
|
+
> PartialPermNC([1, 2, 3, 5, 6], [5, 4, 2, 6, 3])];;
|
|
3090
|
+
gap> s := Semigroup(gens);;
|
|
3091
|
+
gap> Size(s);
|
|
3092
|
+
6741
|
|
3093
|
+
gap> f := PartialPermNC([1, 3, 5, 6], [6, 2, 5, 1]);;
|
|
3094
|
+
gap> r := RClassNC(s, f);
|
|
3095
|
+
<Green's R-class: [3,2](1,6)(5)>
|
|
3096
|
+
gap> HClassReps(r);
|
|
3097
|
+
[ [3,2](1,6)(5) ]
|
|
3098
|
+
gap> ForAll(last, x -> x in r);
|
|
3099
|
+
true
|
|
3100
|
+
gap> r := RClass(s, f);
|
|
3101
|
+
<Green's R-class: [3,2](1,6)(5)>
|
|
3102
|
+
gap> HClassReps(r);
|
|
3103
|
+
[ [3,2](1,6)(5) ]
|
|
3104
|
+
gap> h := HClass(s, last[1]);
|
|
3105
|
+
<Green's H-class: [3,2](1,6)(5)>
|
|
3106
|
+
gap> r := RClassOfHClass(h);
|
|
3107
|
+
<Green's R-class: [3,2](1,6)(5)>
|
|
3108
|
+
gap> HClassReps(r);
|
|
3109
|
+
[ [3,2](1,6)(5) ]
|
|
3110
|
+
gap> iter := IteratorOfRClasses(s);
|
|
3111
|
+
<iterator>
|
|
3112
|
+
gap> iter := IteratorOfRClasses(s);
|
|
3113
|
+
<iterator>
|
|
3114
|
+
gap> repeat r := NextIterator(iter); until Size(r) > 1;
|
|
3115
|
+
gap> r;
|
|
3116
|
+
<Green's R-class: [1,2,3,4]>
|
|
3117
|
+
gap> Size(r);
|
|
3118
|
+
114
|
|
3119
|
+
gap> HClassReps(r);
|
|
3120
|
+
[ [1,2,3,4], [1,2,4][3,6], [2,3,6](1), [1,5](2)(3), [2,5](1,3), [3,2,1,5],
|
|
3121
|
+
<identity partial perm on [ 1, 2, 3 ]>, [1,3,2,6], [3,6](1)(2),
|
|
3122
|
+
[1,4][2,3,6], [1,3,5][2,4], [2,3,4](1), [2,1,5][3,6], [1,6][2,5](3),
|
|
3123
|
+
[1,2,6][3,5], [1,4][3,2,5], [3,4](1,2), [2,5][3,4](1), [2,6][3,1,4] ]
|
|
3124
|
+
gap> Size(DClass(r));
|
|
3125
|
+
2166
|
|
3126
|
+
gap> d := DClass(r);
|
|
3127
|
+
<Green's D-class: [1,2,3,4]>
|
|
3128
|
+
gap> ForAll(r, x -> x in d);
|
|
3129
|
+
true
|
|
3130
|
+
gap> Number(d, x -> x in r);
|
|
3131
|
+
114
|
|
3132
|
+
gap> Size(r);
|
|
3133
|
+
114
|
|
3134
|
+
gap> ForAll(HClassReps(r), x -> x in d);
|
|
3135
|
+
true
|
|
3136
|
+
gap> ForAll(HClassReps(r), x -> x in HClassReps(d));
|
|
3137
|
+
true
|
|
3138
|
+
|
|
3139
|
+
# MiscTest34
|
|
3140
|
+
gap> gens := [Transformation([6, 4, 3, 2, 5, 1]),
|
|
3141
|
+
> Transformation([1, 2, 3, 4, 5, 6]),
|
|
3142
|
+
> Transformation([5, 3, 3, 2, 4, 1]),
|
|
3143
|
+
> Transformation([1, 3, 3, 4, 5, 2]),
|
|
3144
|
+
> Transformation([4, 5, 2, 3, 3, 1]),
|
|
3145
|
+
> Transformation([6, 4, 3, 5, 2, 3]),
|
|
3146
|
+
> Transformation([5, 2, 3, 4, 3, 6]),
|
|
3147
|
+
> Transformation([1, 3, 2, 5, 4, 5]),
|
|
3148
|
+
> Transformation([4, 3, 2, 2, 1, 5]),
|
|
3149
|
+
> Transformation([1, 3, 3, 5, 2, 4]),
|
|
3150
|
+
> Transformation([6, 3, 3, 2, 1, 5]),
|
|
3151
|
+
> Transformation([6, 3, 4, 5, 2, 2]),
|
|
3152
|
+
> Transformation([6, 4, 3, 2, 2, 5]),
|
|
3153
|
+
> Transformation([1, 3, 2, 3, 5, 4]),
|
|
3154
|
+
> Transformation([1, 2, 3, 4, 5, 2]),
|
|
3155
|
+
> Transformation([2, 4, 3, 4, 6, 5]),
|
|
3156
|
+
> Transformation([2, 4, 3, 3, 6, 1]),
|
|
3157
|
+
> Transformation([6, 4, 3, 2, 3, 1]),
|
|
3158
|
+
> Transformation([6, 4, 3, 2, 2, 1])];;
|
|
3159
|
+
gap> s := Semigroup(gens);
|
|
3160
|
+
<transformation monoid of degree 6 with 18 generators>
|
|
3161
|
+
gap> Size(s);
|
|
3162
|
+
7008
|
|
3163
|
+
gap> NrRClasses(s);
|
|
3164
|
+
310
|
|
3165
|
+
gap> IsRegularSemigroup(s);
|
|
3166
|
+
false
|
|
3167
|
+
gap> f := Transformation([3, 2, 3, 4, 3, 5]);;
|
|
3168
|
+
gap> r := RClassNC(s, f);
|
|
3169
|
+
<Green's R-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
|
|
3170
|
+
gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
|
|
3171
|
+
true
|
|
3172
|
+
gap> d := DClassOfRClass(r);
|
|
3173
|
+
<Green's D-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
|
|
3174
|
+
gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
|
|
3175
|
+
true
|
|
3176
|
+
gap> Size(d);
|
|
3177
|
+
792
|
|
3178
|
+
gap> IsRegularDClass(d);
|
|
3179
|
+
false
|
|
3180
|
+
gap> NrIdempotents(d);
|
|
3181
|
+
0
|
|
3182
|
+
gap> Idempotents(d);
|
|
3183
|
+
[ ]
|
|
3184
|
+
gap> HClassReps(d);;
|
|
3185
|
+
gap> Length(last);
|
|
3186
|
+
198
|
|
3187
|
+
gap> Number(HClassReps(d), x -> x in r);
|
|
3188
|
+
6
|
|
3189
|
+
gap> NrHClasses(r);
|
|
3190
|
+
6
|
|
3191
|
+
|
|
3192
|
+
# MiscTest35
|
|
3193
|
+
gap> gens := [PartialPermNC([1, 2, 4], [2, 5, 3]),
|
|
3194
|
+
> PartialPermNC([1, 2, 4], [5, 6, 1]),
|
|
3195
|
+
> PartialPermNC([1, 2, 5], [5, 3, 2]),
|
|
3196
|
+
> PartialPermNC([1, 2, 3, 4], [5, 1, 2, 4]),
|
|
3197
|
+
> PartialPermNC([1, 2, 3, 4], [5, 1, 2, 6]),
|
|
3198
|
+
> PartialPermNC([1, 2, 3, 4], [5, 6, 4, 1]),
|
|
3199
|
+
> PartialPermNC([1, 2, 3, 5], [1, 5, 2, 6]),
|
|
3200
|
+
> PartialPermNC([1, 2, 3, 5], [2, 3, 4, 1]),
|
|
3201
|
+
> PartialPermNC([1, 2, 3, 5], [2, 5, 4, 1]),
|
|
3202
|
+
> PartialPermNC([1, 2, 3, 5], [5, 1, 2, 3]),
|
|
3203
|
+
> PartialPermNC([1, 2, 3, 6], [1, 4, 6, 5]),
|
|
3204
|
+
> PartialPermNC([1, 2, 5, 6], [6, 4, 2, 5]),
|
|
3205
|
+
> PartialPermNC([1, 3, 4, 6], [2, 3, 1, 6]),
|
|
3206
|
+
> PartialPermNC([1, 2, 3, 4, 5], [3, 6, 5, 2, 4]),
|
|
3207
|
+
> PartialPermNC([1, 2, 3, 4, 5], [6, 5, 3, 2, 1]),
|
|
3208
|
+
> PartialPermNC([1, 2, 3, 4, 6], [1, 3, 4, 6, 2]),
|
|
3209
|
+
> PartialPermNC([1, 2, 3, 5, 6], [1, 3, 6, 4, 5]),
|
|
3210
|
+
> PartialPermNC([1, 2, 4, 5, 6], [5, 4, 2, 1, 6]),
|
|
3211
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6], [2, 5, 6, 4, 3, 1])];;
|
|
3212
|
+
gap> s := Semigroup(gens);;
|
|
3213
|
+
gap> Size(s);
|
|
3214
|
+
12612
|
|
3215
|
+
gap> f := PartialPermNC([1, 4, 6], [2, 3, 6]);;
|
|
3216
|
+
gap> r := RClass(s, f);
|
|
3217
|
+
<Green's R-class: [1,2][4,3](6)>
|
|
3218
|
+
gap> Size(r);
|
|
3219
|
+
120
|
|
3220
|
+
gap> NrHClasses(r);
|
|
3221
|
+
20
|
|
3222
|
+
gap> Number(HClassReps(s), x -> x in r);
|
|
3223
|
+
20
|
|
3224
|
+
|
|
3225
|
+
# MiscTest36: H-class tests
|
|
3226
|
+
gap> gens := [Transformation([8, 7, 6, 5, 4, 3, 2, 1]),
|
|
3227
|
+
> Transformation([1, 2, 3, 4, 5, 6, 7, 8]),
|
|
3228
|
+
> Transformation([7, 6, 5, 4, 3, 2, 1, 2]),
|
|
3229
|
+
> Transformation([3, 2, 1, 2, 3, 4, 5, 6]),
|
|
3230
|
+
> Transformation([2, 3, 4, 5, 4, 5, 6, 7]),
|
|
3231
|
+
> Transformation([1, 2, 3, 4, 5, 4, 5, 6]),
|
|
3232
|
+
> Transformation([5, 6, 5, 4, 5, 4, 3, 2]),
|
|
3233
|
+
> Transformation([5, 6, 7, 8, 7, 6, 5, 4])];;
|
|
3234
|
+
gap> s := Semigroup(gens);;
|
|
3235
|
+
gap> f := Transformation([5, 6, 5, 4, 5, 4, 5, 4]);;
|
|
3236
|
+
gap> h := HClass(s, f);
|
|
3237
|
+
<Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
|
|
3238
|
+
gap> Transformation([5, 6, 5, 4, 5, 4, 5, 4]) in last;
|
|
3239
|
+
true
|
|
3240
|
+
gap> ForAll(h, x -> x in h);
|
|
3241
|
+
true
|
|
3242
|
+
gap> h := HClassNC(s, f);
|
|
3243
|
+
<Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
|
|
3244
|
+
gap> Transformation([5, 6, 5, 4, 5, 4, 5, 4]) in last;
|
|
3245
|
+
true
|
|
3246
|
+
gap> Enumerator(h);
|
|
3247
|
+
<enumerator of <Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
|
|
3248
|
+
>
|
|
3249
|
+
gap> h := HClassNC(s, f);
|
|
3250
|
+
<Green's H-class: Transformation( [ 5, 6, 5, 4, 5, 4, 5, 4 ] )>
|
|
3251
|
+
gap> Transformation([5, 6, 5, 4, 5, 4, 5, 4]) in last;
|
|
3252
|
+
true
|
|
3253
|
+
gap> SchutzenbergerGroup(h);
|
|
3254
|
+
Group([ (4,6) ])
|
|
3255
|
+
|
|
3256
|
+
# MiscTest37
|
|
3257
|
+
gap> s := FullTransformationSemigroup(7);
|
|
3258
|
+
<full transformation monoid of degree 7>
|
|
3259
|
+
gap> Factorial(7);
|
|
3260
|
+
5040
|
|
3261
|
+
gap> f := One(s);
|
|
3262
|
+
IdentityTransformation
|
|
3263
|
+
gap> h := HClassNC(s, f);
|
|
3264
|
+
<Green's H-class: IdentityTransformation>
|
|
3265
|
+
gap> enum := Enumerator(h);
|
|
3266
|
+
<enumerator of <Green's H-class: IdentityTransformation>>
|
|
3267
|
+
gap> ForAll(enum, x -> x in h);
|
|
3268
|
+
true
|
|
3269
|
+
gap> ForAll(enum, x -> x in s);
|
|
3270
|
+
true
|
|
3271
|
+
gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
|
|
3272
|
+
true
|
|
3273
|
+
gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
|
|
3274
|
+
true
|
|
3275
|
+
gap> Idempotents(h);
|
|
3276
|
+
[ IdentityTransformation ]
|
|
3277
|
+
gap> f := Transformation([3, 2, 4, 5, 6, 1, 1]);;
|
|
3278
|
+
gap> h := HClassNC(s, f);
|
|
3279
|
+
<Green's H-class: Transformation( [ 3, 2, 4, 5, 6, 1, 1 ] )>
|
|
3280
|
+
gap> Transformation([3, 2, 4, 5, 6, 1, 1]) in last;
|
|
3281
|
+
true
|
|
3282
|
+
gap> Idempotents(h);
|
|
3283
|
+
[ Transformation( [ 1, 2, 3, 4, 5, 6, 6 ] ) ]
|
|
3284
|
+
gap> IsGroupHClass(h);
|
|
3285
|
+
true
|
|
3286
|
+
gap> h := HClass(s, Transformation([5, 1, 3, 3, 5, 5, 3]));;
|
|
3287
|
+
gap> IsGroupHClass(h);
|
|
3288
|
+
false
|
|
3289
|
+
gap> IsRegularGreensClass(h);
|
|
3290
|
+
false
|
|
3291
|
+
|
|
3292
|
+
# MiscTest38
|
|
3293
|
+
gap> gens :=
|
|
3294
|
+
> [PartialPermNC([1, 2, 3], [1, 5, 2]),
|
|
3295
|
+
> PartialPermNC([1, 2, 4], [1, 3, 6]),
|
|
3296
|
+
> PartialPermNC([1, 2, 4], [3, 1, 6]),
|
|
3297
|
+
> PartialPermNC([1, 2, 6], [6, 4, 1]),
|
|
3298
|
+
> PartialPermNC([1, 3, 5], [5, 2, 3]),
|
|
3299
|
+
> PartialPermNC([1, 2, 3, 4], [5, 3, 2, 4]),
|
|
3300
|
+
> PartialPermNC([1, 2, 3, 4], [6, 1, 5, 3]),
|
|
3301
|
+
> PartialPermNC([1, 2, 3, 5], [1, 4, 6, 3]),
|
|
3302
|
+
> PartialPermNC([1, 2, 3, 5], [2, 3, 4, 1]),
|
|
3303
|
+
> PartialPermNC([1, 2, 3, 5], [6, 5, 1, 2]),
|
|
3304
|
+
> PartialPermNC([1, 2, 3, 6], [3, 5, 4, 6]),
|
|
3305
|
+
> PartialPermNC([1, 2, 4, 5], [4, 2, 3, 6]),
|
|
3306
|
+
> PartialPermNC([1, 2, 4, 6], [6, 4, 3, 5]),
|
|
3307
|
+
> PartialPermNC([1, 2, 4, 6], [6, 4, 5, 2]),
|
|
3308
|
+
> PartialPermNC([1, 3, 4, 5], [6, 1, 4, 3]),
|
|
3309
|
+
> PartialPermNC([1, 2, 3, 4, 5], [3, 4, 1, 2, 6]),
|
|
3310
|
+
> PartialPermNC([1, 2, 3, 4, 6], [1, 2, 5, 3, 4]),
|
|
3311
|
+
> PartialPermNC([1, 2, 3, 4, 6], [3, 6, 4, 5, 1]),
|
|
3312
|
+
> PartialPermNC([1, 2, 3, 5, 6], [4, 3, 5, 1, 6]),
|
|
3313
|
+
> PartialPermNC([1, 2, 4, 5, 6], [2, 3, 1, 5, 6])];;
|
|
3314
|
+
gap> s := Semigroup(gens);;
|
|
3315
|
+
gap> Size(s);
|
|
3316
|
+
7960
|
|
3317
|
+
gap> f := PartialPermNC([1, 2, 5, 6], [5, 3, 6, 4]);;
|
|
3318
|
+
gap> h := HClass(s, f);
|
|
3319
|
+
<Green's H-class: [1,5,6,4][2,3]>
|
|
3320
|
+
gap> d := DClass(s, f);
|
|
3321
|
+
<Green's D-class: [1,5,6,4][2,3]>
|
|
3322
|
+
gap> h := HClass(s, f);
|
|
3323
|
+
<Green's H-class: [1,5,6,4][2,3]>
|
|
3324
|
+
gap> IsGroupHClass(h);
|
|
3325
|
+
false
|
|
3326
|
+
gap> Size(h);
|
|
3327
|
+
1
|
|
3328
|
+
gap> h;
|
|
3329
|
+
<Green's H-class: [1,5,6,4][2,3]>
|
|
3330
|
+
gap> Size(h);
|
|
3331
|
+
1
|
|
3332
|
+
gap> enum := Enumerator(h);
|
|
3333
|
+
<enumerator of <Green's H-class: [1,5,6,4][2,3]>>
|
|
3334
|
+
gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
|
|
3335
|
+
true
|
|
3336
|
+
gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
|
|
3337
|
+
true
|
|
3338
|
+
gap> d := DClass(s, Representative(h));
|
|
3339
|
+
<Green's D-class: [1,5,6,4][2,3]>
|
|
3340
|
+
gap> f := Representative(h);
|
|
3341
|
+
[1,5,6,4][2,3]
|
|
3342
|
+
gap> h := HClass(d, f);
|
|
3343
|
+
<Green's H-class: [1,5,6,4][2,3]>
|
|
3344
|
+
gap> h = HClass(s, f);
|
|
3345
|
+
true
|
|
3346
|
+
gap> Idempotents(h);
|
|
3347
|
+
[ ]
|
|
3348
|
+
gap> repeat h := NextIterator(iter); until Size(h) > 1;
|
|
3349
|
+
gap> h;
|
|
3350
|
+
<Green's R-class: [1,3](2)(4)>
|
|
3351
|
+
gap> Size(h);
|
|
3352
|
+
114
|
|
3353
|
+
gap> f := Representative(h);
|
|
3354
|
+
[1,3](2)(4)
|
|
3355
|
+
gap> r := RClassNC(d, f);
|
|
3356
|
+
<Green's R-class: [1,3](2)(4)>
|
|
3357
|
+
gap> h := HClass(r, f);
|
|
3358
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
|
|
3359
|
+
Green's class)
|
|
3360
|
+
gap> h = HClass(s, f);
|
|
3361
|
+
false
|
|
3362
|
+
gap> Elements(h) = Elements(HClass(s, f));
|
|
3363
|
+
false
|
|
3364
|
+
gap> l := LClass(s, f);
|
|
3365
|
+
<Green's L-class: [1,3](2)(4)>
|
|
3366
|
+
gap> h := HClass(l, f);
|
|
3367
|
+
<Green's H-class: [1,3](2)(4)>
|
|
3368
|
+
gap> Elements(h) = Elements(HClass(s, f));
|
|
3369
|
+
true
|
|
3370
|
+
gap> h := HClass(l, f);
|
|
3371
|
+
<Green's H-class: [1,3](2)(4)>
|
|
3372
|
+
|
|
3373
|
+
# MiscTest41
|
|
3374
|
+
gap> gens := [Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
|
|
3375
|
+
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
|
|
3376
|
+
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
|
|
3377
|
+
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
|
|
3378
|
+
> Transformation([5, 2, 3, 6, 3, 4, 7, 4])];;
|
|
3379
|
+
gap> s := Semigroup(gens);;
|
|
3380
|
+
gap> Size(s);
|
|
3381
|
+
5304
|
|
3382
|
+
|
|
3383
|
+
# MiscTest44
|
|
3384
|
+
gap> gens := [Transformation([4, 6, 5, 2, 1, 3]),
|
|
3385
|
+
> Transformation([6, 3, 2, 5, 4, 1]),
|
|
3386
|
+
> Transformation([1, 2, 4, 3, 5, 6]),
|
|
3387
|
+
> Transformation([3, 5, 6, 1, 2, 3]),
|
|
3388
|
+
> Transformation([5, 3, 6, 6, 6, 2]),
|
|
3389
|
+
> Transformation([2, 3, 2, 6, 4, 6]),
|
|
3390
|
+
> Transformation([2, 1, 2, 2, 2, 4]),
|
|
3391
|
+
> Transformation([4, 4, 1, 2, 1, 2])];;
|
|
3392
|
+
gap> s := Semigroup(gens);;
|
|
3393
|
+
gap> f := Transformation([4, 4, 1, 2, 1, 2]);;
|
|
3394
|
+
gap> h := HClassNC(s, f);
|
|
3395
|
+
<Green's H-class: Transformation( [ 4, 4, 1, 2, 1, 2 ] )>
|
|
3396
|
+
gap> Transformation([4, 4, 1, 2, 1, 2]) in last;
|
|
3397
|
+
true
|
|
3398
|
+
gap> IsRegularGreensClass(h);
|
|
3399
|
+
false
|
|
3400
|
+
gap> IsGroupHClass(h);
|
|
3401
|
+
false
|
|
3402
|
+
gap> h := GroupHClass(DClass(h));
|
|
3403
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 6, 3, 6 ] )>
|
|
3404
|
+
gap> Transformation([2, 2, 3, 6, 3, 6]) in last;
|
|
3405
|
+
true
|
|
3406
|
+
gap> Size(h);
|
|
3407
|
+
6
|
|
3408
|
+
gap> r := RClassOfHClass(h);
|
|
3409
|
+
<Green's R-class: Transformation( [ 2, 2, 3, 6, 3, 6 ] )>
|
|
3410
|
+
gap> Transformation([1, 1, 2, 4, 2, 4]) in last;
|
|
3411
|
+
true
|
|
3412
|
+
gap> ForAll(h, x -> x in r);
|
|
3413
|
+
true
|
|
3414
|
+
gap> Number(r, x -> x in h);
|
|
3415
|
+
6
|
|
3416
|
+
gap> l;
|
|
3417
|
+
<Green's L-class: [1,3](2)(4)>
|
|
3418
|
+
gap> RhoOrbStabChain(l);
|
|
3419
|
+
true
|
|
3420
|
+
gap> g := SchutzenbergerGroup(l);
|
|
3421
|
+
Sym( [ 2 .. 4 ] )
|
|
3422
|
+
gap> IsSymmetricGroup(g);
|
|
3423
|
+
true
|
|
3424
|
+
gap> IsNaturalSymmetricGroup(g);
|
|
3425
|
+
true
|
|
3426
|
+
|
|
3427
|
+
# MiscTest45
|
|
3428
|
+
gap> a1 := Transformation([2, 2, 3, 5, 5, 6, 7, 8, 14, 16, 16, 17, 18, 14,
|
|
3429
|
+
> 16, 16, 17, 18]);;
|
|
3430
|
+
gap> a2 := Transformation([1, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
3431
|
+
> 16, 17, 18]);;
|
|
3432
|
+
gap> a3 := Transformation([1, 2, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15,
|
|
3433
|
+
> 16, 17, 18]);;
|
|
3434
|
+
gap> a4 := Transformation([1, 2, 3, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
3435
|
+
> 17, 17, 18]);;
|
|
3436
|
+
gap> a5 := Transformation([1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
3437
|
+
> 16, 18, 18]);;
|
|
3438
|
+
gap> a6 := Transformation([1, 2, 3, 4, 5, 6, 8, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
3439
|
+
> 16, 17, 2]);;
|
|
3440
|
+
gap> P := Transformation([1, 2, 9, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 14,
|
|
3441
|
+
> 15, 16, 17, 18]);;
|
|
3442
|
+
gap> K18g := [a1, a2, a3, a4, a5, a6, P];;
|
|
3443
|
+
gap> s := Semigroup(K18g);;
|
|
3444
|
+
gap> f := Transformation([1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13, 15, 15,
|
|
3445
|
+
> 17, 17, 18]);;
|
|
3446
|
+
gap> r := RClassNC(s, f);
|
|
3447
|
+
<Green's R-class: Transformation( [ 1, 2, 4, 4, 6, 6, 7, 8, 9, 10, 11, 12, 13,
|
|
3448
|
+
15, 15, 17, 17 ] )>
|
|
3449
|
+
gap> Size(r);
|
|
3450
|
+
1
|
|
3451
|
+
gap> SchutzenbergerGroup(r);
|
|
3452
|
+
Group(())
|
|
3453
|
+
gap> f := Transformation([1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11, 12, 13, 15,
|
|
3454
|
+
> 15, 16, 17, 18]);;
|
|
3455
|
+
gap> r := RClass(s, f);
|
|
3456
|
+
<Green's R-class: Transformation( [ 1, 2, 10, 10, 11, 12, 13, 1, 9, 10, 11,
|
|
3457
|
+
12, 13, 15, 15 ] )>
|
|
3458
|
+
gap> Size(r);
|
|
3459
|
+
1
|
|
3460
|
+
gap> SchutzenbergerGroup(r);
|
|
3461
|
+
Group(())
|
|
3462
|
+
|
|
3463
|
+
# MiscTest46
|
|
3464
|
+
gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),
|
|
3465
|
+
> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),
|
|
3466
|
+
> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
|
|
3467
|
+
> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
|
|
3468
|
+
gap> s := Semigroup(gens);;
|
|
3469
|
+
gap> f := Transformation([9, 10, 10, 3, 10, 9, 9, 9, 9, 9]);;
|
|
3470
|
+
gap> r := RClass(s, f);
|
|
3471
|
+
<Green's R-class: Transformation( [ 9, 10, 10, 3, 10, 9, 9, 9, 9, 9 ] )>
|
|
3472
|
+
gap> Transformation([9, 8, 8, 1, 8, 9, 9, 9, 9, 9]) in last;
|
|
3473
|
+
true
|
|
3474
|
+
gap> Size(r);
|
|
3475
|
+
546
|
|
3476
|
+
gap> SchutzenbergerGroup(r);
|
|
3477
|
+
Group([ (1,9,8), (1,8) ])
|
|
3478
|
+
gap> ForAll(r, x -> x in r);
|
|
3479
|
+
true
|
|
3480
|
+
gap> f := Transformation([8, 8, 8, 8, 8, 8, 7, 7, 8, 8]);;
|
|
3481
|
+
gap> r := RClass(s, f);
|
|
3482
|
+
<Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
|
|
3483
|
+
gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
|
|
3484
|
+
true
|
|
3485
|
+
gap> Size(r);
|
|
3486
|
+
86
|
|
3487
|
+
gap> iter := IteratorOfRClasses(s);
|
|
3488
|
+
<iterator>
|
|
3489
|
+
gap> repeat r := NextIterator(iter); until Size(r) > 1000;
|
|
3490
|
+
gap> r;
|
|
3491
|
+
<Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>
|
|
3492
|
+
gap> Transformation([9, 1, 8, 2, 1, 8, 9, 9, 9, 8]) in last;
|
|
3493
|
+
true
|
|
3494
|
+
gap> Size(r);
|
|
3495
|
+
1992
|
|
3496
|
+
gap> SchutzenbergerGroup(r);
|
|
3497
|
+
Group([ (2,8), (1,8), (1,2,8,9) ])
|
|
3498
|
+
gap> enum := Enumerator(r);
|
|
3499
|
+
<enumerator of <Green's R-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9,
|
|
3500
|
+
8 ] )>>
|
|
3501
|
+
gap> ForAll(enum, x -> x in r);
|
|
3502
|
+
true
|
|
3503
|
+
gap> ForAll(enum, x -> enum[Position(enum, x)] = x);
|
|
3504
|
+
true
|
|
3505
|
+
gap> ForAll([1 .. Length(enum)], x -> Position(enum, enum[x]) = x);
|
|
3506
|
+
true
|
|
3507
|
+
gap> NrHClasses(r);
|
|
3508
|
+
83
|
|
3509
|
+
gap> GreensHClasses(r);
|
|
3510
|
+
[ <Green's H-class: Transformation( [ 9, 1, 8, 2, 1, 8, 9, 9, 9, 8 ] )>,
|
|
3511
|
+
<Green's H-class: Transformation( [ 8, 2, 4, 3, 2, 4, 8, 8, 8, 4 ] )>,
|
|
3512
|
+
<Green's H-class: Transformation( [ 1, 5, 4, 3, 5, 4, 1, 1, 1, 4 ] )>,
|
|
3513
|
+
<Green's H-class: Transformation( [ 5, 4, 1, 2, 4, 1, 5, 5, 5, 1 ] )>,
|
|
3514
|
+
<Green's H-class: Transformation( [ 10, 5, 9, 3, 5, 9, 10, 10, 10, 9 ] )>,
|
|
3515
|
+
<Green's H-class: Transformation( [ 9, 1, 2, 5, 1, 2, 9, 9, 9, 2 ] )>,
|
|
3516
|
+
<Green's H-class: Transformation( [ 4, 10, 7, 1, 10, 7, 4, 4, 4, 7 ] )>,
|
|
3517
|
+
<Green's H-class: Transformation( [ 5, 1, 7, 2, 1, 7, 5, 5, 5, 7 ] )>,
|
|
3518
|
+
<Green's H-class: Transformation( [ 10, 9, 4, 3, 9, 4, 10, 10, 10, 4 ] )>,
|
|
3519
|
+
<Green's H-class: Transformation( [ 5, 9, 8, 2, 9, 8, 5, 5, 5, 8 ] )>,
|
|
3520
|
+
<Green's H-class: Transformation( [ 1, 4, 8, 7, 4, 8, 1, 1, 1, 8 ] )>,
|
|
3521
|
+
<Green's H-class: Transformation( [ 7, 5, 2, 3, 5, 2, 7, 7, 7, 2 ] )>,
|
|
3522
|
+
<Green's H-class: Transformation( [ 10, 1, 4, 3, 1, 4, 10, 10, 10, 4 ] )>,
|
|
3523
|
+
<Green's H-class: Transformation( [ 8, 1, 7, 3, 1, 7, 8, 8, 8, 7 ] )>,
|
|
3524
|
+
<Green's H-class: Transformation( [ 3, 2, 7, 1, 2, 7, 3, 3, 3, 7 ] )>,
|
|
3525
|
+
<Green's H-class: Transformation( [ 1, 4, 7, 2, 4, 7, 1, 1, 1, 7 ] )>,
|
|
3526
|
+
<Green's H-class: Transformation( [ 5, 4, 7, 2, 4, 7, 5, 5, 5, 7 ] )>,
|
|
3527
|
+
<Green's H-class: Transformation( [ 10, 5, 4, 3, 5, 4, 10, 10, 10, 4 ] )>,
|
|
3528
|
+
<Green's H-class: Transformation( [ 1, 7, 3, 10, 7, 3, 1, 1, 1, 3 ] )>,
|
|
3529
|
+
<Green's H-class: Transformation( [ 9, 4, 1, 2, 4, 1, 9, 9, 9, 1 ] )>,
|
|
3530
|
+
<Green's H-class: Transformation( [ 5, 8, 4, 2, 8, 4, 5, 5, 5, 4 ] )>,
|
|
3531
|
+
<Green's H-class: Transformation( [ 10, 6, 5, 3, 6, 5, 10, 10, 10, 5 ] )>,
|
|
3532
|
+
<Green's H-class: Transformation( [ 2, 3, 10, 1, 3, 10, 2, 2, 2, 10 ] )>,
|
|
3533
|
+
<Green's H-class: Transformation( [ 3, 1, 2, 9, 1, 2, 3, 3, 3, 2 ] )>,
|
|
3534
|
+
<Green's H-class: Transformation( [ 10, 1, 9, 3, 1, 9, 10, 10, 10, 9 ] )>,
|
|
3535
|
+
<Green's H-class: Transformation( [ 2, 9, 10, 1, 9, 10, 2, 2, 2, 10 ] )>,
|
|
3536
|
+
<Green's H-class: Transformation( [ 2, 4, 1, 8, 4, 1, 2, 2, 2, 1 ] )>,
|
|
3537
|
+
<Green's H-class: Transformation( [ 5, 3, 4, 2, 3, 4, 5, 5, 5, 4 ] )>,
|
|
3538
|
+
<Green's H-class: Transformation( [ 10, 1, 5, 3, 1, 5, 10, 10, 10, 5 ] )>,
|
|
3539
|
+
<Green's H-class: Transformation( [ 3, 5, 9, 6, 5, 9, 3, 3, 3, 9 ] )>,
|
|
3540
|
+
<Green's H-class: Transformation( [ 3, 1, 4, 9, 1, 4, 3, 3, 3, 4 ] )>,
|
|
3541
|
+
<Green's H-class: Transformation( [ 1, 5, 10, 9, 5, 10, 1, 1, 1, 10 ] )>,
|
|
3542
|
+
<Green's H-class: Transformation( [ 3, 10, 7, 4, 10, 7, 3, 3, 3, 7 ] )>,
|
|
3543
|
+
<Green's H-class: Transformation( [ 3, 10, 8, 7, 10, 8, 3, 3, 3, 8 ] )>,
|
|
3544
|
+
<Green's H-class: Transformation( [ 1, 2, 6, 4, 2, 6, 1, 1, 1, 6 ] )>,
|
|
3545
|
+
<Green's H-class: Transformation( [ 9, 1, 5, 8, 1, 5, 9, 9, 9, 5 ] )>,
|
|
3546
|
+
<Green's H-class: Transformation( [ 4, 1, 8, 10, 1, 8, 4, 4, 4, 8 ] )>,
|
|
3547
|
+
<Green's H-class: Transformation( [ 5, 3, 1, 2, 3, 1, 5, 5, 5, 1 ] )>,
|
|
3548
|
+
<Green's H-class: Transformation( [ 5, 9, 6, 2, 9, 6, 5, 5, 5, 6 ] )>,
|
|
3549
|
+
<Green's H-class: Transformation( [ 1, 4, 9, 7, 4, 9, 1, 1, 1, 9 ] )>,
|
|
3550
|
+
<Green's H-class: Transformation( [ 8, 4, 7, 10, 4, 7, 8, 8, 8, 7 ] )>,
|
|
3551
|
+
<Green's H-class: Transformation( [ 3, 5, 7, 1, 5, 7, 3, 3, 3, 7 ] )>,
|
|
3552
|
+
<Green's H-class: Transformation( [ 4, 10, 9, 1, 10, 9, 4, 4, 4, 9 ] )>,
|
|
3553
|
+
<Green's H-class: Transformation( [ 5, 1, 8, 2, 1, 8, 5, 5, 5, 8 ] )>,
|
|
3554
|
+
<Green's H-class: Transformation( [ 10, 6, 9, 3, 6, 9, 10, 10, 10, 9 ] )>,
|
|
3555
|
+
<Green's H-class: Transformation( [ 1, 10, 8, 7, 10, 8, 1, 1, 1, 8 ] )>,
|
|
3556
|
+
<Green's H-class: Transformation( [ 9, 2, 6, 4, 2, 6, 9, 9, 9, 6 ] )>,
|
|
3557
|
+
<Green's H-class: Transformation( [ 9, 10, 2, 5, 10, 2, 9, 9, 9, 2 ] )>,
|
|
3558
|
+
<Green's H-class: Transformation( [ 10, 3, 1, 8, 3, 1, 10, 10, 10, 1 ] )>,
|
|
3559
|
+
<Green's H-class: Transformation( [ 2, 1, 9, 6, 1, 9, 2, 2, 2, 9 ] )>,
|
|
3560
|
+
<Green's H-class: Transformation( [ 7, 10, 4, 9, 10, 4, 7, 7, 7, 4 ] )>,
|
|
3561
|
+
<Green's H-class: Transformation( [ 7, 1, 5, 8, 1, 5, 7, 7, 7, 5 ] )>,
|
|
3562
|
+
<Green's H-class: Transformation( [ 7, 2, 4, 3, 2, 4, 7, 7, 7, 4 ] )>,
|
|
3563
|
+
<Green's H-class: Transformation( [ 1, 4, 5, 7, 4, 5, 1, 1, 1, 5 ] )>,
|
|
3564
|
+
<Green's H-class: Transformation( [ 9, 5, 10, 4, 5, 10, 9, 9, 9, 10 ] )>,
|
|
3565
|
+
<Green's H-class: Transformation( [ 5, 1, 8, 4, 1, 8, 5, 5, 5, 8 ] )>,
|
|
3566
|
+
<Green's H-class: Transformation( [ 9, 10, 6, 5, 10, 6, 9, 9, 9, 6 ] )>,
|
|
3567
|
+
<Green's H-class: Transformation( [ 4, 10, 9, 6, 10, 9, 4, 4, 4, 9 ] )>,
|
|
3568
|
+
<Green's H-class: Transformation( [ 10, 2, 5, 3, 2, 5, 10, 10, 10, 5 ] )>,
|
|
3569
|
+
<Green's H-class: Transformation( [ 5, 10, 4, 2, 10, 4, 5, 5, 5, 4 ] )>,
|
|
3570
|
+
<Green's H-class: Transformation( [ 2, 5, 8, 7, 5, 8, 2, 2, 2, 8 ] )>,
|
|
3571
|
+
<Green's H-class: Transformation( [ 3, 10, 6, 4, 10, 6, 3, 3, 3, 6 ] )>,
|
|
3572
|
+
<Green's H-class: Transformation( [ 3, 10, 9, 7, 10, 9, 3, 3, 3, 9 ] )>,
|
|
3573
|
+
<Green's H-class: Transformation( [ 1, 2, 10, 4, 2, 10, 1, 1, 1, 10 ] )>,
|
|
3574
|
+
<Green's H-class: Transformation( [ 3, 5, 2, 9, 5, 2, 3, 3, 3, 2 ] )>,
|
|
3575
|
+
<Green's H-class: Transformation( [ 3, 1, 7, 4, 1, 7, 3, 3, 3, 7 ] )>,
|
|
3576
|
+
<Green's H-class: Transformation( [ 9, 1, 4, 5, 1, 4, 9, 9, 9, 4 ] )>,
|
|
3577
|
+
<Green's H-class: Transformation( [ 3, 10, 8, 4, 10, 8, 3, 3, 3, 8 ] )>,
|
|
3578
|
+
<Green's H-class: Transformation( [ 2, 1, 5, 6, 1, 5, 2, 2, 2, 5 ] )>,
|
|
3579
|
+
<Green's H-class: Transformation( [ 7, 10, 1, 9, 10, 1, 7, 7, 7, 1 ] )>,
|
|
3580
|
+
<Green's H-class: Transformation( [ 7, 1, 2, 8, 1, 2, 7, 7, 7, 2 ] )>,
|
|
3581
|
+
<Green's H-class: Transformation( [ 4, 3, 9, 6, 3, 9, 4, 4, 4, 9 ] )>,
|
|
3582
|
+
<Green's H-class: Transformation( [ 7, 3, 4, 9, 3, 4, 7, 7, 7, 4 ] )>,
|
|
3583
|
+
<Green's H-class: Transformation( [ 1, 5, 10, 4, 5, 10, 1, 1, 1, 10 ] )>,
|
|
3584
|
+
<Green's H-class: Transformation( [ 3, 4, 8, 7, 4, 8, 3, 3, 3, 8 ] )>,
|
|
3585
|
+
<Green's H-class: Transformation( [ 1, 5, 6, 4, 5, 6, 1, 1, 1, 6 ] )>,
|
|
3586
|
+
<Green's H-class: Transformation( [ 9, 2, 10, 4, 2, 10, 9, 9, 9, 10 ] )>,
|
|
3587
|
+
<Green's H-class: Transformation( [ 3, 10, 2, 9, 10, 2, 3, 3, 3, 2 ] )>,
|
|
3588
|
+
<Green's H-class: Transformation( [ 2, 5, 10, 1, 5, 10, 2, 2, 2, 10 ] )>,
|
|
3589
|
+
<Green's H-class: Transformation( [ 9, 5, 4, 3, 5, 4, 9, 9, 9, 4 ] )>,
|
|
3590
|
+
<Green's H-class: Transformation( [ 4, 1, 9, 6, 1, 9, 4, 4, 4, 9 ] )>,
|
|
3591
|
+
<Green's H-class: Transformation( [ 9, 5, 6, 4, 5, 6, 9, 9, 9, 6 ] )>,
|
|
3592
|
+
<Green's H-class: Transformation( [ 1, 5, 3, 6, 5, 3, 1, 1, 1, 3 ] )> ]
|
|
3593
|
+
gap> List(last, x -> Representative(x) in s);
|
|
3594
|
+
[ true, true, true, true, true, true, true, true, true, true, true, true,
|
|
3595
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
3596
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
3597
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
3598
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
3599
|
+
true, true, true, true, true, true, true, true, true, true, true, true,
|
|
3600
|
+
true, true, true, true, true, true, true, true, true, true, true ]
|
|
3601
|
+
gap> ForAll(last2, x -> Representative(x) in r);
|
|
3602
|
+
true
|
|
3603
|
+
gap> Semigroup(gens);;
|
|
3604
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
3605
|
+
<Green's R-class: Transformation( [ 8, 8, 8, 8, 8, 8, 7, 7, 8, 8 ] )>
|
|
3606
|
+
gap> Transformation([1, 1, 1, 1, 1, 1, 9, 9, 1, 1]) in last;
|
|
3607
|
+
true
|
|
3608
|
+
gap> f := Transformation([9, 9, 5, 9, 5, 9, 5, 5, 5, 5]);;
|
|
3609
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
3610
|
+
<Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
|
|
3611
|
+
gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
|
|
3612
|
+
true
|
|
3613
|
+
gap> Size(r);
|
|
3614
|
+
86
|
|
3615
|
+
gap> NrHClasses(r);
|
|
3616
|
+
43
|
|
3617
|
+
gap> s := Semigroup(gens);;
|
|
3618
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
3619
|
+
<Green's R-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>
|
|
3620
|
+
gap> Transformation([9, 9, 1, 9, 1, 9, 1, 1, 1, 1]) in last;
|
|
3621
|
+
true
|
|
3622
|
+
gap> GreensHClasses(r);
|
|
3623
|
+
[ <Green's H-class: Transformation( [ 9, 9, 1, 9, 1, 9, 1, 1, 1, 1 ] )>,
|
|
3624
|
+
<Green's H-class: Transformation( [ 8, 8, 2, 8, 2, 8, 2, 2, 2, 2 ] )>,
|
|
3625
|
+
<Green's H-class: Transformation( [ 4, 4, 3, 4, 3, 4, 3, 3, 3, 3 ] )>,
|
|
3626
|
+
<Green's H-class: Transformation( [ 1, 1, 5, 1, 5, 1, 5, 5, 5, 5 ] )>,
|
|
3627
|
+
<Green's H-class: Transformation( [ 9, 9, 10, 9, 10, 9, 10, 10, 10, 10 ] )>,
|
|
3628
|
+
<Green's H-class: Transformation( [ 10, 10, 4, 10, 4, 10, 4, 4, 4, 4 ] )>,
|
|
3629
|
+
<Green's H-class: Transformation( [ 8, 8, 5, 8, 5, 8, 5, 5, 5, 5 ] )>,
|
|
3630
|
+
<Green's H-class: Transformation( [ 8, 8, 1, 8, 1, 8, 1, 1, 1, 1 ] )>,
|
|
3631
|
+
<Green's H-class: Transformation( [ 8, 8, 10, 8, 10, 8, 10, 10, 10, 10 ] )>,
|
|
3632
|
+
<Green's H-class: Transformation( [ 1, 1, 3, 1, 3, 1, 3, 3, 3, 3 ] )>,
|
|
3633
|
+
<Green's H-class: Transformation( [ 3, 3, 10, 3, 10, 3, 10, 10, 10, 10 ] )>,
|
|
3634
|
+
<Green's H-class: Transformation( [ 2, 2, 5, 2, 5, 2, 5, 5, 5, 5 ] )>,
|
|
3635
|
+
<Green's H-class: Transformation( [ 7, 7, 1, 7, 1, 7, 1, 1, 1, 1 ] )>,
|
|
3636
|
+
<Green's H-class: Transformation( [ 9, 9, 4, 9, 4, 9, 4, 4, 4, 4 ] )>,
|
|
3637
|
+
<Green's H-class: Transformation( [ 9, 9, 8, 9, 8, 9, 8, 8, 8, 8 ] )>,
|
|
3638
|
+
<Green's H-class: Transformation( [ 8, 8, 4, 8, 4, 8, 4, 4, 4, 4 ] )>,
|
|
3639
|
+
<Green's H-class: Transformation( [ 7, 7, 8, 7, 8, 7, 8, 8, 8, 8 ] )>,
|
|
3640
|
+
<Green's H-class: Transformation( [ 7, 7, 3, 7, 3, 7, 3, 3, 3, 3 ] )>,
|
|
3641
|
+
<Green's H-class: Transformation( [ 9, 9, 2, 9, 2, 9, 2, 2, 2, 2 ] )>,
|
|
3642
|
+
<Green's H-class: Transformation( [ 7, 7, 4, 7, 4, 7, 4, 4, 4, 4 ] )>,
|
|
3643
|
+
<Green's H-class: Transformation( [ 4, 4, 5, 4, 5, 4, 5, 5, 5, 5 ] )>,
|
|
3644
|
+
<Green's H-class: Transformation( [ 5, 5, 10, 5, 10, 5, 10, 10, 10, 10 ] )>,
|
|
3645
|
+
<Green's H-class: Transformation( [ 2, 2, 10, 2, 10, 2, 10, 10, 10, 10 ] )>,
|
|
3646
|
+
<Green's H-class: Transformation( [ 7, 7, 10, 7, 10, 7, 10, 10, 10, 10 ] )>,
|
|
3647
|
+
<Green's H-class: Transformation( [ 9, 9, 5, 9, 5, 9, 5, 5, 5, 5 ] )>,
|
|
3648
|
+
<Green's H-class: Transformation( [ 1, 1, 4, 1, 4, 1, 4, 4, 4, 4 ] )>,
|
|
3649
|
+
<Green's H-class: Transformation( [ 4, 4, 2, 4, 2, 4, 2, 2, 2, 2 ] )>,
|
|
3650
|
+
<Green's H-class: Transformation( [ 5, 5, 3, 5, 3, 5, 3, 3, 3, 3 ] )>,
|
|
3651
|
+
<Green's H-class: Transformation( [ 1, 1, 2, 1, 2, 1, 2, 2, 2, 2 ] )>,
|
|
3652
|
+
<Green's H-class: Transformation( [ 9, 9, 3, 9, 3, 9, 3, 3, 3, 3 ] )>,
|
|
3653
|
+
<Green's H-class: Transformation( [ 1, 1, 10, 1, 10, 1, 10, 10, 10, 10 ] )>,
|
|
3654
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 2, 3, 2, 3, 3, 3, 3 ] )>,
|
|
3655
|
+
<Green's H-class: Transformation( [ 7, 7, 5, 7, 5, 7, 5, 5, 5, 5 ] )>,
|
|
3656
|
+
<Green's H-class: Transformation( [ 8, 8, 3, 8, 3, 8, 3, 3, 3, 3 ] )>,
|
|
3657
|
+
<Green's H-class: Transformation( [ 1, 1, 6, 1, 6, 1, 6, 6, 6, 6 ] )>,
|
|
3658
|
+
<Green's H-class: Transformation( [ 4, 4, 6, 4, 6, 4, 6, 6, 6, 6 ] )>,
|
|
3659
|
+
<Green's H-class: Transformation( [ 9, 9, 7, 9, 7, 9, 7, 7, 7, 7 ] )>,
|
|
3660
|
+
<Green's H-class: Transformation( [ 6, 6, 5, 6, 5, 6, 5, 5, 5, 5 ] )>,
|
|
3661
|
+
<Green's H-class: Transformation( [ 6, 6, 10, 6, 10, 6, 10, 10, 10, 10 ] )>,
|
|
3662
|
+
<Green's H-class: Transformation( [ 7, 7, 2, 7, 2, 7, 2, 2, 2, 2 ] )>,
|
|
3663
|
+
<Green's H-class: Transformation( [ 2, 2, 6, 2, 6, 2, 6, 6, 6, 6 ] )>,
|
|
3664
|
+
<Green's H-class: Transformation( [ 9, 9, 6, 9, 6, 9, 6, 6, 6, 6 ] )>,
|
|
3665
|
+
<Green's H-class: Transformation( [ 3, 3, 6, 3, 6, 3, 6, 6, 6, 6 ] )> ]
|
|
3666
|
+
gap> Length(last);
|
|
3667
|
+
43
|
|
3668
|
+
gap> ForAll(last2, x -> Representative(x) in r);
|
|
3669
|
+
true
|
|
3670
|
+
gap> ForAll(last3, x -> Representative(x) in s);
|
|
3671
|
+
true
|
|
3672
|
+
gap> h := HClass(s, Transformation([4, 4, 9, 4, 9, 4, 9, 9, 9, 9]));;
|
|
3673
|
+
gap> f := Representative(h);
|
|
3674
|
+
Transformation( [ 4, 4, 9, 4, 9, 4, 9, 9, 9, 9 ] )
|
|
3675
|
+
gap> hh := HClass(r, f);
|
|
3676
|
+
<Green's H-class: Transformation( [ 4, 4, 9, 4, 9, 4, 9, 9, 9, 9 ] )>
|
|
3677
|
+
gap> Transformation([4, 4, 9, 4, 9, 4, 9, 9, 9, 9]) in last;
|
|
3678
|
+
true
|
|
3679
|
+
gap> hh = h;
|
|
3680
|
+
true
|
|
3681
|
+
gap> h = hh;
|
|
3682
|
+
true
|
|
3683
|
+
gap> Elements(h) = Elements(hh);
|
|
3684
|
+
true
|
|
3685
|
+
gap> f := Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]);;
|
|
3686
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
3687
|
+
<Green's R-class: Transformation( [ 10, 1, 9, 10, 2, 1, 5, 3, 2, 3 ] )>
|
|
3688
|
+
gap> Transformation([10, 1, 9, 10, 2, 1, 5, 3, 2, 3]) in last;
|
|
3689
|
+
true
|
|
3690
|
+
gap> Size(r);
|
|
3691
|
+
1
|
|
3692
|
+
gap> f := Transformation([10, 10, 3, 10, 10, 10, 10, 10, 6, 10]);;
|
|
3693
|
+
gap> r := GreensRClassOfElement(s, f);
|
|
3694
|
+
<Green's R-class: Transformation( [ 10, 10, 3, 10, 10, 10, 10, 10, 6, 10 ] )>
|
|
3695
|
+
gap> Transformation([8, 8, 1, 8, 8, 8, 8, 8, 9, 8]) in last;
|
|
3696
|
+
true
|
|
3697
|
+
gap> Size(r);
|
|
3698
|
+
546
|
|
3699
|
+
gap> f := Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]);;
|
|
3700
|
+
gap> f in r;
|
|
3701
|
+
true
|
|
3702
|
+
gap> h := HClass(r, f);
|
|
3703
|
+
<Green's H-class: Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] )>
|
|
3704
|
+
gap> Transformation([6, 6, 4, 6, 6, 6, 6, 6, 3, 6]) in last;
|
|
3705
|
+
true
|
|
3706
|
+
gap> f in h;
|
|
3707
|
+
true
|
|
3708
|
+
gap> ForAll(h, x -> x in r);
|
|
3709
|
+
true
|
|
3710
|
+
gap> Size(h);
|
|
3711
|
+
6
|
|
3712
|
+
gap> Elements(h);
|
|
3713
|
+
[ Transformation( [ 3, 3, 4, 3, 3, 3, 3, 3, 6, 3 ] ),
|
|
3714
|
+
Transformation( [ 3, 3, 6, 3, 3, 3, 3, 3, 4, 3 ] ),
|
|
3715
|
+
Transformation( [ 4, 4, 3, 4, 4, 4, 4, 4, 6, 4 ] ),
|
|
3716
|
+
Transformation( [ 4, 4, 6, 4, 4, 4, 4, 4, 3, 4 ] ),
|
|
3717
|
+
Transformation( [ 6, 6, 3, 6, 6, 6, 6, 6, 4, 6 ] ),
|
|
3718
|
+
Transformation( [ 6, 6, 4, 6, 6, 6, 6, 6, 3, 6 ] ) ]
|
|
3719
|
+
|
|
3720
|
+
# MiscTest47
|
|
3721
|
+
gap> gens :=
|
|
3722
|
+
> [PartialPermNC([1, 2, 3, 5, 9, 10], [5, 10, 7, 8, 9, 1]),
|
|
3723
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 9], [9, 3, 1, 4, 2, 5, 6]),
|
|
3724
|
+
> PartialPermNC([1, 2, 3, 4, 5, 7, 9], [7, 6, 2, 8, 4, 5, 3]),
|
|
3725
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
|
|
3726
|
+
> [8, 7, 4, 3, 10, 9, 5, 6, 1, 2])];;
|
|
3727
|
+
gap> s := Semigroup(gens);;
|
|
3728
|
+
gap> Size(s);
|
|
3729
|
+
1422787
|
|
3730
|
+
gap> f := PartialPerm([1, 4, 7, 9, 10], [5, 10, 9, 8, 7]);;
|
|
3731
|
+
gap> r := GreensRClassOfElementNC(s, f);
|
|
3732
|
+
<Green's R-class: [1,5][4,10,7,9,8]>
|
|
3733
|
+
gap> Size(r);
|
|
3734
|
+
4
|
|
3735
|
+
gap> f in r;
|
|
3736
|
+
true
|
|
3737
|
+
gap> f := PartialPerm([1, 7, 8, 9], [10, 9, 6, 5]);;
|
|
3738
|
+
gap> r := GreensRClassOfElementNC(s, f);
|
|
3739
|
+
<Green's R-class: [1,10][7,9,5][8,6]>
|
|
3740
|
+
gap> Size(r);
|
|
3741
|
+
4
|
|
3742
|
+
gap> iter := IteratorOfRClasses(s);
|
|
3743
|
+
<iterator>
|
|
3744
|
+
gap> repeat r := NextIterator(iter); until Size(r) > 1000;
|
|
3745
|
+
gap> r;
|
|
3746
|
+
<Green's R-class: [1,4][9,3,5][10,7]>
|
|
3747
|
+
gap> Size(r);
|
|
3748
|
+
3792
|
|
3749
|
+
gap> r := RClassNC(s, Representative(r));
|
|
3750
|
+
<Green's R-class: [1,4][9,3,5][10,7]>
|
|
3751
|
+
gap> h := HClassNC(r, PartialPermNC([1, 3, 9, 10], [10, 9, 8, 1]));;
|
|
3752
|
+
gap> Size(h);
|
|
3753
|
+
24
|
|
3754
|
+
gap> ForAll(h, x -> x in r);
|
|
3755
|
+
true
|
|
3756
|
+
gap> IsRegularGreensClass(r);
|
|
3757
|
+
true
|
|
3758
|
+
gap> IsRegularSemigroup(s);
|
|
3759
|
+
false
|
|
3760
|
+
gap> NrIdempotents(r);
|
|
3761
|
+
1
|
|
3762
|
+
gap> Idempotents(r);
|
|
3763
|
+
[ <identity partial perm on [ 1, 3, 9, 10 ]> ]
|
|
3764
|
+
gap> ForAll(last, x -> x in r);
|
|
3765
|
+
true
|
|
3766
|
+
|
|
3767
|
+
# MiscTest48
|
|
3768
|
+
gap> gens := [Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1,
|
|
3769
|
+
> 13, 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 1]),
|
|
3770
|
+
> Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1, 11, 1,
|
|
3771
|
+
> 1, 1, 23, 1, 16, 19, 1, 1, 1]),
|
|
3772
|
+
> Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1, 20, 1,
|
|
3773
|
+
> 22, 1, 8, 1, 1, 1, 1, 1]),
|
|
3774
|
+
> Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1, 6, 1,
|
|
3775
|
+
> 1, 24, 1, 1, 1, 1, 6])];;
|
|
3776
|
+
gap> s := Semigroup(gens);;
|
|
3777
|
+
gap> First(DClasses(s), IsRegularDClass);
|
|
3778
|
+
<Green's D-class: Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
3779
|
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
|
|
3780
|
+
gap> NrDClasses(s);
|
|
3781
|
+
31
|
|
3782
|
+
gap> PositionsProperty(DClasses(s), IsRegularDClass);
|
|
3783
|
+
[ 6, 7 ]
|
|
3784
|
+
gap> d := DClasses(s)[7];
|
|
3785
|
+
<Green's D-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
|
|
3786
|
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
|
|
3787
|
+
gap> r := RClassNC(s, Representative(d));
|
|
3788
|
+
<Green's R-class: Transformation( [ 1, 6, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 6,
|
|
3789
|
+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )>
|
|
3790
|
+
gap> Size(r);
|
|
3791
|
+
20
|
|
3792
|
+
gap> ForAll(Idempotents(r), x -> x in s);
|
|
3793
|
+
true
|
|
3794
|
+
gap> ForAll(Idempotents(r), x -> x in r);
|
|
3795
|
+
true
|
|
3796
|
+
gap> ForAll(Idempotents(r), x -> x in d);
|
|
3797
|
+
true
|
|
3798
|
+
gap> ForAll(r, x -> x in d);
|
|
3799
|
+
true
|
|
3800
|
+
gap> Number(GreensRClasses(s), IsRegularGreensClass);
|
|
3801
|
+
21
|
|
3802
|
+
gap> NrRegularDClasses(s);
|
|
3803
|
+
2
|
|
3804
|
+
|
|
3805
|
+
# MiscTest49
|
|
3806
|
+
gap> gens := [Transformation([1, 2, 3, 5, 4, 6, 7, 8]),
|
|
3807
|
+
> Transformation([4, 4, 3, 1, 5, 6, 3, 8]),
|
|
3808
|
+
> Transformation([3, 6, 1, 7, 3, 4, 8, 3]),
|
|
3809
|
+
> Transformation([1, 2, 3, 4, 5, 3, 7, 8]),
|
|
3810
|
+
> Transformation([1, 2, 3, 4, 1, 6, 7, 8]),
|
|
3811
|
+
> Transformation([8, 8, 3, 4, 5, 7, 6, 1])];;
|
|
3812
|
+
gap> s := Monoid(gens);
|
|
3813
|
+
<transformation monoid of degree 8 with 6 generators>
|
|
3814
|
+
gap> f := Transformation([4, 4, 3, 8, 5, 3, 3, 1]);;
|
|
3815
|
+
gap> Size(s);
|
|
3816
|
+
998
|
|
3817
|
+
gap> r := RClass(s, f);
|
|
3818
|
+
<Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
|
|
3819
|
+
gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
|
|
3820
|
+
true
|
|
3821
|
+
gap> IsRegularGreensClass(r);
|
|
3822
|
+
true
|
|
3823
|
+
gap> Idempotents(r);
|
|
3824
|
+
[ Transformation( [ 1, 1, 3, 4, 5, 3, 3 ] ) ]
|
|
3825
|
+
gap> IsRegularSemigroup(s);
|
|
3826
|
+
false
|
|
3827
|
+
gap> ForAll(r, x -> x in s);
|
|
3828
|
+
true
|
|
3829
|
+
gap> iter := Iterator(r);
|
|
3830
|
+
<iterator>
|
|
3831
|
+
gap> for i in iter do od;
|
|
3832
|
+
gap> Size(r);
|
|
3833
|
+
24
|
|
3834
|
+
gap> IsDoneIterator(iter);
|
|
3835
|
+
true
|
|
3836
|
+
gap> iter := Iterator(r);
|
|
3837
|
+
<iterator>
|
|
3838
|
+
gap> for i in [1 .. 23] do NextIterator(iter); od;
|
|
3839
|
+
gap> IsDoneIterator(iter);
|
|
3840
|
+
false
|
|
3841
|
+
gap> NextIterator(iter);
|
|
3842
|
+
Transformation( [ 5, 5, 3, 1, 4, 3, 3 ] )
|
|
3843
|
+
gap> IsDoneIterator(iter);
|
|
3844
|
+
true
|
|
3845
|
+
gap> Transformation([4, 4, 3, 8, 1, 3, 3, 5]) in r;
|
|
3846
|
+
true
|
|
3847
|
+
gap> r;
|
|
3848
|
+
<Green's R-class: Transformation( [ 4, 4, 3, 8, 5, 3, 3, 1 ] )>
|
|
3849
|
+
gap> Transformation([4, 4, 3, 8, 5, 3, 3, 1]) in last;
|
|
3850
|
+
true
|
|
3851
|
+
gap> NrIdempotents(r);
|
|
3852
|
+
1
|
|
3853
|
+
|
|
3854
|
+
# MiscTest50
|
|
3855
|
+
gap> gens :=
|
|
3856
|
+
> [PartialPermNC([1, 2, 3, 4, 7], [8, 3, 5, 7, 4]),
|
|
3857
|
+
> PartialPermNC([1, 2, 5, 6, 7], [4, 1, 6, 2, 8]),
|
|
3858
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6], [3, 7, 1, 5, 2, 6]),
|
|
3859
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6], [7, 2, 5, 6, 3, 8]),
|
|
3860
|
+
> PartialPermNC([1, 2, 3, 5, 6, 7], [4, 5, 6, 1, 2, 7]),
|
|
3861
|
+
> PartialPermNC([1, 2, 3, 5, 6, 7], [5, 1, 7, 2, 8, 4])];;
|
|
3862
|
+
gap> s := Semigroup(gens);;
|
|
3863
|
+
gap> Size(s);
|
|
3864
|
+
9954
|
|
3865
|
+
gap> f := PartialPerm([2, 3, 6], [1, 4, 8]);;
|
|
3866
|
+
gap> r := RClass(s, f);
|
|
3867
|
+
<Green's R-class: [2,1][3,4][6,8]>
|
|
3868
|
+
gap> NrIdempotents(r);
|
|
3869
|
+
0
|
|
3870
|
+
gap> List(RClasses(s), NrIdempotents);;
|
|
3871
|
+
gap> Sum(last);
|
|
3872
|
+
53
|
|
3873
|
+
gap> NrIdempotents(s);
|
|
3874
|
+
53
|
|
3875
|
+
gap> r := RClassOfHClass(h);
|
|
3876
|
+
<Green's R-class: [1,4][9,3,5][10,7]>
|
|
3877
|
+
gap> HClassReps(r);
|
|
3878
|
+
[ [1,4][9,3,5][10,7], [1,8][3,2][9,5][10,4], [1,6][9,10,3,7],
|
|
3879
|
+
[1,9,2][3,5][10,4], [1,6][9,4][10,2](3), [9,4][10,3,1,5], [3,9,4][10,1,2],
|
|
3880
|
+
[1,4][10,6](3)(9), [3,6][9,5][10,4](1), [1,8](3,9,10), [3,1,6][9,2][10,4],
|
|
3881
|
+
[1,9,5][10,4](3), [1,8][9,2][10,4](3), [1,6][9,7][10,3,4], [9,10,3,4](1),
|
|
3882
|
+
[1,9,7][10,3,8], [10,9,1,3,4], [3,4][10,6](1)(9), [1,9,6][3,4][10,5],
|
|
3883
|
+
[1,6][3,4][9,5][10,2], [1,5][9,2][10,3,4], [9,3,4][10,1,2],
|
|
3884
|
+
[1,3,8][9,7][10,4], [1,4][9,5][10,3,6], [3,5][9,2][10,1,4], [1,4][10,9,3,2],
|
|
3885
|
+
[1,8][9,2][10,3,6], [1,6][3,9,7][10,4], [10,3,1,9,5], [1,3,7][9,4][10,2],
|
|
3886
|
+
[1,6][3,2][9,5][10,8], [1,9,10,6][3,7], [3,5][10,9,2](1), [1,9,3,2][10,6],
|
|
3887
|
+
[9,1,6][10,5](3), [1,9,8][3,4](10), [9,6][10,2](1)(3), [1,8][3,4][10,7](9),
|
|
3888
|
+
[3,7][10,9,4](1), [1,7][9,5][10,8](3), [1,5][3,4][9,10,6], [1,10,9,2](3),
|
|
3889
|
+
[3,7](1)(9,10), [3,5][9,2][10,1,8], [1,6][3,10,8][9,7], [1,9,5][3,2][10,6],
|
|
3890
|
+
[1,6][9,2][10,5](3), [9,3,1,5][10,2], [1,7][3,5][9,10,8],
|
|
3891
|
+
[1,5][3,10,6][9,2], [1,10,9,7][3,2], [3,7][9,5][10,1,2],
|
|
3892
|
+
[1,6][3,5][9,4][10,7], [1,9,3,10,5], [3,1,9,7][10,8], [3,8][9,5][10,6](1),
|
|
3893
|
+
[1,8][3,6](9,10), [3,9,2][10,1,6], [1,5][10,9,3,6], [3,5][9,1,2][10,6],
|
|
3894
|
+
[1,3,2][10,5](9), [1,10,8][3,7](9), [3,7][9,1,4](10), [1,3,5][9,8][10,2],
|
|
3895
|
+
[1,4][3,10,7][9,6], [3,9,4](1,10), [9,3,1,2][10,8], [1,7][3,8][9,4][10,6],
|
|
3896
|
+
[3,2][9,4](1)(10), [1,8][9,3,7][10,2], [10,3,9,1,2], [1,10,7][3,9,5],
|
|
3897
|
+
[3,1,2][9,10,5], [3,5][9,1,10,8], [1,2][3,10,6][9,8], [1,7][3,2][10,9,6],
|
|
3898
|
+
[3,7][10,1,5](9), [1,7][3,8][9,2](10), [1,5][3,6][9,7][10,2],
|
|
3899
|
+
[10,1,3,6](9), [3,5][10,9,6](1), [3,10,1,8](9), [3,2][9,1,6][10,8],
|
|
3900
|
+
[1,9,8][3,7][10,6], [3,9,1,4][10,8], [9,8][10,6](1,3), [1,4][3,8][10,9,6],
|
|
3901
|
+
[1,7][9,6][10,3,2], [1,5][3,7][10,4](9), [1,4][9,3,5][10,8],
|
|
3902
|
+
[1,3,10,6][9,4], [9,1,10,3,5], [3,1,5][9,7][10,8], [1,10,6][3,8][9,5],
|
|
3903
|
+
[1,2][3,6](9,10), [3,9,2][10,1,7], [1,5][9,6][10,7](3), [1,10,5][3,4](9),
|
|
3904
|
+
[9,1,2](3)(10), [1,7][3,4][9,8][10,2], [3,7][9,5](1,10), [1,2][3,5][9,10,8],
|
|
3905
|
+
[1,7][3,10,6][9,2], [1,5][3,2][10,9,7], [1,2][3,10,4][9,8],
|
|
3906
|
+
[3,1,7][9,8][10,4], [1,5][9,6][10,3,8], [1,10,4][3,6](9),
|
|
3907
|
+
[1,2][3,7][9,4][10,6], [1,7][10,9,3,5], [3,10,1,5][9,4], [1,10,8][9,3,2],
|
|
3908
|
+
[1,8][3,4][9,10,7], [1,7][3,9,4](10), [3,4][9,7][10,1,2], [9,3,5][10,1,8],
|
|
3909
|
+
[1,6][3,10,8][9,4], [3,10,1,8][9,7], [3,8][9,10,4](1), [9,1,4][10,6](3),
|
|
3910
|
+
[3,1,4][10,5](9), [1,4][3,9,6][10,2], [10,9,1,3,7], [1,2][9,7][10,3,5],
|
|
3911
|
+
[1,7][3,10,4][9,5], [1,5][9,10,3,2], [1,10,4][3,7][9,2], [3,8][9,1,4][10,5],
|
|
3912
|
+
[1,3,6][9,8](10), [9,1,3,8](10), [1,4][3,6][9,8][10,2], [1,3,9,6][10,7],
|
|
3913
|
+
[1,3,4][10,8](9), [9,4][10,1,3,7], [1,2][3,5][9,8][10,7],
|
|
3914
|
+
[1,7][3,10,5][9,6], [1,5][3,2](9)(10), [3,7][9,1,10,2], [1,8][9,7](3)(10),
|
|
3915
|
+
[1,10,9,4](3), [1,7][9,10,4](3), [1,3,7](9,10),
|
|
3916
|
+
<identity partial perm on [ 1, 3, 9, 10 ]>, [3,4][9,1,8][10,2],
|
|
3917
|
+
[1,6][9,8][10,7](3), [10,9,1,8](3), [3,4][9,8][10,1,6], [1,9,6][10,8](3),
|
|
3918
|
+
[9,8][10,1,4](3), [1,3,4][9,6][10,8], [9,3,1,7][10,8],
|
|
3919
|
+
[1,5][3,8][9,4][10,6], [1,10,9,3,6], [1,8][9,3,4](10), [1,7][10,4](3,9),
|
|
3920
|
+
[9,7](1)(3,10), [1,3,10,5][9,4], [1,4][9,3,2](10) ]
|
|
3921
|
+
gap> iter := IteratorOfRClasses(s);
|
|
3922
|
+
<iterator>
|
|
3923
|
+
gap> repeat r := NextIterator(iter); until Size(r) > 1;
|
|
3924
|
+
gap> r;
|
|
3925
|
+
<Green's R-class: (1,5,2)>
|
|
3926
|
+
gap> Size(r);
|
|
3927
|
+
120
|
|
3928
|
+
gap> HClassReps(r);
|
|
3929
|
+
[ (1,5,2), [2,6][5,4](1), [1,3][2,6](5), [5,2,6](1), [5,2,4](1),
|
|
3930
|
+
[1,7][5,2,6], [1,7](2)(5), [2,5,1,7], [1,4](2)(5), [1,6][5,3](2),
|
|
3931
|
+
[1,2,5,6], [1,7][2,3][5,6], [1,7][5,3](2), [1,4][2,3](5), [1,6][2,5,7],
|
|
3932
|
+
[5,7](1,2), [2,5,4](1), [1,3](2)(5), [2,5,1,6], [1,6][5,2,4] ]
|
|
3933
|
+
gap> ForAll(last, x -> x in r);
|
|
3934
|
+
true
|
|
3935
|
+
gap> r;
|
|
3936
|
+
<Green's R-class: (1,5,2)>
|
|
3937
|
+
gap> Size(DClass(r));
|
|
3938
|
+
2400
|
|
3939
|
+
gap> d := DClass(r);
|
|
3940
|
+
<Green's D-class: (1,5,2)>
|
|
3941
|
+
gap> ForAll(r, x -> x in d);
|
|
3942
|
+
true
|
|
3943
|
+
gap> Number(d, x -> x in r);
|
|
3944
|
+
120
|
|
3945
|
+
gap> Size(r);
|
|
3946
|
+
120
|
|
3947
|
+
gap> ForAll(HClassReps(r), x -> x in d);
|
|
3948
|
+
true
|
|
3949
|
+
gap> ForAll(HClassReps(r), x -> x in HClassReps(d));
|
|
3950
|
+
true
|
|
3951
|
+
|
|
3952
|
+
# MiscTest51
|
|
3953
|
+
gap> gens := [Transformation([6, 4, 3, 2, 5, 1]),
|
|
3954
|
+
> Transformation([1, 2, 3, 4, 5, 6]),
|
|
3955
|
+
> Transformation([5, 3, 3, 2, 4, 1]),
|
|
3956
|
+
> Transformation([1, 3, 3, 4, 5, 2]),
|
|
3957
|
+
> Transformation([4, 5, 2, 3, 3, 1]),
|
|
3958
|
+
> Transformation([6, 4, 3, 5, 2, 3]),
|
|
3959
|
+
> Transformation([5, 2, 3, 4, 3, 6]),
|
|
3960
|
+
> Transformation([1, 3, 2, 5, 4, 5]),
|
|
3961
|
+
> Transformation([4, 3, 2, 2, 1, 5]),
|
|
3962
|
+
> Transformation([1, 3, 3, 5, 2, 4]),
|
|
3963
|
+
> Transformation([6, 3, 3, 2, 1, 5]),
|
|
3964
|
+
> Transformation([6, 3, 4, 5, 2, 2]),
|
|
3965
|
+
> Transformation([6, 4, 3, 2, 2, 5]),
|
|
3966
|
+
> Transformation([1, 3, 2, 3, 5, 4]),
|
|
3967
|
+
> Transformation([1, 2, 3, 4, 5, 2]),
|
|
3968
|
+
> Transformation([2, 4, 3, 4, 6, 5]),
|
|
3969
|
+
> Transformation([2, 4, 3, 3, 6, 1]),
|
|
3970
|
+
> Transformation([6, 4, 3, 2, 3, 1]),
|
|
3971
|
+
> Transformation([6, 4, 3, 2, 2, 1])];;
|
|
3972
|
+
gap> s := Semigroup(gens);;
|
|
3973
|
+
gap> Size(s);
|
|
3974
|
+
7008
|
|
3975
|
+
gap> NrRClasses(s);
|
|
3976
|
+
310
|
|
3977
|
+
gap> IsRegularSemigroup(s);
|
|
3978
|
+
false
|
|
3979
|
+
gap> f := Transformation([3, 2, 3, 4, 3, 5]);;
|
|
3980
|
+
gap> r := RClassNC(s, f);
|
|
3981
|
+
<Green's R-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
|
|
3982
|
+
gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
|
|
3983
|
+
true
|
|
3984
|
+
gap> d := DClassOfRClass(r);
|
|
3985
|
+
<Green's D-class: Transformation( [ 3, 2, 3, 4, 3, 5 ] )>
|
|
3986
|
+
gap> Transformation([3, 2, 3, 4, 3, 5]) in last;
|
|
3987
|
+
true
|
|
3988
|
+
gap> Size(d);
|
|
3989
|
+
792
|
|
3990
|
+
gap> IsRegularDClass(d);
|
|
3991
|
+
false
|
|
3992
|
+
gap> NrIdempotents(d);
|
|
3993
|
+
0
|
|
3994
|
+
gap> Idempotents(d);
|
|
3995
|
+
[ ]
|
|
3996
|
+
gap> HClassReps(d);
|
|
3997
|
+
[ Transformation( [ 3, 2, 3, 4, 3, 5 ] ),
|
|
3998
|
+
Transformation( [ 3, 2, 3, 5, 3, 4 ] ),
|
|
3999
|
+
Transformation( [ 4, 2, 4, 5, 4, 3 ] ),
|
|
4000
|
+
Transformation( [ 2, 3, 2, 4, 2, 5 ] ),
|
|
4001
|
+
Transformation( [ 2, 3, 2, 5, 2, 4 ] ),
|
|
4002
|
+
Transformation( [ 2, 4, 2, 3, 2, 5 ] ),
|
|
4003
|
+
Transformation( [ 5, 4, 3, 2, 3, 3 ] ),
|
|
4004
|
+
Transformation( [ 4, 5, 3, 2, 3, 3 ] ),
|
|
4005
|
+
Transformation( [ 3, 5, 4, 2, 4, 4 ] ),
|
|
4006
|
+
Transformation( [ 5, 4, 2, 3, 2, 2 ] ),
|
|
4007
|
+
Transformation( [ 4, 5, 2, 3, 2, 2 ] ),
|
|
4008
|
+
Transformation( [ 5, 3, 2, 4, 2, 2 ] ),
|
|
4009
|
+
Transformation( [ 3, 3, 3, 4, 2, 5 ] ),
|
|
4010
|
+
Transformation( [ 3, 3, 3, 5, 2, 4 ] ),
|
|
4011
|
+
Transformation( [ 4, 4, 4, 5, 2, 3 ] ),
|
|
4012
|
+
Transformation( [ 2, 2, 2, 4, 3, 5 ] ),
|
|
4013
|
+
Transformation( [ 2, 2, 2, 5, 3, 4 ] ),
|
|
4014
|
+
Transformation( [ 2, 2, 2, 3, 4, 5 ] ),
|
|
4015
|
+
Transformation( [ 5, 4, 3, 3, 2, 3 ] ),
|
|
4016
|
+
Transformation( [ 4, 5, 3, 3, 2, 3 ] ),
|
|
4017
|
+
Transformation( [ 3, 5, 4, 4, 2, 4 ] ),
|
|
4018
|
+
Transformation( [ 5, 4, 2, 2, 3, 2 ] ),
|
|
4019
|
+
Transformation( [ 4, 5, 2, 2, 3, 2 ] ),
|
|
4020
|
+
Transformation( [ 5, 3, 2, 2, 4, 2 ] ),
|
|
4021
|
+
Transformation( [ 5, 3, 4, 3, 2, 3 ] ),
|
|
4022
|
+
Transformation( [ 4, 3, 5, 3, 2, 3 ] ),
|
|
4023
|
+
Transformation( [ 3, 4, 5, 4, 2, 4 ] ),
|
|
4024
|
+
Transformation( [ 5, 2, 4, 2, 3, 2 ] ),
|
|
4025
|
+
Transformation( [ 4, 2, 5, 2, 3, 2 ] ),
|
|
4026
|
+
Transformation( [ 5, 2, 3, 2, 4, 2 ] ),
|
|
4027
|
+
Transformation( [ 2, 4, 3, 4, 5, 3 ] ),
|
|
4028
|
+
Transformation( [ 2, 5, 3, 5, 4, 3 ] ),
|
|
4029
|
+
Transformation( [ 2, 5, 4, 5, 3, 4 ] ),
|
|
4030
|
+
Transformation( [ 3, 4, 2, 4, 5, 2 ] ),
|
|
4031
|
+
Transformation( [ 3, 5, 2, 5, 4, 2 ] ),
|
|
4032
|
+
Transformation( [ 4, 3, 2, 3, 5, 2 ] ),
|
|
4033
|
+
Transformation( [ 3, 2, 3, 4, 4, 5 ] ),
|
|
4034
|
+
Transformation( [ 3, 2, 3, 5, 5, 4 ] ),
|
|
4035
|
+
Transformation( [ 4, 2, 4, 5, 5, 3 ] ),
|
|
4036
|
+
Transformation( [ 2, 3, 2, 4, 4, 5 ] ),
|
|
4037
|
+
Transformation( [ 2, 3, 2, 5, 5, 4 ] ),
|
|
4038
|
+
Transformation( [ 2, 4, 2, 3, 3, 5 ] ),
|
|
4039
|
+
Transformation( [ 5, 4, 3, 2, 2, 3 ] ),
|
|
4040
|
+
Transformation( [ 4, 5, 3, 2, 2, 3 ] ),
|
|
4041
|
+
Transformation( [ 3, 5, 4, 2, 2, 4 ] ),
|
|
4042
|
+
Transformation( [ 5, 4, 2, 3, 3, 2 ] ),
|
|
4043
|
+
Transformation( [ 4, 5, 2, 3, 3, 2 ] ),
|
|
4044
|
+
Transformation( [ 5, 3, 2, 4, 4, 2 ] ),
|
|
4045
|
+
Transformation( [ 5, 3, 4, 3, 2, 2 ] ),
|
|
4046
|
+
Transformation( [ 4, 3, 5, 3, 2, 2 ] ),
|
|
4047
|
+
Transformation( [ 3, 4, 5, 4, 2, 2 ] ),
|
|
4048
|
+
Transformation( [ 5, 2, 4, 2, 3, 3 ] ),
|
|
4049
|
+
Transformation( [ 4, 2, 5, 2, 3, 3 ] ),
|
|
4050
|
+
Transformation( [ 5, 2, 3, 2, 4, 4 ] ),
|
|
4051
|
+
Transformation( [ 2, 3, 4, 3, 2, 5 ] ),
|
|
4052
|
+
Transformation( [ 2, 3, 5, 3, 2, 4 ] ),
|
|
4053
|
+
Transformation( [ 2, 4, 5, 4, 2, 3 ] ),
|
|
4054
|
+
Transformation( [ 3, 2, 4, 2, 3, 5 ] ),
|
|
4055
|
+
Transformation( [ 3, 2, 5, 2, 3, 4 ] ),
|
|
4056
|
+
Transformation( [ 4, 2, 3, 2, 4, 5 ] ),
|
|
4057
|
+
Transformation( [ 3, 3, 4, 3, 2, 5 ] ),
|
|
4058
|
+
Transformation( [ 3, 3, 5, 3, 2, 4 ] ),
|
|
4059
|
+
Transformation( [ 4, 4, 5, 4, 2, 3 ] ),
|
|
4060
|
+
Transformation( [ 2, 2, 4, 2, 3, 5 ] ),
|
|
4061
|
+
Transformation( [ 2, 2, 5, 2, 3, 4 ] ),
|
|
4062
|
+
Transformation( [ 2, 2, 3, 2, 4, 5 ] ),
|
|
4063
|
+
Transformation( [ 5, 4, 3, 2, 4, 3 ] ),
|
|
4064
|
+
Transformation( [ 4, 5, 3, 2, 5, 3 ] ),
|
|
4065
|
+
Transformation( [ 3, 5, 4, 2, 5, 4 ] ),
|
|
4066
|
+
Transformation( [ 5, 4, 2, 3, 4, 2 ] ),
|
|
4067
|
+
Transformation( [ 4, 5, 2, 3, 5, 2 ] ),
|
|
4068
|
+
Transformation( [ 5, 3, 2, 4, 3, 2 ] ),
|
|
4069
|
+
Transformation( [ 5, 3, 4, 2, 3, 3 ] ),
|
|
4070
|
+
Transformation( [ 4, 3, 5, 2, 3, 3 ] ),
|
|
4071
|
+
Transformation( [ 3, 4, 5, 2, 4, 4 ] ),
|
|
4072
|
+
Transformation( [ 5, 2, 4, 3, 2, 2 ] ),
|
|
4073
|
+
Transformation( [ 4, 2, 5, 3, 2, 2 ] ),
|
|
4074
|
+
Transformation( [ 5, 2, 3, 4, 2, 2 ] ),
|
|
4075
|
+
Transformation( [ 3, 2, 4, 3, 3, 5 ] ),
|
|
4076
|
+
Transformation( [ 3, 2, 5, 3, 3, 4 ] ),
|
|
4077
|
+
Transformation( [ 4, 2, 5, 4, 4, 3 ] ),
|
|
4078
|
+
Transformation( [ 2, 3, 4, 2, 2, 5 ] ),
|
|
4079
|
+
Transformation( [ 2, 3, 5, 2, 2, 4 ] ),
|
|
4080
|
+
Transformation( [ 2, 4, 3, 2, 2, 5 ] ),
|
|
4081
|
+
Transformation( [ 2, 3, 4, 4, 5, 3 ] ),
|
|
4082
|
+
Transformation( [ 2, 3, 5, 5, 4, 3 ] ),
|
|
4083
|
+
Transformation( [ 2, 4, 5, 5, 3, 4 ] ),
|
|
4084
|
+
Transformation( [ 3, 2, 4, 4, 5, 2 ] ),
|
|
4085
|
+
Transformation( [ 3, 2, 5, 5, 4, 2 ] ),
|
|
4086
|
+
Transformation( [ 4, 2, 3, 3, 5, 2 ] ),
|
|
4087
|
+
Transformation( [ 5, 3, 4, 2, 3, 2 ] ),
|
|
4088
|
+
Transformation( [ 4, 3, 5, 2, 3, 2 ] ),
|
|
4089
|
+
Transformation( [ 3, 4, 5, 2, 4, 2 ] ),
|
|
4090
|
+
Transformation( [ 5, 2, 4, 3, 2, 3 ] ),
|
|
4091
|
+
Transformation( [ 4, 2, 5, 3, 2, 3 ] ),
|
|
4092
|
+
Transformation( [ 5, 2, 3, 4, 2, 4 ] ),
|
|
4093
|
+
Transformation( [ 2, 2, 4, 3, 3, 5 ] ),
|
|
4094
|
+
Transformation( [ 2, 2, 5, 3, 3, 4 ] ),
|
|
4095
|
+
Transformation( [ 2, 2, 5, 4, 4, 3 ] ),
|
|
4096
|
+
Transformation( [ 3, 3, 4, 2, 2, 5 ] ),
|
|
4097
|
+
Transformation( [ 3, 3, 5, 2, 2, 4 ] ),
|
|
4098
|
+
Transformation( [ 4, 4, 3, 2, 2, 5 ] ),
|
|
4099
|
+
Transformation( [ 5, 4, 3, 2, 3, 2 ] ),
|
|
4100
|
+
Transformation( [ 4, 5, 3, 2, 3, 2 ] ),
|
|
4101
|
+
Transformation( [ 3, 5, 4, 2, 4, 2 ] ),
|
|
4102
|
+
Transformation( [ 5, 4, 2, 3, 2, 3 ] ),
|
|
4103
|
+
Transformation( [ 4, 5, 2, 3, 2, 3 ] ),
|
|
4104
|
+
Transformation( [ 5, 3, 2, 4, 2, 4 ] ),
|
|
4105
|
+
Transformation( [ 5, 4, 3, 2, 3, 4 ] ),
|
|
4106
|
+
Transformation( [ 4, 5, 3, 2, 3, 5 ] ),
|
|
4107
|
+
Transformation( [ 3, 5, 4, 2, 4, 5 ] ),
|
|
4108
|
+
Transformation( [ 5, 4, 2, 3, 2, 4 ] ),
|
|
4109
|
+
Transformation( [ 4, 5, 2, 3, 2, 5 ] ),
|
|
4110
|
+
Transformation( [ 5, 3, 2, 4, 2, 3 ] ),
|
|
4111
|
+
Transformation( [ 4, 2, 3, 4, 3, 5 ] ),
|
|
4112
|
+
Transformation( [ 5, 2, 3, 5, 3, 4 ] ),
|
|
4113
|
+
Transformation( [ 5, 2, 4, 5, 4, 3 ] ),
|
|
4114
|
+
Transformation( [ 4, 3, 2, 4, 2, 5 ] ),
|
|
4115
|
+
Transformation( [ 5, 3, 2, 5, 2, 4 ] ),
|
|
4116
|
+
Transformation( [ 3, 4, 2, 3, 2, 5 ] ),
|
|
4117
|
+
Transformation( [ 5, 4, 3, 2, 2, 4 ] ),
|
|
4118
|
+
Transformation( [ 4, 5, 3, 2, 2, 5 ] ),
|
|
4119
|
+
Transformation( [ 3, 5, 4, 2, 2, 5 ] ),
|
|
4120
|
+
Transformation( [ 5, 4, 2, 3, 3, 4 ] ),
|
|
4121
|
+
Transformation( [ 4, 5, 2, 3, 3, 5 ] ),
|
|
4122
|
+
Transformation( [ 5, 3, 2, 4, 4, 3 ] ),
|
|
4123
|
+
Transformation( [ 2, 3, 3, 4, 2, 5 ] ),
|
|
4124
|
+
Transformation( [ 2, 3, 3, 5, 2, 4 ] ),
|
|
4125
|
+
Transformation( [ 2, 4, 4, 5, 2, 3 ] ),
|
|
4126
|
+
Transformation( [ 3, 2, 2, 4, 3, 5 ] ),
|
|
4127
|
+
Transformation( [ 3, 2, 2, 5, 3, 4 ] ),
|
|
4128
|
+
Transformation( [ 4, 2, 2, 3, 4, 5 ] ),
|
|
4129
|
+
Transformation( [ 3, 4, 3, 4, 5, 2 ] ),
|
|
4130
|
+
Transformation( [ 3, 5, 3, 5, 4, 2 ] ),
|
|
4131
|
+
Transformation( [ 4, 5, 4, 5, 3, 2 ] ),
|
|
4132
|
+
Transformation( [ 2, 4, 2, 4, 5, 3 ] ),
|
|
4133
|
+
Transformation( [ 2, 5, 2, 5, 4, 3 ] ),
|
|
4134
|
+
Transformation( [ 2, 3, 2, 3, 5, 4 ] ),
|
|
4135
|
+
Transformation( [ 5, 3, 4, 4, 2, 2 ] ),
|
|
4136
|
+
Transformation( [ 4, 3, 5, 5, 2, 2 ] ),
|
|
4137
|
+
Transformation( [ 3, 4, 5, 5, 2, 2 ] ),
|
|
4138
|
+
Transformation( [ 5, 2, 4, 4, 3, 3 ] ),
|
|
4139
|
+
Transformation( [ 4, 2, 5, 5, 3, 3 ] ),
|
|
4140
|
+
Transformation( [ 5, 2, 3, 3, 4, 4 ] ),
|
|
4141
|
+
Transformation( [ 2, 4, 4, 3, 5, 2 ] ),
|
|
4142
|
+
Transformation( [ 2, 5, 5, 3, 4, 2 ] ),
|
|
4143
|
+
Transformation( [ 2, 5, 5, 4, 3, 2 ] ),
|
|
4144
|
+
Transformation( [ 3, 4, 4, 2, 5, 3 ] ),
|
|
4145
|
+
Transformation( [ 3, 5, 5, 2, 4, 3 ] ),
|
|
4146
|
+
Transformation( [ 4, 3, 3, 2, 5, 4 ] ),
|
|
4147
|
+
Transformation( [ 2, 3, 4, 4, 5, 2 ] ),
|
|
4148
|
+
Transformation( [ 2, 3, 5, 5, 4, 2 ] ),
|
|
4149
|
+
Transformation( [ 2, 4, 5, 5, 3, 2 ] ),
|
|
4150
|
+
Transformation( [ 3, 2, 4, 4, 5, 3 ] ),
|
|
4151
|
+
Transformation( [ 3, 2, 5, 5, 4, 3 ] ),
|
|
4152
|
+
Transformation( [ 4, 2, 3, 3, 5, 4 ] ),
|
|
4153
|
+
Transformation( [ 5, 3, 4, 2, 2, 2 ] ),
|
|
4154
|
+
Transformation( [ 4, 3, 5, 2, 2, 2 ] ),
|
|
4155
|
+
Transformation( [ 3, 4, 5, 2, 2, 2 ] ),
|
|
4156
|
+
Transformation( [ 5, 2, 4, 3, 3, 3 ] ),
|
|
4157
|
+
Transformation( [ 4, 2, 5, 3, 3, 3 ] ),
|
|
4158
|
+
Transformation( [ 5, 2, 3, 4, 4, 4 ] ),
|
|
4159
|
+
Transformation( [ 2, 2, 4, 3, 4, 5 ] ),
|
|
4160
|
+
Transformation( [ 2, 2, 5, 3, 5, 4 ] ),
|
|
4161
|
+
Transformation( [ 2, 2, 5, 4, 5, 3 ] ),
|
|
4162
|
+
Transformation( [ 3, 3, 4, 2, 4, 5 ] ),
|
|
4163
|
+
Transformation( [ 3, 3, 5, 2, 5, 4 ] ),
|
|
4164
|
+
Transformation( [ 4, 4, 3, 2, 3, 5 ] ),
|
|
4165
|
+
Transformation( [ 2, 2, 4, 3, 2, 5 ] ),
|
|
4166
|
+
Transformation( [ 2, 2, 5, 3, 2, 4 ] ),
|
|
4167
|
+
Transformation( [ 2, 2, 5, 4, 2, 3 ] ),
|
|
4168
|
+
Transformation( [ 3, 3, 4, 2, 3, 5 ] ),
|
|
4169
|
+
Transformation( [ 3, 3, 5, 2, 3, 4 ] ),
|
|
4170
|
+
Transformation( [ 4, 4, 3, 2, 4, 5 ] ),
|
|
4171
|
+
Transformation( [ 2, 4, 3, 4, 5, 2 ] ),
|
|
4172
|
+
Transformation( [ 2, 5, 3, 5, 4, 2 ] ),
|
|
4173
|
+
Transformation( [ 2, 5, 4, 5, 3, 2 ] ),
|
|
4174
|
+
Transformation( [ 3, 4, 2, 4, 5, 3 ] ),
|
|
4175
|
+
Transformation( [ 3, 5, 2, 5, 4, 3 ] ),
|
|
4176
|
+
Transformation( [ 4, 3, 2, 3, 5, 4 ] ),
|
|
4177
|
+
Transformation( [ 3, 4, 4, 3, 5, 2 ] ),
|
|
4178
|
+
Transformation( [ 3, 5, 5, 3, 4, 2 ] ),
|
|
4179
|
+
Transformation( [ 4, 5, 5, 4, 3, 2 ] ),
|
|
4180
|
+
Transformation( [ 2, 4, 4, 2, 5, 3 ] ),
|
|
4181
|
+
Transformation( [ 2, 5, 5, 2, 4, 3 ] ),
|
|
4182
|
+
Transformation( [ 2, 3, 3, 2, 5, 4 ] ),
|
|
4183
|
+
Transformation( [ 4, 2, 3, 4, 2, 5 ] ),
|
|
4184
|
+
Transformation( [ 5, 2, 3, 5, 2, 4 ] ),
|
|
4185
|
+
Transformation( [ 5, 2, 4, 5, 2, 3 ] ),
|
|
4186
|
+
Transformation( [ 4, 3, 2, 4, 3, 5 ] ),
|
|
4187
|
+
Transformation( [ 5, 3, 2, 5, 3, 4 ] ),
|
|
4188
|
+
Transformation( [ 3, 4, 2, 3, 4, 5 ] ),
|
|
4189
|
+
Transformation( [ 3, 2, 3, 4, 2, 5 ] ),
|
|
4190
|
+
Transformation( [ 3, 2, 3, 5, 2, 4 ] ),
|
|
4191
|
+
Transformation( [ 4, 2, 4, 5, 2, 3 ] ),
|
|
4192
|
+
Transformation( [ 2, 3, 2, 4, 3, 5 ] ),
|
|
4193
|
+
Transformation( [ 2, 3, 2, 5, 3, 4 ] ),
|
|
4194
|
+
Transformation( [ 2, 4, 2, 3, 4, 5 ] ) ]
|
|
4195
|
+
gap> Number(HClassReps(d), x -> x in r);
|
|
4196
|
+
6
|
|
4197
|
+
gap> NrHClasses(r);
|
|
4198
|
+
6
|
|
4199
|
+
|
|
4200
|
+
# MiscTest52
|
|
4201
|
+
gap> gens :=
|
|
4202
|
+
> [PartialPermNC([1, 2, 4], [2, 5, 3]),
|
|
4203
|
+
> PartialPermNC([1, 2, 4], [5, 6, 1]),
|
|
4204
|
+
> PartialPermNC([1, 2, 5], [5, 3, 2]),
|
|
4205
|
+
> PartialPermNC([1, 2, 3, 4], [5, 1, 2, 4]),
|
|
4206
|
+
> PartialPermNC([1, 2, 3, 4], [5, 1, 2, 6]),
|
|
4207
|
+
> PartialPermNC([1, 2, 3, 4], [5, 6, 4, 1]),
|
|
4208
|
+
> PartialPermNC([1, 2, 3, 5], [1, 5, 2, 6]),
|
|
4209
|
+
> PartialPermNC([1, 2, 3, 5], [2, 3, 4, 1]),
|
|
4210
|
+
> PartialPermNC([1, 2, 3, 5], [2, 5, 4, 1]),
|
|
4211
|
+
> PartialPermNC([1, 2, 3, 5], [5, 1, 2, 3]),
|
|
4212
|
+
> PartialPermNC([1, 2, 3, 6], [1, 4, 6, 5]),
|
|
4213
|
+
> PartialPermNC([1, 2, 5, 6], [6, 4, 2, 5]),
|
|
4214
|
+
> PartialPermNC([1, 3, 4, 6], [2, 3, 1, 6]),
|
|
4215
|
+
> PartialPermNC([1, 2, 3, 4, 5], [3, 6, 5, 2, 4]),
|
|
4216
|
+
> PartialPermNC([1, 2, 3, 4, 5], [6, 5, 3, 2, 1]),
|
|
4217
|
+
> PartialPermNC([1, 2, 3, 4, 6], [1, 3, 4, 6, 2]),
|
|
4218
|
+
> PartialPermNC([1, 2, 3, 5, 6], [1, 3, 6, 4, 5]),
|
|
4219
|
+
> PartialPermNC([1, 2, 4, 5, 6], [5, 4, 2, 1, 6]),
|
|
4220
|
+
> PartialPermNC([1, 2, 3, 4, 5, 6], [2, 5, 6, 4, 3, 1])];;
|
|
4221
|
+
gap> s := Semigroup(gens);;
|
|
4222
|
+
gap> Size(s);
|
|
4223
|
+
12612
|
|
4224
|
+
gap> f := PartialPerm([1, 4, 6], [2, 3, 6]);;
|
|
4225
|
+
gap> r := RClass(s, f);
|
|
4226
|
+
<Green's R-class: [1,2][4,3](6)>
|
|
4227
|
+
gap> Size(r);
|
|
4228
|
+
120
|
|
4229
|
+
gap> NrHClasses(r);
|
|
4230
|
+
20
|
|
4231
|
+
gap> Number(HClassReps(s), x -> x in r);
|
|
4232
|
+
20
|
|
4233
|
+
|
|
4234
|
+
#
|
|
4235
|
+
gap> SEMIGROUPS.StopTest();
|
|
4236
|
+
gap> STOP_TEST("Semigroups package: extreme/misc.tst");
|