passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/x86_64-pc-linux-gnu-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1069 -0
- gap/pkg/semigroups/config.status +1133 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-6be12ad2.so.2.0.0 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,2404 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/attributes/attr.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local D, F, G, GR, I, L, R, S, T, acting, an, coll, digraph, foo, gens, inj
|
|
12
|
+
#@local inv, iso, map, n, r, s, t, x, y, z
|
|
13
|
+
gap> START_TEST("Semigroups package: standard/attributes/attr.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
#
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
|
|
19
|
+
# AttributesTest1: MultiplicativeZero
|
|
20
|
+
# for a transformation semigroup/ideal
|
|
21
|
+
gap> t := Transformation([1]);;
|
|
22
|
+
|
|
23
|
+
# Trivial full transformation monoid T_1
|
|
24
|
+
# Previously this crashed: see issue #121 on Bitbucket
|
|
25
|
+
gap> s := Semigroup(t); # with displaying the semigroup
|
|
26
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
27
|
+
gap> MultiplicativeZero(s) = t;
|
|
28
|
+
true
|
|
29
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
30
|
+
true
|
|
31
|
+
gap> s := Semigroup(t);; # not displaying the semigroup
|
|
32
|
+
gap> MultiplicativeZero(s) = t;
|
|
33
|
+
true
|
|
34
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
35
|
+
true
|
|
36
|
+
gap> s := FullTransformationMonoid(1);;
|
|
37
|
+
gap> MultiplicativeZero(s) = t;
|
|
38
|
+
true
|
|
39
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
40
|
+
true
|
|
41
|
+
|
|
42
|
+
# Trivial transformation monoid with different rep.
|
|
43
|
+
gap> t := Transformation([2, 2, 3, 3]);;
|
|
44
|
+
gap> s := Semigroup(t); # with displaying the semigroup
|
|
45
|
+
<commutative transformation semigroup of degree 4 with 1 generator>
|
|
46
|
+
gap> MultiplicativeZero(s) = t;
|
|
47
|
+
true
|
|
48
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
49
|
+
true
|
|
50
|
+
gap> s := Semigroup(t);; # not displaying the semigroup
|
|
51
|
+
gap> MultiplicativeZero(s) = t;
|
|
52
|
+
true
|
|
53
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
54
|
+
true
|
|
55
|
+
|
|
56
|
+
# Issue #121 on Bitbucket (n x 1 rectangular band)
|
|
57
|
+
gap> s := Semigroup(Transformation([1, 2, 1]),
|
|
58
|
+
> Transformation([1, 2, 2]));;
|
|
59
|
+
gap> MultiplicativeZero(s);
|
|
60
|
+
fail
|
|
61
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
62
|
+
false
|
|
63
|
+
gap> ForAny(s, x -> IsMultiplicativeZero(s, x));
|
|
64
|
+
false
|
|
65
|
+
|
|
66
|
+
# Other transformation semigroups
|
|
67
|
+
gap> s := Semigroup(FullTransformationMonoid(10), rec(acting := true));
|
|
68
|
+
<transformation monoid of degree 10 with 3 generators>
|
|
69
|
+
gap> MultiplicativeZero(s);
|
|
70
|
+
fail
|
|
71
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
72
|
+
false
|
|
73
|
+
|
|
74
|
+
# Transformation semigroup ideal
|
|
75
|
+
gap> s := Semigroup([
|
|
76
|
+
> Transformation([2, 3, 4, 1]),
|
|
77
|
+
> Transformation([2, 1, 3, 4]),
|
|
78
|
+
> Transformation([3, 1, 1, 3])]);
|
|
79
|
+
<transformation semigroup of degree 4 with 3 generators>
|
|
80
|
+
gap> t := Transformation([1, 1, 1, 1]);;
|
|
81
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
82
|
+
gap> HasMultiplicativeZero(s);
|
|
83
|
+
false
|
|
84
|
+
gap> MultiplicativeZero(I); # does not know whether parent has a zero
|
|
85
|
+
fail
|
|
86
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
87
|
+
false
|
|
88
|
+
gap> HasMultiplicativeZero(s);
|
|
89
|
+
true
|
|
90
|
+
gap> MultiplicativeZero(s);
|
|
91
|
+
fail
|
|
92
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
93
|
+
false
|
|
94
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
95
|
+
gap> MultiplicativeZero(I); # does know whether parent has a zero
|
|
96
|
+
fail
|
|
97
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
98
|
+
false
|
|
99
|
+
|
|
100
|
+
# AttributesTest2:
|
|
101
|
+
# MultiplicativeZero for a partial perm semigroup/ideal
|
|
102
|
+
gap> t := PartialPerm([], []);;
|
|
103
|
+
|
|
104
|
+
# For S = { <empty mapping> }
|
|
105
|
+
gap> s := Semigroup(t);;
|
|
106
|
+
gap> MultiplicativeZero(s) = t;
|
|
107
|
+
true
|
|
108
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
109
|
+
true
|
|
110
|
+
gap> s := SymmetricInverseMonoid(1);
|
|
111
|
+
<symmetric inverse monoid of degree 1>
|
|
112
|
+
gap> MultiplicativeZero(s) = t;
|
|
113
|
+
true
|
|
114
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
115
|
+
true
|
|
116
|
+
|
|
117
|
+
# For other trivial partial perm semigroups
|
|
118
|
+
gap> t := PartialPerm([2, 4], [2, 4]);;
|
|
119
|
+
gap> s := Semigroup(t);;
|
|
120
|
+
gap> MultiplicativeZero(s) = t;
|
|
121
|
+
true
|
|
122
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
123
|
+
true
|
|
124
|
+
|
|
125
|
+
# For a non-trivial partial perm semigroup
|
|
126
|
+
gap> s := Semigroup([PartialPerm([2], [1])]); # contains < empty pperm >
|
|
127
|
+
<commutative partial perm semigroup of rank 1 with 1 generator>
|
|
128
|
+
gap> MultiplicativeZero(s);
|
|
129
|
+
<empty partial perm>
|
|
130
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
131
|
+
true
|
|
132
|
+
gap> s := Semigroup([
|
|
133
|
+
> PartialPerm([1, 2, 3], [1, 4, 2]),
|
|
134
|
+
> PartialPerm([1, 4], [1, 3])]); # does not contain <empty pperm>
|
|
135
|
+
<partial perm semigroup of rank 4 with 2 generators>
|
|
136
|
+
gap> MultiplicativeZero(s);
|
|
137
|
+
<identity partial perm on [ 1 ]>
|
|
138
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
139
|
+
true
|
|
140
|
+
gap> s := InverseSemigroup([
|
|
141
|
+
> PartialPerm([1, 2, 3], [3, 4, 1]),
|
|
142
|
+
> PartialPerm([1, 2, 3, 4, 5], [3, 5, 1, 2, 4])]);
|
|
143
|
+
<inverse partial perm semigroup of rank 5 with 2 generators>
|
|
144
|
+
gap> MultiplicativeZero(s);
|
|
145
|
+
fail
|
|
146
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
147
|
+
false
|
|
148
|
+
|
|
149
|
+
# For a partial perm semigroup ideal
|
|
150
|
+
gap> s := Semigroup([
|
|
151
|
+
> PartialPerm([1, 2, 3, 4], [2, 3, 4, 1]),
|
|
152
|
+
> PartialPerm([1, 2, 3, 4], [2, 1, 3, 4]),
|
|
153
|
+
> PartialPerm([1, 3], [2, 3])]);
|
|
154
|
+
<partial perm semigroup of rank 4 with 3 generators>
|
|
155
|
+
gap> t := PartialPerm([], []);;
|
|
156
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
157
|
+
gap> HasMultiplicativeZero(s);
|
|
158
|
+
false
|
|
159
|
+
gap> MultiplicativeZero(I) = t; # does not know whether parent has a zero
|
|
160
|
+
true
|
|
161
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
162
|
+
true
|
|
163
|
+
gap> HasMultiplicativeZero(s);
|
|
164
|
+
true
|
|
165
|
+
gap> MultiplicativeZero(s) = t;
|
|
166
|
+
true
|
|
167
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
168
|
+
true
|
|
169
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
170
|
+
gap> MultiplicativeZero(I) = t; # does know whether parent has a zero
|
|
171
|
+
true
|
|
172
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
173
|
+
true
|
|
174
|
+
|
|
175
|
+
# AttributesTest3:
|
|
176
|
+
# MultiplicativeZero for a bipartition semigroup/ideal
|
|
177
|
+
gap> s := PartitionMonoid(1);
|
|
178
|
+
<commutative bipartition monoid of degree 1 with 1 generator>
|
|
179
|
+
gap> MultiplicativeZero(s);
|
|
180
|
+
<bipartition: [ 1 ], [ -1 ]>
|
|
181
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
182
|
+
true
|
|
183
|
+
gap> s := PartitionMonoid(2);
|
|
184
|
+
<regular bipartition *-monoid of size 15, degree 2 with 3 generators>
|
|
185
|
+
gap> MultiplicativeZero(s);
|
|
186
|
+
fail
|
|
187
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
188
|
+
false
|
|
189
|
+
gap> s := PartitionMonoid(3);
|
|
190
|
+
<regular bipartition *-monoid of size 203, degree 3 with 4 generators>
|
|
191
|
+
gap> MultiplicativeZero(s);
|
|
192
|
+
fail
|
|
193
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
194
|
+
false
|
|
195
|
+
gap> s := Semigroup([
|
|
196
|
+
> Bipartition([[1, 2, 3, 4, 5, -2], [-1], [-3], [-4], [-5]]),
|
|
197
|
+
> Bipartition([[1, 3, 5, -1], [2, 4, -2], [-3], [-4], [-5]])]);
|
|
198
|
+
<bipartition semigroup of degree 5 with 2 generators>
|
|
199
|
+
gap> MultiplicativeZero(s);
|
|
200
|
+
<bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1 ], [ -3 ], [ -4 ], [ -5 ]>
|
|
201
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
202
|
+
true
|
|
203
|
+
|
|
204
|
+
# Ideals
|
|
205
|
+
gap> s := PartitionMonoid(3);;
|
|
206
|
+
gap> t := Bipartition([[1, -2], [2], [3, -3], [-1]]);;
|
|
207
|
+
gap> I := SemigroupIdeal(s, t);
|
|
208
|
+
<regular bipartition *-semigroup ideal of degree 3 with 1 generator>
|
|
209
|
+
gap> HasMultiplicativeZero(s);
|
|
210
|
+
false
|
|
211
|
+
gap> MultiplicativeZero(I);
|
|
212
|
+
fail
|
|
213
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
214
|
+
false
|
|
215
|
+
gap> HasMultiplicativeZero(s);
|
|
216
|
+
true
|
|
217
|
+
gap> MultiplicativeZero(s);
|
|
218
|
+
fail
|
|
219
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
220
|
+
false
|
|
221
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
222
|
+
gap> MultiplicativeZero(I);
|
|
223
|
+
fail
|
|
224
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
225
|
+
false
|
|
226
|
+
gap> t := Bipartition([[1], [-1]]);;
|
|
227
|
+
gap> s := Semigroup([t, Bipartition([[1, -1]])]);;
|
|
228
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
229
|
+
gap> HasMultiplicativeZero(s);
|
|
230
|
+
false
|
|
231
|
+
gap> MultiplicativeZero(I);
|
|
232
|
+
<bipartition: [ 1 ], [ -1 ]>
|
|
233
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
234
|
+
true
|
|
235
|
+
gap> HasMultiplicativeZero(s);
|
|
236
|
+
true
|
|
237
|
+
gap> MultiplicativeZero(s);
|
|
238
|
+
<bipartition: [ 1 ], [ -1 ]>
|
|
239
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
240
|
+
true
|
|
241
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
242
|
+
gap> MultiplicativeZero(I);
|
|
243
|
+
<bipartition: [ 1 ], [ -1 ]>
|
|
244
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
245
|
+
true
|
|
246
|
+
|
|
247
|
+
# AttributesTest4:
|
|
248
|
+
# MultiplicativeZero for a block bijection inverse semigroup/ideal
|
|
249
|
+
gap> S := AsSemigroup(IsBlockBijectionSemigroup, SymmetricInverseMonoid(1));
|
|
250
|
+
<commutative inverse block bijection monoid of degree 2 with 1 generator>
|
|
251
|
+
gap> MultiplicativeZero(S);
|
|
252
|
+
<block bijection: [ 1, 2, -1, -2 ]>
|
|
253
|
+
gap> Size(MinimalIdeal(S)) = 1;
|
|
254
|
+
true
|
|
255
|
+
gap> S := AsSemigroup(IsBlockBijectionSemigroup, SymmetricInverseMonoid(4));
|
|
256
|
+
<inverse block bijection monoid of degree 5 with 3 generators>
|
|
257
|
+
gap> MultiplicativeZero(S);
|
|
258
|
+
<block bijection: [ 1, 2, 3, 4, 5, -1, -2, -3, -4, -5 ]>
|
|
259
|
+
gap> Size(MinimalIdeal(S)) = 1;
|
|
260
|
+
true
|
|
261
|
+
gap> s := InverseSemigroup([
|
|
262
|
+
> Bipartition([[1, -3], [2, -4], [3, -1], [4, 5, 6, -2, -5, -6]]),
|
|
263
|
+
> Bipartition([[1, -3], [2, -5], [3, -1], [4, -2], [5, -4],
|
|
264
|
+
> [6, -6]])]);
|
|
265
|
+
<inverse block bijection semigroup of degree 6 with 2 generators>
|
|
266
|
+
gap> MultiplicativeZero(s);
|
|
267
|
+
fail
|
|
268
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
269
|
+
false
|
|
270
|
+
|
|
271
|
+
# Test MultiplicativeZero (for an infinite semigroup)
|
|
272
|
+
#gap> S := Semigroup([Matrix(IsMaxPlusMatrix, [[-2, 2, 0], [-1, 0, 0], [1, -3, 1]]),
|
|
273
|
+
#> Matrix(IsMaxPlusMatrix, [[- infinity, 0, 0], [0, 1, 0], [1, -1, 0]])]);;
|
|
274
|
+
#gap> MultiplicativeZero(S);
|
|
275
|
+
# FIXME(later) Enters an infinite loop in a library method because S is not finite
|
|
276
|
+
|
|
277
|
+
# Ideals
|
|
278
|
+
gap> s := InverseSemigroup([
|
|
279
|
+
> Bipartition([[1, -1], [2, 6, -4, -6], [3, -5], [4, -2],
|
|
280
|
+
> [5, -3]]),
|
|
281
|
+
> Bipartition([[1, -5], [2, -4], [3, -3], [4, -2], [5, -1],
|
|
282
|
+
> [6, -6]])]);
|
|
283
|
+
<inverse block bijection semigroup of degree 6 with 2 generators>
|
|
284
|
+
gap> t := Bipartition(
|
|
285
|
+
> [[1, -1], [2, -2], [3, -3], [4, 6, -4, -6], [5, -5]]);;
|
|
286
|
+
gap> I := SemigroupIdeal(s, t);
|
|
287
|
+
<inverse bipartition semigroup ideal of degree 6 with 1 generator>
|
|
288
|
+
gap> HasMultiplicativeZero(s);
|
|
289
|
+
false
|
|
290
|
+
gap> MultiplicativeZero(I);
|
|
291
|
+
fail
|
|
292
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
293
|
+
false
|
|
294
|
+
gap> HasMultiplicativeZero(s);
|
|
295
|
+
true
|
|
296
|
+
gap> MultiplicativeZero(s);
|
|
297
|
+
fail
|
|
298
|
+
gap> Size(MinimalIdeal(s)) = 1;
|
|
299
|
+
false
|
|
300
|
+
gap> I := SemigroupIdeal(s, t);;
|
|
301
|
+
gap> MultiplicativeZero(I);
|
|
302
|
+
fail
|
|
303
|
+
gap> Size(MinimalIdeal(I)) = 1;
|
|
304
|
+
false
|
|
305
|
+
|
|
306
|
+
# AttributesTest5:
|
|
307
|
+
# MultiplicativeZero where MinimalDClass is known
|
|
308
|
+
gap> s := Semigroup(FullTransformationMonoid(10), rec(acting := true));
|
|
309
|
+
<transformation monoid of degree 10 with 3 generators>
|
|
310
|
+
gap> MinimalDClass(s);;
|
|
311
|
+
gap> HasSize(last);
|
|
312
|
+
false
|
|
313
|
+
gap> MultiplicativeZero(s);
|
|
314
|
+
fail
|
|
315
|
+
gap> s := Semigroup(s, rec(acting := true));;
|
|
316
|
+
gap> HasMinimalDClass(s);
|
|
317
|
+
false
|
|
318
|
+
gap> Size(MinimalDClass(s));
|
|
319
|
+
10
|
|
320
|
+
gap> HasMinimalDClass(s) and HasSize(MinimalDClass(s));
|
|
321
|
+
true
|
|
322
|
+
gap> MultiplicativeZero(s);
|
|
323
|
+
fail
|
|
324
|
+
gap> gens := [
|
|
325
|
+
> Transformation([1, 13, 11, 4, 11, 12, 3, 1, 1, 1, 1, 4, 15, 2, 13]),
|
|
326
|
+
> Transformation([3, 11, 14, 4, 11, 13, 13, 5, 3, 11, 14, 14, 10, 15, 12]),
|
|
327
|
+
> Transformation([5, 13, 11, 4, 9, 13, 8, 1, 2, 12, 6, 12, 11, 8, 1])];;
|
|
328
|
+
gap> s := Semigroup(gens);
|
|
329
|
+
<transformation semigroup of degree 15 with 3 generators>
|
|
330
|
+
gap> HasMinimalDClass(s);
|
|
331
|
+
false
|
|
332
|
+
gap> MultiplicativeZero(s);
|
|
333
|
+
Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ] )
|
|
334
|
+
gap> s := Semigroup(gens, rec(acting := true));;
|
|
335
|
+
gap> MinimalDClass(s);
|
|
336
|
+
<Green's D-class: Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
337
|
+
4 ] )>
|
|
338
|
+
gap> HasSize(MinimalDClass(s));
|
|
339
|
+
false
|
|
340
|
+
gap> MultiplicativeZero(s);
|
|
341
|
+
Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ] )
|
|
342
|
+
gap> s := Semigroup(gens, rec(acting := true));;
|
|
343
|
+
gap> Size(MinimalDClass(s));
|
|
344
|
+
1
|
|
345
|
+
gap> MultiplicativeZero(s);
|
|
346
|
+
Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ] )
|
|
347
|
+
|
|
348
|
+
# attr: RightCayleyDigraph
|
|
349
|
+
gap> S := Semigroup(PartialPerm([1, 2, 3], [1, 3, 4]),
|
|
350
|
+
> PartialPerm([1, 2, 3], [2, 5, 3]),
|
|
351
|
+
> PartialPerm([1, 2, 3], [4, 1, 2]),
|
|
352
|
+
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
|
|
353
|
+
> PartialPerm([1, 3, 5], [5, 1, 3]));;
|
|
354
|
+
gap> digraph := RightCayleyDigraph(S);;
|
|
355
|
+
gap> Length(DigraphStronglyConnectedComponents(digraph).comps)
|
|
356
|
+
> = NrRClasses(S);
|
|
357
|
+
true
|
|
358
|
+
|
|
359
|
+
# attr: RightCayleyDigraph, infinite
|
|
360
|
+
gap> RightCayleyDigraph(FreeSemigroup(2));
|
|
361
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
362
|
+
Error, no 2nd choice method found for `RightCayleyDigraph' on 1 arguments
|
|
363
|
+
|
|
364
|
+
# attr: LeftCayleyDigraph
|
|
365
|
+
gap> S := Monoid(BooleanMat([[1, 1, 1, 1, 1], [1, 0, 1, 0, 0],
|
|
366
|
+
> [1, 1, 0, 1, 0], [1, 1, 1, 1, 1],
|
|
367
|
+
> [1, 1, 0, 0, 0]]),
|
|
368
|
+
> BooleanMat([[0, 0, 1, 0, 0], [1, 0, 1, 1, 0],
|
|
369
|
+
> [1, 0, 1, 1, 1], [0, 1, 1, 1, 0],
|
|
370
|
+
> [0, 1, 1, 1, 0]]),
|
|
371
|
+
> BooleanMat([[0, 0, 0, 1, 1], [0, 0, 1, 1, 0],
|
|
372
|
+
> [0, 0, 1, 1, 0], [1, 1, 0, 1, 0],
|
|
373
|
+
> [1, 0, 1, 0, 1]]),
|
|
374
|
+
> BooleanMat([[0, 1, 1, 1, 0], [0, 0, 0, 1, 0],
|
|
375
|
+
> [1, 1, 1, 0, 1], [1, 0, 1, 0, 0],
|
|
376
|
+
> [1, 0, 1, 1, 0]]),
|
|
377
|
+
> BooleanMat([[1, 0, 0, 0, 1], [1, 0, 0, 0, 1],
|
|
378
|
+
> [0, 0, 0, 0, 1], [0, 1, 1, 0, 1],
|
|
379
|
+
> [1, 1, 1, 0, 1]]));;
|
|
380
|
+
gap> digraph := LeftCayleyDigraph(S);;
|
|
381
|
+
gap> Length(DigraphStronglyConnectedComponents(digraph).comps)
|
|
382
|
+
> = NrLClasses(S);
|
|
383
|
+
true
|
|
384
|
+
|
|
385
|
+
# attr: RightCayleyDigraph, infinite
|
|
386
|
+
gap> LeftCayleyDigraph(FreeInverseSemigroup(2));
|
|
387
|
+
Error, the argument (a semigroup) is not finite
|
|
388
|
+
|
|
389
|
+
# attr: IsomorphismReesMatrixSemigroup
|
|
390
|
+
gap> D := GreensDClassOfElement(Semigroup(
|
|
391
|
+
> Bipartition([[1, 2, 3, -3], [4, -4, -5], [5, -1], [-2]]),
|
|
392
|
+
> Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]),
|
|
393
|
+
> Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]]),
|
|
394
|
+
> Bipartition([[1], [2], [3, 5, -1, -2], [4, -3], [-4, -5]]),
|
|
395
|
+
> Bipartition([[1], [2], [3], [4, -1, -4], [5], [-2, -3], [-5]])),
|
|
396
|
+
> Bipartition([[1], [2], [3], [4, -1, -4], [5], [-2, -3], [-5]]));;
|
|
397
|
+
gap> PrincipalFactor(D);
|
|
398
|
+
<Rees 0-matrix semigroup 12x15 over Group(())>
|
|
399
|
+
|
|
400
|
+
# attr: IsomorphismReesMatrixSemigroup, error, 1/1
|
|
401
|
+
gap> S := FullTransformationMonoid(3);;
|
|
402
|
+
gap> D := DClass(S, Transformation([1, 2, 1]));;
|
|
403
|
+
gap> IsomorphismReesMatrixSemigroup(D);
|
|
404
|
+
Error, the argument (a Green's D-class) is not a semigroup
|
|
405
|
+
gap> D := MinimalDClass(S);;
|
|
406
|
+
gap> IsomorphismReesMatrixSemigroup(D);
|
|
407
|
+
MappingByFunction( <Green's D-class: Transformation( [ 1, 1, 1 ] )>,
|
|
408
|
+
<Rees matrix semigroup 1x3 over Group(())>
|
|
409
|
+
, function( x ) ... end, function( x ) ... end )
|
|
410
|
+
|
|
411
|
+
# attr: IrredundantGeneratingSubset, for a collection of elements
|
|
412
|
+
gap> G := CyclicGroup(3);;
|
|
413
|
+
gap> R := GF(2);;
|
|
414
|
+
gap> GR := GroupRing(R, G);;
|
|
415
|
+
gap> iso := IsomorphismTransformationSemigroup(GR);;
|
|
416
|
+
gap> S := Range(iso);;
|
|
417
|
+
gap> S := Semigroup(IrredundantGeneratingSubset(SmallGeneratingSet(S)));;
|
|
418
|
+
|
|
419
|
+
# attr: IrredundantGeneratingSubset: for a semigroup
|
|
420
|
+
gap> S := RandomMonoid(IsBooleanMatMonoid, 10, 3);;
|
|
421
|
+
gap> T := Semigroup(IrredundantGeneratingSubset(S));;
|
|
422
|
+
gap> S = T;
|
|
423
|
+
true
|
|
424
|
+
|
|
425
|
+
# attr: IrredundantGeneratingSubset: for a set with one element, 1
|
|
426
|
+
gap> IrredundantGeneratingSubset([RandomTransformation(10)]);;
|
|
427
|
+
|
|
428
|
+
# attr: IrredundantGeneratingSubset: for a set with one element, 2
|
|
429
|
+
gap> S := Monoid([Transformation([1, 1]), Transformation([2, 1]),
|
|
430
|
+
> Transformation([2, 2])], rec(acting := true));
|
|
431
|
+
<transformation monoid of degree 2 with 3 generators>
|
|
432
|
+
gap> Size(IrredundantGeneratingSubset(S));
|
|
433
|
+
2
|
|
434
|
+
|
|
435
|
+
# attr: IrredundantGeneratingSubset: for a set with a single repeated
|
|
436
|
+
# element
|
|
437
|
+
gap> S := Semigroup([Transformation([1, 1]), Transformation([1, 1])]);
|
|
438
|
+
<transformation semigroup of degree 2 with 2 generators>
|
|
439
|
+
gap> Size(IrredundantGeneratingSubset(S));
|
|
440
|
+
1
|
|
441
|
+
|
|
442
|
+
# attr: IrredundantGeneratingSubset: for a set containing identity and
|
|
443
|
+
# a single generator, generators defined separately
|
|
444
|
+
gap> gens := [Transformation([2, 1]), IdentityTransformation];;
|
|
445
|
+
gap> Size(IrredundantGeneratingSubset(gens));
|
|
446
|
+
1
|
|
447
|
+
|
|
448
|
+
# attr: IrredundantGeneratingSubset: for a set containing identity and
|
|
449
|
+
# a single generator, generators given directly
|
|
450
|
+
gap> IrredundantGeneratingSubset([Transformation([2, 1]), IdentityTransformation]);;
|
|
451
|
+
|
|
452
|
+
# attr: IrredundantGeneratingSubset: for a set containing elements
|
|
453
|
+
# of a cyclic semigroup along with a generator, generators defined separately
|
|
454
|
+
gap> gens := [Transformation([1, 1, 3, 1]),
|
|
455
|
+
> Transformation([3, 3, 1, 3])];;
|
|
456
|
+
gap> Size(IrredundantGeneratingSubset(gens));
|
|
457
|
+
1
|
|
458
|
+
|
|
459
|
+
# attr: IrredundantGeneratingSubset: for a set containing elements
|
|
460
|
+
# of a cyclic semigroup along with a generator, generators given directly
|
|
461
|
+
gap> IrredundantGeneratingSubset([Transformation([1, 1, 3, 1]),
|
|
462
|
+
> Transformation([3, 3, 1, 3])]);;
|
|
463
|
+
|
|
464
|
+
# attr: IrredundantGeneratingSubset: test info statements
|
|
465
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 4, 1);;
|
|
466
|
+
gap> S := Semigroup(Elements(S));
|
|
467
|
+
<transformation semigroup of degree 5 with 4 generators>
|
|
468
|
+
gap> x := InfoLevel(InfoSemigroups);;
|
|
469
|
+
gap> SetInfoLevel(InfoSemigroups, 3);
|
|
470
|
+
gap> IrredundantGeneratingSubset(S);
|
|
471
|
+
at 1 of 4 with 0 redundant, 0 non-redundant
|
|
472
|
+
at 2 of 4 with 0 redundant, 1 non-redundant
|
|
473
|
+
at 3 of 4 with 1 redundant, 1 non-redundant
|
|
474
|
+
at 4 of 4 with 2 redundant, 1 non-redundant
|
|
475
|
+
|
|
476
|
+
[ Transformation( [ 1, 1, 2, 3, 4 ] ) ]
|
|
477
|
+
gap> SetInfoLevel(InfoSemigroups, x);
|
|
478
|
+
|
|
479
|
+
# attr: PrincipalFactor: for a D-class
|
|
480
|
+
gap> D := GreensDClassOfElement(
|
|
481
|
+
> Semigroup(
|
|
482
|
+
> BooleanMat([[0, 1, 1, 0, 1, 0], [0, 1, 0, 1, 0, 0], [1, 1, 1, 0, 0, 0],
|
|
483
|
+
> [0, 1, 1, 1, 1, 1], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 1]]),
|
|
484
|
+
> BooleanMat([[1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 1, 0], [0, 1, 0, 1, 1, 0],
|
|
485
|
+
> [1, 0, 1, 1, 1, 0], [1, 1, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0]])),
|
|
486
|
+
> BooleanMat([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1],
|
|
487
|
+
> [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]]));;
|
|
488
|
+
gap> PrincipalFactor(D);
|
|
489
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
490
|
+
|
|
491
|
+
# attr: SmallSemigroupGeneratingSet: for a collection with > 1 elements
|
|
492
|
+
gap> SmallSemigroupGeneratingSet([
|
|
493
|
+
> Transformation([1, 1, 1, 1, 4]), Transformation([1, 2, 2, 1, 1]),
|
|
494
|
+
> Transformation([1, 2, 5, 4, 4]), Transformation([1, 3, 3, 5, 1]),
|
|
495
|
+
> Transformation([2, 2, 1, 2, 4]), Transformation([3, 2, 3, 3, 2]),
|
|
496
|
+
> Transformation([3, 5, 2, 4, 4]), Transformation([3, 5, 4, 5, 4]),
|
|
497
|
+
> Transformation([4, 4, 2, 5, 5]), Transformation([5, 2, 3, 5, 2])]);;
|
|
498
|
+
|
|
499
|
+
# attr: SmallSemigroupGeneratingSet: for a collection with 1 elements
|
|
500
|
+
gap> SmallSemigroupGeneratingSet([BooleanMat([[0, 1, 0, 0], [0, 1, 1, 0], [0,
|
|
501
|
+
> 1, 0, 0], [1, 0, 1, 1]])]);
|
|
502
|
+
[ Matrix(IsBooleanMat, [[0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0],
|
|
503
|
+
[1, 0, 1, 1]]) ]
|
|
504
|
+
|
|
505
|
+
# attr: SmallSemigroupGeneratingSet: for a semigroup
|
|
506
|
+
gap> S := Semigroup([PartialPerm([1, 2], [3, 2]),
|
|
507
|
+
> PartialPerm([1, 2, 3], [2, 3, 4]),
|
|
508
|
+
> PartialPerm([1, 2, 3], [2, 5, 3]),
|
|
509
|
+
> PartialPerm([1, 4], [1, 3]),
|
|
510
|
+
> PartialPerm([1, 2, 3, 4], [3, 5, 1, 2]),
|
|
511
|
+
> PartialPerm([1, 2, 3, 4], [5, 4, 2, 1]),
|
|
512
|
+
> PartialPerm([1, 3, 5], [1, 4, 2]),
|
|
513
|
+
> PartialPerm([1, 2, 4, 5], [3, 2, 5, 1]),
|
|
514
|
+
> PartialPerm([1, 2, 4, 5], [3, 5, 1, 2]),
|
|
515
|
+
> PartialPerm([1, 3, 5], [4, 3, 1])]);;
|
|
516
|
+
gap> SmallSemigroupGeneratingSet(S);;
|
|
517
|
+
|
|
518
|
+
# attr: SmallMonoidGeneratingSet: for a singleton set 1/2
|
|
519
|
+
gap> SmallMonoidGeneratingSet([IdentityTransformation]);
|
|
520
|
+
[ IdentityTransformation ]
|
|
521
|
+
|
|
522
|
+
# attr: SmallMonoidGeneratingSet: for a singleton set 2/2
|
|
523
|
+
gap> SmallMonoidGeneratingSet([Transformation([2, 1, 2])]);
|
|
524
|
+
[ Transformation( [ 2, 1, 2 ] ) ]
|
|
525
|
+
|
|
526
|
+
# attr: SmallMonoidGeneratingSet: for a 0 generator monoid, 1
|
|
527
|
+
gap> S := Monoid(Bipartition([[1, -1]]));;
|
|
528
|
+
gap> SmallMonoidGeneratingSet(S);
|
|
529
|
+
[ <block bijection: [ 1, -1 ]> ]
|
|
530
|
+
|
|
531
|
+
# attr: SmallMonoidGeneratingSet: for a 0 generator monoid, 2
|
|
532
|
+
gap> S := FreeMonoid(0);;
|
|
533
|
+
gap> SmallMonoidGeneratingSet(S);
|
|
534
|
+
[ ]
|
|
535
|
+
|
|
536
|
+
# attr: SmallInverseSemigroupGeneratingSet: for collection > 1 element
|
|
537
|
+
gap> SmallInverseSemigroupGeneratingSet(
|
|
538
|
+
> [PartialPerm([1, 2], [4, 1]),
|
|
539
|
+
> PartialPerm([1, 2], [5, 2]), PartialPerm([1, 2, 3], [3, 2, 1]),
|
|
540
|
+
> PartialPerm([1, 2, 3], [3, 2, 4]),
|
|
541
|
+
> PartialPerm([1, 2, 3, 4], [1, 2, 3, 5]),
|
|
542
|
+
> PartialPerm([1, 3, 4], [3, 2, 1]), PartialPerm([1, 2, 4], [3, 1, 2]),
|
|
543
|
+
> PartialPerm([1, 2, 3, 4, 5], [3, 1, 5, 4, 2]),
|
|
544
|
+
> PartialPerm([1, 2, 3, 5], [5, 4, 2, 3])]);;
|
|
545
|
+
|
|
546
|
+
# attr: SmallInverseSemigroupGeneratingSet: for collection 1 element
|
|
547
|
+
gap> SmallInverseSemigroupGeneratingSet([PartialPerm([1, 2, 3, 7, 9, 10,
|
|
548
|
+
> 11, 12], [4, 6, 8, 12, 5, 9, 1, 3])]);
|
|
549
|
+
[ [2,6][7,12,3,8][10,9,5][11,1,4] ]
|
|
550
|
+
|
|
551
|
+
# attr: SmallInverseSemigroupGeneratingSet: for an inverse semigroup
|
|
552
|
+
gap> S :=
|
|
553
|
+
> InverseSemigroup([PartialPerm([1, 2], [1, 2]),
|
|
554
|
+
> PartialPerm([1, 2, 4], [2, 3, 1]), PartialPerm([1, 3, 4], [3, 2, 4]),
|
|
555
|
+
> PartialPerm([1, 2, 4, 5], [1, 3, 5, 4]),
|
|
556
|
+
> PartialPerm([1, 2, 4, 5], [2, 1, 3, 5]),
|
|
557
|
+
> PartialPerm([1, 3, 5], [3, 1, 2]),
|
|
558
|
+
> PartialPerm([1, 2, 3, 5], [3, 1, 2, 5]),
|
|
559
|
+
> PartialPerm([1, 2, 3, 4, 5], [3, 5, 1, 2, 4]),
|
|
560
|
+
> PartialPerm([1, 3, 5], [4, 3, 2]),
|
|
561
|
+
> PartialPerm([1, 2, 3, 5], [4, 1, 2, 3])]);;
|
|
562
|
+
gap> SmallInverseSemigroupGeneratingSet(S);;
|
|
563
|
+
|
|
564
|
+
# attr: SmallInverseMonoidGeneratingSet: for 0 generators, 1
|
|
565
|
+
gap> S := InverseMonoid(PartialPerm([1, 2, 3]));
|
|
566
|
+
<trivial partial perm group of rank 3 with 1 generator>
|
|
567
|
+
gap> SmallInverseMonoidGeneratingSet(S);
|
|
568
|
+
[ <identity partial perm on [ 1, 2, 3 ]> ]
|
|
569
|
+
|
|
570
|
+
# attr: SmallInverseMonoidGeneratingSet: for 0 generators, 2
|
|
571
|
+
gap> S := Group(IdentityTransformation);;
|
|
572
|
+
gap> IsTransformationSemigroup(S) and IsGroup(S) and IsGroupAsSemigroup(S)
|
|
573
|
+
> and IsTrivial(S);
|
|
574
|
+
true
|
|
575
|
+
gap> S := Subgroup(S, []);
|
|
576
|
+
<trivial transformation group of degree 0 with 0 generators>
|
|
577
|
+
gap> IsInverseMonoid(S) and IsGeneratorsOfInverseSemigroup(S);
|
|
578
|
+
true
|
|
579
|
+
gap> SmallInverseMonoidGeneratingSet(S);
|
|
580
|
+
[ ]
|
|
581
|
+
|
|
582
|
+
# attr: SmallInverseMonoidGeneratingSet: for > 0 generators 1/2
|
|
583
|
+
gap> S := InverseMonoid([PartialPerm([1, 3], [2, 3]),
|
|
584
|
+
> PartialPerm([1, 3], [3, 1]),
|
|
585
|
+
> PartialPerm([1, 2, 3], [3, 2, 4]),
|
|
586
|
+
> PartialPerm([1, 4], [1, 3])]);;
|
|
587
|
+
gap> SmallInverseMonoidGeneratingSet(S);;
|
|
588
|
+
|
|
589
|
+
# attr: SmallInverseMonoidGeneratingSet: for > 0 generators 2/2
|
|
590
|
+
gap> Set(SmallInverseMonoidGeneratingSet(DualSymmetricInverseMonoid(3)));
|
|
591
|
+
[ <block bijection: [ 1, 2, -3 ], [ 3, -1, -2 ]>,
|
|
592
|
+
<block bijection: [ 1, -2 ], [ 2, -1 ], [ 3, -3 ]>,
|
|
593
|
+
<block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]> ]
|
|
594
|
+
|
|
595
|
+
# attr: SmallInverseSemigroupGeneratingSet: for a collection
|
|
596
|
+
gap> coll := [Bipartition([[1, -1], [2, -2], [3, -3], [4, -4], [5, -5]]),
|
|
597
|
+
> Bipartition([[1, -1], [2, -4], [3, -3], [4], [5], [-2], [-5]]),
|
|
598
|
+
> Bipartition([[1, -2], [2, -4], [3, -3], [4], [5], [-1], [-5]]),
|
|
599
|
+
> Bipartition([[1, -3], [2, -4], [3], [4, -1], [5], [-2], [-5]]),
|
|
600
|
+
> Bipartition([[1, -1], [2, -2], [3], [4, -4], [5, -3], [-5]]),
|
|
601
|
+
> Bipartition([[1, -1], [2, -5], [3, -4], [4], [5, -2], [-3]]),
|
|
602
|
+
> Bipartition([[1, -3], [2], [3, -5], [4, -2], [5, -4], [-1]]),
|
|
603
|
+
> Bipartition([[1, -3], [2, -1], [3, -5], [4], [5, -2], [-4]]),
|
|
604
|
+
> Bipartition([[1, -4], [2], [3], [4, -1], [5, -5], [-2], [-3]]),
|
|
605
|
+
> Bipartition([[1, -5], [2], [3, -1], [4, -2], [5, -3], [-4]]),
|
|
606
|
+
> Bipartition([[1, -5], [2, -3], [3], [4, -4], [5, -1], [-2]]),
|
|
607
|
+
> Bipartition([[1, -1], [2], [3, -3], [4, -2], [5], [-4], [-5]]),
|
|
608
|
+
> Bipartition([[1], [2, -1], [3, -3], [4, -2], [5], [-4], [-5]]),
|
|
609
|
+
> Bipartition([[1, -4], [2], [3, -1], [4, -2], [5], [-3], [-5]]),
|
|
610
|
+
> Bipartition([[1, -1], [2, -2], [3, -5], [4, -4], [5], [-3]]),
|
|
611
|
+
> Bipartition([[1, -1], [2, -5], [3], [4, -3], [5, -2], [-4]]),
|
|
612
|
+
> Bipartition([[1], [2, -4], [3, -1], [4, -5], [5, -3], [-2]]),
|
|
613
|
+
> Bipartition([[1, -3], [2, -4], [3, -5], [4], [5, -1], [-2]]),
|
|
614
|
+
> Bipartition([[1, -5], [2], [3, -2], [4, -4], [5, -1], [-3]])];;
|
|
615
|
+
gap> SmallInverseSemigroupGeneratingSet(coll);;
|
|
616
|
+
|
|
617
|
+
# attr: SmallInverseMonoidGeneratingSet: for a collection
|
|
618
|
+
gap> coll := [PartialPerm([1, 2, 3, 4, 5], [1, 2, 3, 4, 5]),
|
|
619
|
+
> PartialPerm([1, 2], [1, 4]), PartialPerm([1, 2, 3], [1, 4, 2]),
|
|
620
|
+
> PartialPerm([1, 2, 3], [3, 5, 2]),
|
|
621
|
+
> PartialPerm([1, 2, 3, 4], [1, 5, 4, 2]),
|
|
622
|
+
> PartialPerm([1, 2, 4], [2, 3, 1]), PartialPerm([1, 3, 4], [3, 2, 4]),
|
|
623
|
+
> PartialPerm([1, 2, 3, 4], [5, 2, 3, 4]),
|
|
624
|
+
> PartialPerm([1, 2, 4, 5], [1, 3, 5, 4]),
|
|
625
|
+
> PartialPerm([1, 3, 5], [3, 1, 2]),
|
|
626
|
+
> PartialPerm([1, 2, 4, 5], [5, 3, 2, 1]), PartialPerm([1, 4], [1, 2]),
|
|
627
|
+
> PartialPerm([1, 2, 4], [1, 3, 2]), PartialPerm([2, 3, 5], [3, 1, 2]),
|
|
628
|
+
> PartialPerm([1, 2, 4, 5], [1, 4, 3, 2]),
|
|
629
|
+
> PartialPerm([1, 2, 3], [4, 1, 2]), PartialPerm([2, 3, 4], [3, 1, 4]),
|
|
630
|
+
> PartialPerm([2, 3, 4, 5], [2, 3, 4, 1]),
|
|
631
|
+
> PartialPerm([1, 3, 4, 5], [1, 2, 5, 4]),
|
|
632
|
+
> PartialPerm([1, 2, 3], [3, 5, 1]),
|
|
633
|
+
> PartialPerm([1, 2, 3, 5], [5, 4, 2, 1])];;
|
|
634
|
+
gap> SmallInverseMonoidGeneratingSet(coll);;
|
|
635
|
+
|
|
636
|
+
# attr: SmallInverseMonoidGeneratingSet: for a collection of 1 element
|
|
637
|
+
gap> SmallInverseMonoidGeneratingSet([PartialPerm([1, 2, 4])]);
|
|
638
|
+
[ [3,4](1)(2) ]
|
|
639
|
+
|
|
640
|
+
# attr: SmallInverseSemigroupGeneratingSet: for non-inverse-op elements
|
|
641
|
+
gap> SmallInverseSemigroupGeneratingSet([RandomTransformation(10)]);
|
|
642
|
+
Error, the argument (a mult. elt. coll.) does not satisfy IsGeneratorsOfInvers\
|
|
643
|
+
eSemigroup
|
|
644
|
+
|
|
645
|
+
# attr: SmallInverseMonoidGeneratingSet: for non-inverse-op elements
|
|
646
|
+
gap> SmallInverseMonoidGeneratingSet([RandomMatrix(IsBooleanMat, 10)]);
|
|
647
|
+
Error, the argument (a mult. elt. coll.) do not satisfy IsGeneratorsOfInverseS\
|
|
648
|
+
emigroup
|
|
649
|
+
|
|
650
|
+
# attr: SmallInverseMonoidGeneratingSet: for One
|
|
651
|
+
gap> SmallInverseMonoidGeneratingSet([PartialPerm([1, 2, 3])]);
|
|
652
|
+
[ ]
|
|
653
|
+
|
|
654
|
+
# attr: SmallGeneratingSet: for an ideal
|
|
655
|
+
gap> S := SemigroupIdeal(Semigroup(
|
|
656
|
+
> BooleanMat([[0, 1, 0], [1, 0, 0], [0, 0, 1]]),
|
|
657
|
+
> BooleanMat([[0, 1, 0], [0, 0, 1], [1, 0, 0]]),
|
|
658
|
+
> BooleanMat([[1, 0, 0], [0, 1, 0], [1, 0, 1]]),
|
|
659
|
+
> BooleanMat([[1, 0, 0], [0, 1, 0], [0, 0, 0]])),
|
|
660
|
+
> BooleanMat([[1, 0, 0], [0, 0, 0], [1, 1, 0]]));;
|
|
661
|
+
gap> SmallGeneratingSet(S);
|
|
662
|
+
[ Matrix(IsBooleanMat, [[1, 0, 0], [0, 0, 0], [1, 1, 0]]) ]
|
|
663
|
+
|
|
664
|
+
# attr: SmallGeneratingSet: for a group
|
|
665
|
+
gap> S := Group(IdentityTransformation);;
|
|
666
|
+
gap> IsTransformationSemigroup(S) and IsGroup(S) and IsGroupAsSemigroup(S)
|
|
667
|
+
> and IsTrivial(S);
|
|
668
|
+
true
|
|
669
|
+
gap> SmallGeneratingSet(S);
|
|
670
|
+
[ IdentityTransformation ]
|
|
671
|
+
|
|
672
|
+
# attr: SmallGeneratingSet: for an inverse monoid
|
|
673
|
+
gap> S := InverseMonoid([PartialPerm([1, 2], [3, 2]),
|
|
674
|
+
> PartialPerm([1, 2, 4], [2, 3, 1]), PartialPerm([1, 2, 4], [3, 4, 2]),
|
|
675
|
+
> PartialPerm([1, 4], [4, 2])]);;
|
|
676
|
+
gap> SmallGeneratingSet(S);;
|
|
677
|
+
|
|
678
|
+
# attr: SmallGeneratingSet: for an inverse semigroup
|
|
679
|
+
gap> S := InverseSemigroup([PartialPerm([1, 2], [2, 3]),
|
|
680
|
+
> PartialPerm([1, 3], [3, 1]),
|
|
681
|
+
> PartialPerm([1, 2, 3], [4, 3, 2])]);;
|
|
682
|
+
gap> SmallGeneratingSet(S);;
|
|
683
|
+
|
|
684
|
+
# attr: SmallGeneratingSet: for a semigroup
|
|
685
|
+
gap> S := Semigroup([Transformation([3, 1, 4, 1, 3]),
|
|
686
|
+
> Transformation([3, 5, 3, 2, 4])]);;
|
|
687
|
+
gap> SmallGeneratingSet(S);;
|
|
688
|
+
|
|
689
|
+
# attr: StructureDescription for a Brandt semigroup
|
|
690
|
+
gap> S := SemigroupIdeal(
|
|
691
|
+
> InverseSemigroup([
|
|
692
|
+
> PartialPermNC([1, 2, 3, 4], [4, 1, 2, 6]),
|
|
693
|
+
> PartialPermNC([1, 2, 4], [5, 2, 3]),
|
|
694
|
+
> PartialPermNC([1, 2, 3, 6], [1, 3, 4, 5]),
|
|
695
|
+
> PartialPermNC([1, 2, 3, 4, 6], [2, 4, 6, 1, 5]),
|
|
696
|
+
> PartialPermNC([1, 2, 3, 6], [5, 1, 6, 3])]),
|
|
697
|
+
> [PartialPermNC([2], [2])]);;
|
|
698
|
+
gap> IsBrandtSemigroup(S);
|
|
699
|
+
true
|
|
700
|
+
gap> StructureDescription(S);
|
|
701
|
+
"B(1, 6)"
|
|
702
|
+
|
|
703
|
+
# attr: StructureDescription for a group as semigroup 1/3
|
|
704
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, AlternatingGroup(5));;
|
|
705
|
+
gap> IsGroupAsSemigroup(S);
|
|
706
|
+
true
|
|
707
|
+
gap> StructureDescription(S);
|
|
708
|
+
"A5"
|
|
709
|
+
|
|
710
|
+
# attr: StructureDescription for a group as semigroup 2/3
|
|
711
|
+
gap> S := Semigroup(Transformation([2, 1, 1]));
|
|
712
|
+
<commutative transformation semigroup of degree 3 with 1 generator>
|
|
713
|
+
gap> IsGroupAsSemigroup(S);
|
|
714
|
+
true
|
|
715
|
+
gap> StructureDescription(S);
|
|
716
|
+
"C2"
|
|
717
|
+
|
|
718
|
+
# attr: StructureDescription for a group as semigroup 3/3
|
|
719
|
+
gap> S := SymmetricGroup(3);;
|
|
720
|
+
gap> StructureDescription(S);
|
|
721
|
+
"S3"
|
|
722
|
+
|
|
723
|
+
# Test StructureDescription for a group as semigroup
|
|
724
|
+
gap> S := Monoid(IdentityTransformation);;
|
|
725
|
+
gap> StructureDescription(S);
|
|
726
|
+
"1"
|
|
727
|
+
|
|
728
|
+
# Issue 393: StructureDescription method in Semigroups inappropriately selected
|
|
729
|
+
gap> F := FreeGroup("r", "s");;
|
|
730
|
+
gap> r := F.1;;
|
|
731
|
+
gap> s := F.2;;
|
|
732
|
+
gap> G := F / [s * r * s ^ (- 1) * r ^ (- 1)];;
|
|
733
|
+
gap> StructureDescription(G) in ["C0 x C0", "Z x Z"];
|
|
734
|
+
true
|
|
735
|
+
|
|
736
|
+
# attr: IsGreensDGreaterThanFunc
|
|
737
|
+
gap> S := RegularBooleanMatMonoid(3);;
|
|
738
|
+
gap> foo := IsGreensDGreaterThanFunc(S);
|
|
739
|
+
function( x, y ) ... end
|
|
740
|
+
gap> x := BooleanMat([[1, 0, 1], [1, 1, 0], [1, 0, 1]]);;
|
|
741
|
+
gap> y := BooleanMat([[1, 0, 1], [0, 0, 0], [1, 0, 0]]);;
|
|
742
|
+
gap> foo(x, y);
|
|
743
|
+
true
|
|
744
|
+
gap> foo(y, x);
|
|
745
|
+
false
|
|
746
|
+
gap> z := RepresentativeOfMinimalIdeal(S);
|
|
747
|
+
Matrix(IsBooleanMat, [[0, 0, 0], [0, 0, 0], [0, 0, 0]])
|
|
748
|
+
gap> foo(x, z);
|
|
749
|
+
true
|
|
750
|
+
gap> foo(z, x);
|
|
751
|
+
false
|
|
752
|
+
gap> foo(z, y);
|
|
753
|
+
false
|
|
754
|
+
gap> foo(y, z);
|
|
755
|
+
true
|
|
756
|
+
gap> foo(z, z);
|
|
757
|
+
false
|
|
758
|
+
|
|
759
|
+
# Test IsGreensDGreaterThanFunc for an infinite CanUseFroidurePin semigroup
|
|
760
|
+
gap> S := Semigroup([Matrix(IsMaxPlusMatrix,
|
|
761
|
+
> [[-2, 2, 0], [-1, 0, 0], [1, -3, 1]]),
|
|
762
|
+
> Matrix(IsMaxPlusMatrix,
|
|
763
|
+
> [[-infinity, 0, 0], [0, 1, 0], [1, -1, 0]])]);;
|
|
764
|
+
gap> IsGreensDGreaterThanFunc(S);
|
|
765
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
766
|
+
Error, no 3rd choice method found for `IsGreensDGreaterThanFunc' on 1 argument\
|
|
767
|
+
s
|
|
768
|
+
|
|
769
|
+
# attr: IsGreensDGreaterThanFunc, error
|
|
770
|
+
gap> IsGreensDGreaterThanFunc(FreeSemigroup(2));
|
|
771
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
772
|
+
Error, no 2nd choice method found for `IsGreensDGreaterThanFunc' on 1 argument\
|
|
773
|
+
s
|
|
774
|
+
|
|
775
|
+
# attr: MaximalDClasses
|
|
776
|
+
gap> S := RegularBooleanMatMonoid(3);
|
|
777
|
+
<monoid of 3x3 boolean matrices with 4 generators>
|
|
778
|
+
gap> MaximalDClasses(S);
|
|
779
|
+
[ <Green's D-class: Matrix(IsBooleanMat, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])> ]
|
|
780
|
+
gap> S := SingularTransformationMonoid(4);
|
|
781
|
+
<regular transformation semigroup ideal of degree 4 with 1 generator>
|
|
782
|
+
gap> x := MaximalDClasses(S);;
|
|
783
|
+
gap> Length(x) = 1 and x[1] = DClass(S, Transformation([1, 2, 3, 3]));
|
|
784
|
+
true
|
|
785
|
+
gap> S := ReesMatrixSemigroup(Group(()), [[()]]);;
|
|
786
|
+
gap> MaximalDClasses(S);
|
|
787
|
+
[ <Green's D-class: (1,(),1)> ]
|
|
788
|
+
gap> S := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
|
|
789
|
+
gap> MaximalDClasses(S);
|
|
790
|
+
[ <Green's D-class: (1,(),1)> ]
|
|
791
|
+
|
|
792
|
+
# attr: StructureDescriptionMaximalSubgroups
|
|
793
|
+
gap> S := RegularBooleanMatMonoid(3);;
|
|
794
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
795
|
+
[ "1", "C2", "S3" ]
|
|
796
|
+
|
|
797
|
+
# attr: IdempotentGeneratedSubsemigroup, 1
|
|
798
|
+
gap> S := RegularBooleanMatMonoid(3);;
|
|
799
|
+
gap> T := IdempotentGeneratedSubsemigroup(S);;
|
|
800
|
+
gap> HasIsIdempotentGenerated(T) and IsIdempotentGenerated(T);
|
|
801
|
+
true
|
|
802
|
+
gap> Size(T);
|
|
803
|
+
381
|
|
804
|
+
|
|
805
|
+
# attr: IdempotentGeneratedSubsemigroup, 2
|
|
806
|
+
gap> S := SymmetricInverseMonoid(3);;
|
|
807
|
+
gap> T := IdempotentGeneratedSubsemigroup(S);;
|
|
808
|
+
gap> HasIsSemilattice(T) and IsSemilattice(T);
|
|
809
|
+
true
|
|
810
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, S);;
|
|
811
|
+
gap> IsInverseSemigroup(S);
|
|
812
|
+
true
|
|
813
|
+
gap> T := IdempotentGeneratedSubsemigroup(S);;
|
|
814
|
+
gap> HasIsSemilattice(T) and IsSemilattice(T);
|
|
815
|
+
true
|
|
816
|
+
gap> S := Semigroup([
|
|
817
|
+
> PartialPerm([1, 3], [5, 4]),
|
|
818
|
+
> PartialPerm([1, 2, 5], [1, 4, 5]),
|
|
819
|
+
> PartialPerm([1, 3, 4], [3, 4, 5])]);;
|
|
820
|
+
gap> T := IdempotentGeneratedSubsemigroup(S);;
|
|
821
|
+
gap> IsInverseSemigroup(S);
|
|
822
|
+
false
|
|
823
|
+
gap> HasIsSemilattice(T) and IsSemilattice(T);
|
|
824
|
+
true
|
|
825
|
+
|
|
826
|
+
# attr: InjectionPrincipalFactor
|
|
827
|
+
gap> S := Monoid([BooleanMat([[1, 0, 1], [0, 1, 0], [0, 0, 1]]),
|
|
828
|
+
> BooleanMat([[1, 0, 0], [0, 1, 1], [0, 0, 1]]),
|
|
829
|
+
> BooleanMat([[1, 0, 0], [0, 1, 0], [1, 0, 1]]),
|
|
830
|
+
> BooleanMat([[1, 0, 0], [0, 1, 0], [0, 1, 1]]),
|
|
831
|
+
> BooleanMat([[1, 0, 0], [1, 1, 0], [0, 0, 1]]),
|
|
832
|
+
> BooleanMat([[1, 1, 0], [0, 1, 0], [0, 0, 1]]),
|
|
833
|
+
> BooleanMat([[1, 1, 0], [0, 0, 0], [0, 1, 1]]),
|
|
834
|
+
> BooleanMat([[1, 0, 1], [0, 1, 0], [0, 0, 0]]),
|
|
835
|
+
> BooleanMat([[1, 0, 0], [0, 0, 1], [0, 0, 1]]),
|
|
836
|
+
> BooleanMat([[0, 0, 0], [0, 1, 0], [0, 0, 1]]),
|
|
837
|
+
> BooleanMat([[1, 0, 0], [0, 0, 0], [0, 0, 1]]),
|
|
838
|
+
> BooleanMat([[1, 0, 0], [0, 1, 0], [0, 0, 0]])]);;
|
|
839
|
+
gap> D := DClass(S, BooleanMat([[1, 0, 1], [1, 1, 1], [1, 0, 1]]));;
|
|
840
|
+
gap> map := InjectionPrincipalFactor(D);
|
|
841
|
+
MappingByFunction( <Green's D-class: Matrix(IsBooleanMat,
|
|
842
|
+
[[1, 0, 1], [1, 1, 1], [1, 0, 1]])>, <Rees 0-matrix semigroup 12x12 over
|
|
843
|
+
Group(())>, function( x ) ... end, function( x ) ... end )
|
|
844
|
+
gap> inv := InverseGeneralMapping(map);;
|
|
845
|
+
gap> ForAll(D, x -> (x ^ map) ^ inv = x);
|
|
846
|
+
true
|
|
847
|
+
gap> MultiplicativeZero(Range(map)) ^ inv;
|
|
848
|
+
fail
|
|
849
|
+
gap> x := BooleanMat([[0, 0, 0], [1, 1, 0], [0, 0, 0]]);;
|
|
850
|
+
gap> x ^ map;
|
|
851
|
+
fail
|
|
852
|
+
gap> D := First(DClasses(S), x -> not IsRegularGreensClass(x));
|
|
853
|
+
<Green's D-class: Matrix(IsBooleanMat, [[1, 0, 1], [1, 1, 0], [0, 0, 1]])>
|
|
854
|
+
gap> InjectionPrincipalFactor(D);
|
|
855
|
+
Error, the argument (a Green's D-class) is not regular
|
|
856
|
+
|
|
857
|
+
# attr: MultiplicativeNeutralElement
|
|
858
|
+
gap> S := Semigroup([BooleanMat([[0, 0, 1], [0, 0, 1], [0, 1, 1]]),
|
|
859
|
+
> BooleanMat([[1, 0, 0], [1, 1, 0], [0, 1, 1]])]);;
|
|
860
|
+
gap> MultiplicativeNeutralElement(S);
|
|
861
|
+
fail
|
|
862
|
+
gap> S := Semigroup(AsBooleanMat(Transformation([2, 1, 2]), 3));;
|
|
863
|
+
gap> Display(MultiplicativeNeutralElement(S));
|
|
864
|
+
1 0 0
|
|
865
|
+
0 1 0
|
|
866
|
+
1 0 0
|
|
867
|
+
gap> S := RegularBooleanMatMonoid(2);
|
|
868
|
+
<monoid of 2x2 boolean matrices with 3 generators>
|
|
869
|
+
gap> MultiplicativeNeutralElement(S);
|
|
870
|
+
Matrix(IsBooleanMat, [[1, 0], [0, 1]])
|
|
871
|
+
gap> S := Semigroup([Transformation([1, 2, 3, 3, 5, 5]),
|
|
872
|
+
> Transformation([3, 3, 5, 3, 5, 3])]);
|
|
873
|
+
<transformation semigroup of degree 6 with 2 generators>
|
|
874
|
+
gap> MultiplicativeNeutralElement(S);
|
|
875
|
+
fail
|
|
876
|
+
gap> S := Semigroup(Transformation([4, 5, 1, 3, 8, 5, 8, 2]),
|
|
877
|
+
> Transformation([4, 2, 3, 2, 8, 2, 8, 6]),
|
|
878
|
+
> Transformation([6, 8, 4, 2, 2, 8, 2, 6]),
|
|
879
|
+
> Transformation([4, 2, 6, 2, 8, 2, 8, 6]),
|
|
880
|
+
> Transformation([2, 8, 6, 4, 2, 8, 2, 4]),
|
|
881
|
+
> Transformation([4, 6, 6, 2, 4, 6, 4]),
|
|
882
|
+
> Transformation([2, 6, 2, 8, 2, 2, 2, 8]),
|
|
883
|
+
> Transformation([5, 4, 4, 5, 8, 8, 5, 5]),
|
|
884
|
+
> Transformation([2, 2, 6, 8, 6, 6, 6, 8]),
|
|
885
|
+
> Transformation([2, 8, 8, 6, 8, 8, 6, 6]),
|
|
886
|
+
> rec(acting := false));;
|
|
887
|
+
> # acting := false is required to test a particular bit of code
|
|
888
|
+
gap> MultiplicativeNeutralElement(S);
|
|
889
|
+
fail
|
|
890
|
+
|
|
891
|
+
# attr: GroupOfUnits, for a finite semigroup 1/2
|
|
892
|
+
gap> S := RegularBooleanMatMonoid(3);
|
|
893
|
+
<monoid of 3x3 boolean matrices with 4 generators>
|
|
894
|
+
gap> GroupOfUnits(S);
|
|
895
|
+
<group of 3x3 boolean matrices with 2 generators>
|
|
896
|
+
gap> StructureDescription(last);
|
|
897
|
+
"S3"
|
|
898
|
+
|
|
899
|
+
# attr: GroupOfUnits, fail 2/2
|
|
900
|
+
gap> S := Semigroup(
|
|
901
|
+
> BooleanMat([[1, 1, 0, 1], [0, 1, 1, 0], [1, 1, 0, 1], [1, 1, 0, 1]]),
|
|
902
|
+
> BooleanMat([[1, 1, 0, 1], [0, 1, 1, 1], [0, 1, 1, 1], [0, 1, 1, 0]]));;
|
|
903
|
+
gap> GroupOfUnits(S);
|
|
904
|
+
fail
|
|
905
|
+
|
|
906
|
+
# attr: GroupOfUnits, infinite 1/1
|
|
907
|
+
gap> GroupOfUnits(FreeInverseSemigroup(2));
|
|
908
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
909
|
+
Error, no 3rd choice method found for `GroupOfUnits' on 1 arguments
|
|
910
|
+
|
|
911
|
+
# attr: NrIdempotents, C++ 1/1
|
|
912
|
+
gap> S := RegularBooleanMatMonoid(3);
|
|
913
|
+
<monoid of 3x3 boolean matrices with 4 generators>
|
|
914
|
+
gap> NrIdempotents(S);
|
|
915
|
+
123
|
|
916
|
+
|
|
917
|
+
# attr: NrIdempotents, non-C++ 1/1
|
|
918
|
+
gap> S := FreeBand(2);;
|
|
919
|
+
gap> NrIdempotents(S);
|
|
920
|
+
6
|
|
921
|
+
|
|
922
|
+
# attr: NrIdempotents, infinite 1/1
|
|
923
|
+
gap> NrIdempotents(FreeSemigroup(2));
|
|
924
|
+
Error, resulting list would be too large (length infinity)
|
|
925
|
+
|
|
926
|
+
# attr: RepresentativeOfMinimalIdeal, simple, 1/1
|
|
927
|
+
gap> S := MinimalIdeal(FreeBand(2));
|
|
928
|
+
<simple semigroup ideal with 1 generator>
|
|
929
|
+
gap> RepresentativeOfMinimalIdeal(S);
|
|
930
|
+
x1x2
|
|
931
|
+
|
|
932
|
+
# attr: MinimalIdeal, infinite, 1/1
|
|
933
|
+
gap> MinimalIdeal(FreeMonoid(3));
|
|
934
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
935
|
+
Error, no 3rd choice method found for `MinimalIdeal' on 1 arguments
|
|
936
|
+
|
|
937
|
+
# attr: IdempotentGeneratedSubsemigroup, inverse op 1/1
|
|
938
|
+
gap> S := DualSymmetricInverseMonoid(2);;
|
|
939
|
+
gap> T := IdempotentGeneratedSubsemigroup(S);
|
|
940
|
+
<commutative inverse block bijection monoid of degree 2 with 1 generator>
|
|
941
|
+
gap> HasIsIdempotentGenerated(T) and IsIdempotentGenerated(T);
|
|
942
|
+
true
|
|
943
|
+
|
|
944
|
+
# attr: MultiplicativeZero, infinite, 1
|
|
945
|
+
#gap> MultiplicativeZero(FreeMonoid(2));
|
|
946
|
+
#FIXME(later) this causes an infinite loop in the GAP library code
|
|
947
|
+
|
|
948
|
+
# attr: MultiplicativeZero, infinite, 2
|
|
949
|
+
gap> F := FreeSemigroup(2);;
|
|
950
|
+
gap> x := [[F.1 * F.1, F.1], [F.1 * F.2, F.1], [F.2 * F.1, F.1]];;
|
|
951
|
+
gap> T := F / x;
|
|
952
|
+
<fp semigroup with 2 generators and 3 relations of length 11>
|
|
953
|
+
gap> IsFinite(T);
|
|
954
|
+
false
|
|
955
|
+
gap> MultiplicativeZero(T);
|
|
956
|
+
s1
|
|
957
|
+
|
|
958
|
+
# attr: MaximalDClasses, infinite 1/1
|
|
959
|
+
gap> MaximalDClasses(FreeMonoid(2));
|
|
960
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
961
|
+
Error, no 2nd choice method found for `MaximalDClasses' on 1 arguments
|
|
962
|
+
|
|
963
|
+
# attr: StructureDescriptionMaximalSubgroups, infinite 1/1
|
|
964
|
+
gap> StructureDescriptionMaximalSubgroups(FreeMonoid(2));
|
|
965
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
966
|
+
Error, no 3rd choice method found for `StructureDescriptionMaximalSubgroups' o\
|
|
967
|
+
n 1 arguments
|
|
968
|
+
|
|
969
|
+
# attr: IdempotentGeneratedSubsemigroup, infinite 1/1
|
|
970
|
+
gap> IdempotentGeneratedSubsemigroup(FreeMonoid(2));
|
|
971
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
972
|
+
Error, no 3rd choice method found for `IdempotentGeneratedSubsemigroup' on 1 a\
|
|
973
|
+
rguments
|
|
974
|
+
|
|
975
|
+
# attr: IdempotentGeneratedSubsemigroup, infinite, inverse-op 1/1
|
|
976
|
+
gap> IdempotentGeneratedSubsemigroup(FreeInverseSemigroup(2));
|
|
977
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
978
|
+
Error, no 4th choice method found for `IdempotentGeneratedSubsemigroup' on 1 a\
|
|
979
|
+
rguments
|
|
980
|
+
|
|
981
|
+
# attr: MultiplicativeNeutralElement, infinite, 1
|
|
982
|
+
gap> MultiplicativeNeutralElement(FreeSemigroup(2));
|
|
983
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
984
|
+
Error, no 2nd choice method found for `MultiplicativeNeutralElement' on 1 argu\
|
|
985
|
+
ments
|
|
986
|
+
|
|
987
|
+
# attr: MultiplicativeNeutralElement, infinite, 2
|
|
988
|
+
gap> S := Semigroup([
|
|
989
|
+
> Matrix(IsMaxPlusMatrix, [[-2, 2], [0, -1]]),
|
|
990
|
+
> Matrix(IsMaxPlusMatrix, [[0, 0], [1, -3]])]);
|
|
991
|
+
<semigroup of 2x2 max-plus matrices with 2 generators>
|
|
992
|
+
gap> MultiplicativeNeutralElement(S);
|
|
993
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
994
|
+
Error, no 3rd choice method found for `MultiplicativeNeutralElement' on 1 argu\
|
|
995
|
+
ments
|
|
996
|
+
|
|
997
|
+
# attr: MultiplicativeNeutralElement, One, 1
|
|
998
|
+
gap> S := Semigroup(Transformation([1, 3, 2]));
|
|
999
|
+
<commutative transformation semigroup of degree 3 with 1 generator>
|
|
1000
|
+
gap> MultiplicativeNeutralElement(S);
|
|
1001
|
+
IdentityTransformation
|
|
1002
|
+
|
|
1003
|
+
# attr: MultiplicativeNeutralElement, One, 2
|
|
1004
|
+
gap> S := Semigroup(Transformation([3, 1, 3]));
|
|
1005
|
+
<commutative transformation semigroup of degree 3 with 1 generator>
|
|
1006
|
+
gap> MultiplicativeNeutralElement(S);
|
|
1007
|
+
fail
|
|
1008
|
+
|
|
1009
|
+
# attr: MultiplicativeNeutralElement, One, 3
|
|
1010
|
+
gap> S := Semigroup(
|
|
1011
|
+
> [BooleanMat([[true, false, false], [true, false, true], [true, true, true]]),
|
|
1012
|
+
> BooleanMat([[true, false, false], [true, true, true], [true, true, false]]),
|
|
1013
|
+
> BooleanMat([[false, true, false], [false, true, true], [true, true, true]]),
|
|
1014
|
+
> BooleanMat([[true, true, false], [true, true, true], [true, false, false]]),
|
|
1015
|
+
> BooleanMat([[false, true, false], [true, true, false], [true, true, true]]),
|
|
1016
|
+
> BooleanMat([[false, false, true], [true, false, true], [true, true, true]]),
|
|
1017
|
+
> BooleanMat([[true, true, false], [true, false, false], [true, true, true]]),
|
|
1018
|
+
> BooleanMat([[false, false, true], [false, true, true], [true, true, true]]),
|
|
1019
|
+
> BooleanMat([[true, true, true], [true, false, false], [true, true, false]]),
|
|
1020
|
+
> BooleanMat([[true, true, true], [true, true, false], [true, false, false]]),
|
|
1021
|
+
> BooleanMat([[true, false, false],
|
|
1022
|
+
> [true, true, false],
|
|
1023
|
+
> [false, false, false]])]);;
|
|
1024
|
+
gap> MultiplicativeNeutralElement(S);
|
|
1025
|
+
fail
|
|
1026
|
+
|
|
1027
|
+
# attr: MultiplicativeNeutralElement, One, 4
|
|
1028
|
+
gap> S := Semigroup([PBR([[-2], [-1]], [[1], [2]])]);
|
|
1029
|
+
<commutative pbr semigroup of degree 2 with 1 generator>
|
|
1030
|
+
gap> MultiplicativeNeutralElement(S);
|
|
1031
|
+
PBR([ [ -1 ], [ -2 ] ], [ [ 1 ], [ 2 ] ])
|
|
1032
|
+
|
|
1033
|
+
# attr: RepresentativeOfMinimalIdeal, infinite 1/1
|
|
1034
|
+
gap> RepresentativeOfMinimalIdeal(FreeSemigroup(2));
|
|
1035
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1036
|
+
Error, no 3rd choice method found for `RepresentativeOfMinimalIdeal' on 1 argu\
|
|
1037
|
+
ments
|
|
1038
|
+
|
|
1039
|
+
# attr: RepresentativeOfMinimalIdeal, simple 1/1
|
|
1040
|
+
gap> S := Semigroup(AsBooleanMat((1, 2)));
|
|
1041
|
+
<commutative semigroup of 2x2 boolean matrices with 1 generator>
|
|
1042
|
+
gap> IsSimpleSemigroup(S);
|
|
1043
|
+
true
|
|
1044
|
+
gap> RepresentativeOfMinimalIdeal(S);
|
|
1045
|
+
Matrix(IsBooleanMat, [[0, 1], [1, 0]])
|
|
1046
|
+
|
|
1047
|
+
# attribute: NilpotencyDegree, 1/4
|
|
1048
|
+
gap> S := Semigroup([
|
|
1049
|
+
> PartialPerm([2], [1]), PartialPerm([1, 2], [3, 1]),
|
|
1050
|
+
> PartialPerm([1, 2], [4, 1]), PartialPerm([1, 2], [5, 1]),
|
|
1051
|
+
> PartialPerm([3], [5]), PartialPerm([2, 3], [3, 5]),
|
|
1052
|
+
> PartialPerm([1, 3], [3, 5]), PartialPerm([1, 2, 3], [3, 1, 5]),
|
|
1053
|
+
> PartialPerm([1, 2, 3], [3, 4, 5]), PartialPerm([3, 4], [5, 3]),
|
|
1054
|
+
> PartialPerm([2, 4], [4, 5]), PartialPerm([2, 3, 4], [4, 5, 3]),
|
|
1055
|
+
> PartialPerm([1, 2, 4], [3, 1, 5]), PartialPerm([1, 2, 4], [4, 1, 5]),
|
|
1056
|
+
> PartialPerm([1, 2, 3, 4], [4, 1, 5, 3])]);
|
|
1057
|
+
<partial perm semigroup of rank 4 with 15 generators>
|
|
1058
|
+
gap> NilpotencyDegree(S);
|
|
1059
|
+
5
|
|
1060
|
+
|
|
1061
|
+
# attribute: NilpotencyDegree, 2/4
|
|
1062
|
+
gap> S := SymmetricGroup(2);
|
|
1063
|
+
Sym( [ 1 .. 2 ] )
|
|
1064
|
+
gap> NilpotencyDegree(S);
|
|
1065
|
+
fail
|
|
1066
|
+
|
|
1067
|
+
# attribute: NilpotencyDegree, 3/4
|
|
1068
|
+
gap> S := FullTransformationMonoid(1);
|
|
1069
|
+
<full transformation monoid of degree 0>
|
|
1070
|
+
gap> NilpotencyDegree(S);
|
|
1071
|
+
1
|
|
1072
|
+
|
|
1073
|
+
# attribute: NilpotencyDegree, 4/4
|
|
1074
|
+
gap> S := Semigroup([
|
|
1075
|
+
> Transformation([5, 2, 5, 3, 6, 6, 4, 6]),
|
|
1076
|
+
> Transformation([6, 2, 5, 7, 5, 3, 7, 7]),
|
|
1077
|
+
> Transformation([8, 4, 6, 4, 5, 6, 8, 1])]);
|
|
1078
|
+
<transformation semigroup of degree 8 with 3 generators>
|
|
1079
|
+
gap> NilpotencyDegree(S);
|
|
1080
|
+
fail
|
|
1081
|
+
|
|
1082
|
+
# attribute: LengthOfLongestDClassChain, 1/4
|
|
1083
|
+
gap> S := FreeSemigroup(1);
|
|
1084
|
+
<free semigroup on the generators [ s1 ]>
|
|
1085
|
+
gap> LengthOfLongestDClassChain(S);
|
|
1086
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1087
|
+
Error, no 3rd choice method found for `LengthOfLongestDClassChain' on 1 argume\
|
|
1088
|
+
nts
|
|
1089
|
+
|
|
1090
|
+
# attribute: LengthOfLongestDClassChain, 2/4
|
|
1091
|
+
gap> S := MonogenicSemigroup(8, 5);
|
|
1092
|
+
<commutative non-regular transformation semigroup of size 12, degree 13 with
|
|
1093
|
+
1 generator>
|
|
1094
|
+
gap> LengthOfLongestDClassChain(S);
|
|
1095
|
+
7
|
|
1096
|
+
|
|
1097
|
+
# attribute: LengthOfLongestDClassChain, 3/4
|
|
1098
|
+
gap> S := Semigroup([
|
|
1099
|
+
> PartialPerm([2], [1]), PartialPerm([1, 2], [3, 1]),
|
|
1100
|
+
> PartialPerm([1, 2], [4, 1]), PartialPerm([1, 2], [5, 1]),
|
|
1101
|
+
> PartialPerm([3], [5]), PartialPerm([2, 3], [3, 5]),
|
|
1102
|
+
> PartialPerm([1, 3], [3, 5]), PartialPerm([1, 2, 3], [3, 1, 5]),
|
|
1103
|
+
> PartialPerm([1, 2, 3], [3, 4, 5]), PartialPerm([3, 4], [5, 3]),
|
|
1104
|
+
> PartialPerm([2, 4], [4, 5]), PartialPerm([2, 3, 4], [4, 5, 3]),
|
|
1105
|
+
> PartialPerm([1, 2, 4], [3, 1, 5]), PartialPerm([1, 2, 4], [4, 1, 5]),
|
|
1106
|
+
> PartialPerm([1, 2, 3, 4], [4, 1, 5, 3])]);
|
|
1107
|
+
<partial perm semigroup of rank 4 with 15 generators>
|
|
1108
|
+
gap> NilpotencyDegree(S);
|
|
1109
|
+
5
|
|
1110
|
+
|
|
1111
|
+
# attribute: LengthOfLongestDClassChain, 4/4
|
|
1112
|
+
gap> S := SymmetricGroup(5);
|
|
1113
|
+
Sym( [ 1 .. 5 ] )
|
|
1114
|
+
gap> LengthOfLongestDClassChain(S);
|
|
1115
|
+
0
|
|
1116
|
+
|
|
1117
|
+
# attribute: NormalizedPrincipalFactor, 1
|
|
1118
|
+
gap> S := FullTransformationMonoid(4);
|
|
1119
|
+
<full transformation monoid of degree 4>
|
|
1120
|
+
gap> S := NormalizedPrincipalFactor(DClass(S,
|
|
1121
|
+
> Transformation([4, 4, 2, 3])));;
|
|
1122
|
+
gap> Rows(S);
|
|
1123
|
+
[ 1 .. 6 ]
|
|
1124
|
+
gap> Columns(S);
|
|
1125
|
+
[ 1 .. 4 ]
|
|
1126
|
+
gap> StructureDescription(UnderlyingSemigroup(S));
|
|
1127
|
+
"S3"
|
|
1128
|
+
|
|
1129
|
+
# attribute: InjectionNormalizedPrincipalFactor, 1
|
|
1130
|
+
gap> S := ReesZeroMatrixSemigroup(Group(()), [[(), 0], [0, ()]]);
|
|
1131
|
+
<Rees 0-matrix semigroup 2x2 over Group(())>
|
|
1132
|
+
gap> InjectionNormalizedPrincipalFactor(DClass(S, RMSElement(S, 1, (), 1)));
|
|
1133
|
+
MappingByFunction( <Green's D-class: (1,(),1)>,
|
|
1134
|
+
<Rees 0-matrix semigroup 2x2 over Group(())>
|
|
1135
|
+
, function( x ) ... end, function( x ) ... end )
|
|
1136
|
+
|
|
1137
|
+
# attribute: InjectionNormalizedPrincipalFactor, 2
|
|
1138
|
+
gap> S := SymmetricInverseMonoid(4);
|
|
1139
|
+
<symmetric inverse monoid of degree 4>
|
|
1140
|
+
gap> InjectionNormalizedPrincipalFactor(DClass(S,
|
|
1141
|
+
> PartialPerm([], [])));
|
|
1142
|
+
MappingByFunction( <Green's D-class: <empty partial perm>>,
|
|
1143
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
1144
|
+
, function( x ) ... end, function( x ) ... end )
|
|
1145
|
+
|
|
1146
|
+
# attribute: InjectionNormalizedPrincipalFactor, 2
|
|
1147
|
+
gap> S := MonogenicSemigroup(4, 2);
|
|
1148
|
+
<commutative non-regular transformation semigroup of size 5, degree 6 with 1
|
|
1149
|
+
generator>
|
|
1150
|
+
gap> InjectionNormalizedPrincipalFactor(DClass(S, S.1));
|
|
1151
|
+
Error, the argument (a Green's D-class) is not regular
|
|
1152
|
+
|
|
1153
|
+
# attrTest6:
|
|
1154
|
+
# UnderlyingSemigroupOfSemigroupWithAdjoinedZero
|
|
1155
|
+
gap> S := FullTransformationMonoid(10);;
|
|
1156
|
+
gap> UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
|
|
1157
|
+
fail
|
|
1158
|
+
gap> S := FullTransformationMonoid(4);;
|
|
1159
|
+
gap> SetIsSemigroupWithAdjoinedZero(S, false);
|
|
1160
|
+
gap> UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
|
|
1161
|
+
fail
|
|
1162
|
+
gap> S := SymmetricInverseMonoid(5);;
|
|
1163
|
+
gap> UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
|
|
1164
|
+
fail
|
|
1165
|
+
gap> S := MonogenicSemigroup(4, 1);
|
|
1166
|
+
<commutative non-regular transformation semigroup of size 4, degree 5 with 1
|
|
1167
|
+
generator>
|
|
1168
|
+
gap> UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
|
|
1169
|
+
fail
|
|
1170
|
+
gap> S := Semigroup(Elements(S));
|
|
1171
|
+
<transformation semigroup of degree 5 with 4 generators>
|
|
1172
|
+
gap> UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
|
|
1173
|
+
fail
|
|
1174
|
+
gap> S := Semigroup([PartialPerm([]), PartialPerm([1])]);
|
|
1175
|
+
<partial perm monoid of rank 1 with 2 generators>
|
|
1176
|
+
gap> UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
|
|
1177
|
+
<trivial partial perm group of rank 1 with 1 generator>
|
|
1178
|
+
|
|
1179
|
+
# attr: IrredundantGeneratingSubset: for a set with a single repeated
|
|
1180
|
+
# element
|
|
1181
|
+
gap> S := Semigroup([Transformation([1, 1]), Transformation([1, 1])]);
|
|
1182
|
+
<transformation semigroup of degree 2 with 2 generators>
|
|
1183
|
+
gap> Size(IrredundantGeneratingSubset(S));
|
|
1184
|
+
1
|
|
1185
|
+
|
|
1186
|
+
# attr: Size: for a monogenic semigroup of special type with minimal
|
|
1187
|
+
# generating set
|
|
1188
|
+
gap> S := Semigroup(Transformation([10, 8, 4, 6, 4, 5, 3, 8, 8, 2]));
|
|
1189
|
+
<commutative transformation semigroup of degree 10 with 1 generator>
|
|
1190
|
+
gap> Size(S);
|
|
1191
|
+
5
|
|
1192
|
+
gap> S := Semigroup(PBR([
|
|
1193
|
+
> [-3, -2, 3], [-4, -2, 3], [-4, -3, -2, 1, 2], [-4, 2, 3, 4]],
|
|
1194
|
+
> [[-3, -2, -1, 2, 3, 4], [-3, -1, 1, 3, 4], [-4, -2, 2, 3], [-4, 1, 2, 3]]));;
|
|
1195
|
+
gap> Size(S);
|
|
1196
|
+
2
|
|
1197
|
+
gap> S := Semigroup(Transformation([2, 5, 4, 1, 6, 3, 2]));
|
|
1198
|
+
<commutative transformation semigroup of degree 7 with 1 generator>
|
|
1199
|
+
gap> Size(S);
|
|
1200
|
+
6
|
|
1201
|
+
gap> S := Semigroup(Bipartition([[1], [2, -4], [3, -5], [4, -6], [5, -1],
|
|
1202
|
+
> [6, -2], [-3]]));
|
|
1203
|
+
<commutative bipartition semigroup of degree 6 with 1 generator>
|
|
1204
|
+
gap> Size(S);
|
|
1205
|
+
5
|
|
1206
|
+
gap> S := Semigroup(Matrix(GF(2 ^ 2),
|
|
1207
|
+
> [[Z(2 ^ 2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1208
|
+
> [Z(2 ^ 2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1209
|
+
> [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1210
|
+
> [0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1211
|
+
> [0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2)],
|
|
1212
|
+
> [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)]]));;
|
|
1213
|
+
gap> Size(S);
|
|
1214
|
+
6
|
|
1215
|
+
gap> S := Semigroup(PartialPerm(
|
|
1216
|
+
> [1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 25, 26, 29],
|
|
1217
|
+
> [2, 20, 9, 6, 15, 12, 10, 3, 21, 17, 5, 1, 13, 7, 11, 24, 19, 4, 22, 30]));
|
|
1218
|
+
<commutative partial perm semigroup of rank 20 with 1 generator>
|
|
1219
|
+
gap> Size(S);
|
|
1220
|
+
8
|
|
1221
|
+
|
|
1222
|
+
# attr: Size: for a monogenic monoid with minimal generating set
|
|
1223
|
+
gap> S := Monoid(Transformation([7, 8, 1, 3, 5, 2, 4, 6]));
|
|
1224
|
+
<commutative transformation monoid of degree 8 with 1 generator>
|
|
1225
|
+
gap> Size(S);
|
|
1226
|
+
12
|
|
1227
|
+
gap> S := Monoid(Transformation([5, 6, 2, 1, 3, 4, 7, 7]));
|
|
1228
|
+
<commutative transformation monoid of degree 8 with 1 generator>
|
|
1229
|
+
gap> Size(S);
|
|
1230
|
+
7
|
|
1231
|
+
gap> S := Monoid(Transformation([4, 5, 5, 7, 1, 7, 4, 3]));
|
|
1232
|
+
<commutative transformation monoid of degree 8 with 1 generator>
|
|
1233
|
+
gap> Size(S);
|
|
1234
|
+
6
|
|
1235
|
+
gap> S := Monoid(Bipartition([[1], [2, -4], [3, -5], [4, -6], [5, -1],
|
|
1236
|
+
> [6, -2], [-3]]));
|
|
1237
|
+
<commutative bipartition monoid of degree 6 with 1 generator>
|
|
1238
|
+
gap> Size(S);
|
|
1239
|
+
6
|
|
1240
|
+
gap> S := Monoid(Matrix(GF(2 ^ 2),
|
|
1241
|
+
> [[Z(2 ^ 2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1242
|
+
> [Z(2 ^ 2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1243
|
+
> [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1244
|
+
> [0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
1245
|
+
> [0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2)],
|
|
1246
|
+
> [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)]]));;
|
|
1247
|
+
gap> Size(S);
|
|
1248
|
+
7
|
|
1249
|
+
gap> S := Monoid(PartialPerm(
|
|
1250
|
+
> [1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 25, 26, 29],
|
|
1251
|
+
> [2, 20, 9, 6, 15, 12, 10, 3, 21, 17, 5, 1, 13, 7, 11, 24, 19, 4, 22, 30]));
|
|
1252
|
+
<commutative partial perm monoid of rank 27 with 1 generator>
|
|
1253
|
+
gap> Size(S);
|
|
1254
|
+
9
|
|
1255
|
+
|
|
1256
|
+
# attr: Size: for a monogenic semigroup/monoid of a type which does not
|
|
1257
|
+
# have a special IndexPeriodOfSemigroup method
|
|
1258
|
+
gap> x := PBR(
|
|
1259
|
+
> [[-75, -62, -55, -24, 15, 50, 61, 66],
|
|
1260
|
+
> [-61, -59, -54, -51, -32, -27, 16, 17, 18, 49, 67],
|
|
1261
|
+
> [-30, 5, 19, 29, 62, 67],
|
|
1262
|
+
> [-72, -63, -46, -28, -10, -7, -2, 9, 59, 73, 74],
|
|
1263
|
+
> [-65, -38, -31, -26, -24, -17, 4, 48, 57, 61],
|
|
1264
|
+
> [-69, -67, -62, -4, -3, 1, 2, 5, 26, 50],
|
|
1265
|
+
> [-73, -19, 5, 26, 55, 57, 62, 63], [-26, -5, 9, 45],
|
|
1266
|
+
> [-75, -71, -59, -53, -10, 20, 29, 62, 64, 69],
|
|
1267
|
+
> [-66, -59, -35, -32, 5, 23, 41, 66],
|
|
1268
|
+
> [-48, -47, -13, 24, 31, 46, 53],
|
|
1269
|
+
> [-75, -47, -34, -22, -14, -7, 10],
|
|
1270
|
+
> [-54, -49, -29, -26, -15, -8, 3, 15, 35, 67, 72],
|
|
1271
|
+
> [-68, -41, -40, -38, -16, 39, 53, 68], [-73, -62, -4, 20, 54],
|
|
1272
|
+
> [-44, -7, 9, 13, 29, 32, 39, 43, 45, 47, 63],
|
|
1273
|
+
> [-56, -45, -11, 12, 24, 28, 41],
|
|
1274
|
+
> [-72, -60, -38, -13, -11, 16, 42, 51, 59, 69],
|
|
1275
|
+
> [-61, 24, 44, 57, 63], [-70, -52, -20, 21, 38, 39, 61],
|
|
1276
|
+
> [-63, -39, -31, 28, 35, 75],
|
|
1277
|
+
> [-73, -58, -53, -36, -11, 25, 48, 54, 69],
|
|
1278
|
+
> [-75, -43, -32, -22, -2, 4, 67], [-32, 10, 27],
|
|
1279
|
+
> [-75, -66, -61, -36, -32, -27, -6, -2, 3, 21, 37, 57, 69],
|
|
1280
|
+
> [-46, 5, 33], [-73, -52, -26, -25, -3, 61, 72],
|
|
1281
|
+
> [-46, -38, -10, -1, 3, 43, 56],
|
|
1282
|
+
> [-26, -20, -12, -3, 32, 44, 53, 60, 61], [-37, -16, -8, 21, 39, 43],
|
|
1283
|
+
> [-75, -36, -32, 17, 32, 46, 54, 64], [-60, 45, 51, 54, 56],
|
|
1284
|
+
> [-66, -24, -15, 12, 21, 37, 53, 62, 72], [-50, -31, 49, 69],
|
|
1285
|
+
> [-69, -62, -41, 29, 32], [26, 60, 67], [-52, -37, -25, -2, 6, 19],
|
|
1286
|
+
> [-65, -44, -42, -35, -21, 14, 64], [-53, -51, -36, -25, -14, 45, 63],
|
|
1287
|
+
> [-72, -51, -21, -7, 6, 20, 61], [-67, -62, -4, 20],
|
|
1288
|
+
> [-28, -17, -13, 6, 8, 17, 36, 41, 71],
|
|
1289
|
+
> [-71, -57, -54, -43, -32, -12, 2, 15, 62, 64, 66, 67],
|
|
1290
|
+
> [-56, -37, 37, 38, 45, 50, 56, 63, 69], [-40, -32, 11, 32, 48, 51],
|
|
1291
|
+
> [-66, -60, -41, 23, 32, 65], [-72, -43, -41, 37, 41, 43, 55],
|
|
1292
|
+
> [-63, -61, -59, -8, -6, 7, 8, 27, 37, 44, 57, 72],
|
|
1293
|
+
> [-47, -45, -3, 11, 17, 19, 45, 57],
|
|
1294
|
+
> [-72, -51, -2, 17, 24, 29, 41, 59, 63],
|
|
1295
|
+
> [-11, -3, -1, 7, 8, 26, 48, 56, 64], [-56, -46, -22, 10, 11],
|
|
1296
|
+
> [65], [-69, -52, -44, -27, -25, -24, -11, -6, 10, 36],
|
|
1297
|
+
> [-62, -51, 2, 27, 61, 63], [-63, -34, -18, 19, 29, 44, 60],
|
|
1298
|
+
> [-57, 3, 27, 55, 58, 64], [-17, -16, -15, 8, 10, 14, 37, 68, 73],
|
|
1299
|
+
> [-13, 2, 5, 21, 31, 43, 53, 73],
|
|
1300
|
+
> [-51, -47, -42, -35, -18, -13, -12, 31, 36, 60],
|
|
1301
|
+
> [-72, -71, -38, -32, -9, 45], [-68, -35, -24, 15, 18, 50, 70],
|
|
1302
|
+
> [-47, -38, -22, -14, 48, 57], [-42, -34, -33, -15, 31, 46, 63],
|
|
1303
|
+
> [-74, -58, 9, 27], [-59, -53, -37, -32, -16, 14, 34, 60, 62],
|
|
1304
|
+
> [-55, -30, -27, -22, -19, 6, 37, 44, 52, 53],
|
|
1305
|
+
> [-75, -57, -20, -14, 2, 7, 8, 17], [-47, -44, -36, 13],
|
|
1306
|
+
> [-69, -47, -43, 4, 11, 17, 41, 56, 57], [-48, -35, 5, 35],
|
|
1307
|
+
> [-28, -9, 9, 12, 17, 30, 33], [-42, -15, -14, -12, -10],
|
|
1308
|
+
> [-68, -62, -48, -12, 3, 40, 56, 68, 73],
|
|
1309
|
+
> [-73, -55, -45, -33, -9, 21, 49, 58]],
|
|
1310
|
+
> [[-64, -63, -26, -2, 47, 63, 74], [-74, -65, -51, -18, 17, 19],
|
|
1311
|
+
> [-72, -67, -66, -48, -7, -5, 8, 21, 26, 35],
|
|
1312
|
+
> [-54, 6, 24, 42, 49, 68], [-71, -51, -37, -17, -4, 22],
|
|
1313
|
+
> [-73, -69, -33, -32, -7, -5, 19, 28, 31],
|
|
1314
|
+
> [-68, -61, -58, -22, 26, 73],
|
|
1315
|
+
> [-59, -53, -5, 10, 18, 28, 34, 35, 55, 56, 60],
|
|
1316
|
+
> [-67, -64, -51, -5, 31, 39, 52, 61, 71],
|
|
1317
|
+
> [-70, -63, -60, -13, 34, 51, 59, 73],
|
|
1318
|
+
> [-61, -56, -14, 17, 18, 20, 24, 41, 42, 67], [-52, -39, -23],
|
|
1319
|
+
> [-63, -30, -14, -10, 1, 22, 50, 60, 61, 69, 72],
|
|
1320
|
+
> [-75, -62, -41, 12, 19, 30, 58, 66, 71], [-66, -31, -3, 13, 26],
|
|
1321
|
+
> [-75, -69, -67, -46, -32, -23, -10, 24, 31, 36, 49],
|
|
1322
|
+
> [-68, -56, -14, -2, 3, 8],
|
|
1323
|
+
> [-75, -63, -50, -41, -22, -5, 9, 10, 30, 43, 52],
|
|
1324
|
+
> [-46, -39, -36, 11, 36, 45, 69], [-70, -60, -58, -48, -36, 3, 33],
|
|
1325
|
+
> [-71, -64, -60, -54, -53, -52, -41, -37, -14, -10, 18, 24, 39],
|
|
1326
|
+
> [-57, -55, -49, -45, -26, -20, -8, 9, 16, 19, 21, 27],
|
|
1327
|
+
> [-61, -50, -36, -31, -28, 12, 28, 37, 50, 51], [-73, -50, -46, -42],
|
|
1328
|
+
> [-75, 52, 55], [-62, -54, -12, 34, 48, 51, 61, 69],
|
|
1329
|
+
> [-67, -60, -10, -2, 10, 15, 22, 52], [-63, -46, 1, 30, 31, 42, 52],
|
|
1330
|
+
> [-16, -6, -2, 16, 26, 58, 68], [-62, -20, 7, 21, 33, 37, 53],
|
|
1331
|
+
> [-71, -43, -19, 24, 25, 52, 65, 68], [-13, 47, 52, 63],
|
|
1332
|
+
> [-68, -65, -51, -42, -17, 12, 15, 55], [-72, -71, -8, 14, 64],
|
|
1333
|
+
> [-74, -69, -56, -55, -36, -15, 11, 13, 20, 43], [-58, 28],
|
|
1334
|
+
> [-74, -71, -63, -49, -44, -11, 31, 50, 60],
|
|
1335
|
+
> [-65, -59, -58, -31, -22, 4, 19, 27, 69],
|
|
1336
|
+
> [-63, -57, -44, -31, -14, -8, 8, 26, 35, 38, 46, 61, 62],
|
|
1337
|
+
> [-69, -61, -51, -25, 13, 25, 27, 56],
|
|
1338
|
+
> [-67, -45, -31, -19, -17, 9, 29, 62], [-33, -20, -17, -2, 33, 60],
|
|
1339
|
+
> [-74, -72, -51, -38, -27],
|
|
1340
|
+
> [-31, -3, 30, 31, 37, 44, 55, 62, 64, 65, 72],
|
|
1341
|
+
> [-66, -64, -59, -57, -51, -45, 2, 30, 48, 67],
|
|
1342
|
+
> [-75, -71, -59, -45, -30, -11, 58, 66],
|
|
1343
|
+
> [-73, -71, -64, -44, -42, -3, 53, 60, 61], [-69, -45, -11, 41],
|
|
1344
|
+
> [-67, -46, -45, -44, -35, -31, -28, -27, 13, 33],
|
|
1345
|
+
> [-74, -69, -59, -42, -26, -12, 1, 26, 31, 34, 42, 49, 54, 63, 72],
|
|
1346
|
+
> [-47, -44, -23, 18, 22, 30], [-60, -56, -38, -10, 2],
|
|
1347
|
+
> [-29, -22, -11, -9, 12],
|
|
1348
|
+
> [-63, -36, -20, 3, 13, 27, 33, 40, 52, 55, 65],
|
|
1349
|
+
> [-64, -56, -14, -6, -4, 2, 6, 22, 37, 47, 52, 56, 73],
|
|
1350
|
+
> [-50, -18, 35, 72], [-56, -51, -43, -22, -18, 60],
|
|
1351
|
+
> [-71, -55, -47, -8, -3, 7, 35, 69, 74, 75], [-63, -49, 36, 55, 61],
|
|
1352
|
+
> [-75, -11, -8, 1, 23, 25, 63, 65, 75],
|
|
1353
|
+
> [-69, -56, -13, -10, -6, 13, 31, 49, 73],
|
|
1354
|
+
> [-20, -15, -9, 51, 62, 63], [-31, -7, 5, 43, 44, 49],
|
|
1355
|
+
> [-74, -64, -60, -50, -47, -2, 18, 45, 54, 66],
|
|
1356
|
+
> [-74, -38, 37, 38, 42, 57], [-73, -50, 34, 62, 63, 67],
|
|
1357
|
+
> [-54, -50, -15, -2, 3, 19, 48, 74],
|
|
1358
|
+
> [-75, -51, -44, -33, 24, 34, 44, 61], [-70, -49, 26, 35, 55],
|
|
1359
|
+
> [-15, -8, 6, 11, 20, 34, 67], [-54, -51, -30, 47],
|
|
1360
|
+
> [-64, -20, -5, 22, 34, 62], [-56, -39, -37, -19, 19, 22, 30, 56],
|
|
1361
|
+
> [-64, -57, -41, -10, -7, 8, 10, 29],
|
|
1362
|
+
> [-34, -13, -12, 12, 51, 57, 62]]);;
|
|
1363
|
+
gap> Size(Semigroup(x));
|
|
1364
|
+
3
|
|
1365
|
+
gap> Size(Monoid(x));
|
|
1366
|
+
4
|
|
1367
|
+
|
|
1368
|
+
# Test for Issue 218
|
|
1369
|
+
gap> S := Semigroup(PlanarPartitionMonoid(5),
|
|
1370
|
+
> AsBipartition((1, 2, 3, 4, 5)), rec(acting := true));;
|
|
1371
|
+
gap> D := DClasses(S)[2];;
|
|
1372
|
+
gap> x := Bipartition([[1, -1], [2, -2], [3, -3], [4, -4, -5], [5]]);;
|
|
1373
|
+
gap> x in D;
|
|
1374
|
+
true
|
|
1375
|
+
gap> inj := InjectionPrincipalFactor(D);;
|
|
1376
|
+
gap> x ^ inj;
|
|
1377
|
+
(3,(1,2,3,4),4)
|
|
1378
|
+
|
|
1379
|
+
# Test GeneratorsSmallest
|
|
1380
|
+
gap> S := Semigroup(IdentityTransformation);;
|
|
1381
|
+
gap> GeneratorsSmallest(S);
|
|
1382
|
+
[ IdentityTransformation ]
|
|
1383
|
+
gap> S := FullBooleanMatMonoid(2);;
|
|
1384
|
+
gap> GeneratorsSmallest(S);
|
|
1385
|
+
[ Matrix(IsBooleanMat, [[0, 0], [0, 0]]),
|
|
1386
|
+
Matrix(IsBooleanMat, [[0, 0], [0, 1]]),
|
|
1387
|
+
Matrix(IsBooleanMat, [[0, 0], [1, 0]]),
|
|
1388
|
+
Matrix(IsBooleanMat, [[0, 0], [1, 1]]),
|
|
1389
|
+
Matrix(IsBooleanMat, [[0, 1], [0, 0]]),
|
|
1390
|
+
Matrix(IsBooleanMat, [[0, 1], [0, 1]]),
|
|
1391
|
+
Matrix(IsBooleanMat, [[0, 1], [1, 0]]),
|
|
1392
|
+
Matrix(IsBooleanMat, [[0, 1], [1, 1]]) ]
|
|
1393
|
+
gap> S = Semigroup(GeneratorsSmallest(S));
|
|
1394
|
+
true
|
|
1395
|
+
gap> IsSet(GeneratorsSmallest(S));
|
|
1396
|
+
true
|
|
1397
|
+
|
|
1398
|
+
# GeneratorsSmallest for CanUseGapFroidurePin
|
|
1399
|
+
gap> S := FreeBand(3);
|
|
1400
|
+
<free band on the generators [ x1, x2, x3 ]>
|
|
1401
|
+
gap> Size(S);
|
|
1402
|
+
159
|
|
1403
|
+
gap> GeneratorsSmallest(S);
|
|
1404
|
+
[ x1, x2x1x2, x3x2x3x1x3x2x3, x3x2x3x1x3x2, x3x2x3x1x2x3, x3x2x3x1x2x3x2,
|
|
1405
|
+
x3x2x3x1x2x3x1x3, x3x2x3x1x2x1x3, x3x2x1x3x2x3, x3x1x3, x2x3x1x3x2x3,
|
|
1406
|
+
x2x3x2x1x3x2x3, x2, x3x2x3, x3 ]
|
|
1407
|
+
|
|
1408
|
+
# Test SmallestElementSemigroup (for a semigroup)
|
|
1409
|
+
gap> S := Semigroup([Matrix(IsBooleanMat, [[0, 0, 1], [0, 1, 1], [1, 0, 0]]),
|
|
1410
|
+
> Matrix(IsBooleanMat, [[1, 0, 0], [1, 0, 1], [1, 1, 1]])]);;
|
|
1411
|
+
gap> SmallestElementSemigroup(S);
|
|
1412
|
+
Matrix(IsBooleanMat, [[0, 0, 1], [0, 1, 1], [1, 0, 0]])
|
|
1413
|
+
gap> S := Semigroup([Matrix(IsMaxPlusMatrix,
|
|
1414
|
+
> [[-2, 2, 0], [-1, 0, 0], [1, -3, 1]]),
|
|
1415
|
+
> Matrix(IsMaxPlusMatrix,
|
|
1416
|
+
> [[-infinity, 0, 0], [0, 1, 0], [1, -1, 0]])]);;
|
|
1417
|
+
gap> SmallestElementSemigroup(S);
|
|
1418
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1419
|
+
Error, no 3rd choice method found for `SmallestElementSemigroup' on 1 argument\
|
|
1420
|
+
s
|
|
1421
|
+
|
|
1422
|
+
# Test LargestElementSemigroup (for a semigroup)
|
|
1423
|
+
gap> S := Semigroup([Matrix(IsBooleanMat, [[0, 0, 1], [0, 1, 1], [1, 0, 0]]),
|
|
1424
|
+
> Matrix(IsBooleanMat, [[1, 0, 0], [1, 0, 1], [1, 1, 1]])]);;
|
|
1425
|
+
gap> LargestElementSemigroup(S);
|
|
1426
|
+
Matrix(IsBooleanMat, [[1, 1, 1], [1, 1, 1], [1, 1, 1]])
|
|
1427
|
+
gap> S := Semigroup([Matrix(IsMaxPlusMatrix,
|
|
1428
|
+
> [[-2, 2, 0], [-1, 0, 0], [1, -3, 1]]),
|
|
1429
|
+
> Matrix(IsMaxPlusMatrix,
|
|
1430
|
+
> [[-infinity, 0, 0], [0, 1, 0], [1, -1, 0]])]);;
|
|
1431
|
+
gap> LargestElementSemigroup(S);
|
|
1432
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1433
|
+
Error, no 3rd choice method found for `LargestElementSemigroup' on 1 arguments
|
|
1434
|
+
|
|
1435
|
+
# attr: InversesOfSemigroupElement, for a group as semigroup
|
|
1436
|
+
gap> S := Semigroup(Transformation([2, 3, 1, 3, 3]));;
|
|
1437
|
+
gap> IsGroupAsSemigroup(S);
|
|
1438
|
+
true
|
|
1439
|
+
gap> InversesOfSemigroupElement(S, S.1);
|
|
1440
|
+
[ Transformation( [ 3, 1, 2, 1, 1 ] ) ]
|
|
1441
|
+
gap> Inverse(S.1);
|
|
1442
|
+
fail
|
|
1443
|
+
gap> S := Semigroup(PartialPerm([2, 3, 1]), rec(acting := false));;
|
|
1444
|
+
gap> IsGroupAsSemigroup(S);
|
|
1445
|
+
true
|
|
1446
|
+
gap> InversesOfSemigroupElement(S, S.1);
|
|
1447
|
+
[ (1,3,2) ]
|
|
1448
|
+
gap> S := SymmetricGroup(3);
|
|
1449
|
+
Sym( [ 1 .. 3 ] )
|
|
1450
|
+
gap> InversesOfSemigroupElement(S, (1, 3, 2));
|
|
1451
|
+
[ (1,2,3) ]
|
|
1452
|
+
|
|
1453
|
+
# attr: InversesOfSemigroupElement, for a semigroup
|
|
1454
|
+
gap> S := Semigroup([
|
|
1455
|
+
> Matrix(IsMaxPlusMatrix, [[-2, 2, 0], [-1, 0, 0], [1, -3, 1]]),
|
|
1456
|
+
> Matrix(IsMaxPlusMatrix, [[- infinity, 0, 0], [0, 1, 0], [1, -1, 0]])]);;
|
|
1457
|
+
gap> InversesOfSemigroupElement(S, S.1);
|
|
1458
|
+
Error, the argument (a semigroup) is not finite
|
|
1459
|
+
gap> S := Semigroup(Transformation([2, 3, 1, 3, 3]));;
|
|
1460
|
+
gap> InversesOfSemigroupElement(S, Transformation([1, 3, 2]));
|
|
1461
|
+
Error, the 2nd argument (a mult. element) must belong to the 1st argument (a s\
|
|
1462
|
+
emigroup)
|
|
1463
|
+
gap> S := Semigroup([Matrix(IsBooleanMat, [[0, 0, 1], [0, 1, 1], [1, 0, 0]]),
|
|
1464
|
+
> Matrix(IsBooleanMat, [[1, 0, 0], [1, 0, 1], [1, 1, 1]])]);;
|
|
1465
|
+
gap> InversesOfSemigroupElement(S, S.1);
|
|
1466
|
+
[ ]
|
|
1467
|
+
gap> InversesOfSemigroupElement(S, S.1 * S.2 * S.1);
|
|
1468
|
+
[ Matrix(IsBooleanMat, [[1, 1, 1], [1, 1, 1], [0, 0, 1]]) ]
|
|
1469
|
+
|
|
1470
|
+
# InversesOfSemigroupElement, for an infinite semigroup, 1
|
|
1471
|
+
gap> S := FreeSemigroup(1);
|
|
1472
|
+
<free semigroup on the generators [ s1 ]>
|
|
1473
|
+
gap> InversesOfSemigroupElement(S, IdentityTransformation);
|
|
1474
|
+
Error, usage: the 2nd argument must be an element of the 1st,
|
|
1475
|
+
gap> InversesOfSemigroupElementNC(S, S.1);
|
|
1476
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1477
|
+
Error, no 1st choice method found for `InversesOfSemigroupElementNC' on 2 argu\
|
|
1478
|
+
ments
|
|
1479
|
+
|
|
1480
|
+
# attr: OneInverseOfSemigroupElement, for a semigroup
|
|
1481
|
+
gap> S := Semigroup([
|
|
1482
|
+
> Matrix(IsMaxPlusMatrix, [[-2, 2, 0], [-1, 0, 0], [1, -3, 1]]),
|
|
1483
|
+
> Matrix(IsMaxPlusMatrix, [[- infinity, 0, 0], [0, 1, 0], [1, -1, 0]])]);;
|
|
1484
|
+
gap> OneInverseOfSemigroupElement(S, S.1);
|
|
1485
|
+
Error, the semigroup is not finite
|
|
1486
|
+
gap> S := Semigroup(Transformation([2, 3, 1, 3, 3]));;
|
|
1487
|
+
gap> OneInverseOfSemigroupElement(S, Transformation([1, 3, 2]));
|
|
1488
|
+
Error, the 2nd argument (a mult. element) must belong to the 1st argument (a s\
|
|
1489
|
+
emigroup)
|
|
1490
|
+
gap> S := Semigroup([Matrix(IsBooleanMat, [[0, 0, 1], [0, 1, 1], [1, 0, 0]]),
|
|
1491
|
+
> Matrix(IsBooleanMat, [[1, 0, 0], [1, 0, 1], [1, 1, 1]])]);;
|
|
1492
|
+
gap> OneInverseOfSemigroupElement(S, S.1);
|
|
1493
|
+
fail
|
|
1494
|
+
gap> OneInverseOfSemigroupElement(S, S.1 * S.2 * S.1);
|
|
1495
|
+
Matrix(IsBooleanMat, [[1, 1, 1], [1, 1, 1], [0, 0, 1]])
|
|
1496
|
+
|
|
1497
|
+
# OneInverseOfSemigroupElement, for a semigroup that cannot use Froidure-Pin
|
|
1498
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
1499
|
+
gap> OneInverseOfSemigroupElement(S, S.1);
|
|
1500
|
+
<universal fake one>
|
|
1501
|
+
|
|
1502
|
+
# OneInverseOfSemigroupElement, for an infinite semigroup, 1
|
|
1503
|
+
gap> S := FreeSemigroup(1);
|
|
1504
|
+
<free semigroup on the generators [ s1 ]>
|
|
1505
|
+
gap> OneInverseOfSemigroupElementNC(S, S.1);
|
|
1506
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1507
|
+
Error, no 2nd choice method found for `OneInverseOfSemigroupElementNC' on 2 ar\
|
|
1508
|
+
guments
|
|
1509
|
+
|
|
1510
|
+
# attr: IdempotentGeneratedSubsemigroup, 2
|
|
1511
|
+
gap> S := FullTransformationMonoid(3);;
|
|
1512
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);;
|
|
1513
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1514
|
+
true
|
|
1515
|
+
gap> IsIdempotentGenerated(I);
|
|
1516
|
+
true
|
|
1517
|
+
|
|
1518
|
+
# attr: IdempotentGeneratedSubsemigroup, for an Rees matrix semigroup, 1
|
|
1519
|
+
# TryNextMethod()
|
|
1520
|
+
|
|
1521
|
+
# Error: infinite
|
|
1522
|
+
gap> S := FreeSemigroup(1);
|
|
1523
|
+
<free semigroup on the generators [ s1 ]>
|
|
1524
|
+
gap> R := ReesMatrixSemigroup(S, [[S.1]]);
|
|
1525
|
+
<Rees matrix semigroup 1x1 over <free semigroup on the generators [ s1 ]>>
|
|
1526
|
+
gap> IdempotentGeneratedSubsemigroup(R);
|
|
1527
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1528
|
+
Error, no 4th choice method found for `IdempotentGeneratedSubsemigroup' on 1 a\
|
|
1529
|
+
rguments
|
|
1530
|
+
|
|
1531
|
+
# not a Rees matrix semigroup
|
|
1532
|
+
gap> x := Transformation([2, 2]);;
|
|
1533
|
+
gap> R := ReesMatrixSemigroup(FullTransformationMonoid(2),
|
|
1534
|
+
> [[IdentityTransformation, x],
|
|
1535
|
+
> [x, x]]);
|
|
1536
|
+
<Rees matrix semigroup 2x2 over <full transformation monoid of degree 2>>
|
|
1537
|
+
gap> S := Semigroup(RMSElement(R, 1, IdentityTransformation, 1),
|
|
1538
|
+
> RMSElement(R, 2, IdentityTransformation, 2));
|
|
1539
|
+
<subsemigroup of 2x2 Rees matrix semigroup with 2 generators>
|
|
1540
|
+
gap> IsReesMatrixSubsemigroup(S);
|
|
1541
|
+
true
|
|
1542
|
+
gap> IsReesMatrixSemigroup(S);
|
|
1543
|
+
false
|
|
1544
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);;
|
|
1545
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1546
|
+
true
|
|
1547
|
+
gap> IsIdempotentGenerated(I);
|
|
1548
|
+
true
|
|
1549
|
+
gap> Size(I) = 5;
|
|
1550
|
+
true
|
|
1551
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1552
|
+
true
|
|
1553
|
+
|
|
1554
|
+
# not over a group
|
|
1555
|
+
gap> x := Transformation([2, 2]);;
|
|
1556
|
+
gap> R := ReesMatrixSemigroup(FullTransformationMonoid(2),
|
|
1557
|
+
> [[IdentityTransformation, x],
|
|
1558
|
+
> [x, x]]);
|
|
1559
|
+
<Rees matrix semigroup 2x2 over <full transformation monoid of degree 2>>
|
|
1560
|
+
gap> I := IdempotentGeneratedSubsemigroup(R);;
|
|
1561
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1562
|
+
true
|
|
1563
|
+
gap> IsIdempotentGenerated(I);
|
|
1564
|
+
true
|
|
1565
|
+
gap> Size(I) = 9;
|
|
1566
|
+
true
|
|
1567
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1568
|
+
true
|
|
1569
|
+
|
|
1570
|
+
# attr: IdempotentGeneratedSubsemigroup, for an Rees matrix semigroup, 2
|
|
1571
|
+
|
|
1572
|
+
# Rectangular bands
|
|
1573
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 1, 1);
|
|
1574
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
1575
|
+
gap> I := IdempotentGeneratedSubsemigroup(R);
|
|
1576
|
+
<subsemigroup of 1x1 Rees matrix semigroup with 1 generator>
|
|
1577
|
+
gap> I = R;
|
|
1578
|
+
true
|
|
1579
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1580
|
+
true
|
|
1581
|
+
gap> IsIdempotentGenerated(I);
|
|
1582
|
+
true
|
|
1583
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1584
|
+
true
|
|
1585
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 3, 1);
|
|
1586
|
+
<Rees matrix semigroup 3x1 over Group(())>
|
|
1587
|
+
gap> I := IdempotentGeneratedSubsemigroup(R);
|
|
1588
|
+
<subsemigroup of 3x1 Rees matrix semigroup with 3 generators>
|
|
1589
|
+
gap> I = R;
|
|
1590
|
+
true
|
|
1591
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1592
|
+
true
|
|
1593
|
+
gap> IsIdempotentGenerated(I);
|
|
1594
|
+
true
|
|
1595
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1596
|
+
true
|
|
1597
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 1, 3);
|
|
1598
|
+
<Rees matrix semigroup 1x3 over Group(())>
|
|
1599
|
+
gap> I := IdempotentGeneratedSubsemigroup(R);
|
|
1600
|
+
<subsemigroup of 1x3 Rees matrix semigroup with 3 generators>
|
|
1601
|
+
gap> I = R;
|
|
1602
|
+
true
|
|
1603
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1604
|
+
true
|
|
1605
|
+
gap> IsIdempotentGenerated(I);
|
|
1606
|
+
true
|
|
1607
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1608
|
+
true
|
|
1609
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 2, 2);
|
|
1610
|
+
<Rees matrix semigroup 2x2 over Group(())>
|
|
1611
|
+
gap> I := IdempotentGeneratedSubsemigroup(R);
|
|
1612
|
+
<subsemigroup of 2x2 Rees matrix semigroup with 2 generators>
|
|
1613
|
+
gap> I = R;
|
|
1614
|
+
true
|
|
1615
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1616
|
+
true
|
|
1617
|
+
gap> IsIdempotentGenerated(I);
|
|
1618
|
+
true
|
|
1619
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1620
|
+
true
|
|
1621
|
+
|
|
1622
|
+
# Subsemigroup, giving non-standard matrix
|
|
1623
|
+
gap> x := [[(2, 3, 5), (1, 2, 4)(3, 5), (1, 3, 5, 2, 4)],
|
|
1624
|
+
> [(1, 3, 5, 4), (2, 3, 5, 4), (1, 3, 5)(2, 4)],
|
|
1625
|
+
> [(2, 3, 5), (1, 5, 4, 3, 2), ()],
|
|
1626
|
+
> [(1, 4, 2, 5), (1, 2)(3, 5), (1, 5, 3, 2, 4)],
|
|
1627
|
+
> [(1, 4)(2, 3, 5), (1, 2)(4, 5), (1, 3, 4, 2, 5)]];;
|
|
1628
|
+
gap> G := SymmetricGroup(5);;
|
|
1629
|
+
gap> R := ReesMatrixSemigroup(G, x);
|
|
1630
|
+
<Rees matrix semigroup 3x5 over Sym( [ 1 .. 5 ] )>
|
|
1631
|
+
gap> S := ReesMatrixSubsemigroup(R, [2], G, [4]);
|
|
1632
|
+
<Rees matrix semigroup 1x1 over Sym( [ 1 .. 5 ] )>
|
|
1633
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1634
|
+
<subsemigroup of 3x5 Rees matrix semigroup with 1 generator>
|
|
1635
|
+
gap> GeneratorsOfSemigroup(I);
|
|
1636
|
+
[ (2,(1,2)(3,5),4) ]
|
|
1637
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1638
|
+
true
|
|
1639
|
+
gap> S := ReesMatrixSubsemigroup(R, [2], G, [3, 4, 5]);
|
|
1640
|
+
<Rees matrix semigroup 1x3 over Sym( [ 1 .. 5 ] )>
|
|
1641
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1642
|
+
<subsemigroup of 3x5 Rees matrix semigroup with 3 generators>
|
|
1643
|
+
gap> GeneratorsOfSemigroup(I);
|
|
1644
|
+
[ (2,(1,2,3,4,5),3), (2,(1,2)(3,5),4), (2,(1,2)(4,5),5) ]
|
|
1645
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1646
|
+
true
|
|
1647
|
+
gap> S := ReesMatrixSubsemigroup(R, [2, 3], G, [4]);
|
|
1648
|
+
<Rees matrix semigroup 2x1 over Sym( [ 1 .. 5 ] )>
|
|
1649
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1650
|
+
<subsemigroup of 3x5 Rees matrix semigroup with 2 generators>
|
|
1651
|
+
gap> GeneratorsOfSemigroup(I);
|
|
1652
|
+
[ (2,(1,2)(3,5),4), (3,(1,4,2,3,5),4) ]
|
|
1653
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1654
|
+
true
|
|
1655
|
+
gap> S := ReesMatrixSubsemigroup(R, [2, 3], G, [4, 5]);
|
|
1656
|
+
<Rees matrix semigroup 2x2 over Sym( [ 1 .. 5 ] )>
|
|
1657
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1658
|
+
<subsemigroup of 3x5 Rees matrix semigroup with 2 generators>
|
|
1659
|
+
gap> GeneratorsOfSemigroup(I);
|
|
1660
|
+
[ (2,(1,2)(3,5),4), (3,(1,5,2,4,3),5) ]
|
|
1661
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1662
|
+
true
|
|
1663
|
+
|
|
1664
|
+
# attr: IdempotentGeneratedSubsemigroup, for an Rees 0-matrix semigroup, 1
|
|
1665
|
+
# TryNextMethod()
|
|
1666
|
+
|
|
1667
|
+
# Error: infinite
|
|
1668
|
+
gap> S := FreeSemigroup(1);
|
|
1669
|
+
<free semigroup on the generators [ s1 ]>
|
|
1670
|
+
gap> R := ReesZeroMatrixSemigroup(S, [[S.1]]);
|
|
1671
|
+
<Rees 0-matrix semigroup 1x1 over <free semigroup on the generators [ s1 ]>>
|
|
1672
|
+
gap> IdempotentGeneratedSubsemigroup(R);
|
|
1673
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1674
|
+
Error, no 4th choice method found for `IdempotentGeneratedSubsemigroup' on 1 a\
|
|
1675
|
+
rguments
|
|
1676
|
+
|
|
1677
|
+
# not a Rees matrix semigroup
|
|
1678
|
+
gap> x := Transformation([2, 2]);;
|
|
1679
|
+
gap> R := ReesZeroMatrixSemigroup(FullTransformationMonoid(2),
|
|
1680
|
+
> [[IdentityTransformation, 0],
|
|
1681
|
+
> [0, x]]);
|
|
1682
|
+
<Rees 0-matrix semigroup 2x2 over <full transformation monoid of degree 2>>
|
|
1683
|
+
gap> S := Semigroup(RMSElement(R, 1, IdentityTransformation, 1),
|
|
1684
|
+
> RMSElement(R, 2, IdentityTransformation, 2));
|
|
1685
|
+
<subsemigroup of 2x2 Rees 0-matrix semigroup with 2 generators>
|
|
1686
|
+
gap> IsReesZeroMatrixSubsemigroup(S);
|
|
1687
|
+
true
|
|
1688
|
+
gap> IsReesZeroMatrixSemigroup(S);
|
|
1689
|
+
false
|
|
1690
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);;
|
|
1691
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1692
|
+
true
|
|
1693
|
+
gap> IsIdempotentGenerated(I);
|
|
1694
|
+
true
|
|
1695
|
+
gap> Size(I) = 3;
|
|
1696
|
+
true
|
|
1697
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1698
|
+
true
|
|
1699
|
+
|
|
1700
|
+
# not over a group
|
|
1701
|
+
gap> x := Transformation([2, 2]);;
|
|
1702
|
+
gap> R := ReesZeroMatrixSemigroup(FullTransformationMonoid(2),
|
|
1703
|
+
> [[IdentityTransformation, 0],
|
|
1704
|
+
> [x, x]]);
|
|
1705
|
+
<Rees 0-matrix semigroup 2x2 over <full transformation monoid of degree 2>>
|
|
1706
|
+
gap> I := IdempotentGeneratedSubsemigroup(R);;
|
|
1707
|
+
gap> HasIsIdempotentGenerated(I);
|
|
1708
|
+
true
|
|
1709
|
+
gap> IsIdempotentGenerated(I);
|
|
1710
|
+
true
|
|
1711
|
+
gap> Size(I) = 10;
|
|
1712
|
+
true
|
|
1713
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1714
|
+
true
|
|
1715
|
+
|
|
1716
|
+
# attr: IdempotentGeneratedSubsemigroup, for an Rees 0-matrix semigroup, 2
|
|
1717
|
+
|
|
1718
|
+
# Subsemigroup, giving non-standard matrix, 1
|
|
1719
|
+
gap> R := ReesZeroMatrixSemigroup(Group(()), [[(), ()], [(), ()]]);
|
|
1720
|
+
<Rees 0-matrix semigroup 2x2 over Group(())>
|
|
1721
|
+
gap> S := Semigroup(RMSElement(R, 2, (), 2), MultiplicativeZero(R));
|
|
1722
|
+
<subsemigroup of 2x2 Rees 0-matrix semigroup with 2 generators>
|
|
1723
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1724
|
+
<subsemigroup of 2x2 Rees 0-matrix semigroup with 2 generators>
|
|
1725
|
+
gap> I = S;
|
|
1726
|
+
true
|
|
1727
|
+
gap> Elements(I);
|
|
1728
|
+
[ 0, (2,(),2) ]
|
|
1729
|
+
|
|
1730
|
+
# Subsemigroup, giving non-standard matrix, 2
|
|
1731
|
+
gap> x := [[(1, 3, 5)(2, 4), (1, 4, 3, 2, 5), (1, 3, 5)(2, 4)],
|
|
1732
|
+
> [(2, 4, 5, 3), 0, (1, 4, 5, 3)],
|
|
1733
|
+
> [(3, 5, 4), 0, (1, 4, 5)(2, 3)],
|
|
1734
|
+
> [0, 0, (1, 3, 4, 2)],
|
|
1735
|
+
> [(2, 3, 4), (1, 2, 5, 4, 3), (1, 5, 3)(2, 4)]];;
|
|
1736
|
+
gap> G := SymmetricGroup(5);;
|
|
1737
|
+
gap> R := ReesZeroMatrixSemigroup(G, x);
|
|
1738
|
+
<Rees 0-matrix semigroup 3x5 over Sym( [ 1 .. 5 ] )>
|
|
1739
|
+
gap> S := ReesZeroMatrixSubsemigroup(R, [2], G, [4]);
|
|
1740
|
+
<Rees 0-matrix semigroup 1x1 over Sym( [ 1 .. 5 ] )>
|
|
1741
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1742
|
+
<subsemigroup of 3x5 Rees 0-matrix semigroup with 1 generator>
|
|
1743
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1744
|
+
true
|
|
1745
|
+
gap> I = Semigroup(Idempotents(S));
|
|
1746
|
+
true
|
|
1747
|
+
gap> S := ReesZeroMatrixSubsemigroup(R, [2], G, [3, 4, 5]);
|
|
1748
|
+
<Rees 0-matrix semigroup 1x3 over Sym( [ 1 .. 5 ] )>
|
|
1749
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1750
|
+
<subsemigroup of 3x5 Rees 0-matrix semigroup with 2 generators>
|
|
1751
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1752
|
+
true
|
|
1753
|
+
gap> I = Semigroup(Idempotents(S));
|
|
1754
|
+
true
|
|
1755
|
+
gap> S := ReesZeroMatrixSubsemigroup(R, [2, 3], G, [4]);
|
|
1756
|
+
<Rees 0-matrix semigroup 2x1 over Sym( [ 1 .. 5 ] )>
|
|
1757
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1758
|
+
<subsemigroup of 3x5 Rees 0-matrix semigroup with 2 generators>
|
|
1759
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1760
|
+
true
|
|
1761
|
+
gap> I = Semigroup(Idempotents(S));
|
|
1762
|
+
true
|
|
1763
|
+
gap> S := ReesZeroMatrixSubsemigroup(R, [2, 3], G, [4, 5]);
|
|
1764
|
+
<Rees 0-matrix semigroup 2x2 over Sym( [ 1 .. 5 ] )>
|
|
1765
|
+
gap> I := IdempotentGeneratedSubsemigroup(S);
|
|
1766
|
+
<subsemigroup of 3x5 Rees 0-matrix semigroup with 3 generators>
|
|
1767
|
+
gap> ForAll(GeneratorsOfSemigroup(I), IsIdempotent);
|
|
1768
|
+
true
|
|
1769
|
+
gap> I = Semigroup(Idempotents(S));
|
|
1770
|
+
true
|
|
1771
|
+
|
|
1772
|
+
# IdempotentGeneratedSubsemigroup, for R(Z)MS where new method is much better
|
|
1773
|
+
|
|
1774
|
+
# RZMS: 2241 generators -> 384 generators
|
|
1775
|
+
gap> R := PrincipalFactor(
|
|
1776
|
+
> DClass(FullTransformationMonoid(7),
|
|
1777
|
+
> Transformation([1, 1, 3, 4, 5, 4, 1])));;
|
|
1778
|
+
gap> Length(Rows(R));
|
|
1779
|
+
350
|
|
1780
|
+
gap> Length(Columns(R));
|
|
1781
|
+
35
|
|
1782
|
+
gap> IdempotentGeneratedSubsemigroup(R);
|
|
1783
|
+
<subsemigroup of 350x35 Rees 0-matrix semigroup with 384 generators>
|
|
1784
|
+
|
|
1785
|
+
# RMS: 7200 generators -> 90 generators
|
|
1786
|
+
gap> R := RectangularBand(IsReesMatrixSemigroup, 80, 90);
|
|
1787
|
+
<Rees matrix semigroup 80x90 over Group(())>
|
|
1788
|
+
gap> IdempotentGeneratedSubsemigroup(R);
|
|
1789
|
+
<subsemigroup of 80x90 Rees matrix semigroup with 90 generators>
|
|
1790
|
+
|
|
1791
|
+
# IndecomposableElements
|
|
1792
|
+
gap> S := FullTransformationMonoid(3);
|
|
1793
|
+
<full transformation monoid of degree 3>
|
|
1794
|
+
gap> S := Semigroup(GeneratorsOfMonoid(S));
|
|
1795
|
+
<transformation semigroup of degree 3 with 3 generators>
|
|
1796
|
+
gap> HasIsSurjectiveSemigroup(S);
|
|
1797
|
+
false
|
|
1798
|
+
gap> IndecomposableElements(S);
|
|
1799
|
+
[ ]
|
|
1800
|
+
gap> S := Semigroup(S);
|
|
1801
|
+
<transformation semigroup of degree 3 with 3 generators>
|
|
1802
|
+
gap> IsMonoidAsSemigroup(S);
|
|
1803
|
+
true
|
|
1804
|
+
gap> HasIsSurjectiveSemigroup(S) and IsSurjectiveSemigroup(S);
|
|
1805
|
+
true
|
|
1806
|
+
gap> HasIndecomposableElements(S);
|
|
1807
|
+
false
|
|
1808
|
+
gap> IndecomposableElements(S);
|
|
1809
|
+
[ ]
|
|
1810
|
+
gap> S := MonogenicSemigroup(3, 2);;
|
|
1811
|
+
gap> IndecomposableElements(S) = [S.1];
|
|
1812
|
+
true
|
|
1813
|
+
|
|
1814
|
+
# MinimalSemigroupGeneratingSet: for a monogenic semigroup, 1
|
|
1815
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 4, 5);
|
|
1816
|
+
<commutative non-regular transformation semigroup of size 8, degree 9 with 1
|
|
1817
|
+
generator>
|
|
1818
|
+
gap> MinimalSemigroupGeneratingSet(S);
|
|
1819
|
+
[ Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] ) ]
|
|
1820
|
+
gap> x := MinimalSemigroupGeneratingSet(S)[1];
|
|
1821
|
+
Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] )
|
|
1822
|
+
gap> S := Semigroup(x, x ^ 2);
|
|
1823
|
+
<transformation semigroup of degree 9 with 2 generators>
|
|
1824
|
+
gap> x := MinimalSemigroupGeneratingSet(S);
|
|
1825
|
+
[ Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] ) ]
|
|
1826
|
+
gap> Length(x);
|
|
1827
|
+
1
|
|
1828
|
+
gap> S = Semigroup(x);
|
|
1829
|
+
true
|
|
1830
|
+
|
|
1831
|
+
# MinimalSemigroupGeneratingSet: for a 2-generated semigroup, 1
|
|
1832
|
+
gap> S := SymmetricInverseMonoid(1);
|
|
1833
|
+
<symmetric inverse monoid of degree 1>
|
|
1834
|
+
gap> x := MinimalSemigroupGeneratingSet(S);
|
|
1835
|
+
[ <empty partial perm>, <identity partial perm on [ 1 ]> ]
|
|
1836
|
+
gap> Length(x);
|
|
1837
|
+
2
|
|
1838
|
+
gap> S = Semigroup(x);
|
|
1839
|
+
true
|
|
1840
|
+
|
|
1841
|
+
# MinimalSemigroupGeneratingSet: for a semigroup with identity adjoined, 1
|
|
1842
|
+
gap> S := Monoid(RectangularBand(IsBipartitionSemigroup, 2, 2));
|
|
1843
|
+
<bipartition monoid of degree 2 with 2 generators>
|
|
1844
|
+
gap> x := MinimalSemigroupGeneratingSet(S);;
|
|
1845
|
+
gap> Length(x);
|
|
1846
|
+
3
|
|
1847
|
+
gap> S = Semigroup(x);
|
|
1848
|
+
true
|
|
1849
|
+
|
|
1850
|
+
# MinimalSemigroupGeneratingSet: for a semigroup with zero adjoined, 1
|
|
1851
|
+
gap> S := ReesZeroMatrixSemigroup(Group(()), [[(), ()]]);
|
|
1852
|
+
<Rees 0-matrix semigroup 2x1 over Group(())>
|
|
1853
|
+
gap> x := MinimalSemigroupGeneratingSet(S);
|
|
1854
|
+
[ 0, (1,(),1), (2,(),1) ]
|
|
1855
|
+
gap> Length(x);
|
|
1856
|
+
3
|
|
1857
|
+
gap> S = Semigroup(x);
|
|
1858
|
+
true
|
|
1859
|
+
|
|
1860
|
+
# MinimalSemigroupGeneratingSet: decomposable elements, 1
|
|
1861
|
+
gap> S := Semigroup(ZeroSemigroup(IsPartialPermSemigroup, 4));
|
|
1862
|
+
<partial perm semigroup of rank 3 with 3 generators>
|
|
1863
|
+
gap> x := MinimalSemigroupGeneratingSet(S);
|
|
1864
|
+
[ [1,2], [3,4], [5,6] ]
|
|
1865
|
+
gap> Length(x);
|
|
1866
|
+
3
|
|
1867
|
+
gap> S = Semigroup(x);
|
|
1868
|
+
true
|
|
1869
|
+
gap> S := Semigroup(Elements(S));
|
|
1870
|
+
<partial perm semigroup of rank 3 with 4 generators>
|
|
1871
|
+
gap> x := MinimalSemigroupGeneratingSet(S);
|
|
1872
|
+
[ [1,2], [3,4], [5,6] ]
|
|
1873
|
+
gap> Length(x);
|
|
1874
|
+
3
|
|
1875
|
+
|
|
1876
|
+
# MinimalSemigroupGeneratingSet: decomposable elements, 2
|
|
1877
|
+
gap> S := Monoid([
|
|
1878
|
+
> Transformation([1, 1, 1, 2]),
|
|
1879
|
+
> Transformation([1, 1, 2, 1]),
|
|
1880
|
+
> Transformation([1, 1, 2, 2]),
|
|
1881
|
+
> Transformation([1, 1, 1, 1, 6, 5])]);
|
|
1882
|
+
<transformation monoid of degree 6 with 4 generators>
|
|
1883
|
+
gap> x := MinimalSemigroupGeneratingSet(S);
|
|
1884
|
+
[ IdentityTransformation, Transformation( [ 1, 1, 1, 1, 6, 5 ] ),
|
|
1885
|
+
Transformation( [ 1, 1, 1, 2 ] ), Transformation( [ 1, 1, 2, 1 ] ),
|
|
1886
|
+
Transformation( [ 1, 1, 2, 2 ] ) ]
|
|
1887
|
+
gap> Length(x);
|
|
1888
|
+
5
|
|
1889
|
+
gap> S = Semigroup(x);
|
|
1890
|
+
true
|
|
1891
|
+
|
|
1892
|
+
# MinimalSemigroupGeneratingSet: for a group as semigroup, 1
|
|
1893
|
+
gap> S = Semigroup(x);
|
|
1894
|
+
true
|
|
1895
|
+
gap> S := Semigroup([
|
|
1896
|
+
> Transformation([1, 3, 2, 1]),
|
|
1897
|
+
> Transformation([2, 1, 3, 2]),
|
|
1898
|
+
> Transformation([3, 1, 2, 3])]);
|
|
1899
|
+
<transformation semigroup of degree 4 with 3 generators>
|
|
1900
|
+
gap> x := MinimalSemigroupGeneratingSet(S);;
|
|
1901
|
+
gap> Length(x);
|
|
1902
|
+
2
|
|
1903
|
+
gap> S = Semigroup(x);
|
|
1904
|
+
true
|
|
1905
|
+
|
|
1906
|
+
# MinimalSemigroupGeneratingSet: for a monoid, 1
|
|
1907
|
+
gap> S := FullTransformationMonoid(4);
|
|
1908
|
+
<full transformation monoid of degree 4>
|
|
1909
|
+
gap> x := MinimalSemigroupGeneratingSet(S);;
|
|
1910
|
+
gap> Length(x);
|
|
1911
|
+
3
|
|
1912
|
+
gap> S = Semigroup(x);
|
|
1913
|
+
true
|
|
1914
|
+
|
|
1915
|
+
# MinimalSemigroupGeneratingSet: for a trivial semigroup, 1
|
|
1916
|
+
gap> S := FreeSemigroup(1);;
|
|
1917
|
+
gap> S := S / [[S.1 ^ 2, S.1]];
|
|
1918
|
+
<fp semigroup with 1 generator and 1 relation of length 4>
|
|
1919
|
+
gap> MinimalSemigroupGeneratingSet(S);
|
|
1920
|
+
[ s1 ]
|
|
1921
|
+
|
|
1922
|
+
# MinimalSemigroupGeneratingSet: for a D-trivial semigroup, 1
|
|
1923
|
+
gap> n := 3;;
|
|
1924
|
+
gap> S := UnitriangularBooleanMatMonoid(n);
|
|
1925
|
+
<monoid of 3x3 boolean matrices with 3 generators>
|
|
1926
|
+
gap> x := MinimalSemigroupGeneratingSet(S);;
|
|
1927
|
+
gap> Length(x);
|
|
1928
|
+
4
|
|
1929
|
+
gap> S = Semigroup(x);
|
|
1930
|
+
true
|
|
1931
|
+
|
|
1932
|
+
# MinimalSemigroupGeneratingSet: not yet implemented, 1
|
|
1933
|
+
gap> S := PartitionMonoid(4);
|
|
1934
|
+
<regular bipartition *-monoid of size 4140, degree 4 with 4 generators>
|
|
1935
|
+
gap> x := MinimalSemigroupGeneratingSet(S);
|
|
1936
|
+
Error, no further methods for computing minimal generating sets are implemente\
|
|
1937
|
+
d
|
|
1938
|
+
|
|
1939
|
+
# MinimalMonoidGeneratingSet: for a trivial monoid, 1
|
|
1940
|
+
gap> S := FreeMonoid(1);;
|
|
1941
|
+
gap> S := S / [[S.1, S.1 ^ 0]];
|
|
1942
|
+
<fp monoid with 1 generator and 1 relation of length 2>
|
|
1943
|
+
gap> MinimalMonoidGeneratingSet(S);
|
|
1944
|
+
[ <identity ...> ]
|
|
1945
|
+
|
|
1946
|
+
# MinimalMonoidGeneratingSet: for a monoid, 1
|
|
1947
|
+
gap> S := FullTransformationMonoid(3);;
|
|
1948
|
+
gap> x := MinimalMonoidGeneratingSet(S);;
|
|
1949
|
+
gap> Length(x);
|
|
1950
|
+
3
|
|
1951
|
+
gap> Monoid(x) = S;
|
|
1952
|
+
true
|
|
1953
|
+
|
|
1954
|
+
# MinimalMonoidGeneratingSet: for a monoid, 2
|
|
1955
|
+
gap> S := SymmetricInverseMonoid(2);
|
|
1956
|
+
<symmetric inverse monoid of degree 2>
|
|
1957
|
+
gap> MinimalMonoidGeneratingSet(S);
|
|
1958
|
+
[ <identity partial perm on [ 1 ]>, (1,2) ]
|
|
1959
|
+
gap> S := AsSemigroup(IsBlockBijectionSemigroup, S);;
|
|
1960
|
+
gap> MinimalMonoidGeneratingSet(S);
|
|
1961
|
+
[ <block bijection: [ 1, -1 ], [ 2, 3, -2, -3 ]>,
|
|
1962
|
+
<block bijection: [ 1, -2 ], [ 2, -1 ], [ 3, -3 ]> ]
|
|
1963
|
+
|
|
1964
|
+
# MinimalMonoidGeneratingSet: for a monoid, 2
|
|
1965
|
+
gap> S := SymmetricInverseMonoid(1);
|
|
1966
|
+
<symmetric inverse monoid of degree 1>
|
|
1967
|
+
gap> MinimalMonoidGeneratingSet(S);
|
|
1968
|
+
[ <empty partial perm>, <identity partial perm on [ 1 ]> ]
|
|
1969
|
+
gap> S := AsSemigroup(IsBlockBijectionSemigroup, S);;
|
|
1970
|
+
gap> MinimalMonoidGeneratingSet(S);
|
|
1971
|
+
[ <block bijection: [ 1, 2, -1, -2 ]> ]
|
|
1972
|
+
|
|
1973
|
+
# MinimalMonoidGeneratingSet: for a monoid, 3
|
|
1974
|
+
gap> x := Bipartition([[1, 3, -1, -2], [2, -3]]);;
|
|
1975
|
+
gap> S := Monoid(x, x ^ 2);
|
|
1976
|
+
<block bijection monoid of degree 3 with 2 generators>
|
|
1977
|
+
gap> MinimalMonoidGeneratingSet(S) = [x];
|
|
1978
|
+
true
|
|
1979
|
+
|
|
1980
|
+
# NambooripadPartialOrder
|
|
1981
|
+
gap> S := Semigroup([Transformation([3, 4, 4, 1]),
|
|
1982
|
+
> Transformation([4, 1, 2, 1]), Transformation([3, 3, 3, 1]),
|
|
1983
|
+
> Transformation([2, 1, 4, 1])]);;
|
|
1984
|
+
gap> s := NambooripadPartialOrder(S);
|
|
1985
|
+
[ [ ], [ 1, 32 ], [ 1, 47 ], [ 1, 78 ], [ 1, 32 ], [ 1, 47 ], [ 1, 78 ],
|
|
1986
|
+
[ 1, 32 ], [ 1, 32 ], [ 1, 32 ], [ 1, 4, 9, 10, 24, 32, 33, 65, 78 ],
|
|
1987
|
+
[ 1, 7, 8, 10, 24, 32, 34, 66, 78 ], [ 1, 47 ], [ 1, 47 ], [ 1, 47 ],
|
|
1988
|
+
[ 1, 4, 14, 15, 24, 47, 48, 70, 78 ], [ 1, 7, 13, 15, 24, 47, 49, 71, 78 ],
|
|
1989
|
+
[ 1, 78 ], [ 1, 5, 10, 18, 24, 32, 36, 73, 78 ],
|
|
1990
|
+
[ 1, 6, 15, 18, 24, 47, 51, 74, 78 ], [ 1, 78 ],
|
|
1991
|
+
[ 1, 2, 10, 21, 24, 32, 38, 76, 78 ], [ 1, 3, 15, 21, 24, 47, 53, 77, 78 ],
|
|
1992
|
+
[ 1, 78 ], [ 1, 32 ], [ 1, 32 ], [ 1, 4, 25, 26, 32, 33, 39, 58, 78 ],
|
|
1993
|
+
[ 1, 32 ], [ 1, 7, 25, 28, 32, 34, 39, 61, 78 ], [ 1, 32 ], [ 1, 32 ],
|
|
1994
|
+
[ ], [ 32, 78 ], [ 32, 78 ], [ 1, 18, 25, 30, 32, 36, 39, 72, 78 ],
|
|
1995
|
+
[ 32, 78 ], [ 1, 21, 25, 31, 32, 38, 39, 75, 78 ], [ 32, 78 ], [ 32, 78 ],
|
|
1996
|
+
[ 1, 47 ], [ 1, 47 ], [ 1, 4, 40, 41, 47, 48, 54, 58, 78 ], [ 1, 47 ],
|
|
1997
|
+
[ 1, 7, 40, 43, 47, 49, 54, 61, 78 ], [ 1, 47 ], [ 1, 47 ], [ ],
|
|
1998
|
+
[ 47, 78 ], [ 47, 78 ], [ 1, 18, 40, 45, 47, 51, 54, 72, 78 ], [ 47, 78 ],
|
|
1999
|
+
[ 1, 21, 40, 46, 47, 53, 54, 75, 78 ], [ 47, 78 ], [ 47, 78 ], [ 1, 78 ],
|
|
2000
|
+
[ 1, 2, 26, 32, 55, 58, 64, 76, 78 ], [ 1, 3, 41, 47, 55, 58, 69, 77, 78 ],
|
|
2001
|
+
[ 1, 78 ], [ 1, 5, 28, 32, 55, 61, 64, 73, 78 ],
|
|
2002
|
+
[ 1, 6, 43, 47, 55, 61, 69, 74, 78 ], [ 1, 78 ],
|
|
2003
|
+
[ 1, 8, 30, 32, 55, 64, 66, 72, 78 ], [ 1, 9, 31, 32, 55, 64, 65, 75, 78 ],
|
|
2004
|
+
[ 32, 78 ], [ 32, 78 ], [ 32, 78 ], [ 1, 13, 45, 47, 55, 69, 71, 72, 78 ],
|
|
2005
|
+
[ 1, 14, 46, 47, 55, 69, 70, 75, 78 ], [ 47, 78 ], [ 47, 78 ], [ 47, 78 ],
|
|
2006
|
+
[ 1, 78 ], [ 32, 78 ], [ 47, 78 ], [ 1, 78 ], [ 32, 78 ], [ 47, 78 ], [ ] ]
|
|
2007
|
+
gap> GR := Digraph(s);
|
|
2008
|
+
<immutable digraph with 78 vertices, 316 edges>
|
|
2009
|
+
gap> IsPartialOrderDigraph(DigraphReflexiveTransitiveClosure(GR));
|
|
2010
|
+
true
|
|
2011
|
+
gap> S := FullTransformationMonoid(4);;
|
|
2012
|
+
gap> s := NambooripadPartialOrder(S);
|
|
2013
|
+
[ [ ], [ 1, 86 ], [ 1, 171 ], [ 1, 256 ], [ 1, 86 ], [ 1, 86 ],
|
|
2014
|
+
[ 1, 3, 5, 6, 11, 86, 87, 167, 171 ], [ 1, 4, 5, 6, 16, 86, 88, 248, 256 ],
|
|
2015
|
+
[ 1, 171 ], [ 1, 2, 6, 9, 11, 86, 90, 170, 171 ], [ 1, 171 ],
|
|
2016
|
+
[ 1, 4, 9, 11, 16, 171, 172, 252, 256 ], [ 1, 256 ],
|
|
2017
|
+
[ 1, 2, 6, 13, 16, 86, 94, 254, 256 ],
|
|
2018
|
+
[ 1, 3, 11, 13, 16, 171, 175, 255, 256 ], [ 1, 256 ], [ 1, 86 ], [ 1, 86 ],
|
|
2019
|
+
[ 1, 3, 17, 18, 35, 86, 87, 155, 171 ],
|
|
2020
|
+
[ 1, 4, 17, 18, 52, 86, 88, 224, 256 ], [ 1, 86 ], [ 1, 86 ],
|
|
2021
|
+
[ 1, 3, 21, 22, 43, 86, 87, 151, 171 ],
|
|
2022
|
+
[ 1, 4, 21, 22, 64, 86, 88, 216, 256 ],
|
|
2023
|
+
[ 1, 9, 17, 21, 41, 86, 90, 155, 171 ],
|
|
2024
|
+
[ 1, 9, 18, 22, 43, 86, 90, 154, 171 ],
|
|
2025
|
+
[ 1, 11, 17, 22, 43, 86, 91, 155, 171 ],
|
|
2026
|
+
[ 1, 4, 9, 11, 12, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 32, 41, 43, 44,
|
|
2027
|
+
52, 60, 64, 86, 88, 90, 91, 92, 96, 154, 155, 156, 171, 172, 188, 216,
|
|
2028
|
+
220, 224, 236, 252, 256 ], [ 1, 13, 17, 21, 61, 86, 94, 224, 256 ],
|
|
2029
|
+
[ 1, 13, 18, 22, 64, 86, 94, 222, 256 ],
|
|
2030
|
+
[ 1, 3, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 27, 29, 30, 32, 35, 43, 47,
|
|
2031
|
+
61, 63, 64, 86, 87, 91, 94, 95, 96, 151, 155, 159, 171, 175, 191, 222,
|
|
2032
|
+
223, 224, 239, 255, 256 ], [ 1, 16, 17, 22, 64, 86, 96, 224, 256 ],
|
|
2033
|
+
[ 1, 171 ], [ 1, 2, 18, 33, 35, 86, 102, 170, 171 ], [ 1, 171 ],
|
|
2034
|
+
[ 1, 4, 33, 35, 52, 171, 172, 240, 256 ],
|
|
2035
|
+
[ 1, 5, 21, 33, 41, 86, 102, 167, 171 ],
|
|
2036
|
+
[ 1, 6, 22, 33, 43, 86, 102, 166, 171 ],
|
|
2037
|
+
[ 1, 5, 22, 35, 43, 86, 103, 167, 171 ],
|
|
2038
|
+
[ 1, 4, 5, 6, 8, 16, 21, 22, 24, 33, 35, 36, 37, 38, 39, 41, 43, 44, 48,
|
|
2039
|
+
52, 56, 64, 86, 88, 102, 103, 104, 120, 166, 167, 168, 171, 172, 176,
|
|
2040
|
+
216, 232, 236, 240, 248, 256 ], [ 1, 171 ],
|
|
2041
|
+
[ 1, 2, 22, 41, 43, 86, 106, 170, 171 ], [ 1, 171 ],
|
|
2042
|
+
[ 1, 4, 41, 43, 64, 171, 172, 236, 256 ],
|
|
2043
|
+
[ 1, 13, 33, 41, 61, 171, 175, 240, 256 ],
|
|
2044
|
+
[ 1, 2, 6, 13, 14, 16, 18, 22, 30, 33, 34, 35, 38, 41, 42, 43, 45, 47, 48,
|
|
2045
|
+
61, 62, 64, 86, 94, 102, 106, 110, 126, 166, 170, 171, 174, 175, 176,
|
|
2046
|
+
222, 238, 239, 240, 254, 256 ],
|
|
2047
|
+
[ 1, 13, 35, 43, 64, 171, 175, 239, 256 ],
|
|
2048
|
+
[ 1, 16, 33, 43, 64, 171, 176, 240, 256 ], [ 1, 256 ],
|
|
2049
|
+
[ 1, 2, 18, 49, 52, 86, 118, 254, 256 ],
|
|
2050
|
+
[ 1, 3, 35, 49, 52, 171, 187, 255, 256 ], [ 1, 256 ],
|
|
2051
|
+
[ 1, 5, 21, 49, 61, 86, 118, 248, 256 ],
|
|
2052
|
+
[ 1, 6, 22, 49, 64, 86, 118, 246, 256 ],
|
|
2053
|
+
[ 1, 3, 5, 6, 7, 11, 21, 22, 23, 35, 39, 43, 49, 51, 52, 53, 54, 56, 59,
|
|
2054
|
+
61, 63, 64, 86, 87, 103, 118, 119, 120, 151, 167, 171, 183, 187, 191,
|
|
2055
|
+
246, 247, 248, 251, 255, 256 ], [ 1, 5, 22, 52, 64, 86, 120, 248, 256 ],
|
|
2056
|
+
[ 1, 9, 41, 49, 61, 171, 187, 252, 256 ],
|
|
2057
|
+
[ 1, 2, 6, 9, 10, 11, 18, 22, 26, 41, 42, 43, 49, 50, 52, 54, 57, 59, 60,
|
|
2058
|
+
61, 62, 64, 86, 90, 106, 118, 122, 126, 154, 170, 171, 186, 187, 188,
|
|
2059
|
+
246, 250, 251, 252, 254, 256 ],
|
|
2060
|
+
[ 1, 11, 43, 49, 64, 171, 187, 251, 256 ],
|
|
2061
|
+
[ 1, 9, 43, 52, 64, 171, 188, 252, 256 ], [ 1, 256 ],
|
|
2062
|
+
[ 1, 2, 22, 61, 64, 86, 126, 254, 256 ],
|
|
2063
|
+
[ 1, 3, 43, 61, 64, 171, 191, 255, 256 ], [ 1, 256 ], [ 1, 86 ], [ 1, 86 ],
|
|
2064
|
+
[ 1, 3, 65, 66, 86, 87, 107, 131, 171 ],
|
|
2065
|
+
[ 1, 4, 65, 66, 86, 88, 128, 196, 256 ], [ 1, 86 ], [ 1, 86 ],
|
|
2066
|
+
[ 1, 3, 69, 70, 86, 87, 103, 139, 171 ],
|
|
2067
|
+
[ 1, 4, 69, 70, 86, 88, 120, 208, 256 ],
|
|
2068
|
+
[ 1, 9, 65, 69, 86, 90, 107, 137, 171 ],
|
|
2069
|
+
[ 1, 9, 66, 70, 86, 90, 106, 139, 171 ],
|
|
2070
|
+
[ 1, 11, 65, 70, 86, 91, 107, 139, 171 ],
|
|
2071
|
+
[ 1, 4, 9, 11, 12, 16, 65, 66, 68, 69, 70, 72, 73, 74, 75, 80, 86, 88, 90,
|
|
2072
|
+
91, 92, 96, 106, 107, 108, 120, 124, 128, 137, 139, 140, 171, 172, 188,
|
|
2073
|
+
196, 204, 208, 236, 252, 256 ], [ 1, 13, 65, 69, 86, 94, 128, 205, 256 ]
|
|
2074
|
+
, [ 1, 13, 66, 70, 86, 94, 126, 208, 256 ],
|
|
2075
|
+
[ 1, 3, 11, 13, 15, 16, 65, 66, 67, 69, 70, 71, 75, 77, 78, 80, 86, 87, 91,
|
|
2076
|
+
94, 95, 96, 103, 107, 111, 126, 127, 128, 131, 139, 143, 171, 175, 191,
|
|
2077
|
+
205, 207, 208, 239, 255, 256 ], [ 1, 16, 65, 70, 86, 96, 128, 208, 256 ]
|
|
2078
|
+
, [ 1, 86 ], [ 1, 86 ], [ 1, 3, 81, 82, 86, 87, 91, 163, 171 ],
|
|
2079
|
+
[ 1, 4, 81, 82, 86, 88, 96, 244, 256 ], [ 1, 86 ], [ ], [ 86, 171 ],
|
|
2080
|
+
[ 86, 256 ], [ 1, 9, 81, 85, 86, 90, 91, 169, 171 ], [ 86, 171 ],
|
|
2081
|
+
[ 86, 171 ], [ 86, 88, 90, 91, 96, 171, 172, 252, 256 ],
|
|
2082
|
+
[ 1, 13, 81, 85, 86, 94, 96, 253, 256 ], [ 86, 256 ],
|
|
2083
|
+
[ 86, 87, 91, 94, 96, 171, 175, 255, 256 ], [ 86, 256 ],
|
|
2084
|
+
[ 1, 33, 65, 81, 86, 102, 107, 161, 171 ],
|
|
2085
|
+
[ 1, 33, 66, 82, 86, 102, 106, 163, 171 ],
|
|
2086
|
+
[ 1, 35, 65, 82, 86, 103, 107, 163, 171 ],
|
|
2087
|
+
[ 1, 4, 33, 35, 36, 52, 65, 66, 68, 81, 82, 84, 86, 88, 96, 97, 98, 99,
|
|
2088
|
+
102, 103, 104, 106, 107, 108, 112, 116, 120, 128, 161, 163, 164, 171,
|
|
2089
|
+
172, 176, 196, 228, 236, 240, 244, 256 ],
|
|
2090
|
+
[ 1, 33, 69, 85, 86, 102, 103, 169, 171 ], [ 86, 171 ], [ 86, 171 ],
|
|
2091
|
+
[ 86, 88, 102, 103, 120, 171, 172, 240, 256 ],
|
|
2092
|
+
[ 1, 41, 65, 85, 86, 106, 107, 169, 171 ], [ 86, 171 ], [ 86, 171 ],
|
|
2093
|
+
[ 86, 88, 106, 107, 128, 171, 172, 236, 256 ],
|
|
2094
|
+
[ 1, 13, 33, 41, 45, 61, 65, 69, 77, 81, 85, 86, 93, 94, 96, 97, 101, 102,
|
|
2095
|
+
103, 105, 106, 107, 110, 111, 112, 125, 126, 128, 161, 169, 171, 173,
|
|
2096
|
+
175, 176, 205, 237, 239, 240, 253, 256 ],
|
|
2097
|
+
[ 86, 94, 102, 106, 126, 171, 175, 240, 256 ],
|
|
2098
|
+
[ 86, 94, 103, 107, 128, 171, 175, 239, 256 ],
|
|
2099
|
+
[ 86, 96, 102, 107, 128, 171, 176, 240, 256 ],
|
|
2100
|
+
[ 1, 49, 65, 81, 86, 118, 128, 241, 256 ],
|
|
2101
|
+
[ 1, 49, 66, 82, 86, 118, 126, 244, 256 ],
|
|
2102
|
+
[ 1, 3, 35, 49, 51, 52, 65, 66, 67, 81, 82, 83, 86, 87, 91, 99, 103, 107,
|
|
2103
|
+
113, 114, 116, 118, 119, 120, 123, 126, 127, 128, 131, 163, 171, 179,
|
|
2104
|
+
187, 191, 241, 243, 244, 251, 255, 256 ],
|
|
2105
|
+
[ 1, 52, 65, 82, 86, 120, 128, 244, 256 ],
|
|
2106
|
+
[ 1, 49, 69, 85, 86, 118, 120, 253, 256 ], [ 86, 256 ],
|
|
2107
|
+
[ 86, 87, 103, 118, 120, 171, 187, 255, 256 ], [ 86, 256 ],
|
|
2108
|
+
[ 1, 9, 41, 49, 57, 61, 65, 69, 73, 81, 85, 86, 89, 90, 91, 105, 106, 107,
|
|
2109
|
+
113, 117, 118, 120, 122, 123, 124, 125, 126, 128, 137, 169, 171, 185,
|
|
2110
|
+
187, 188, 241, 249, 251, 252, 253, 256 ],
|
|
2111
|
+
[ 86, 90, 106, 118, 126, 171, 187, 252, 256 ],
|
|
2112
|
+
[ 86, 91, 107, 118, 128, 171, 187, 251, 256 ],
|
|
2113
|
+
[ 86, 90, 107, 120, 128, 171, 188, 252, 256 ],
|
|
2114
|
+
[ 1, 61, 65, 85, 86, 126, 128, 253, 256 ], [ 86, 256 ],
|
|
2115
|
+
[ 86, 87, 107, 126, 128, 171, 191, 255, 256 ], [ 86, 256 ], [ 1, 171 ],
|
|
2116
|
+
[ 1, 2, 66, 86, 129, 131, 150, 170, 171 ], [ 1, 171 ],
|
|
2117
|
+
[ 1, 4, 129, 131, 171, 172, 192, 196, 256 ],
|
|
2118
|
+
[ 1, 5, 69, 86, 129, 137, 150, 167, 171 ],
|
|
2119
|
+
[ 1, 6, 70, 86, 129, 139, 150, 166, 171 ],
|
|
2120
|
+
[ 1, 5, 70, 86, 131, 139, 151, 167, 171 ],
|
|
2121
|
+
[ 1, 4, 5, 6, 8, 16, 69, 70, 72, 86, 88, 120, 129, 131, 132, 133, 134, 135,
|
|
2122
|
+
137, 139, 140, 144, 150, 151, 152, 166, 167, 168, 171, 172, 176, 184,
|
|
2123
|
+
188, 192, 196, 200, 208, 216, 248, 256 ], [ 1, 171 ],
|
|
2124
|
+
[ 1, 2, 70, 86, 137, 139, 154, 170, 171 ], [ 1, 171 ],
|
|
2125
|
+
[ 1, 4, 137, 139, 171, 172, 188, 208, 256 ],
|
|
2126
|
+
[ 1, 13, 129, 137, 171, 175, 192, 205, 256 ],
|
|
2127
|
+
[ 1, 2, 6, 13, 14, 16, 66, 70, 78, 86, 94, 126, 129, 130, 131, 134, 137,
|
|
2128
|
+
138, 139, 141, 143, 144, 150, 154, 158, 166, 170, 171, 174, 175, 176,
|
|
2129
|
+
190, 191, 192, 205, 206, 208, 222, 254, 256 ],
|
|
2130
|
+
[ 1, 13, 131, 139, 171, 175, 191, 208, 256 ],
|
|
2131
|
+
[ 1, 16, 129, 139, 171, 176, 192, 208, 256 ],
|
|
2132
|
+
[ 1, 17, 81, 86, 129, 150, 155, 161, 171 ],
|
|
2133
|
+
[ 1, 18, 82, 86, 129, 150, 154, 163, 171 ],
|
|
2134
|
+
[ 1, 17, 82, 86, 131, 151, 155, 163, 171 ],
|
|
2135
|
+
[ 1, 4, 17, 18, 20, 52, 81, 82, 84, 86, 88, 96, 129, 131, 132, 145, 146,
|
|
2136
|
+
147, 150, 151, 152, 154, 155, 156, 160, 161, 163, 164, 171, 172, 176,
|
|
2137
|
+
180, 188, 192, 196, 212, 216, 224, 244, 256 ],
|
|
2138
|
+
[ 1, 21, 85, 86, 129, 150, 151, 169, 171 ], [ 86, 171 ], [ 86, 171 ],
|
|
2139
|
+
[ 86, 88, 150, 151, 171, 172, 192, 216, 256 ],
|
|
2140
|
+
[ 1, 17, 85, 86, 137, 154, 155, 169, 171 ], [ 86, 171 ], [ 86, 171 ],
|
|
2141
|
+
[ 86, 88, 154, 155, 171, 172, 188, 224, 256 ],
|
|
2142
|
+
[ 1, 13, 17, 21, 29, 61, 81, 85, 86, 93, 94, 96, 129, 137, 141, 145, 149,
|
|
2143
|
+
150, 151, 153, 154, 155, 158, 159, 160, 161, 169, 171, 173, 175, 176,
|
|
2144
|
+
189, 191, 192, 205, 221, 222, 224, 253, 256 ],
|
|
2145
|
+
[ 86, 94, 150, 154, 171, 175, 192, 222, 256 ],
|
|
2146
|
+
[ 86, 94, 151, 155, 171, 175, 191, 224, 256 ],
|
|
2147
|
+
[ 86, 96, 150, 155, 171, 176, 192, 224, 256 ], [ 1, 171 ],
|
|
2148
|
+
[ 1, 2, 82, 86, 161, 163, 166, 170, 171 ], [ 1, 171 ],
|
|
2149
|
+
[ 1, 4, 161, 163, 171, 172, 176, 244, 256 ],
|
|
2150
|
+
[ 1, 5, 85, 86, 161, 166, 167, 169, 171 ], [ 86, 171 ], [ 86, 171 ],
|
|
2151
|
+
[ 86, 88, 166, 167, 171, 172, 176, 248, 256 ], [ 1, 171 ], [ 86, 171 ],
|
|
2152
|
+
[ ], [ 171, 256 ], [ 1, 13, 161, 169, 171, 175, 176, 253, 256 ],
|
|
2153
|
+
[ 86, 94, 166, 170, 171, 175, 176, 254, 256 ], [ 171, 256 ], [ 171, 256 ],
|
|
2154
|
+
[ 1, 49, 129, 161, 171, 187, 192, 241, 256 ],
|
|
2155
|
+
[ 1, 2, 18, 49, 50, 52, 66, 82, 86, 114, 118, 126, 129, 130, 131, 146, 150,
|
|
2156
|
+
154, 161, 162, 163, 166, 170, 171, 177, 179, 180, 182, 186, 187, 188,
|
|
2157
|
+
190, 191, 192, 241, 242, 244, 246, 254, 256 ],
|
|
2158
|
+
[ 1, 49, 131, 163, 171, 187, 191, 244, 256 ],
|
|
2159
|
+
[ 1, 52, 129, 163, 171, 188, 192, 244, 256 ],
|
|
2160
|
+
[ 1, 5, 21, 49, 53, 61, 69, 85, 86, 117, 118, 120, 129, 133, 137, 149, 150,
|
|
2161
|
+
151, 161, 165, 166, 167, 169, 171, 177, 182, 183, 184, 185, 187, 188,
|
|
2162
|
+
189, 191, 192, 241, 245, 246, 248, 253, 256 ],
|
|
2163
|
+
[ 86, 118, 150, 166, 171, 187, 192, 246, 256 ],
|
|
2164
|
+
[ 86, 118, 151, 167, 171, 187, 191, 248, 256 ],
|
|
2165
|
+
[ 86, 120, 150, 167, 171, 188, 192, 248, 256 ],
|
|
2166
|
+
[ 1, 49, 137, 169, 171, 187, 188, 253, 256 ],
|
|
2167
|
+
[ 86, 118, 154, 170, 171, 187, 188, 254, 256 ], [ 171, 256 ], [ 171, 256 ],
|
|
2168
|
+
[ 1, 61, 129, 169, 171, 191, 192, 253, 256 ],
|
|
2169
|
+
[ 86, 126, 150, 170, 171, 191, 192, 254, 256 ], [ 171, 256 ], [ 171, 256 ],
|
|
2170
|
+
[ 1, 256 ], [ 1, 2, 66, 86, 193, 196, 214, 254, 256 ],
|
|
2171
|
+
[ 1, 3, 131, 171, 193, 196, 235, 255, 256 ], [ 1, 256 ],
|
|
2172
|
+
[ 1, 5, 69, 86, 193, 205, 214, 248, 256 ],
|
|
2173
|
+
[ 1, 6, 70, 86, 193, 208, 214, 246, 256 ],
|
|
2174
|
+
[ 1, 3, 5, 6, 7, 11, 69, 70, 71, 86, 87, 103, 131, 135, 139, 151, 167, 171,
|
|
2175
|
+
193, 195, 196, 197, 198, 200, 203, 205, 207, 208, 214, 215, 216, 231,
|
|
2176
|
+
235, 239, 246, 247, 248, 251, 255, 256 ],
|
|
2177
|
+
[ 1, 5, 70, 86, 196, 208, 216, 248, 256 ],
|
|
2178
|
+
[ 1, 9, 137, 171, 193, 205, 235, 252, 256 ],
|
|
2179
|
+
[ 1, 2, 6, 9, 10, 11, 66, 70, 74, 86, 90, 106, 137, 138, 139, 154, 170,
|
|
2180
|
+
171, 193, 194, 196, 198, 201, 203, 204, 205, 206, 208, 214, 218, 222,
|
|
2181
|
+
234, 235, 236, 246, 250, 251, 252, 254, 256 ],
|
|
2182
|
+
[ 1, 11, 139, 171, 193, 208, 235, 251, 256 ],
|
|
2183
|
+
[ 1, 9, 139, 171, 196, 208, 236, 252, 256 ], [ 1, 256 ],
|
|
2184
|
+
[ 1, 2, 70, 86, 205, 208, 222, 254, 256 ],
|
|
2185
|
+
[ 1, 3, 139, 171, 205, 208, 239, 255, 256 ], [ 1, 256 ],
|
|
2186
|
+
[ 1, 17, 81, 86, 193, 214, 224, 241, 256 ],
|
|
2187
|
+
[ 1, 18, 82, 86, 193, 214, 222, 244, 256 ],
|
|
2188
|
+
[ 1, 3, 17, 18, 19, 35, 81, 82, 83, 86, 87, 91, 131, 147, 151, 155, 163,
|
|
2189
|
+
171, 193, 195, 196, 209, 210, 212, 214, 215, 216, 219, 222, 223, 224,
|
|
2190
|
+
227, 235, 239, 241, 243, 244, 251, 255, 256 ],
|
|
2191
|
+
[ 1, 17, 82, 86, 196, 216, 224, 244, 256 ],
|
|
2192
|
+
[ 1, 21, 85, 86, 193, 214, 216, 253, 256 ], [ 86, 256 ],
|
|
2193
|
+
[ 86, 87, 151, 171, 214, 216, 235, 255, 256 ], [ 86, 256 ],
|
|
2194
|
+
[ 1, 9, 17, 21, 25, 41, 81, 85, 86, 89, 90, 91, 137, 153, 154, 155, 169,
|
|
2195
|
+
171, 193, 201, 205, 209, 213, 214, 216, 218, 219, 220, 221, 222, 224,
|
|
2196
|
+
233, 235, 236, 241, 249, 251, 252, 253, 256 ],
|
|
2197
|
+
[ 86, 90, 154, 171, 214, 222, 235, 252, 256 ],
|
|
2198
|
+
[ 86, 91, 155, 171, 214, 224, 235, 251, 256 ],
|
|
2199
|
+
[ 86, 90, 155, 171, 216, 224, 236, 252, 256 ],
|
|
2200
|
+
[ 1, 17, 85, 86, 205, 222, 224, 253, 256 ], [ 86, 256 ],
|
|
2201
|
+
[ 86, 87, 155, 171, 222, 224, 239, 255, 256 ], [ 86, 256 ],
|
|
2202
|
+
[ 1, 33, 161, 171, 193, 235, 240, 241, 256 ],
|
|
2203
|
+
[ 1, 2, 18, 33, 34, 35, 66, 82, 86, 98, 102, 106, 161, 162, 163, 166, 170,
|
|
2204
|
+
171, 193, 194, 196, 210, 214, 222, 225, 227, 228, 230, 234, 235, 236,
|
|
2205
|
+
238, 239, 240, 241, 242, 244, 246, 254, 256 ],
|
|
2206
|
+
[ 1, 35, 163, 171, 193, 235, 239, 244, 256 ],
|
|
2207
|
+
[ 1, 33, 163, 171, 196, 236, 240, 244, 256 ],
|
|
2208
|
+
[ 1, 5, 21, 33, 37, 41, 69, 85, 86, 101, 102, 103, 161, 165, 166, 167, 169,
|
|
2209
|
+
171, 193, 197, 205, 213, 214, 216, 225, 230, 231, 232, 233, 235, 236,
|
|
2210
|
+
237, 239, 240, 241, 245, 246, 248, 253, 256 ],
|
|
2211
|
+
[ 86, 102, 166, 171, 214, 235, 240, 246, 256 ],
|
|
2212
|
+
[ 86, 103, 167, 171, 214, 235, 239, 248, 256 ],
|
|
2213
|
+
[ 86, 102, 167, 171, 216, 236, 240, 248, 256 ],
|
|
2214
|
+
[ 1, 41, 169, 171, 193, 235, 236, 253, 256 ],
|
|
2215
|
+
[ 86, 106, 170, 171, 214, 235, 236, 254, 256 ], [ 171, 256 ], [ 171, 256 ],
|
|
2216
|
+
[ 1, 33, 169, 171, 205, 239, 240, 253, 256 ],
|
|
2217
|
+
[ 86, 102, 170, 171, 222, 239, 240, 254, 256 ], [ 171, 256 ], [ 171, 256 ],
|
|
2218
|
+
[ 1, 256 ], [ 1, 2, 82, 86, 241, 244, 246, 254, 256 ],
|
|
2219
|
+
[ 1, 3, 163, 171, 241, 244, 251, 255, 256 ], [ 1, 256 ],
|
|
2220
|
+
[ 1, 5, 85, 86, 241, 246, 248, 253, 256 ], [ 86, 256 ],
|
|
2221
|
+
[ 86, 87, 167, 171, 246, 248, 251, 255, 256 ], [ 86, 256 ],
|
|
2222
|
+
[ 1, 9, 169, 171, 241, 251, 252, 253, 256 ],
|
|
2223
|
+
[ 86, 90, 170, 171, 246, 251, 252, 254, 256 ], [ 171, 256 ], [ 171, 256 ],
|
|
2224
|
+
[ 1, 256 ], [ 86, 256 ], [ 171, 256 ], [ ] ]
|
|
2225
|
+
gap> S := InverseSemigroup([Bipartition([[1, -3], [2, -1], [3, 4, -2, -4]]),
|
|
2226
|
+
> Bipartition([[1, -1], [2, -3], [3, -2], [4, -4]])]);
|
|
2227
|
+
<inverse block bijection semigroup of degree 4 with 2 generators>
|
|
2228
|
+
gap> s := NambooripadPartialOrder(S);
|
|
2229
|
+
[ [ ], [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ],
|
|
2230
|
+
[ 1, 2, 8 ], [ 1, 3, 8 ], [ 1, 4, 9 ], [ 1, 4, 10 ], [ 1, 6, 8 ],
|
|
2231
|
+
[ 1, 5, 8 ], [ 1, 7, 9 ], [ 1, 7, 10 ], [ 1, 2, 6, 8, 11, 15 ],
|
|
2232
|
+
[ 1, 3, 5, 8, 12, 16 ] ]
|
|
2233
|
+
gap> s = NaturalPartialOrder(S);
|
|
2234
|
+
true
|
|
2235
|
+
gap> NambooripadLeqRegularSemigroup(S) = NaturalLeqInverseSemigroup(S);
|
|
2236
|
+
true
|
|
2237
|
+
gap> S := FreeSemigroup(3);;
|
|
2238
|
+
gap> NambooripadPartialOrder(S);
|
|
2239
|
+
Error, the argument (a semigroup) is not finite
|
|
2240
|
+
gap> NambooripadLeqRegularSemigroup(S);
|
|
2241
|
+
Error, the argument (a semigroup) is not finite
|
|
2242
|
+
gap> S := ZeroSemigroup(5);;
|
|
2243
|
+
gap> NambooripadPartialOrder(S);
|
|
2244
|
+
Error, the argument (a semigroup) is not regular
|
|
2245
|
+
gap> NambooripadLeqRegularSemigroup(S);
|
|
2246
|
+
Error, the argument (a semigroup) is not regular
|
|
2247
|
+
|
|
2248
|
+
# Left/RightIdentity
|
|
2249
|
+
gap> S := Semigroup(Transformation([2, 4, 3, 4]),
|
|
2250
|
+
> Transformation([3, 3, 2, 3, 3]),
|
|
2251
|
+
> Transformation([5, 5, 5, 4, 4]),
|
|
2252
|
+
> Transformation([5, 1, 4, 1, 1]),
|
|
2253
|
+
> Transformation([5, 3, 3, 4, 5]));;
|
|
2254
|
+
gap> ForAll(S, x -> RightIdentity(S, x) = fail or x * RightIdentity(S, x) = x);
|
|
2255
|
+
true
|
|
2256
|
+
gap> ForAll(S, x -> RightIdentity(S, x) = fail or RightIdentity(S, x) in S);
|
|
2257
|
+
true
|
|
2258
|
+
gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) * x = x);
|
|
2259
|
+
true
|
|
2260
|
+
gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) in S);
|
|
2261
|
+
true
|
|
2262
|
+
gap> L := Filtered(S, x -> LeftIdentity(S, x) = fail);
|
|
2263
|
+
[ Transformation( [ 2, 4, 3, 4 ] ), Transformation( [ 5, 5, 5, 4, 4 ] ),
|
|
2264
|
+
Transformation( [ 5, 1, 4, 1, 1 ] ), Transformation( [ 5, 2, 4, 2, 2 ] ),
|
|
2265
|
+
Transformation( [ 5, 4, 4, 4, 4 ] ), Transformation( [ 5, 3, 4, 3, 3 ] ) ]
|
|
2266
|
+
gap> Length(L) = 6;
|
|
2267
|
+
true
|
|
2268
|
+
gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
|
|
2269
|
+
true
|
|
2270
|
+
gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
|
|
2271
|
+
true
|
|
2272
|
+
gap> R := Filtered(S, x -> RightIdentity(S, x) = fail);
|
|
2273
|
+
[ Transformation( [ 2, 4, 3, 4 ] ), Transformation( [ 5, 1, 4, 1, 1 ] ),
|
|
2274
|
+
Transformation( [ 5, 2, 4, 2, 2 ] ) ]
|
|
2275
|
+
gap> Length(R) = 3;
|
|
2276
|
+
true
|
|
2277
|
+
gap> ForAll(R, y -> ForAll(S, x -> y * x <> y));
|
|
2278
|
+
true
|
|
2279
|
+
|
|
2280
|
+
# Non-acting example
|
|
2281
|
+
gap> S := Semigroup(
|
|
2282
|
+
> [Matrix(IsBooleanMat, [[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],
|
|
2283
|
+
> [0, 0, 0, 0, 1]]),
|
|
2284
|
+
> Matrix(IsBooleanMat, [[0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0],
|
|
2285
|
+
> [0, 0, 1, 0, 0], [0, 0, 1, 0, 0]]),
|
|
2286
|
+
> Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 1, 0],
|
|
2287
|
+
> [0, 0, 0, 1, 0]]),
|
|
2288
|
+
> Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [1, 0, 0, 0, 0], [0, 0, 0, 1, 0],
|
|
2289
|
+
> [1, 0, 0, 0, 0], [1, 0, 0, 0, 0]]),
|
|
2290
|
+
> Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],
|
|
2291
|
+
> [0, 0, 0, 0, 1]])]);
|
|
2292
|
+
<semigroup of 5x5 boolean matrices with 5 generators>
|
|
2293
|
+
gap> ForAll(S, x -> RightIdentity(S, x) = fail or x * RightIdentity(S, x) = x);
|
|
2294
|
+
true
|
|
2295
|
+
gap> ForAll(S, x -> RightIdentity(S, x) = fail or RightIdentity(S, x) in S);
|
|
2296
|
+
true
|
|
2297
|
+
gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) * x = x);
|
|
2298
|
+
true
|
|
2299
|
+
gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) in S);
|
|
2300
|
+
true
|
|
2301
|
+
gap> L := Filtered(S, x -> LeftIdentity(S, x) = fail);
|
|
2302
|
+
[ Matrix(IsBooleanMat, [[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 1, 0, 0],
|
|
2303
|
+
[0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]),
|
|
2304
|
+
Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1],
|
|
2305
|
+
[0, 0, 0, 1, 0], [0, 0, 0, 1, 0]]),
|
|
2306
|
+
Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [1, 0, 0, 0, 0], [0, 0, 0, 1, 0],
|
|
2307
|
+
[1, 0, 0, 0, 0], [1, 0, 0, 0, 0]]),
|
|
2308
|
+
Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],
|
|
2309
|
+
[0, 1, 0, 0, 0], [0, 1, 0, 0, 0]]),
|
|
2310
|
+
Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 0],
|
|
2311
|
+
[0, 0, 0, 1, 0], [0, 0, 0, 1, 0]]),
|
|
2312
|
+
Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],
|
|
2313
|
+
[0, 0, 1, 0, 0], [0, 0, 1, 0, 0]]) ]
|
|
2314
|
+
gap> Length(L) = 6;
|
|
2315
|
+
true
|
|
2316
|
+
gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
|
|
2317
|
+
true
|
|
2318
|
+
gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
|
|
2319
|
+
true
|
|
2320
|
+
gap> R := Filtered(S, x -> RightIdentity(S, x) = fail);
|
|
2321
|
+
[ Matrix(IsBooleanMat, [[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 1, 0, 0],
|
|
2322
|
+
[0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]),
|
|
2323
|
+
Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [1, 0, 0, 0, 0], [0, 0, 0, 1, 0],
|
|
2324
|
+
[1, 0, 0, 0, 0], [1, 0, 0, 0, 0]]),
|
|
2325
|
+
Matrix(IsBooleanMat, [[0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],
|
|
2326
|
+
[0, 1, 0, 0, 0], [0, 1, 0, 0, 0]]) ]
|
|
2327
|
+
gap> Length(R) = 3;
|
|
2328
|
+
true
|
|
2329
|
+
gap> ForAll(R, y -> ForAll(S, x -> y * x <> y));
|
|
2330
|
+
true
|
|
2331
|
+
gap> x := Matrix(IsBooleanMat,
|
|
2332
|
+
> [[0, 0, 1, 0, 0],
|
|
2333
|
+
> [0, 1, 1, 0, 1],
|
|
2334
|
+
> [1, 0, 0, 1, 0],
|
|
2335
|
+
> [0, 1, 0, 0, 0],
|
|
2336
|
+
> [1, 1, 1, 1, 1]]);
|
|
2337
|
+
Matrix(IsBooleanMat, [[0, 0, 1, 0, 0], [0, 1, 1, 0, 1], [1, 0, 0, 1, 0],
|
|
2338
|
+
[0, 1, 0, 0, 0], [1, 1, 1, 1, 1]])
|
|
2339
|
+
gap> RightIdentity(S, x);
|
|
2340
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
|
|
2341
|
+
semigroup)
|
|
2342
|
+
gap> LeftIdentity(S, x);
|
|
2343
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
|
|
2344
|
+
semigroup)
|
|
2345
|
+
gap> S := Monoid(S);
|
|
2346
|
+
<monoid of 5x5 boolean matrices with 5 generators>
|
|
2347
|
+
gap> LeftIdentity(S, S.1) = One(S);
|
|
2348
|
+
true
|
|
2349
|
+
gap> RightIdentity(S, S.1) = One(S);
|
|
2350
|
+
true
|
|
2351
|
+
gap> S := Semigroup(Transformation([1, 2, 3, 3]), Transformation([2, 3, 1, 1]));;
|
|
2352
|
+
gap> S := AsSemigroup(IsBooleanMatSemigroup, S);
|
|
2353
|
+
<semigroup of 4x4 boolean matrices with 2 generators>
|
|
2354
|
+
gap> IsMonoidAsSemigroup(S);
|
|
2355
|
+
true
|
|
2356
|
+
gap> RightIdentity(S, Matrix(IsBooleanMat, [[0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]])) = MultiplicativeNeutralElement(S);
|
|
2357
|
+
true
|
|
2358
|
+
gap> LeftIdentity(S, Matrix(IsBooleanMat, [[0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]])) = MultiplicativeNeutralElement(S);
|
|
2359
|
+
true
|
|
2360
|
+
|
|
2361
|
+
# MaximalL/RClasses
|
|
2362
|
+
gap> S := LeftZeroSemigroup(3);
|
|
2363
|
+
<transformation semigroup of degree 4 with 3 generators>
|
|
2364
|
+
gap> MaximalLClasses(S);
|
|
2365
|
+
[ <Green's L-class: Transformation( [ 1, 2, 1, 1 ] )> ]
|
|
2366
|
+
gap> MaximalRClasses(S);
|
|
2367
|
+
[ <Green's R-class: Transformation( [ 1, 2, 1, 1 ] )>,
|
|
2368
|
+
<Green's R-class: Transformation( [ 1, 2, 1, 2 ] )>,
|
|
2369
|
+
<Green's R-class: Transformation( [ 1, 2, 2, 1 ] )> ]
|
|
2370
|
+
gap> S := RightZeroSemigroup(3);
|
|
2371
|
+
<transformation semigroup of degree 3 with 3 generators>
|
|
2372
|
+
gap> MaximalLClasses(S);
|
|
2373
|
+
[ <Green's L-class: Transformation( [ 1, 1, 1 ] )>,
|
|
2374
|
+
<Green's L-class: Transformation( [ 2, 2, 2 ] )>,
|
|
2375
|
+
<Green's L-class: Transformation( [ 3, 3, 3 ] )> ]
|
|
2376
|
+
gap> MaximalRClasses(S);
|
|
2377
|
+
[ <Green's R-class: Transformation( [ 1, 1, 1 ] )> ]
|
|
2378
|
+
gap> S := FullPBRMonoid(1);
|
|
2379
|
+
<pbr monoid of degree 1 with 4 generators>
|
|
2380
|
+
gap> MaximalLClasses(S);
|
|
2381
|
+
[ <Green's L-class: PBR([ [ -1 ] ], [ [ 1 ] ])> ]
|
|
2382
|
+
gap> MaximalRClasses(S);
|
|
2383
|
+
[ <Green's R-class: PBR([ [ -1 ] ], [ [ 1 ] ])> ]
|
|
2384
|
+
|
|
2385
|
+
# Issue 868 - IsMonoidAsSemigroup assumed HasMultiplicativeNeutralElement
|
|
2386
|
+
gap> S := SemigroupByMultiplicationTable(
|
|
2387
|
+
> [[1, 1, 1, 1, 5, 6],
|
|
2388
|
+
> [1, 1, 1, 2, 5, 6],
|
|
2389
|
+
> [3, 3, 3, 3, 5, 6],
|
|
2390
|
+
> [1, 2, 3, 4, 5, 6],
|
|
2391
|
+
> [5, 5, 5, 5, 5, 5],
|
|
2392
|
+
> [6, 6, 6, 6, 6, 6]]);;
|
|
2393
|
+
gap> S := AsMonoid(IsFpMonoid, S);
|
|
2394
|
+
<fp monoid with 5 generators and 25 relations of length 80>
|
|
2395
|
+
|
|
2396
|
+
# MinimalFaithfulTransformationDegree
|
|
2397
|
+
gap> MinimalFaithfulTransformationDegree(RightZeroSemigroup(10));
|
|
2398
|
+
7
|
|
2399
|
+
gap> MinimalFaithfulTransformationDegree(LeftZeroSemigroup(10));
|
|
2400
|
+
6
|
|
2401
|
+
|
|
2402
|
+
#
|
|
2403
|
+
gap> SEMIGROUPS.StopTest();
|
|
2404
|
+
gap> STOP_TEST("Semigroups package: standard/attributes/attr.tst");
|