paddlex 2.1.0__py3-none-any.whl → 3.0.0rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1708) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +52 -19
  3. paddlex/__main__.py +39 -0
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  11. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  12. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  14. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  15. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  16. paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
  19. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  20. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  21. paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
  22. paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
  23. paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
  24. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  25. paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
  26. paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
  27. paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
  28. paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
  29. paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
  30. paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
  31. paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
  32. paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
  33. paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
  34. paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
  35. paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
  36. paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
  37. paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
  38. paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
  39. paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
  40. paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
  41. paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
  42. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  43. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  44. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  45. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  46. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  47. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  48. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  49. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  50. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  51. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  52. paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
  53. paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  54. paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
  55. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  56. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  57. paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
  58. paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
  59. paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
  60. paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
  61. paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
  62. paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
  63. paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
  64. paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
  65. paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
  66. paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
  67. paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
  68. paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
  69. paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
  70. paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
  71. paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
  72. paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
  73. paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
  74. paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
  75. paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
  76. paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
  77. paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
  78. paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
  79. paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
  80. paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
  81. paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
  82. paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
  83. paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
  84. paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
  85. paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
  86. paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
  87. paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
  88. paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
  89. paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
  90. paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
  91. paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
  92. paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
  93. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  94. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  95. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  96. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  99. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
  100. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  101. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  102. paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  103. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  104. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  105. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  106. paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  107. paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
  108. paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
  109. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  111. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  112. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  113. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  114. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  115. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  116. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  117. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  118. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  119. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  120. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  121. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  122. paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  123. paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
  124. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  125. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  126. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  127. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  128. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  129. paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
  130. paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
  131. paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
  132. paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
  133. paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
  134. paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
  135. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
  136. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
  137. paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  138. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  139. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  140. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  141. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  142. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  143. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  144. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  145. paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
  146. paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
  147. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  148. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  149. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  150. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  151. paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
  152. paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
  153. paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  154. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  155. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  156. paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  157. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  158. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  159. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  160. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  161. paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  162. paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  163. paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  164. paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  165. paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  166. paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
  167. paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
  168. paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
  169. paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
  170. paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
  171. paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
  172. paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
  173. paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
  174. paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
  175. paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
  176. paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
  177. paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
  178. paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
  179. paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
  180. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  181. paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  182. paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  183. paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  184. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  185. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  186. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  187. paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  188. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  189. paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
  190. paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
  191. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  192. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  193. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  194. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  195. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  196. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  197. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  198. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  199. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  200. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  201. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  202. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  203. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  204. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  205. paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
  206. paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
  207. paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
  208. paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
  209. paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
  210. paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
  211. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  212. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  213. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  214. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  215. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  216. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  217. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  218. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  219. paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
  220. paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
  221. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  222. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  223. paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  224. paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
  225. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  226. paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  227. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  228. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  229. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  230. paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  231. paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  232. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  233. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  234. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  235. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  236. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  237. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  238. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  239. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  240. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  241. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  242. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  243. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  244. paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  245. paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  246. paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  247. paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  248. paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  249. paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
  250. paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
  251. paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
  252. paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
  253. paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
  254. paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
  255. paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
  256. paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
  257. paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  258. paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  259. paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  260. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  261. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  262. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  263. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  264. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  265. paddlex/configs/pipelines/OCR.yaml +44 -0
  266. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +149 -0
  267. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +184 -0
  268. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  269. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  270. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  271. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  272. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  273. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  274. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  275. paddlex/configs/pipelines/image_classification.yaml +10 -0
  276. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  277. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  278. paddlex/configs/pipelines/layout_parsing.yaml +101 -0
  279. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  280. paddlex/configs/pipelines/object_detection.yaml +10 -0
  281. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  282. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  283. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  284. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  285. paddlex/configs/pipelines/seal_recognition.yaml +51 -0
  286. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  287. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  288. paddlex/configs/pipelines/table_recognition.yaml +56 -0
  289. paddlex/configs/pipelines/table_recognition_v2.yaml +76 -0
  290. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  291. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  292. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  293. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  294. paddlex/configs/pipelines/video_classification.yaml +9 -0
  295. paddlex/configs/pipelines/video_detection.yaml +10 -0
  296. paddlex/engine.py +54 -0
  297. paddlex/hpip_links.html +19 -0
  298. paddlex/inference/__init__.py +19 -0
  299. paddlex/inference/common/__init__.py +13 -0
  300. paddlex/inference/common/batch_sampler/__init__.py +20 -0
  301. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +84 -0
  302. paddlex/inference/common/batch_sampler/base_batch_sampler.py +90 -0
  303. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +147 -0
  304. paddlex/inference/common/batch_sampler/image_batch_sampler.py +136 -0
  305. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +110 -0
  306. paddlex/inference/common/batch_sampler/video_batch_sampler.py +94 -0
  307. paddlex/inference/common/reader/__init__.py +19 -0
  308. paddlex/inference/common/reader/audio_reader.py +46 -0
  309. paddlex/inference/common/reader/det_3d_reader.py +239 -0
  310. paddlex/inference/common/reader/image_reader.py +69 -0
  311. paddlex/inference/common/reader/ts_reader.py +45 -0
  312. paddlex/inference/common/reader/video_reader.py +42 -0
  313. paddlex/inference/common/result/__init__.py +29 -0
  314. paddlex/inference/common/result/base_cv_result.py +31 -0
  315. paddlex/inference/common/result/base_result.py +70 -0
  316. paddlex/inference/common/result/base_ts_result.py +42 -0
  317. paddlex/inference/common/result/base_video_result.py +36 -0
  318. paddlex/inference/common/result/mixin.py +703 -0
  319. paddlex/inference/models/3d_bev_detection/__init__.py +15 -0
  320. paddlex/inference/models/3d_bev_detection/predictor.py +314 -0
  321. paddlex/inference/models/3d_bev_detection/processors.py +978 -0
  322. paddlex/inference/models/3d_bev_detection/result.py +65 -0
  323. paddlex/inference/models/3d_bev_detection/visualizer_3d.py +131 -0
  324. paddlex/inference/models/__init__.py +130 -0
  325. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  326. paddlex/inference/models/anomaly_detection/predictor.py +145 -0
  327. paddlex/inference/models/anomaly_detection/processors.py +46 -0
  328. paddlex/inference/models/anomaly_detection/result.py +70 -0
  329. paddlex/inference/models/base/__init__.py +15 -0
  330. paddlex/inference/models/base/predictor/__init__.py +16 -0
  331. paddlex/inference/models/base/predictor/base_predictor.py +175 -0
  332. paddlex/inference/models/base/predictor/basic_predictor.py +139 -0
  333. paddlex/inference/models/common/__init__.py +35 -0
  334. paddlex/inference/models/common/static_infer.py +329 -0
  335. paddlex/inference/models/common/tokenizer/__init__.py +17 -0
  336. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  337. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +451 -0
  338. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2141 -0
  339. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3504 -0
  340. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  341. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  342. paddlex/inference/models/common/ts/__init__.py +15 -0
  343. paddlex/inference/models/common/ts/funcs.py +533 -0
  344. paddlex/inference/models/common/ts/processors.py +313 -0
  345. paddlex/inference/models/common/vision/__init__.py +23 -0
  346. paddlex/inference/models/common/vision/funcs.py +93 -0
  347. paddlex/inference/models/common/vision/processors.py +270 -0
  348. paddlex/inference/models/face_feature/__init__.py +15 -0
  349. paddlex/inference/models/face_feature/predictor.py +65 -0
  350. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  351. paddlex/inference/models/formula_recognition/predictor.py +203 -0
  352. paddlex/inference/models/formula_recognition/processors.py +986 -0
  353. paddlex/inference/models/formula_recognition/result.py +403 -0
  354. paddlex/inference/models/image_classification/__init__.py +15 -0
  355. paddlex/inference/models/image_classification/predictor.py +182 -0
  356. paddlex/inference/models/image_classification/processors.py +87 -0
  357. paddlex/inference/models/image_classification/result.py +92 -0
  358. paddlex/inference/models/image_feature/__init__.py +15 -0
  359. paddlex/inference/models/image_feature/predictor.py +156 -0
  360. paddlex/inference/models/image_feature/processors.py +29 -0
  361. paddlex/inference/models/image_feature/result.py +33 -0
  362. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  363. paddlex/inference/models/image_multilabel_classification/predictor.py +94 -0
  364. paddlex/inference/models/image_multilabel_classification/processors.py +85 -0
  365. paddlex/inference/models/image_multilabel_classification/result.py +95 -0
  366. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  367. paddlex/inference/models/image_unwarping/predictor.py +105 -0
  368. paddlex/inference/models/image_unwarping/processors.py +88 -0
  369. paddlex/inference/models/image_unwarping/result.py +45 -0
  370. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  371. paddlex/inference/models/instance_segmentation/predictor.py +210 -0
  372. paddlex/inference/models/instance_segmentation/processors.py +105 -0
  373. paddlex/inference/models/instance_segmentation/result.py +161 -0
  374. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  375. paddlex/inference/models/keypoint_detection/predictor.py +188 -0
  376. paddlex/inference/models/keypoint_detection/processors.py +359 -0
  377. paddlex/inference/models/keypoint_detection/result.py +192 -0
  378. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  379. paddlex/inference/models/multilingual_speech_recognition/predictor.py +141 -0
  380. paddlex/inference/models/multilingual_speech_recognition/processors.py +1941 -0
  381. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  382. paddlex/inference/models/object_detection/__init__.py +15 -0
  383. paddlex/inference/models/object_detection/predictor.py +348 -0
  384. paddlex/inference/models/object_detection/processors.py +855 -0
  385. paddlex/inference/models/object_detection/result.py +113 -0
  386. paddlex/inference/models/object_detection/utils.py +68 -0
  387. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  388. paddlex/inference/models/open_vocabulary_detection/predictor.py +155 -0
  389. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +15 -0
  390. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +485 -0
  391. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  392. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +120 -0
  393. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  394. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  395. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  396. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +147 -0
  397. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  398. paddlex/inference/models/semantic_segmentation/predictor.py +167 -0
  399. paddlex/inference/models/semantic_segmentation/processors.py +114 -0
  400. paddlex/inference/models/semantic_segmentation/result.py +72 -0
  401. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  402. paddlex/inference/models/table_structure_recognition/predictor.py +171 -0
  403. paddlex/inference/models/table_structure_recognition/processors.py +235 -0
  404. paddlex/inference/models/table_structure_recognition/result.py +70 -0
  405. paddlex/inference/models/text_detection/__init__.py +15 -0
  406. paddlex/inference/models/text_detection/predictor.py +191 -0
  407. paddlex/inference/models/text_detection/processors.py +466 -0
  408. paddlex/inference/models/text_detection/result.py +51 -0
  409. paddlex/inference/models/text_recognition/__init__.py +15 -0
  410. paddlex/inference/models/text_recognition/predictor.py +106 -0
  411. paddlex/inference/models/text_recognition/processors.py +231 -0
  412. paddlex/inference/models/text_recognition/result.py +75 -0
  413. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  414. paddlex/inference/models/ts_anomaly_detection/predictor.py +146 -0
  415. paddlex/inference/models/ts_anomaly_detection/processors.py +94 -0
  416. paddlex/inference/models/ts_anomaly_detection/result.py +72 -0
  417. paddlex/inference/models/ts_classification/__init__.py +15 -0
  418. paddlex/inference/models/ts_classification/predictor.py +135 -0
  419. paddlex/inference/models/ts_classification/processors.py +117 -0
  420. paddlex/inference/models/ts_classification/result.py +78 -0
  421. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  422. paddlex/inference/models/ts_forecasting/predictor.py +159 -0
  423. paddlex/inference/models/ts_forecasting/processors.py +149 -0
  424. paddlex/inference/models/ts_forecasting/result.py +83 -0
  425. paddlex/inference/models/video_classification/__init__.py +15 -0
  426. paddlex/inference/models/video_classification/predictor.py +147 -0
  427. paddlex/inference/models/video_classification/processors.py +409 -0
  428. paddlex/inference/models/video_classification/result.py +92 -0
  429. paddlex/inference/models/video_detection/__init__.py +15 -0
  430. paddlex/inference/models/video_detection/predictor.py +136 -0
  431. paddlex/inference/models/video_detection/processors.py +450 -0
  432. paddlex/inference/models/video_detection/result.py +104 -0
  433. paddlex/inference/pipelines/3d_bev_detection/__init__.py +15 -0
  434. paddlex/inference/pipelines/3d_bev_detection/pipeline.py +67 -0
  435. paddlex/inference/pipelines/__init__.py +228 -0
  436. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  437. paddlex/inference/pipelines/anomaly_detection/pipeline.py +62 -0
  438. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  439. paddlex/inference/pipelines/attribute_recognition/pipeline.py +105 -0
  440. paddlex/inference/pipelines/attribute_recognition/result.py +100 -0
  441. paddlex/inference/pipelines/base.py +132 -0
  442. paddlex/inference/pipelines/components/__init__.py +23 -0
  443. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  444. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  445. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  446. paddlex/inference/pipelines/components/common/__init__.py +18 -0
  447. paddlex/inference/pipelines/components/common/base_operator.py +36 -0
  448. paddlex/inference/pipelines/components/common/base_result.py +65 -0
  449. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +46 -0
  450. paddlex/inference/pipelines/components/common/crop_image_regions.py +550 -0
  451. paddlex/inference/pipelines/components/common/seal_det_warp.py +941 -0
  452. paddlex/inference/pipelines/components/common/sort_boxes.py +83 -0
  453. paddlex/inference/pipelines/components/faisser.py +352 -0
  454. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  455. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  456. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +127 -0
  457. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  458. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  459. paddlex/inference/pipelines/components/retriever/base.py +226 -0
  460. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  461. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +163 -0
  462. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  463. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  464. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  465. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +190 -0
  466. paddlex/inference/pipelines/doc_preprocessor/result.py +103 -0
  467. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  468. paddlex/inference/pipelines/face_recognition/pipeline.py +61 -0
  469. paddlex/inference/pipelines/face_recognition/result.py +43 -0
  470. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  471. paddlex/inference/pipelines/formula_recognition/pipeline.py +303 -0
  472. paddlex/inference/pipelines/formula_recognition/result.py +291 -0
  473. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  474. paddlex/inference/pipelines/image_classification/pipeline.py +71 -0
  475. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  476. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +78 -0
  477. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  478. paddlex/inference/pipelines/instance_segmentation/pipeline.py +70 -0
  479. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  480. paddlex/inference/pipelines/keypoint_detection/pipeline.py +137 -0
  481. paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
  482. paddlex/inference/pipelines/layout_parsing/pipeline.py +570 -0
  483. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +739 -0
  484. paddlex/inference/pipelines/layout_parsing/result.py +203 -0
  485. paddlex/inference/pipelines/layout_parsing/result_v2.py +470 -0
  486. paddlex/inference/pipelines/layout_parsing/utils.py +2385 -0
  487. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  488. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +67 -0
  489. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  490. paddlex/inference/pipelines/object_detection/pipeline.py +95 -0
  491. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  492. paddlex/inference/pipelines/ocr/pipeline.py +389 -0
  493. paddlex/inference/pipelines/ocr/result.py +248 -0
  494. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  495. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +75 -0
  496. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  497. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +89 -0
  498. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  499. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +102 -0
  500. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +773 -0
  501. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +977 -0
  502. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  503. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +152 -0
  504. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  505. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  506. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +74 -0
  507. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  508. paddlex/inference/pipelines/seal_recognition/pipeline.py +271 -0
  509. paddlex/inference/pipelines/seal_recognition/result.py +87 -0
  510. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  511. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +74 -0
  512. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  513. paddlex/inference/pipelines/small_object_detection/pipeline.py +74 -0
  514. paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
  515. paddlex/inference/pipelines/table_recognition/pipeline.py +462 -0
  516. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +792 -0
  517. paddlex/inference/pipelines/table_recognition/result.py +216 -0
  518. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +362 -0
  519. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +470 -0
  520. paddlex/inference/pipelines/table_recognition/utils.py +44 -0
  521. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  522. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +62 -0
  523. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  524. paddlex/inference/pipelines/ts_classification/pipeline.py +62 -0
  525. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  526. paddlex/inference/pipelines/ts_forecasting/pipeline.py +62 -0
  527. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  528. paddlex/inference/pipelines/video_classification/pipeline.py +68 -0
  529. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  530. paddlex/inference/pipelines/video_detection/pipeline.py +73 -0
  531. paddlex/inference/serving/__init__.py +13 -0
  532. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  533. paddlex/inference/serving/basic_serving/_app.py +209 -0
  534. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +41 -0
  535. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  536. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +96 -0
  537. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  538. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +90 -0
  539. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +64 -0
  540. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +97 -0
  541. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +223 -0
  542. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +97 -0
  543. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +78 -0
  544. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +66 -0
  545. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +70 -0
  546. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +81 -0
  547. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +115 -0
  548. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +76 -0
  549. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +89 -0
  550. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +74 -0
  551. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +99 -0
  552. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +78 -0
  553. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +85 -0
  554. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +81 -0
  555. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +191 -0
  556. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +221 -0
  557. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +218 -0
  558. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +136 -0
  559. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +78 -0
  560. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +103 -0
  561. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +64 -0
  562. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +69 -0
  563. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +105 -0
  564. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +107 -0
  565. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +62 -0
  566. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +61 -0
  567. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +62 -0
  568. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +81 -0
  569. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +73 -0
  570. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +89 -0
  571. paddlex/inference/serving/basic_serving/_server.py +35 -0
  572. paddlex/inference/serving/infra/__init__.py +13 -0
  573. paddlex/inference/serving/infra/config.py +36 -0
  574. paddlex/inference/serving/infra/models.py +72 -0
  575. paddlex/inference/serving/infra/storage.py +175 -0
  576. paddlex/inference/serving/infra/utils.py +259 -0
  577. paddlex/inference/serving/schemas/__init__.py +13 -0
  578. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  579. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  580. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  581. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  582. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  583. paddlex/inference/serving/schemas/image_classification.py +45 -0
  584. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  585. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  586. paddlex/inference/serving/schemas/layout_parsing.py +72 -0
  587. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  588. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  589. paddlex/inference/serving/schemas/object_detection.py +52 -0
  590. paddlex/inference/serving/schemas/ocr.py +60 -0
  591. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  592. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  593. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  594. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +134 -0
  595. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +151 -0
  596. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  597. paddlex/inference/serving/schemas/pp_structurev3.py +84 -0
  598. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  599. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  600. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  601. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  602. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  603. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  604. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  605. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  606. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  607. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  608. paddlex/inference/serving/schemas/table_recognition_v2.py +66 -0
  609. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  610. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  611. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  612. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  613. paddlex/inference/serving/schemas/video_classification.py +44 -0
  614. paddlex/inference/serving/schemas/video_detection.py +56 -0
  615. paddlex/inference/utils/__init__.py +13 -0
  616. paddlex/inference/utils/benchmark.py +226 -0
  617. paddlex/inference/utils/color_map.py +123 -0
  618. paddlex/inference/utils/get_pipeline_path.py +27 -0
  619. paddlex/inference/utils/io/__init__.py +36 -0
  620. paddlex/inference/utils/io/readers.py +500 -0
  621. paddlex/inference/utils/io/style.py +374 -0
  622. paddlex/inference/utils/io/tablepyxl.py +149 -0
  623. paddlex/inference/utils/io/writers.py +459 -0
  624. paddlex/inference/utils/new_ir_blacklist.py +28 -0
  625. paddlex/inference/utils/official_models.py +352 -0
  626. paddlex/inference/utils/pp_option.py +256 -0
  627. paddlex/model.py +113 -0
  628. paddlex/modules/3d_bev_detection/__init__.py +18 -0
  629. paddlex/modules/3d_bev_detection/dataset_checker/__init__.py +95 -0
  630. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  631. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  632. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +102 -0
  633. paddlex/modules/3d_bev_detection/evaluator.py +46 -0
  634. paddlex/modules/3d_bev_detection/exportor.py +22 -0
  635. paddlex/modules/3d_bev_detection/model_list.py +18 -0
  636. paddlex/modules/3d_bev_detection/trainer.py +70 -0
  637. paddlex/modules/__init__.py +138 -0
  638. paddlex/modules/anomaly_detection/__init__.py +18 -0
  639. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  640. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  641. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  642. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  643. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  644. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  645. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  646. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  647. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  648. paddlex/modules/anomaly_detection/exportor.py +22 -0
  649. paddlex/modules/anomaly_detection/model_list.py +16 -0
  650. paddlex/modules/anomaly_detection/trainer.py +71 -0
  651. paddlex/modules/base/__init__.py +18 -0
  652. paddlex/modules/base/build_model.py +34 -0
  653. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  654. paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
  655. paddlex/modules/base/dataset_checker/utils.py +110 -0
  656. paddlex/modules/base/evaluator.py +170 -0
  657. paddlex/modules/base/exportor.py +146 -0
  658. paddlex/modules/base/trainer.py +134 -0
  659. paddlex/modules/face_recognition/__init__.py +18 -0
  660. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  661. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  662. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  663. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  664. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  665. paddlex/modules/face_recognition/evaluator.py +52 -0
  666. paddlex/modules/face_recognition/exportor.py +22 -0
  667. paddlex/modules/face_recognition/model_list.py +15 -0
  668. paddlex/modules/face_recognition/trainer.py +75 -0
  669. paddlex/modules/formula_recognition/__init__.py +18 -0
  670. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  671. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  672. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +157 -0
  673. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +80 -0
  674. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  675. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  676. paddlex/modules/formula_recognition/evaluator.py +77 -0
  677. paddlex/modules/formula_recognition/exportor.py +22 -0
  678. paddlex/modules/formula_recognition/model_list.py +20 -0
  679. paddlex/modules/formula_recognition/trainer.py +121 -0
  680. paddlex/modules/general_recognition/__init__.py +18 -0
  681. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  682. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  683. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  684. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  685. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  686. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  687. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  688. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  689. paddlex/modules/general_recognition/evaluator.py +31 -0
  690. paddlex/modules/general_recognition/exportor.py +22 -0
  691. paddlex/modules/general_recognition/model_list.py +19 -0
  692. paddlex/modules/general_recognition/trainer.py +52 -0
  693. paddlex/modules/image_classification/__init__.py +18 -0
  694. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  695. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  696. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  697. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  698. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  699. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  700. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  701. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  702. paddlex/modules/image_classification/evaluator.py +43 -0
  703. paddlex/modules/image_classification/exportor.py +22 -0
  704. paddlex/modules/image_classification/model_list.py +99 -0
  705. paddlex/modules/image_classification/trainer.py +82 -0
  706. paddlex/modules/image_unwarping/__init__.py +13 -0
  707. paddlex/modules/image_unwarping/model_list.py +17 -0
  708. paddlex/modules/instance_segmentation/__init__.py +18 -0
  709. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +108 -0
  710. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  711. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  712. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  713. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  714. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  715. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  716. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  717. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  718. paddlex/modules/instance_segmentation/exportor.py +22 -0
  719. paddlex/modules/instance_segmentation/model_list.py +33 -0
  720. paddlex/modules/instance_segmentation/trainer.py +31 -0
  721. paddlex/modules/keypoint_detection/__init__.py +18 -0
  722. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  723. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  724. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  725. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  726. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +119 -0
  727. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  728. paddlex/modules/keypoint_detection/exportor.py +22 -0
  729. paddlex/modules/keypoint_detection/model_list.py +16 -0
  730. paddlex/modules/keypoint_detection/trainer.py +39 -0
  731. paddlex/modules/multilabel_classification/__init__.py +18 -0
  732. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  733. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  734. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  735. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  736. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  737. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  738. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  739. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  740. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  741. paddlex/modules/multilabel_classification/exportor.py +22 -0
  742. paddlex/modules/multilabel_classification/model_list.py +24 -0
  743. paddlex/modules/multilabel_classification/trainer.py +85 -0
  744. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  745. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  746. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  747. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  748. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  749. paddlex/modules/multilingual_speech_recognition/trainer.py +40 -0
  750. paddlex/modules/object_detection/__init__.py +18 -0
  751. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  752. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  753. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  754. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  755. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  756. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  757. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  758. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  759. paddlex/modules/object_detection/evaluator.py +52 -0
  760. paddlex/modules/object_detection/exportor.py +22 -0
  761. paddlex/modules/object_detection/model_list.py +84 -0
  762. paddlex/modules/object_detection/trainer.py +99 -0
  763. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  764. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  765. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  766. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  767. paddlex/modules/open_vocabulary_detection/model_list.py +18 -0
  768. paddlex/modules/open_vocabulary_detection/trainer.py +42 -0
  769. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  770. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  771. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  772. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  773. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  774. paddlex/modules/open_vocabulary_segmentation/trainer.py +42 -0
  775. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  776. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +110 -0
  777. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  778. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  779. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  780. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  781. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  782. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  783. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  784. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  785. paddlex/modules/semantic_segmentation/exportor.py +31 -0
  786. paddlex/modules/semantic_segmentation/model_list.py +37 -0
  787. paddlex/modules/semantic_segmentation/trainer.py +73 -0
  788. paddlex/modules/table_recognition/__init__.py +18 -0
  789. paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
  790. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  791. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  792. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +86 -0
  793. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  794. paddlex/modules/table_recognition/evaluator.py +43 -0
  795. paddlex/modules/table_recognition/exportor.py +22 -0
  796. paddlex/modules/table_recognition/model_list.py +21 -0
  797. paddlex/modules/table_recognition/trainer.py +70 -0
  798. paddlex/modules/text_detection/__init__.py +18 -0
  799. paddlex/modules/text_detection/dataset_checker/__init__.py +109 -0
  800. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  801. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  802. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
  803. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  804. paddlex/modules/text_detection/evaluator.py +41 -0
  805. paddlex/modules/text_detection/exportor.py +22 -0
  806. paddlex/modules/text_detection/model_list.py +24 -0
  807. paddlex/modules/text_detection/trainer.py +68 -0
  808. paddlex/modules/text_recognition/__init__.py +18 -0
  809. paddlex/modules/text_recognition/dataset_checker/__init__.py +126 -0
  810. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  811. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  812. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +107 -0
  813. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  814. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  815. paddlex/modules/text_recognition/evaluator.py +64 -0
  816. paddlex/modules/text_recognition/exportor.py +22 -0
  817. paddlex/modules/text_recognition/model_list.py +34 -0
  818. paddlex/modules/text_recognition/trainer.py +106 -0
  819. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  820. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +112 -0
  821. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  822. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  823. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  824. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  825. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  826. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  827. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  828. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  829. paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
  830. paddlex/modules/ts_classification/__init__.py +19 -0
  831. paddlex/modules/ts_classification/dataset_checker/__init__.py +112 -0
  832. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  833. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  834. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  835. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  836. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  837. paddlex/modules/ts_classification/evaluator.py +66 -0
  838. paddlex/modules/ts_classification/exportor.py +45 -0
  839. paddlex/modules/ts_classification/model_list.py +18 -0
  840. paddlex/modules/ts_classification/trainer.py +108 -0
  841. paddlex/modules/ts_forecast/__init__.py +19 -0
  842. paddlex/modules/ts_forecast/dataset_checker/__init__.py +112 -0
  843. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  844. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  845. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  846. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  847. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  848. paddlex/modules/ts_forecast/evaluator.py +66 -0
  849. paddlex/modules/ts_forecast/exportor.py +45 -0
  850. paddlex/modules/ts_forecast/model_list.py +24 -0
  851. paddlex/modules/ts_forecast/trainer.py +108 -0
  852. paddlex/modules/video_classification/__init__.py +18 -0
  853. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  854. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  855. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  856. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +121 -0
  857. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  858. paddlex/modules/video_classification/evaluator.py +44 -0
  859. paddlex/modules/video_classification/exportor.py +22 -0
  860. paddlex/modules/video_classification/model_list.py +19 -0
  861. paddlex/modules/video_classification/trainer.py +88 -0
  862. paddlex/modules/video_detection/__init__.py +18 -0
  863. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  864. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  865. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +101 -0
  866. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +134 -0
  867. paddlex/modules/video_detection/evaluator.py +42 -0
  868. paddlex/modules/video_detection/exportor.py +22 -0
  869. paddlex/modules/video_detection/model_list.py +15 -0
  870. paddlex/modules/video_detection/trainer.py +82 -0
  871. paddlex/ops/__init__.py +149 -0
  872. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +264 -0
  873. paddlex/ops/iou3d_nms/iou3d_cpu.h +27 -0
  874. paddlex/ops/iou3d_nms/iou3d_nms.cpp +204 -0
  875. paddlex/ops/iou3d_nms/iou3d_nms.h +33 -0
  876. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +108 -0
  877. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +482 -0
  878. paddlex/ops/setup.py +37 -0
  879. paddlex/ops/voxel/voxelize_op.cc +191 -0
  880. paddlex/ops/voxel/voxelize_op.cu +346 -0
  881. paddlex/paddle2onnx_requirements.txt +1 -0
  882. paddlex/paddlex_cli.py +464 -0
  883. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  884. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  885. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  886. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  887. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  888. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  889. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +144 -0
  890. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  891. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  892. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  893. paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
  894. paddlex/repo_apis/PaddleClas_api/cls/register.py +908 -0
  895. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  896. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  897. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  898. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  899. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  900. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  901. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  902. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  903. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  904. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +458 -0
  905. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
  906. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  907. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  908. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  909. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +539 -0
  910. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +430 -0
  911. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +220 -0
  912. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1106 -0
  913. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  914. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  915. paddlex/repo_apis/PaddleOCR_api/__init__.py +21 -0
  916. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  917. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  918. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +570 -0
  919. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +402 -0
  920. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +73 -0
  921. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +240 -0
  922. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  923. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  924. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  925. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +71 -0
  926. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  927. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  928. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  929. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  930. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +90 -0
  931. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  932. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  933. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +563 -0
  934. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +402 -0
  935. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +199 -0
  936. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  937. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  938. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  939. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  940. paddlex/repo_apis/PaddleSeg_api/seg/config.py +186 -0
  941. paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
  942. paddlex/repo_apis/PaddleSeg_api/seg/register.py +273 -0
  943. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  944. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  945. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  946. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  947. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  948. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  949. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  950. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +246 -0
  951. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
  952. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  953. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  954. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  955. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  956. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  957. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  958. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  959. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  960. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  961. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  962. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  963. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +547 -0
  964. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  965. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +71 -0
  966. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +205 -0
  967. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  968. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +548 -0
  969. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  970. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +45 -0
  971. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +200 -0
  972. paddlex/repo_apis/__init__.py +13 -0
  973. paddlex/repo_apis/base/__init__.py +23 -0
  974. paddlex/repo_apis/base/config.py +238 -0
  975. paddlex/repo_apis/base/model.py +571 -0
  976. paddlex/repo_apis/base/register.py +135 -0
  977. paddlex/repo_apis/base/runner.py +391 -0
  978. paddlex/repo_apis/base/utils/__init__.py +13 -0
  979. paddlex/repo_apis/base/utils/arg.py +64 -0
  980. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  981. paddlex/repo_manager/__init__.py +24 -0
  982. paddlex/repo_manager/core.py +271 -0
  983. paddlex/repo_manager/meta.py +170 -0
  984. paddlex/repo_manager/repo.py +415 -0
  985. paddlex/repo_manager/requirements.txt +21 -0
  986. paddlex/repo_manager/utils.py +359 -0
  987. paddlex/serving_requirements.txt +9 -0
  988. paddlex/utils/__init__.py +1 -12
  989. paddlex/utils/cache.py +148 -0
  990. paddlex/utils/config.py +215 -0
  991. paddlex/utils/custom_device_whitelist.py +457 -0
  992. paddlex/utils/device.py +151 -0
  993. paddlex/utils/download.py +168 -182
  994. paddlex/utils/env.py +11 -50
  995. paddlex/utils/errors/__init__.py +17 -0
  996. paddlex/utils/errors/dataset_checker.py +78 -0
  997. paddlex/utils/errors/others.py +152 -0
  998. paddlex/utils/file_interface.py +212 -0
  999. paddlex/utils/flags.py +65 -0
  1000. paddlex/utils/fonts/__init__.py +67 -0
  1001. paddlex/utils/func_register.py +41 -0
  1002. paddlex/utils/interactive_get_pipeline.py +55 -0
  1003. paddlex/utils/lazy_loader.py +68 -0
  1004. paddlex/utils/logging.py +131 -33
  1005. paddlex/utils/misc.py +201 -0
  1006. paddlex/utils/pipeline_arguments.py +711 -0
  1007. paddlex/utils/result_saver.py +59 -0
  1008. paddlex/utils/subclass_register.py +101 -0
  1009. paddlex/version.py +54 -0
  1010. paddlex-3.0.0rc0.dist-info/LICENSE +169 -0
  1011. paddlex-3.0.0rc0.dist-info/METADATA +1035 -0
  1012. paddlex-3.0.0rc0.dist-info/RECORD +1015 -0
  1013. paddlex-3.0.0rc0.dist-info/WHEEL +5 -0
  1014. paddlex-3.0.0rc0.dist-info/entry_points.txt +2 -0
  1015. paddlex-3.0.0rc0.dist-info/top_level.txt +1 -0
  1016. PaddleClas/__init__.py +0 -16
  1017. PaddleClas/deploy/__init__.py +0 -1
  1018. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  1019. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  1020. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  1021. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  1022. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  1023. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  1024. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  1025. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  1026. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  1027. PaddleClas/deploy/python/__init__.py +0 -0
  1028. PaddleClas/deploy/python/build_gallery.py +0 -214
  1029. PaddleClas/deploy/python/det_preprocess.py +0 -205
  1030. PaddleClas/deploy/python/postprocess.py +0 -161
  1031. PaddleClas/deploy/python/predict_cls.py +0 -142
  1032. PaddleClas/deploy/python/predict_det.py +0 -158
  1033. PaddleClas/deploy/python/predict_rec.py +0 -138
  1034. PaddleClas/deploy/python/predict_system.py +0 -144
  1035. PaddleClas/deploy/python/preprocess.py +0 -337
  1036. PaddleClas/deploy/utils/__init__.py +0 -5
  1037. PaddleClas/deploy/utils/config.py +0 -197
  1038. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  1039. PaddleClas/deploy/utils/encode_decode.py +0 -31
  1040. PaddleClas/deploy/utils/get_image_list.py +0 -49
  1041. PaddleClas/deploy/utils/logger.py +0 -120
  1042. PaddleClas/deploy/utils/predictor.py +0 -71
  1043. PaddleClas/deploy/vector_search/__init__.py +0 -1
  1044. PaddleClas/deploy/vector_search/interface.py +0 -272
  1045. PaddleClas/deploy/vector_search/test.py +0 -34
  1046. PaddleClas/hubconf.py +0 -788
  1047. PaddleClas/paddleclas.py +0 -552
  1048. PaddleClas/ppcls/__init__.py +0 -20
  1049. PaddleClas/ppcls/arch/__init__.py +0 -127
  1050. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  1051. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  1052. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  1053. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1054. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1055. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  1056. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1057. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1058. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1059. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1060. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1061. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  1062. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1063. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1064. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1065. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1066. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1067. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1068. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1069. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1070. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1071. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1072. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1073. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1074. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1075. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1076. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1077. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1078. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1079. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1080. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1081. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1082. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1083. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1084. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1085. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1086. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1087. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1088. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1089. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1090. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1091. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1092. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1093. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1094. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1095. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1096. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1097. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1098. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1099. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1100. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1101. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1102. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1103. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1104. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  1105. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  1106. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  1107. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  1108. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  1109. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  1110. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  1111. PaddleClas/ppcls/arch/utils.py +0 -53
  1112. PaddleClas/ppcls/data/__init__.py +0 -144
  1113. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1114. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  1115. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  1116. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  1117. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1118. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1119. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  1120. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  1121. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  1122. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1123. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  1124. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1125. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  1126. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  1127. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  1128. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  1129. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1130. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  1131. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1132. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  1133. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  1134. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  1135. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  1136. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1137. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  1138. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1139. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1140. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1141. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  1142. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  1143. PaddleClas/ppcls/engine/__init__.py +0 -0
  1144. PaddleClas/ppcls/engine/engine.py +0 -436
  1145. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  1146. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  1147. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  1148. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  1149. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  1150. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  1151. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  1152. PaddleClas/ppcls/engine/train/train.py +0 -79
  1153. PaddleClas/ppcls/engine/train/utils.py +0 -72
  1154. PaddleClas/ppcls/loss/__init__.py +0 -65
  1155. PaddleClas/ppcls/loss/celoss.py +0 -67
  1156. PaddleClas/ppcls/loss/centerloss.py +0 -54
  1157. PaddleClas/ppcls/loss/comfunc.py +0 -45
  1158. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  1159. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  1160. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  1161. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  1162. PaddleClas/ppcls/loss/emlloss.py +0 -97
  1163. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  1164. PaddleClas/ppcls/loss/msmloss.py +0 -78
  1165. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  1166. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  1167. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  1168. PaddleClas/ppcls/loss/supconloss.py +0 -108
  1169. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  1170. PaddleClas/ppcls/loss/triplet.py +0 -137
  1171. PaddleClas/ppcls/metric/__init__.py +0 -51
  1172. PaddleClas/ppcls/metric/metrics.py +0 -308
  1173. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  1174. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  1175. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  1176. PaddleClas/ppcls/utils/__init__.py +0 -27
  1177. PaddleClas/ppcls/utils/check.py +0 -151
  1178. PaddleClas/ppcls/utils/config.py +0 -210
  1179. PaddleClas/ppcls/utils/download.py +0 -319
  1180. PaddleClas/ppcls/utils/ema.py +0 -63
  1181. PaddleClas/ppcls/utils/logger.py +0 -137
  1182. PaddleClas/ppcls/utils/metrics.py +0 -107
  1183. PaddleClas/ppcls/utils/misc.py +0 -63
  1184. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  1185. PaddleClas/ppcls/utils/profiler.py +0 -111
  1186. PaddleClas/ppcls/utils/save_load.py +0 -136
  1187. PaddleClas/setup.py +0 -58
  1188. PaddleClas/tools/__init__.py +0 -15
  1189. PaddleClas/tools/eval.py +0 -31
  1190. PaddleClas/tools/export_model.py +0 -34
  1191. PaddleClas/tools/infer.py +0 -31
  1192. PaddleClas/tools/train.py +0 -32
  1193. paddlex/cls.py +0 -82
  1194. paddlex/command.py +0 -215
  1195. paddlex/cv/__init__.py +0 -17
  1196. paddlex/cv/datasets/__init__.py +0 -18
  1197. paddlex/cv/datasets/coco.py +0 -208
  1198. paddlex/cv/datasets/imagenet.py +0 -88
  1199. paddlex/cv/datasets/seg_dataset.py +0 -91
  1200. paddlex/cv/datasets/voc.py +0 -445
  1201. paddlex/cv/models/__init__.py +0 -18
  1202. paddlex/cv/models/base.py +0 -631
  1203. paddlex/cv/models/classifier.py +0 -989
  1204. paddlex/cv/models/detector.py +0 -2292
  1205. paddlex/cv/models/load_model.py +0 -148
  1206. paddlex/cv/models/segmenter.py +0 -768
  1207. paddlex/cv/models/slim/__init__.py +0 -13
  1208. paddlex/cv/models/slim/prune.py +0 -55
  1209. paddlex/cv/models/utils/__init__.py +0 -13
  1210. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  1211. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  1212. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  1213. paddlex/cv/models/utils/infer_nets.py +0 -45
  1214. paddlex/cv/models/utils/seg_metrics.py +0 -62
  1215. paddlex/cv/models/utils/visualize.py +0 -399
  1216. paddlex/cv/transforms/__init__.py +0 -46
  1217. paddlex/cv/transforms/batch_operators.py +0 -286
  1218. paddlex/cv/transforms/box_utils.py +0 -41
  1219. paddlex/cv/transforms/functions.py +0 -193
  1220. paddlex/cv/transforms/operators.py +0 -1402
  1221. paddlex/deploy.py +0 -268
  1222. paddlex/det.py +0 -49
  1223. paddlex/paddleseg/__init__.py +0 -17
  1224. paddlex/paddleseg/core/__init__.py +0 -20
  1225. paddlex/paddleseg/core/infer.py +0 -289
  1226. paddlex/paddleseg/core/predict.py +0 -145
  1227. paddlex/paddleseg/core/train.py +0 -258
  1228. paddlex/paddleseg/core/val.py +0 -172
  1229. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  1230. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  1231. paddlex/paddleseg/cvlibs/config.py +0 -359
  1232. paddlex/paddleseg/cvlibs/manager.py +0 -142
  1233. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  1234. paddlex/paddleseg/datasets/__init__.py +0 -21
  1235. paddlex/paddleseg/datasets/ade.py +0 -112
  1236. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  1237. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  1238. paddlex/paddleseg/datasets/dataset.py +0 -164
  1239. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  1240. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  1241. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  1242. paddlex/paddleseg/datasets/voc.py +0 -113
  1243. paddlex/paddleseg/models/__init__.py +0 -39
  1244. paddlex/paddleseg/models/ann.py +0 -436
  1245. paddlex/paddleseg/models/attention_unet.py +0 -189
  1246. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  1247. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  1248. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  1249. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  1250. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  1251. paddlex/paddleseg/models/bisenet.py +0 -311
  1252. paddlex/paddleseg/models/danet.py +0 -220
  1253. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  1254. paddlex/paddleseg/models/deeplab.py +0 -258
  1255. paddlex/paddleseg/models/dnlnet.py +0 -231
  1256. paddlex/paddleseg/models/emanet.py +0 -219
  1257. paddlex/paddleseg/models/fast_scnn.py +0 -318
  1258. paddlex/paddleseg/models/fcn.py +0 -135
  1259. paddlex/paddleseg/models/gcnet.py +0 -223
  1260. paddlex/paddleseg/models/gscnn.py +0 -357
  1261. paddlex/paddleseg/models/hardnet.py +0 -309
  1262. paddlex/paddleseg/models/isanet.py +0 -202
  1263. paddlex/paddleseg/models/layers/__init__.py +0 -19
  1264. paddlex/paddleseg/models/layers/activation.py +0 -73
  1265. paddlex/paddleseg/models/layers/attention.py +0 -146
  1266. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  1267. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  1268. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  1269. paddlex/paddleseg/models/losses/__init__.py +0 -27
  1270. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  1271. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  1272. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  1273. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  1274. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  1275. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  1276. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  1277. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  1278. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  1279. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  1280. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  1281. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  1282. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  1283. paddlex/paddleseg/models/ocrnet.py +0 -248
  1284. paddlex/paddleseg/models/pspnet.py +0 -147
  1285. paddlex/paddleseg/models/sfnet.py +0 -236
  1286. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  1287. paddlex/paddleseg/models/u2net.py +0 -574
  1288. paddlex/paddleseg/models/unet.py +0 -155
  1289. paddlex/paddleseg/models/unet_3plus.py +0 -316
  1290. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  1291. paddlex/paddleseg/transforms/__init__.py +0 -16
  1292. paddlex/paddleseg/transforms/functional.py +0 -161
  1293. paddlex/paddleseg/transforms/transforms.py +0 -937
  1294. paddlex/paddleseg/utils/__init__.py +0 -22
  1295. paddlex/paddleseg/utils/config_check.py +0 -60
  1296. paddlex/paddleseg/utils/download.py +0 -163
  1297. paddlex/paddleseg/utils/env/__init__.py +0 -16
  1298. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  1299. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  1300. paddlex/paddleseg/utils/logger.py +0 -48
  1301. paddlex/paddleseg/utils/metrics.py +0 -146
  1302. paddlex/paddleseg/utils/progbar.py +0 -212
  1303. paddlex/paddleseg/utils/timer.py +0 -53
  1304. paddlex/paddleseg/utils/utils.py +0 -120
  1305. paddlex/paddleseg/utils/visualize.py +0 -90
  1306. paddlex/ppcls/__init__.py +0 -20
  1307. paddlex/ppcls/arch/__init__.py +0 -127
  1308. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  1309. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  1310. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  1311. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1312. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1313. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  1314. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1315. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1316. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1317. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1318. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1319. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  1320. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1321. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1322. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1323. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1324. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1325. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1326. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1327. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1328. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1329. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1330. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1331. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1332. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1333. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1334. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1335. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1336. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1337. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1338. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1339. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1340. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1341. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1342. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1343. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1344. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1345. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1346. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1347. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1348. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1349. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1350. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1351. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1352. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1353. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1354. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1355. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1356. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1357. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1358. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1359. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1360. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1361. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1362. paddlex/ppcls/arch/gears/__init__.py +0 -32
  1363. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  1364. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  1365. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  1366. paddlex/ppcls/arch/gears/fc.py +0 -35
  1367. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  1368. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1369. paddlex/ppcls/arch/utils.py +0 -53
  1370. paddlex/ppcls/data/__init__.py +0 -144
  1371. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1372. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1373. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1374. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1375. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1376. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1377. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1378. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1379. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1380. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1381. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1382. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1383. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1384. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1385. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1386. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1387. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1388. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1389. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1390. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1391. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1392. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1393. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1394. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1395. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1396. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1397. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1398. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1399. paddlex/ppcls/data/utils/__init__.py +0 -13
  1400. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1401. paddlex/ppcls/engine/__init__.py +0 -0
  1402. paddlex/ppcls/engine/engine.py +0 -436
  1403. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1404. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1405. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1406. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1407. paddlex/ppcls/engine/slim/prune.py +0 -66
  1408. paddlex/ppcls/engine/slim/quant.py +0 -55
  1409. paddlex/ppcls/engine/train/__init__.py +0 -14
  1410. paddlex/ppcls/engine/train/train.py +0 -79
  1411. paddlex/ppcls/engine/train/utils.py +0 -72
  1412. paddlex/ppcls/loss/__init__.py +0 -65
  1413. paddlex/ppcls/loss/celoss.py +0 -67
  1414. paddlex/ppcls/loss/centerloss.py +0 -54
  1415. paddlex/ppcls/loss/comfunc.py +0 -45
  1416. paddlex/ppcls/loss/deephashloss.py +0 -96
  1417. paddlex/ppcls/loss/distanceloss.py +0 -43
  1418. paddlex/ppcls/loss/distillationloss.py +0 -141
  1419. paddlex/ppcls/loss/dmlloss.py +0 -46
  1420. paddlex/ppcls/loss/emlloss.py +0 -97
  1421. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1422. paddlex/ppcls/loss/msmloss.py +0 -78
  1423. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1424. paddlex/ppcls/loss/npairsloss.py +0 -38
  1425. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1426. paddlex/ppcls/loss/supconloss.py +0 -108
  1427. paddlex/ppcls/loss/trihardloss.py +0 -82
  1428. paddlex/ppcls/loss/triplet.py +0 -137
  1429. paddlex/ppcls/metric/__init__.py +0 -51
  1430. paddlex/ppcls/metric/metrics.py +0 -308
  1431. paddlex/ppcls/optimizer/__init__.py +0 -72
  1432. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1433. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1434. paddlex/ppcls/utils/__init__.py +0 -27
  1435. paddlex/ppcls/utils/check.py +0 -151
  1436. paddlex/ppcls/utils/config.py +0 -210
  1437. paddlex/ppcls/utils/download.py +0 -319
  1438. paddlex/ppcls/utils/ema.py +0 -63
  1439. paddlex/ppcls/utils/logger.py +0 -137
  1440. paddlex/ppcls/utils/metrics.py +0 -112
  1441. paddlex/ppcls/utils/misc.py +0 -63
  1442. paddlex/ppcls/utils/model_zoo.py +0 -213
  1443. paddlex/ppcls/utils/profiler.py +0 -111
  1444. paddlex/ppcls/utils/save_load.py +0 -136
  1445. paddlex/ppdet/__init__.py +0 -16
  1446. paddlex/ppdet/core/__init__.py +0 -15
  1447. paddlex/ppdet/core/config/__init__.py +0 -13
  1448. paddlex/ppdet/core/config/schema.py +0 -248
  1449. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1450. paddlex/ppdet/core/workspace.py +0 -278
  1451. paddlex/ppdet/data/__init__.py +0 -21
  1452. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1453. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1454. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1455. paddlex/ppdet/data/reader.py +0 -302
  1456. paddlex/ppdet/data/shm_utils.py +0 -67
  1457. paddlex/ppdet/data/source/__init__.py +0 -29
  1458. paddlex/ppdet/data/source/category.py +0 -904
  1459. paddlex/ppdet/data/source/coco.py +0 -251
  1460. paddlex/ppdet/data/source/dataset.py +0 -197
  1461. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1462. paddlex/ppdet/data/source/mot.py +0 -636
  1463. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1464. paddlex/ppdet/data/source/voc.py +0 -231
  1465. paddlex/ppdet/data/source/widerface.py +0 -180
  1466. paddlex/ppdet/data/transform/__init__.py +0 -28
  1467. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1468. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1469. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1470. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1471. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1472. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1473. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1474. paddlex/ppdet/data/transform/operators.py +0 -3025
  1475. paddlex/ppdet/engine/__init__.py +0 -30
  1476. paddlex/ppdet/engine/callbacks.py +0 -340
  1477. paddlex/ppdet/engine/env.py +0 -50
  1478. paddlex/ppdet/engine/export_utils.py +0 -177
  1479. paddlex/ppdet/engine/tracker.py +0 -538
  1480. paddlex/ppdet/engine/trainer.py +0 -723
  1481. paddlex/ppdet/metrics/__init__.py +0 -29
  1482. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1483. paddlex/ppdet/metrics/json_results.py +0 -149
  1484. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1485. paddlex/ppdet/metrics/map_utils.py +0 -444
  1486. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1487. paddlex/ppdet/metrics/metrics.py +0 -434
  1488. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1489. paddlex/ppdet/metrics/munkres.py +0 -428
  1490. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1491. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1492. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1493. paddlex/ppdet/modeling/__init__.py +0 -45
  1494. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1495. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1496. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1497. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1498. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1499. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1500. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1501. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1502. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1503. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1504. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1505. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1506. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1507. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1508. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1509. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1510. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1511. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1512. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1513. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1514. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1515. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1516. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1517. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1518. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1519. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1520. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1521. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1522. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1523. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1524. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1525. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1526. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1527. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1528. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1529. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1530. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1531. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1532. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1533. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1534. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1535. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1536. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1537. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1538. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1539. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1540. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1541. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1542. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1543. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1544. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1545. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1546. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1547. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1548. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1549. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1550. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1551. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1552. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1553. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1554. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1555. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1556. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1557. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1558. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1559. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1560. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1561. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1562. paddlex/ppdet/modeling/initializer.py +0 -317
  1563. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1564. paddlex/ppdet/modeling/layers.py +0 -1430
  1565. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1566. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1567. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1568. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1569. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1570. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1571. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1572. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1573. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1574. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1575. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1576. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1577. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1578. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1579. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1580. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1581. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1582. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1583. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1584. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1585. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1586. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1587. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1588. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1589. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1590. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1591. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1592. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1593. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1594. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1595. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1596. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1597. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1598. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1599. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1600. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1601. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1602. paddlex/ppdet/modeling/ops.py +0 -1611
  1603. paddlex/ppdet/modeling/post_process.py +0 -731
  1604. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1605. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1606. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1607. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1608. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1609. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1610. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1611. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1612. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1613. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1614. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1615. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1616. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1617. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1618. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1619. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1620. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1621. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1622. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1623. paddlex/ppdet/optimizer.py +0 -335
  1624. paddlex/ppdet/slim/__init__.py +0 -82
  1625. paddlex/ppdet/slim/distill.py +0 -110
  1626. paddlex/ppdet/slim/prune.py +0 -85
  1627. paddlex/ppdet/slim/quant.py +0 -84
  1628. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1629. paddlex/ppdet/utils/__init__.py +0 -13
  1630. paddlex/ppdet/utils/check.py +0 -112
  1631. paddlex/ppdet/utils/checkpoint.py +0 -226
  1632. paddlex/ppdet/utils/cli.py +0 -151
  1633. paddlex/ppdet/utils/colormap.py +0 -58
  1634. paddlex/ppdet/utils/download.py +0 -558
  1635. paddlex/ppdet/utils/logger.py +0 -70
  1636. paddlex/ppdet/utils/profiler.py +0 -111
  1637. paddlex/ppdet/utils/stats.py +0 -94
  1638. paddlex/ppdet/utils/visualizer.py +0 -321
  1639. paddlex/ppdet/utils/voc_utils.py +0 -86
  1640. paddlex/seg.py +0 -41
  1641. paddlex/tools/__init__.py +0 -17
  1642. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1643. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1644. paddlex/tools/convert.py +0 -52
  1645. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1646. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1647. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1648. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1649. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1650. paddlex/tools/dataset_split/__init__.py +0 -23
  1651. paddlex/tools/dataset_split/coco_split.py +0 -69
  1652. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1653. paddlex/tools/dataset_split/seg_split.py +0 -96
  1654. paddlex/tools/dataset_split/utils.py +0 -75
  1655. paddlex/tools/dataset_split/voc_split.py +0 -91
  1656. paddlex/tools/split.py +0 -41
  1657. paddlex/utils/checkpoint.py +0 -492
  1658. paddlex/utils/shm.py +0 -67
  1659. paddlex/utils/stats.py +0 -68
  1660. paddlex/utils/utils.py +0 -229
  1661. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1662. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1663. paddlex-2.1.0.dist-info/METADATA +0 -32
  1664. paddlex-2.1.0.dist-info/RECORD +0 -698
  1665. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1666. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1667. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1668. paddlex_restful/__init__.py +0 -15
  1669. paddlex_restful/command.py +0 -63
  1670. paddlex_restful/restful/__init__.py +0 -15
  1671. paddlex_restful/restful/app.py +0 -969
  1672. paddlex_restful/restful/dataset/__init__.py +0 -13
  1673. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1674. paddlex_restful/restful/dataset/dataset.py +0 -266
  1675. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1676. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1677. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1678. paddlex_restful/restful/dataset/operate.py +0 -155
  1679. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1680. paddlex_restful/restful/dataset/utils.py +0 -267
  1681. paddlex_restful/restful/demo.py +0 -202
  1682. paddlex_restful/restful/dir.py +0 -45
  1683. paddlex_restful/restful/model.py +0 -312
  1684. paddlex_restful/restful/project/__init__.py +0 -13
  1685. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1686. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1687. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1688. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1689. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1690. paddlex_restful/restful/project/operate.py +0 -931
  1691. paddlex_restful/restful/project/project.py +0 -143
  1692. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1693. paddlex_restful/restful/project/prune/classification.py +0 -32
  1694. paddlex_restful/restful/project/prune/detection.py +0 -48
  1695. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1696. paddlex_restful/restful/project/task.py +0 -884
  1697. paddlex_restful/restful/project/train/__init__.py +0 -13
  1698. paddlex_restful/restful/project/train/classification.py +0 -141
  1699. paddlex_restful/restful/project/train/detection.py +0 -263
  1700. paddlex_restful/restful/project/train/params.py +0 -432
  1701. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1702. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1703. paddlex_restful/restful/project/visualize.py +0 -244
  1704. paddlex_restful/restful/system.py +0 -102
  1705. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1706. paddlex_restful/restful/utils.py +0 -841
  1707. paddlex_restful/restful/workspace.py +0 -343
  1708. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,1611 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import paddle
16
- import paddle.nn.functional as F
17
- import paddle.nn as nn
18
- from paddle import ParamAttr
19
- from paddle.regularizer import L2Decay
20
-
21
- from paddle.fluid.framework import Variable, in_dygraph_mode
22
- from paddle.fluid import core
23
- from paddle.fluid.layer_helper import LayerHelper
24
- from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
25
-
26
- __all__ = [
27
- 'roi_pool',
28
- 'roi_align',
29
- 'prior_box',
30
- 'generate_proposals',
31
- 'iou_similarity',
32
- 'box_coder',
33
- 'yolo_box',
34
- 'multiclass_nms',
35
- 'distribute_fpn_proposals',
36
- 'collect_fpn_proposals',
37
- 'matrix_nms',
38
- 'batch_norm',
39
- 'mish',
40
- ]
41
-
42
-
43
- def mish(x):
44
- return x * paddle.tanh(F.softplus(x))
45
-
46
-
47
- def batch_norm(ch,
48
- norm_type='bn',
49
- norm_decay=0.,
50
- freeze_norm=False,
51
- initializer=None,
52
- data_format='NCHW'):
53
- if norm_type == 'sync_bn':
54
- batch_norm = nn.SyncBatchNorm
55
- else:
56
- batch_norm = nn.BatchNorm2D
57
-
58
- norm_lr = 0. if freeze_norm else 1.
59
- weight_attr = ParamAttr(
60
- initializer=initializer,
61
- learning_rate=norm_lr,
62
- regularizer=L2Decay(norm_decay),
63
- trainable=False if freeze_norm else True)
64
- bias_attr = ParamAttr(
65
- learning_rate=norm_lr,
66
- regularizer=L2Decay(norm_decay),
67
- trainable=False if freeze_norm else True)
68
-
69
- norm_layer = batch_norm(
70
- ch,
71
- weight_attr=weight_attr,
72
- bias_attr=bias_attr,
73
- data_format=data_format)
74
-
75
- norm_params = norm_layer.parameters()
76
- if freeze_norm:
77
- for param in norm_params:
78
- param.stop_gradient = True
79
-
80
- return norm_layer
81
-
82
-
83
- @paddle.jit.not_to_static
84
- def roi_pool(input,
85
- rois,
86
- output_size,
87
- spatial_scale=1.0,
88
- rois_num=None,
89
- name=None):
90
- """
91
-
92
- This operator implements the roi_pooling layer.
93
- Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
94
-
95
- The operator has three steps:
96
-
97
- 1. Dividing each region proposal into equal-sized sections with output_size(h, w);
98
- 2. Finding the largest value in each section;
99
- 3. Copying these max values to the output buffer.
100
-
101
- For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
102
-
103
- Args:
104
- input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
105
- where N is the batch size, C is the input channel, H is Height, W is weight.
106
- The data type is float32 or float64.
107
- rois (Tensor): ROIs (Regions of Interest) to pool over.
108
- 2D-Tensor or 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1.
109
- Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
110
- and (x2, y2) is the bottom right coordinates.
111
- output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
112
- spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
113
- rois_num (Tensor): The number of RoIs in each image. Default: None
114
- name(str, optional): For detailed information, please refer
115
- to :ref:`api_guide_Name`. Usually name is no need to set and
116
- None by default.
117
-
118
-
119
- Returns:
120
- Tensor: The pooled feature, 4D-Tensor with the shape of [num_rois, C, output_size[0], output_size[1]].
121
-
122
-
123
- Examples:
124
-
125
- .. code-block:: python
126
-
127
- import paddle
128
- from paddlex.ppdet.modeling import ops
129
- paddle.enable_static()
130
-
131
- x = paddle.static.data(
132
- name='data', shape=[None, 256, 32, 32], dtype='float32')
133
- rois = paddle.static.data(
134
- name='rois', shape=[None, 4], dtype='float32')
135
- rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
136
-
137
- pool_out = ops.roi_pool(
138
- input=x,
139
- rois=rois,
140
- output_size=(1, 1),
141
- spatial_scale=1.0,
142
- rois_num=rois_num)
143
- """
144
- check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
145
- if isinstance(output_size, int):
146
- output_size = (output_size, output_size)
147
-
148
- pooled_height, pooled_width = output_size
149
- if in_dygraph_mode():
150
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
151
- pool_out, argmaxes = core.ops.roi_pool(
152
- input, rois, rois_num, "pooled_height", pooled_height,
153
- "pooled_width", pooled_width, "spatial_scale", spatial_scale)
154
- return pool_out, argmaxes
155
-
156
- else:
157
- check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool')
158
- check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool')
159
- helper = LayerHelper('roi_pool', **locals())
160
- dtype = helper.input_dtype()
161
- pool_out = helper.create_variable_for_type_inference(dtype)
162
- argmaxes = helper.create_variable_for_type_inference(dtype='int32')
163
-
164
- inputs = {
165
- "X": input,
166
- "ROIs": rois,
167
- }
168
- if rois_num is not None:
169
- inputs['RoisNum'] = rois_num
170
- helper.append_op(
171
- type="roi_pool",
172
- inputs=inputs,
173
- outputs={"Out": pool_out,
174
- "Argmax": argmaxes},
175
- attrs={
176
- "pooled_height": pooled_height,
177
- "pooled_width": pooled_width,
178
- "spatial_scale": spatial_scale
179
- })
180
- return pool_out, argmaxes
181
-
182
-
183
- @paddle.jit.not_to_static
184
- def roi_align(input,
185
- rois,
186
- output_size,
187
- spatial_scale=1.0,
188
- sampling_ratio=-1,
189
- rois_num=None,
190
- aligned=True,
191
- name=None):
192
- """
193
-
194
- Region of interest align (also known as RoI align) is to perform
195
- bilinear interpolation on inputs of nonuniform sizes to obtain
196
- fixed-size feature maps (e.g. 7*7)
197
-
198
- Dividing each region proposal into equal-sized sections with
199
- the pooled_width and pooled_height. Location remains the origin
200
- result.
201
-
202
- In each ROI bin, the value of the four regularly sampled locations
203
- are computed directly through bilinear interpolation. The output is
204
- the mean of four locations.
205
- Thus avoid the misaligned problem.
206
-
207
- Args:
208
- input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
209
- where N is the batch size, C is the input channel, H is Height, W is weight.
210
- The data type is float32 or float64.
211
- rois (Tensor): ROIs (Regions of Interest) to pool over.It should be
212
- a 2-D Tensor or 2-D LoDTensor of shape (num_rois, 4), the lod level is 1.
213
- The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...],
214
- (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
215
- output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
216
- spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords
217
- from their input scale to the scale used when pooling. Default: 1.0
218
- sampling_ratio(int32, optional): number of sampling points in the interpolation grid.
219
- If <=0, then grid points are adaptive to roi_width and pooled_w, likewise for height. Default: -1
220
- rois_num (Tensor): The number of RoIs in each image. Default: None
221
- name(str, optional): For detailed information, please refer
222
- to :ref:`api_guide_Name`. Usually name is no need to set and
223
- None by default.
224
-
225
- Returns:
226
- Tensor:
227
-
228
- Output: The output of ROIAlignOp is a 4-D tensor with shape (num_rois, channels, pooled_h, pooled_w). The data type is float32 or float64.
229
-
230
-
231
- Examples:
232
- .. code-block:: python
233
-
234
- import paddle
235
- from paddlex.ppdet.modeling import ops
236
- paddle.enable_static()
237
-
238
- x = paddle.static.data(
239
- name='data', shape=[None, 256, 32, 32], dtype='float32')
240
- rois = paddle.static.data(
241
- name='rois', shape=[None, 4], dtype='float32')
242
- rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
243
- align_out = ops.roi_align(input=x,
244
- rois=rois,
245
- ouput_size=(7, 7),
246
- spatial_scale=0.5,
247
- sampling_ratio=-1,
248
- rois_num=rois_num)
249
- """
250
- check_type(output_size, 'output_size', (int, tuple), 'roi_align')
251
- if isinstance(output_size, int):
252
- output_size = (output_size, output_size)
253
-
254
- pooled_height, pooled_width = output_size
255
-
256
- if in_dygraph_mode():
257
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
258
- align_out = core.ops.roi_align(
259
- input, rois, rois_num, "pooled_height", pooled_height,
260
- "pooled_width", pooled_width, "spatial_scale", spatial_scale,
261
- "sampling_ratio", sampling_ratio, "aligned", aligned)
262
- return align_out
263
-
264
- else:
265
- check_variable_and_dtype(input, 'input', ['float32', 'float64'],
266
- 'roi_align')
267
- check_variable_and_dtype(rois, 'rois', ['float32', 'float64'],
268
- 'roi_align')
269
- helper = LayerHelper('roi_align', **locals())
270
- dtype = helper.input_dtype()
271
- align_out = helper.create_variable_for_type_inference(dtype)
272
- inputs = {
273
- "X": input,
274
- "ROIs": rois,
275
- }
276
- if rois_num is not None:
277
- inputs['RoisNum'] = rois_num
278
- helper.append_op(
279
- type="roi_align",
280
- inputs=inputs,
281
- outputs={"Out": align_out},
282
- attrs={
283
- "pooled_height": pooled_height,
284
- "pooled_width": pooled_width,
285
- "spatial_scale": spatial_scale,
286
- "sampling_ratio": sampling_ratio,
287
- "aligned": aligned,
288
- })
289
- return align_out
290
-
291
-
292
- @paddle.jit.not_to_static
293
- def iou_similarity(x, y, box_normalized=True, name=None):
294
- """
295
- Computes intersection-over-union (IOU) between two box lists.
296
- Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
297
- boxes in 'Y' are shared by all instance of the batched inputs of X.
298
- Given two boxes A and B, the calculation of IOU is as follows:
299
-
300
- $$
301
- IOU(A, B) =
302
- \\frac{area(A\\cap B)}{area(A)+area(B)-area(A\\cap B)}
303
- $$
304
-
305
- Args:
306
- x (Tensor): Box list X is a 2-D Tensor with shape [N, 4] holds N
307
- boxes, each box is represented as [xmin, ymin, xmax, ymax],
308
- the shape of X is [N, 4]. [xmin, ymin] is the left top
309
- coordinate of the box if the input is image feature map, they
310
- are close to the origin of the coordinate system.
311
- [xmax, ymax] is the right bottom coordinate of the box.
312
- The data type is float32 or float64.
313
- y (Tensor): Box list Y holds M boxes, each box is represented as
314
- [xmin, ymin, xmax, ymax], the shape of X is [N, 4].
315
- [xmin, ymin] is the left top coordinate of the box if the
316
- input is image feature map, and [xmax, ymax] is the right
317
- bottom coordinate of the box. The data type is float32 or float64.
318
- box_normalized(bool): Whether treat the priorbox as a normalized box.
319
- Set true by default.
320
- name(str, optional): For detailed information, please refer
321
- to :ref:`api_guide_Name`. Usually name is no need to set and
322
- None by default.
323
-
324
- Returns:
325
- Tensor: The output of iou_similarity op, a tensor with shape [N, M]
326
- representing pairwise iou scores. The data type is same with x.
327
-
328
- Examples:
329
- .. code-block:: python
330
-
331
- import paddle
332
- from paddlex.ppdet.modeling import ops
333
- paddle.enable_static()
334
-
335
- x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
336
- y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
337
- iou = ops.iou_similarity(x=x, y=y)
338
- """
339
-
340
- if in_dygraph_mode():
341
- out = core.ops.iou_similarity(x, y, 'box_normalized', box_normalized)
342
- return out
343
- else:
344
- helper = LayerHelper("iou_similarity", **locals())
345
- out = helper.create_variable_for_type_inference(dtype=x.dtype)
346
-
347
- helper.append_op(
348
- type="iou_similarity",
349
- inputs={"X": x,
350
- "Y": y},
351
- attrs={"box_normalized": box_normalized},
352
- outputs={"Out": out})
353
- return out
354
-
355
-
356
- @paddle.jit.not_to_static
357
- def collect_fpn_proposals(multi_rois,
358
- multi_scores,
359
- min_level,
360
- max_level,
361
- post_nms_top_n,
362
- rois_num_per_level=None,
363
- name=None):
364
- """
365
-
366
- **This OP only supports LoDTensor as input**. Concat multi-level RoIs
367
- (Region of Interest) and select N RoIs with respect to multi_scores.
368
- This operation performs the following steps:
369
-
370
- 1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
371
- 2. Concat multi-level RoIs and scores
372
- 3. Sort scores and select post_nms_top_n scores
373
- 4. Gather RoIs by selected indices from scores
374
- 5. Re-sort RoIs by corresponding batch_id
375
-
376
- Args:
377
- multi_rois(list): List of RoIs to collect. Element in list is 2-D
378
- LoDTensor with shape [N, 4] and data type is float32 or float64,
379
- N is the number of RoIs.
380
- multi_scores(list): List of scores of RoIs to collect. Element in list
381
- is 2-D LoDTensor with shape [N, 1] and data type is float32 or
382
- float64, N is the number of RoIs.
383
- min_level(int): The lowest level of FPN layer to collect
384
- max_level(int): The highest level of FPN layer to collect
385
- post_nms_top_n(int): The number of selected RoIs
386
- rois_num_per_level(list, optional): The List of RoIs' numbers.
387
- Each element is 1-D Tensor which contains the RoIs' number of each
388
- image on each level and the shape is [B] and data type is
389
- int32, B is the number of images. If it is not None then return
390
- a 1-D Tensor contains the output RoIs' number of each image and
391
- the shape is [B]. Default: None
392
- name(str, optional): For detailed information, please refer
393
- to :ref:`api_guide_Name`. Usually name is no need to set and
394
- None by default.
395
-
396
- Returns:
397
- Variable:
398
-
399
- fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
400
- float32 or float64. Selected RoIs.
401
-
402
- rois_num(Tensor): 1-D Tensor contains the RoIs's number of each
403
- image. The shape is [B] and data type is int32. B is the number of
404
- images.
405
-
406
- Examples:
407
- .. code-block:: python
408
-
409
- import paddle
410
- from paddlex.ppdet.modeling import ops
411
- paddle.enable_static()
412
- multi_rois = []
413
- multi_scores = []
414
- for i in range(4):
415
- multi_rois.append(paddle.static.data(
416
- name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
417
- for i in range(4):
418
- multi_scores.append(paddle.static.data(
419
- name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
420
-
421
- fpn_rois = ops.collect_fpn_proposals(
422
- multi_rois=multi_rois,
423
- multi_scores=multi_scores,
424
- min_level=2,
425
- max_level=5,
426
- post_nms_top_n=2000)
427
- """
428
- check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
429
- check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
430
- num_lvl = max_level - min_level + 1
431
- input_rois = multi_rois[:num_lvl]
432
- input_scores = multi_scores[:num_lvl]
433
-
434
- if in_dygraph_mode():
435
- assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
436
- attrs = ('post_nms_topN', post_nms_top_n)
437
- output_rois, rois_num = core.ops.collect_fpn_proposals(
438
- input_rois, input_scores, rois_num_per_level, *attrs)
439
- return output_rois, rois_num
440
-
441
- else:
442
- helper = LayerHelper('collect_fpn_proposals', **locals())
443
- dtype = helper.input_dtype('multi_rois')
444
- check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
445
- 'collect_fpn_proposals')
446
- output_rois = helper.create_variable_for_type_inference(dtype)
447
- output_rois.stop_gradient = True
448
-
449
- inputs = {
450
- 'MultiLevelRois': input_rois,
451
- 'MultiLevelScores': input_scores,
452
- }
453
- outputs = {'FpnRois': output_rois}
454
- if rois_num_per_level is not None:
455
- inputs['MultiLevelRoIsNum'] = rois_num_per_level
456
- rois_num = helper.create_variable_for_type_inference(dtype='int32')
457
- rois_num.stop_gradient = True
458
- outputs['RoisNum'] = rois_num
459
- helper.append_op(
460
- type='collect_fpn_proposals',
461
- inputs=inputs,
462
- outputs=outputs,
463
- attrs={'post_nms_topN': post_nms_top_n})
464
- return output_rois, rois_num
465
-
466
-
467
- @paddle.jit.not_to_static
468
- def distribute_fpn_proposals(fpn_rois,
469
- min_level,
470
- max_level,
471
- refer_level,
472
- refer_scale,
473
- pixel_offset=False,
474
- rois_num=None,
475
- name=None):
476
- r"""
477
-
478
- **This op only takes LoDTensor as input.** In Feature Pyramid Networks
479
- (FPN) models, it is needed to distribute all proposals into different FPN
480
- level, with respect to scale of the proposals, the referring scale and the
481
- referring level. Besides, to restore the order of proposals, we return an
482
- array which indicates the original index of rois in current proposals.
483
- To compute FPN level for each roi, the formula is given as follows:
484
-
485
- .. math::
486
-
487
- roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
488
-
489
- level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
490
-
491
- where BBoxArea is a function to compute the area of each roi.
492
-
493
- Args:
494
-
495
- fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is
496
- float32 or float64. The input fpn_rois.
497
- min_level(int32): The lowest level of FPN layer where the proposals come
498
- from.
499
- max_level(int32): The highest level of FPN layer where the proposals
500
- come from.
501
- refer_level(int32): The referring level of FPN layer with specified scale.
502
- refer_scale(int32): The referring scale of FPN layer with specified level.
503
- rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
504
- The shape is [B] and data type is int32. B is the number of images.
505
- If it is not None then return a list of 1-D Tensor. Each element
506
- is the output RoIs' number of each image on the corresponding level
507
- and the shape is [B]. None by default.
508
- name(str, optional): For detailed information, please refer
509
- to :ref:`api_guide_Name`. Usually name is no need to set and
510
- None by default.
511
-
512
- Returns:
513
- Tuple:
514
-
515
- multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4]
516
- and data type of float32 and float64. The length is
517
- max_level-min_level+1. The proposals in each FPN level.
518
-
519
- restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is
520
- the number of total rois. The data type is int32. It is
521
- used to restore the order of fpn_rois.
522
-
523
- rois_num_per_level(List): A list of 1-D Tensor and each Tensor is
524
- the RoIs' number in each image on the corresponding level. The shape
525
- is [B] and data type of int32. B is the number of images
526
-
527
-
528
- Examples:
529
- .. code-block:: python
530
-
531
- import paddle
532
- from paddlex.ppdet.modeling import ops
533
- paddle.enable_static()
534
- fpn_rois = paddle.static.data(
535
- name='data', shape=[None, 4], dtype='float32', lod_level=1)
536
- multi_rois, restore_ind = ops.distribute_fpn_proposals(
537
- fpn_rois=fpn_rois,
538
- min_level=2,
539
- max_level=5,
540
- refer_level=4,
541
- refer_scale=224)
542
- """
543
- num_lvl = max_level - min_level + 1
544
-
545
- if in_dygraph_mode():
546
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
547
- attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
548
- refer_level, 'refer_scale', refer_scale, 'pixel_offset',
549
- pixel_offset)
550
- multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals(
551
- fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
552
- return multi_rois, restore_ind, rois_num_per_level
553
-
554
- else:
555
- check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
556
- 'distribute_fpn_proposals')
557
- helper = LayerHelper('distribute_fpn_proposals', **locals())
558
- dtype = helper.input_dtype('fpn_rois')
559
- multi_rois = [
560
- helper.create_variable_for_type_inference(dtype)
561
- for i in range(num_lvl)
562
- ]
563
-
564
- restore_ind = helper.create_variable_for_type_inference(dtype='int32')
565
-
566
- inputs = {'FpnRois': fpn_rois}
567
- outputs = {
568
- 'MultiFpnRois': multi_rois,
569
- 'RestoreIndex': restore_ind,
570
- }
571
-
572
- if rois_num is not None:
573
- inputs['RoisNum'] = rois_num
574
- rois_num_per_level = [
575
- helper.create_variable_for_type_inference(dtype='int32')
576
- for i in range(num_lvl)
577
- ]
578
- outputs['MultiLevelRoIsNum'] = rois_num_per_level
579
-
580
- helper.append_op(
581
- type='distribute_fpn_proposals',
582
- inputs=inputs,
583
- outputs=outputs,
584
- attrs={
585
- 'min_level': min_level,
586
- 'max_level': max_level,
587
- 'refer_level': refer_level,
588
- 'refer_scale': refer_scale,
589
- 'pixel_offset': pixel_offset
590
- })
591
- return multi_rois, restore_ind, rois_num_per_level
592
-
593
-
594
- @paddle.jit.not_to_static
595
- def yolo_box(
596
- x,
597
- origin_shape,
598
- anchors,
599
- class_num,
600
- conf_thresh,
601
- downsample_ratio,
602
- clip_bbox=True,
603
- scale_x_y=1.,
604
- name=None, ):
605
- """
606
-
607
- This operator generates YOLO detection boxes from output of YOLOv3 network.
608
-
609
- The output of previous network is in shape [N, C, H, W], while H and W
610
- should be the same, H and W specify the grid size, each grid point predict
611
- given number boxes, this given number, which following will be represented as S,
612
- is specified by the number of anchors. In the second dimension(the channel
613
- dimension), C should be equal to S * (5 + class_num), class_num is the object
614
- category number of source dataset(such as 80 in coco dataset), so the
615
- second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
616
- also includes confidence score of the box and class one-hot key of each anchor
617
- box.
618
- Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
619
- predictions should be as follows:
620
- $$
621
- b_x = \\sigma(t_x) + c_x
622
- $$
623
- $$
624
- b_y = \\sigma(t_y) + c_y
625
- $$
626
- $$
627
- b_w = p_w e^{t_w}
628
- $$
629
- $$
630
- b_h = p_h e^{t_h}
631
- $$
632
- in the equation above, :math:`c_x, c_y` is the left top corner of current grid
633
- and :math:`p_w, p_h` is specified by anchors.
634
- The logistic regression value of the 5th channel of each anchor prediction boxes
635
- represents the confidence score of each prediction box, and the logistic
636
- regression value of the last :attr:`class_num` channels of each anchor prediction
637
- boxes represents the classifcation scores. Boxes with confidence scores less than
638
- :attr:`conf_thresh` should be ignored, and box final scores is the product of
639
- confidence scores and classification scores.
640
- $$
641
- score_{pred} = score_{conf} * score_{class}
642
- $$
643
-
644
- Args:
645
- x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with shape of [N, C, H, W].
646
- The second dimension(C) stores box locations, confidence score and
647
- classification one-hot keys of each anchor box. Generally, X should be the output of YOLOv3 network.
648
- The data type is float32 or float64.
649
- origin_shape (Tensor): The image size tensor of YoloBox operator, This is a 2-D tensor with shape of [N, 2].
650
- This tensor holds height and width of each input image used for resizing output box in input image
651
- scale. The data type is int32.
652
- anchors (list|tuple): The anchor width and height, it will be parsed pair by pair.
653
- class_num (int): The number of classes to predict.
654
- conf_thresh (float): The confidence scores threshold of detection boxes. Boxes with confidence scores
655
- under threshold should be ignored.
656
- downsample_ratio (int): The downsample ratio from network input to YoloBox operator input,
657
- so 32, 16, 8 should be set for the first, second, and thrid YoloBox operators.
658
- clip_bbox (bool): Whether clip output bonding box in Input(ImgSize) boundary. Default true.
659
- scale_x_y (float): Scale the center point of decoded bounding box. Default 1.0.
660
- name (string): The default value is None. Normally there is no need
661
- for user to set this property. For more information,
662
- please refer to :ref:`api_guide_Name`
663
-
664
- Returns:
665
- boxes Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes, N is the batch num,
666
- M is output box number, and the 3rd dimension stores [xmin, ymin, xmax, ymax] coordinates of boxes.
667
- scores Tensor: A 3-D tensor with shape [N, M, :attr:`class_num`], the coordinates of boxes, N is the batch num,
668
- M is output box number.
669
-
670
- Raises:
671
- TypeError: Attr anchors of yolo box must be list or tuple
672
- TypeError: Attr class_num of yolo box must be an integer
673
- TypeError: Attr conf_thresh of yolo box must be a float number
674
-
675
- Examples:
676
-
677
- .. code-block:: python
678
-
679
- import paddle
680
- from paddlex.ppdet.modeling import ops
681
-
682
- paddle.enable_static()
683
- x = paddle.static.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
684
- img_size = paddle.static.data(name='img_size',shape=[None, 2],dtype='int64')
685
- anchors = [10, 13, 16, 30, 33, 23]
686
- boxes,scores = ops.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors,
687
- conf_thresh=0.01, downsample_ratio=32)
688
- """
689
- helper = LayerHelper('yolo_box', **locals())
690
-
691
- if not isinstance(anchors, list) and not isinstance(anchors, tuple):
692
- raise TypeError("Attr anchors of yolo_box must be list or tuple")
693
- if not isinstance(class_num, int):
694
- raise TypeError("Attr class_num of yolo_box must be an integer")
695
- if not isinstance(conf_thresh, float):
696
- raise TypeError(
697
- "Attr ignore_thresh of yolo_box must be a float number")
698
-
699
- if in_dygraph_mode():
700
- attrs = ('anchors', anchors, 'class_num', class_num, 'conf_thresh',
701
- conf_thresh, 'downsample_ratio', downsample_ratio,
702
- 'clip_bbox', clip_bbox, 'scale_x_y', scale_x_y)
703
- boxes, scores = core.ops.yolo_box(x, origin_shape, *attrs)
704
- return boxes, scores
705
- else:
706
- boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
707
- scores = helper.create_variable_for_type_inference(dtype=x.dtype)
708
-
709
- attrs = {
710
- "anchors": anchors,
711
- "class_num": class_num,
712
- "conf_thresh": conf_thresh,
713
- "downsample_ratio": downsample_ratio,
714
- "clip_bbox": clip_bbox,
715
- "scale_x_y": scale_x_y,
716
- }
717
-
718
- helper.append_op(
719
- type='yolo_box',
720
- inputs={
721
- "X": x,
722
- "ImgSize": origin_shape,
723
- },
724
- outputs={
725
- 'Boxes': boxes,
726
- 'Scores': scores,
727
- },
728
- attrs=attrs)
729
- return boxes, scores
730
-
731
-
732
- @paddle.jit.not_to_static
733
- def prior_box(input,
734
- image,
735
- min_sizes,
736
- max_sizes=None,
737
- aspect_ratios=[1.],
738
- variance=[0.1, 0.1, 0.2, 0.2],
739
- flip=False,
740
- clip=False,
741
- steps=[0.0, 0.0],
742
- offset=0.5,
743
- min_max_aspect_ratios_order=False,
744
- name=None):
745
- """
746
-
747
- This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
748
- Each position of the input produce N prior boxes, N is determined by
749
- the count of min_sizes, max_sizes and aspect_ratios, The size of the
750
- box is in range(min_size, max_size) interval, which is generated in
751
- sequence according to the aspect_ratios.
752
-
753
- Parameters:
754
- input(Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
755
- image(Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
756
- the data type should be float32 or float64.
757
- min_sizes(list|tuple|float): the min sizes of generated prior boxes.
758
- max_sizes(list|tuple|None): the max sizes of generated prior boxes.
759
- Default: None.
760
- aspect_ratios(list|tuple|float): the aspect ratios of generated
761
- prior boxes. Default: [1.].
762
- variance(list|tuple): the variances to be encoded in prior boxes.
763
- Default:[0.1, 0.1, 0.2, 0.2].
764
- flip(bool): Whether to flip aspect ratios. Default:False.
765
- clip(bool): Whether to clip out-of-boundary boxes. Default: False.
766
- step(list|tuple): Prior boxes step across width and height, If
767
- step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
768
- height or weight of the input will be automatically calculated.
769
- Default: [0., 0.]
770
- offset(float): Prior boxes center offset. Default: 0.5
771
- min_max_aspect_ratios_order(bool): If set True, the output prior box is
772
- in order of [min, max, aspect_ratios], which is consistent with
773
- Caffe. Please note, this order affects the weights order of
774
- convolution layer followed by and does not affect the final
775
- detection results. Default: False.
776
- name(str, optional): The default value is None. Normally there is no need for
777
- user to set this property. For more information, please refer to :ref:`api_guide_Name`
778
-
779
- Returns:
780
- Tuple: A tuple with two Variable (boxes, variances)
781
-
782
- boxes(Tensor): the output prior boxes of PriorBox.
783
- 4-D tensor, the layout is [H, W, num_priors, 4].
784
- H is the height of input, W is the width of input,
785
- num_priors is the total box count of each position of input.
786
-
787
- variances(Tensor): the expanded variances of PriorBox.
788
- 4-D tensor, the layput is [H, W, num_priors, 4].
789
- H is the height of input, W is the width of input
790
- num_priors is the total box count of each position of input
791
-
792
- Examples:
793
- .. code-block:: python
794
-
795
- import paddle
796
- from paddlex.ppdet.modeling import ops
797
-
798
- paddle.enable_static()
799
- input = paddle.static.data(name="input", shape=[None,3,6,9])
800
- image = paddle.static.data(name="image", shape=[None,3,9,12])
801
- box, var = ops.prior_box(
802
- input=input,
803
- image=image,
804
- min_sizes=[100.],
805
- clip=True,
806
- flip=True)
807
- """
808
- helper = LayerHelper("prior_box", **locals())
809
- dtype = helper.input_dtype()
810
- check_variable_and_dtype(
811
- input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
812
-
813
- def _is_list_or_tuple_(data):
814
- return (isinstance(data, list) or isinstance(data, tuple))
815
-
816
- if not _is_list_or_tuple_(min_sizes):
817
- min_sizes = [min_sizes]
818
- if not _is_list_or_tuple_(aspect_ratios):
819
- aspect_ratios = [aspect_ratios]
820
- if not (_is_list_or_tuple_(steps) and len(steps) == 2):
821
- raise ValueError('steps should be a list or tuple ',
822
- 'with length 2, (step_width, step_height).')
823
-
824
- min_sizes = list(map(float, min_sizes))
825
- aspect_ratios = list(map(float, aspect_ratios))
826
- steps = list(map(float, steps))
827
-
828
- cur_max_sizes = None
829
- if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
830
- if not _is_list_or_tuple_(max_sizes):
831
- max_sizes = [max_sizes]
832
- cur_max_sizes = max_sizes
833
-
834
- if in_dygraph_mode():
835
- attrs = ('min_sizes', min_sizes, 'aspect_ratios', aspect_ratios,
836
- 'variances', variance, 'flip', flip, 'clip', clip, 'step_w',
837
- steps[0], 'step_h', steps[1], 'offset', offset,
838
- 'min_max_aspect_ratios_order', min_max_aspect_ratios_order)
839
- if cur_max_sizes is not None:
840
- attrs += ('max_sizes', cur_max_sizes)
841
- box, var = core.ops.prior_box(input, image, *attrs)
842
- return box, var
843
- else:
844
- attrs = {
845
- 'min_sizes': min_sizes,
846
- 'aspect_ratios': aspect_ratios,
847
- 'variances': variance,
848
- 'flip': flip,
849
- 'clip': clip,
850
- 'step_w': steps[0],
851
- 'step_h': steps[1],
852
- 'offset': offset,
853
- 'min_max_aspect_ratios_order': min_max_aspect_ratios_order
854
- }
855
-
856
- if cur_max_sizes is not None:
857
- attrs['max_sizes'] = cur_max_sizes
858
-
859
- box = helper.create_variable_for_type_inference(dtype)
860
- var = helper.create_variable_for_type_inference(dtype)
861
- helper.append_op(
862
- type="prior_box",
863
- inputs={"Input": input,
864
- "Image": image},
865
- outputs={"Boxes": box,
866
- "Variances": var},
867
- attrs=attrs, )
868
- box.stop_gradient = True
869
- var.stop_gradient = True
870
- return box, var
871
-
872
-
873
- @paddle.jit.not_to_static
874
- def multiclass_nms(bboxes,
875
- scores,
876
- score_threshold,
877
- nms_top_k,
878
- keep_top_k,
879
- nms_threshold=0.3,
880
- normalized=True,
881
- nms_eta=1.,
882
- background_label=-1,
883
- return_index=False,
884
- return_rois_num=True,
885
- rois_num=None,
886
- name=None):
887
- """
888
- This operator is to do multi-class non maximum suppression (NMS) on
889
- boxes and scores.
890
- In the NMS step, this operator greedily selects a subset of detection bounding
891
- boxes that have high scores larger than score_threshold, if providing this
892
- threshold, then selects the largest nms_top_k confidences scores if nms_top_k
893
- is larger than -1. Then this operator pruns away boxes that have high IOU
894
- (intersection over union) overlap with already selected boxes by adaptive
895
- threshold NMS based on parameters of nms_threshold and nms_eta.
896
- Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
897
- per image if keep_top_k is larger than -1.
898
- Args:
899
- bboxes (Tensor): Two types of bboxes are supported:
900
- 1. (Tensor) A 3-D Tensor with shape
901
- [N, M, 4 or 8 16 24 32] represents the
902
- predicted locations of M bounding bboxes,
903
- N is the batch size. Each bounding box has four
904
- coordinate values and the layout is
905
- [xmin, ymin, xmax, ymax], when box size equals to 4.
906
- 2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
907
- M is the number of bounding boxes, C is the
908
- class number
909
- scores (Tensor): Two types of scores are supported:
910
- 1. (Tensor) A 3-D Tensor with shape [N, C, M]
911
- represents the predicted confidence predictions.
912
- N is the batch size, C is the class number, M is
913
- number of bounding boxes. For each category there
914
- are total M scores which corresponding M bounding
915
- boxes. Please note, M is equal to the 2nd dimension
916
- of BBoxes.
917
- 2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
918
- M is the number of bbox, C is the class number.
919
- In this case, input BBoxes should be the second
920
- case with shape [M, C, 4].
921
- background_label (int): The index of background label, the background
922
- label will be ignored. If set to -1, then all
923
- categories will be considered. Default: 0
924
- score_threshold (float): Threshold to filter out bounding boxes with
925
- low confidence score. If not provided,
926
- consider all boxes.
927
- nms_top_k (int): Maximum number of detections to be kept according to
928
- the confidences after the filtering detections based
929
- on score_threshold.
930
- nms_threshold (float): The threshold to be used in NMS. Default: 0.3
931
- nms_eta (float): The threshold to be used in NMS. Default: 1.0
932
- keep_top_k (int): Number of total bboxes to be kept per image after NMS
933
- step. -1 means keeping all bboxes after NMS step.
934
- normalized (bool): Whether detections are normalized. Default: True
935
- return_index(bool): Whether return selected index. Default: False
936
- rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
937
- The shape is [B] and data type is int32. B is the number of images.
938
- If it is not None then return a list of 1-D Tensor. Each element
939
- is the output RoIs' number of each image on the corresponding level
940
- and the shape is [B]. None by default.
941
- name(str): Name of the multiclass nms op. Default: None.
942
- Returns:
943
- A tuple with two Variables: (Out, Index) if return_index is True,
944
- otherwise, a tuple with one Variable(Out) is returned.
945
- Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
946
- Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
947
- or A 2-D LoDTensor with shape [No, 10] represents the detections.
948
- Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
949
- x4, y4]. No is the total number of detections.
950
- If all images have not detected results, all elements in LoD will be
951
- 0, and output tensor is empty (None).
952
- Index: Only return when return_index is True. A 2-D LoDTensor with
953
- shape [No, 1] represents the selected index which type is Integer.
954
- The index is the absolute value cross batches. No is the same number
955
- as Out. If the index is used to gather other attribute such as age,
956
- one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
957
- N is the batch size and M is the number of boxes.
958
- Examples:
959
- .. code-block:: python
960
-
961
- import paddle
962
- from paddlex.ppdet.modeling import ops
963
- boxes = paddle.static.data(name='bboxes', shape=[81, 4],
964
- dtype='float32', lod_level=1)
965
- scores = paddle.static.data(name='scores', shape=[81],
966
- dtype='float32', lod_level=1)
967
- out, index = ops.multiclass_nms(bboxes=boxes,
968
- scores=scores,
969
- background_label=0,
970
- score_threshold=0.5,
971
- nms_top_k=400,
972
- nms_threshold=0.3,
973
- keep_top_k=200,
974
- normalized=False,
975
- return_index=True)
976
- """
977
- helper = LayerHelper('multiclass_nms3', **locals())
978
-
979
- if in_dygraph_mode():
980
- attrs = ('background_label', background_label, 'score_threshold',
981
- score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
982
- nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
983
- 'normalized', normalized)
984
- output, index, nms_rois_num = core.ops.multiclass_nms3(
985
- bboxes, scores, rois_num, *attrs)
986
- if not return_index:
987
- index = None
988
- return output, nms_rois_num, index
989
-
990
- else:
991
- output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
992
- index = helper.create_variable_for_type_inference(dtype='int32')
993
-
994
- inputs = {'BBoxes': bboxes, 'Scores': scores}
995
- outputs = {'Out': output, 'Index': index}
996
-
997
- if rois_num is not None:
998
- inputs['RoisNum'] = rois_num
999
-
1000
- if return_rois_num:
1001
- nms_rois_num = helper.create_variable_for_type_inference(
1002
- dtype='int32')
1003
- outputs['NmsRoisNum'] = nms_rois_num
1004
-
1005
- helper.append_op(
1006
- type="multiclass_nms3",
1007
- inputs=inputs,
1008
- attrs={
1009
- 'background_label': background_label,
1010
- 'score_threshold': score_threshold,
1011
- 'nms_top_k': nms_top_k,
1012
- 'nms_threshold': nms_threshold,
1013
- 'keep_top_k': keep_top_k,
1014
- 'nms_eta': nms_eta,
1015
- 'normalized': normalized
1016
- },
1017
- outputs=outputs)
1018
- output.stop_gradient = True
1019
- index.stop_gradient = True
1020
- if not return_index:
1021
- index = None
1022
- if not return_rois_num:
1023
- nms_rois_num = None
1024
-
1025
- return output, nms_rois_num, index
1026
-
1027
-
1028
- @paddle.jit.not_to_static
1029
- def matrix_nms(bboxes,
1030
- scores,
1031
- score_threshold,
1032
- post_threshold,
1033
- nms_top_k,
1034
- keep_top_k,
1035
- use_gaussian=False,
1036
- gaussian_sigma=2.,
1037
- background_label=0,
1038
- normalized=True,
1039
- return_index=False,
1040
- return_rois_num=True,
1041
- name=None):
1042
- """
1043
- **Matrix NMS**
1044
- This operator does matrix non maximum suppression (NMS).
1045
- First selects a subset of candidate bounding boxes that have higher scores
1046
- than score_threshold (if provided), then the top k candidate is selected if
1047
- nms_top_k is larger than -1. Score of the remaining candidate are then
1048
- decayed according to the Matrix NMS scheme.
1049
- Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
1050
- per image if keep_top_k is larger than -1.
1051
- Args:
1052
- bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
1053
- predicted locations of M bounding bboxes,
1054
- N is the batch size. Each bounding box has four
1055
- coordinate values and the layout is
1056
- [xmin, ymin, xmax, ymax], when box size equals to 4.
1057
- The data type is float32 or float64.
1058
- scores (Tensor): A 3-D Tensor with shape [N, C, M]
1059
- represents the predicted confidence predictions.
1060
- N is the batch size, C is the class number, M is
1061
- number of bounding boxes. For each category there
1062
- are total M scores which corresponding M bounding
1063
- boxes. Please note, M is equal to the 2nd dimension
1064
- of BBoxes. The data type is float32 or float64.
1065
- score_threshold (float): Threshold to filter out bounding boxes with
1066
- low confidence score.
1067
- post_threshold (float): Threshold to filter out bounding boxes with
1068
- low confidence score AFTER decaying.
1069
- nms_top_k (int): Maximum number of detections to be kept according to
1070
- the confidences after the filtering detections based
1071
- on score_threshold.
1072
- keep_top_k (int): Number of total bboxes to be kept per image after NMS
1073
- step. -1 means keeping all bboxes after NMS step.
1074
- use_gaussian (bool): Use Gaussian as the decay function. Default: False
1075
- gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
1076
- background_label (int): The index of background label, the background
1077
- label will be ignored. If set to -1, then all
1078
- categories will be considered. Default: 0
1079
- normalized (bool): Whether detections are normalized. Default: True
1080
- return_index(bool): Whether return selected index. Default: False
1081
- return_rois_num(bool): whether return rois_num. Default: True
1082
- name(str): Name of the matrix nms op. Default: None.
1083
- Returns:
1084
- A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
1085
- otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
1086
- Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
1087
- detection results.
1088
- Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
1089
- (After version 1.3, when no boxes detected, the lod is changed
1090
- from {0} to {1})
1091
- Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
1092
- selected indices, which are absolute values cross batches.
1093
- rois_num (Tensor): A 1-D Tensor with shape [N] containing
1094
- the number of detected boxes in each image.
1095
- Examples:
1096
- .. code-block:: python
1097
- import paddle
1098
- from paddlex.ppdet.modeling import ops
1099
- boxes = paddle.static.data(name='bboxes', shape=[None,81, 4],
1100
- dtype='float32', lod_level=1)
1101
- scores = paddle.static.data(name='scores', shape=[None,81],
1102
- dtype='float32', lod_level=1)
1103
- out = ops.matrix_nms(bboxes=boxes, scores=scores, background_label=0,
1104
- score_threshold=0.5, post_threshold=0.1,
1105
- nms_top_k=400, keep_top_k=200, normalized=False)
1106
- """
1107
- check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
1108
- 'matrix_nms')
1109
- check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
1110
- 'matrix_nms')
1111
- check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
1112
- check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
1113
- check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
1114
- check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
1115
- check_type(normalized, 'normalized', bool, 'matrix_nms')
1116
- check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
1117
- check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
1118
- check_type(background_label, 'background_label', int, 'matrix_nms')
1119
-
1120
- if in_dygraph_mode():
1121
- attrs = ('background_label', background_label, 'score_threshold',
1122
- score_threshold, 'post_threshold', post_threshold,
1123
- 'nms_top_k', nms_top_k, 'gaussian_sigma', gaussian_sigma,
1124
- 'use_gaussian', use_gaussian, 'keep_top_k', keep_top_k,
1125
- 'normalized', normalized)
1126
- out, index, rois_num = core.ops.matrix_nms(bboxes, scores, *attrs)
1127
- if not return_index:
1128
- index = None
1129
- if not return_rois_num:
1130
- rois_num = None
1131
- return out, rois_num, index
1132
- else:
1133
- helper = LayerHelper('matrix_nms', **locals())
1134
- output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
1135
- index = helper.create_variable_for_type_inference(dtype='int32')
1136
- outputs = {'Out': output, 'Index': index}
1137
- if return_rois_num:
1138
- rois_num = helper.create_variable_for_type_inference(dtype='int32')
1139
- outputs['RoisNum'] = rois_num
1140
-
1141
- helper.append_op(
1142
- type="matrix_nms",
1143
- inputs={'BBoxes': bboxes,
1144
- 'Scores': scores},
1145
- attrs={
1146
- 'background_label': background_label,
1147
- 'score_threshold': score_threshold,
1148
- 'post_threshold': post_threshold,
1149
- 'nms_top_k': nms_top_k,
1150
- 'gaussian_sigma': gaussian_sigma,
1151
- 'use_gaussian': use_gaussian,
1152
- 'keep_top_k': keep_top_k,
1153
- 'normalized': normalized
1154
- },
1155
- outputs=outputs)
1156
- output.stop_gradient = True
1157
-
1158
- if not return_index:
1159
- index = None
1160
- if not return_rois_num:
1161
- rois_num = None
1162
- return output, rois_num, index
1163
-
1164
-
1165
- def bipartite_match(dist_matrix,
1166
- match_type=None,
1167
- dist_threshold=None,
1168
- name=None):
1169
- """
1170
-
1171
- This operator implements a greedy bipartite matching algorithm, which is
1172
- used to obtain the matching with the maximum distance based on the input
1173
- distance matrix. For input 2D matrix, the bipartite matching algorithm can
1174
- find the matched column for each row (matched means the largest distance),
1175
- also can find the matched row for each column. And this operator only
1176
- calculate matched indices from column to row. For each instance,
1177
- the number of matched indices is the column number of the input distance
1178
- matrix. **The OP only supports CPU**.
1179
-
1180
- There are two outputs, matched indices and distance.
1181
- A simple description, this algorithm matched the best (maximum distance)
1182
- row entity to the column entity and the matched indices are not duplicated
1183
- in each row of ColToRowMatchIndices. If the column entity is not matched
1184
- any row entity, set -1 in ColToRowMatchIndices.
1185
-
1186
- NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1187
- If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
1188
- If Tensor, the height of ColToRowMatchIndices is 1.
1189
-
1190
- NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
1191
- layer. Please consider to use :code:`ssd_loss` instead.
1192
-
1193
- Args:
1194
- dist_matrix(Tensor): This input is a 2-D LoDTensor with shape
1195
- [K, M]. The data type is float32 or float64. It is pair-wise
1196
- distance matrix between the entities represented by each row and
1197
- each column. For example, assumed one entity is A with shape [K],
1198
- another entity is B with shape [M]. The dist_matrix[i][j] is the
1199
- distance between A[i] and B[j]. The bigger the distance is, the
1200
- better matching the pairs are. NOTE: This tensor can contain LoD
1201
- information to represent a batch of inputs. One instance of this
1202
- batch can contain different numbers of entities.
1203
- match_type(str, optional): The type of matching method, should be
1204
- 'bipartite' or 'per_prediction'. None ('bipartite') by default.
1205
- dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1206
- this threshold is to determine the extra matching bboxes based
1207
- on the maximum distance, 0.5 by default.
1208
- name(str, optional): For detailed information, please refer
1209
- to :ref:`api_guide_Name`. Usually name is no need to set and
1210
- None by default.
1211
-
1212
- Returns:
1213
- Tuple:
1214
-
1215
- matched_indices(Tensor): A 2-D Tensor with shape [N, M]. The data
1216
- type is int32. N is the batch size. If match_indices[i][j] is -1, it
1217
- means B[j] does not match any entity in i-th instance.
1218
- Otherwise, it means B[j] is matched to row
1219
- match_indices[i][j] in i-th instance. The row number of
1220
- i-th instance is saved in match_indices[i][j].
1221
-
1222
- matched_distance(Tensor): A 2-D Tensor with shape [N, M]. The data
1223
- type is float32. N is batch size. If match_indices[i][j] is -1,
1224
- match_distance[i][j] is also -1.0. Otherwise, assumed
1225
- match_distance[i][j] = d, and the row offsets of each instance
1226
- are called LoD. Then match_distance[i][j] =
1227
- dist_matrix[d+LoD[i]][j].
1228
-
1229
- Examples:
1230
-
1231
- .. code-block:: python
1232
- import paddle
1233
- from paddlex.ppdet.modeling import ops
1234
- from paddlex.ppdet.modeling.utils import iou_similarity
1235
-
1236
- paddle.enable_static()
1237
-
1238
- x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
1239
- y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
1240
- iou = iou_similarity(x=x, y=y)
1241
- matched_indices, matched_dist = ops.bipartite_match(iou)
1242
- """
1243
- check_variable_and_dtype(dist_matrix, 'dist_matrix',
1244
- ['float32', 'float64'], 'bipartite_match')
1245
-
1246
- if in_dygraph_mode():
1247
- match_indices, match_distance = core.ops.bipartite_match(
1248
- dist_matrix, "match_type", match_type, "dist_threshold",
1249
- dist_threshold)
1250
- return match_indices, match_distance
1251
-
1252
- helper = LayerHelper('bipartite_match', **locals())
1253
- match_indices = helper.create_variable_for_type_inference(dtype='int32')
1254
- match_distance = helper.create_variable_for_type_inference(
1255
- dtype=dist_matrix.dtype)
1256
- helper.append_op(
1257
- type='bipartite_match',
1258
- inputs={'DistMat': dist_matrix},
1259
- attrs={
1260
- 'match_type': match_type,
1261
- 'dist_threshold': dist_threshold,
1262
- },
1263
- outputs={
1264
- 'ColToRowMatchIndices': match_indices,
1265
- 'ColToRowMatchDist': match_distance
1266
- })
1267
- return match_indices, match_distance
1268
-
1269
-
1270
- @paddle.jit.not_to_static
1271
- def box_coder(prior_box,
1272
- prior_box_var,
1273
- target_box,
1274
- code_type="encode_center_size",
1275
- box_normalized=True,
1276
- axis=0,
1277
- name=None):
1278
- r"""
1279
- **Box Coder Layer**
1280
- Encode/Decode the target bounding box with the priorbox information.
1281
-
1282
- The Encoding schema described below:
1283
- .. math::
1284
- ox = (tx - px) / pw / pxv
1285
- oy = (ty - py) / ph / pyv
1286
- ow = \log(\abs(tw / pw)) / pwv
1287
- oh = \log(\abs(th / ph)) / phv
1288
- The Decoding schema described below:
1289
-
1290
- .. math::
1291
-
1292
- ox = (pw * pxv * tx * + px) - tw / 2
1293
- oy = (ph * pyv * ty * + py) - th / 2
1294
- ow = \exp(pwv * tw) * pw + tw / 2
1295
- oh = \exp(phv * th) * ph + th / 2
1296
- where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
1297
- width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
1298
- the priorbox's (anchor) center coordinates, width and height. `pxv`,
1299
- `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
1300
- `ow`, `oh` denote the encoded/decoded coordinates, width and height.
1301
- During Box Decoding, two modes for broadcast are supported. Say target
1302
- box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
1303
- [M, 4]. Then prior box will broadcast to target box along the
1304
- assigned axis.
1305
-
1306
- Args:
1307
- prior_box(Tensor): Box list prior_box is a 2-D Tensor with shape
1308
- [M, 4] holds M boxes and data type is float32 or float64. Each box
1309
- is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
1310
- left top coordinate of the anchor box, if the input is image feature
1311
- map, they are close to the origin of the coordinate system.
1312
- [xmax, ymax] is the right bottom coordinate of the anchor box.
1313
- prior_box_var(List|Tensor|None): prior_box_var supports three types
1314
- of input. One is Tensor with shape [M, 4] which holds M group and
1315
- data type is float32 or float64. The second is list consist of
1316
- 4 elements shared by all boxes and data type is float32 or float64.
1317
- Other is None and not involved in calculation.
1318
- target_box(Tensor): This input can be a 2-D LoDTensor with shape
1319
- [N, 4] when code_type is 'encode_center_size'. This input also can
1320
- be a 3-D Tensor with shape [N, M, 4] when code_type is
1321
- 'decode_center_size'. Each box is represented as
1322
- [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
1323
- code_type(str): The code type used with the target box. It can be
1324
- `encode_center_size` or `decode_center_size`. `encode_center_size`
1325
- by default.
1326
- box_normalized(bool): Whether treat the priorbox as a normalized box.
1327
- Set true by default.
1328
- axis(int): Which axis in PriorBox to broadcast for box decode,
1329
- for example, if axis is 0 and TargetBox has shape [N, M, 4] and
1330
- PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
1331
- for decoding. It is only valid when code type is
1332
- `decode_center_size`. Set 0 by default.
1333
- name(str, optional): For detailed information, please refer
1334
- to :ref:`api_guide_Name`. Usually name is no need to set and
1335
- None by default.
1336
-
1337
- Returns:
1338
- Tensor:
1339
- output_box(Tensor): When code_type is 'encode_center_size', the
1340
- output tensor of box_coder_op with shape [N, M, 4] representing the
1341
- result of N target boxes encoded with M Prior boxes and variances.
1342
- When code_type is 'decode_center_size', N represents the batch size
1343
- and M represents the number of decoded boxes.
1344
-
1345
- Examples:
1346
-
1347
- .. code-block:: python
1348
-
1349
- import paddle
1350
- from paddlex.ppdet.modeling import ops
1351
- paddle.enable_static()
1352
- # For encode
1353
- prior_box_encode = paddle.static.data(name='prior_box_encode',
1354
- shape=[512, 4],
1355
- dtype='float32')
1356
- target_box_encode = paddle.static.data(name='target_box_encode',
1357
- shape=[81, 4],
1358
- dtype='float32')
1359
- output_encode = ops.box_coder(prior_box=prior_box_encode,
1360
- prior_box_var=[0.1,0.1,0.2,0.2],
1361
- target_box=target_box_encode,
1362
- code_type="encode_center_size")
1363
- # For decode
1364
- prior_box_decode = paddle.static.data(name='prior_box_decode',
1365
- shape=[512, 4],
1366
- dtype='float32')
1367
- target_box_decode = paddle.static.data(name='target_box_decode',
1368
- shape=[512, 81, 4],
1369
- dtype='float32')
1370
- output_decode = ops.box_coder(prior_box=prior_box_decode,
1371
- prior_box_var=[0.1,0.1,0.2,0.2],
1372
- target_box=target_box_decode,
1373
- code_type="decode_center_size",
1374
- box_normalized=False,
1375
- axis=1)
1376
- """
1377
- check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
1378
- 'box_coder')
1379
- check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
1380
- 'box_coder')
1381
-
1382
- if in_dygraph_mode():
1383
- if isinstance(prior_box_var, Variable):
1384
- output_box = core.ops.box_coder(
1385
- prior_box, prior_box_var, target_box, "code_type", code_type,
1386
- "box_normalized", box_normalized, "axis", axis)
1387
-
1388
- elif isinstance(prior_box_var, list):
1389
- output_box = core.ops.box_coder(
1390
- prior_box, None, target_box, "code_type", code_type,
1391
- "box_normalized", box_normalized, "axis", axis, "variance",
1392
- prior_box_var)
1393
- else:
1394
- raise TypeError(
1395
- "Input variance of box_coder must be Variable or list")
1396
- return output_box
1397
- else:
1398
- helper = LayerHelper("box_coder", **locals())
1399
-
1400
- output_box = helper.create_variable_for_type_inference(
1401
- dtype=prior_box.dtype)
1402
-
1403
- inputs = {"PriorBox": prior_box, "TargetBox": target_box}
1404
- attrs = {
1405
- "code_type": code_type,
1406
- "box_normalized": box_normalized,
1407
- "axis": axis
1408
- }
1409
- if isinstance(prior_box_var, Variable):
1410
- inputs['PriorBoxVar'] = prior_box_var
1411
- elif isinstance(prior_box_var, list):
1412
- attrs['variance'] = prior_box_var
1413
- else:
1414
- raise TypeError(
1415
- "Input variance of box_coder must be Variable or list")
1416
- helper.append_op(
1417
- type="box_coder",
1418
- inputs=inputs,
1419
- attrs=attrs,
1420
- outputs={"OutputBox": output_box})
1421
- return output_box
1422
-
1423
-
1424
- @paddle.jit.not_to_static
1425
- def generate_proposals(scores,
1426
- bbox_deltas,
1427
- im_shape,
1428
- anchors,
1429
- variances,
1430
- pre_nms_top_n=6000,
1431
- post_nms_top_n=1000,
1432
- nms_thresh=0.5,
1433
- min_size=0.1,
1434
- eta=1.0,
1435
- pixel_offset=False,
1436
- return_rois_num=False,
1437
- name=None):
1438
- """
1439
- **Generate proposal Faster-RCNN**
1440
- This operation proposes RoIs according to each box with their
1441
- probability to be a foreground object and
1442
- the box can be calculated by anchors. Bbox_deltais and scores
1443
- to be an object are the output of RPN. Final proposals
1444
- could be used to train detection net.
1445
- For generating proposals, this operation performs following steps:
1446
- 1. Transposes and resizes scores and bbox_deltas in size of
1447
- (H*W*A, 1) and (H*W*A, 4)
1448
- 2. Calculate box locations as proposals candidates.
1449
- 3. Clip boxes to image
1450
- 4. Remove predicted boxes with small area.
1451
- 5. Apply NMS to get final proposals as output.
1452
- Args:
1453
- scores(Tensor): A 4-D Tensor with shape [N, A, H, W] represents
1454
- the probability for each box to be an object.
1455
- N is batch size, A is number of anchors, H and W are height and
1456
- width of the feature map. The data type must be float32.
1457
- bbox_deltas(Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
1458
- represents the difference between predicted box location and
1459
- anchor location. The data type must be float32.
1460
- im_shape(Tensor): A 2-D Tensor with shape [N, 2] represents H, W, the
1461
- origin image size or input size. The data type can be float32 or
1462
- float64.
1463
- anchors(Tensor): A 4-D Tensor represents the anchors with a layout
1464
- of [H, W, A, 4]. H and W are height and width of the feature map,
1465
- num_anchors is the box count of each position. Each anchor is
1466
- in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
1467
- variances(Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
1468
- [H, W, num_priors, 4]. Each variance is in
1469
- (xcenter, ycenter, w, h) format. The data type must be float32.
1470
- pre_nms_top_n(float): Number of total bboxes to be kept per
1471
- image before NMS. The data type must be float32. `6000` by default.
1472
- post_nms_top_n(float): Number of total bboxes to be kept per
1473
- image after NMS. The data type must be float32. `1000` by default.
1474
- nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
1475
- min_size(float): Remove predicted boxes with either height or
1476
- width < min_size. The data type must be float32. `0.1` by default.
1477
- eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
1478
- `adaptive_threshold = adaptive_threshold * eta` in each iteration.
1479
- return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
1480
- num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
1481
- the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model.
1482
- 'False' by default.
1483
- name(str, optional): For detailed information, please refer
1484
- to :ref:`api_guide_Name`. Usually name is no need to set and
1485
- None by default.
1486
-
1487
- Returns:
1488
- tuple:
1489
- A tuple with format ``(rpn_rois, rpn_roi_probs)``.
1490
- - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
1491
- - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
1492
-
1493
- Examples:
1494
- .. code-block:: python
1495
-
1496
- import paddle
1497
- from paddlex.ppdet.modeling import ops
1498
- paddle.enable_static()
1499
- scores = paddle.static.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
1500
- bbox_deltas = paddle.static.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
1501
- im_shape = paddle.static.data(name='im_shape', shape=[None, 2], dtype='float32')
1502
- anchors = paddle.static.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
1503
- variances = paddle.static.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
1504
- rois, roi_probs = ops.generate_proposals(scores, bbox_deltas,
1505
- im_shape, anchors, variances)
1506
- """
1507
- if in_dygraph_mode():
1508
- assert return_rois_num, "return_rois_num should be True in dygraph mode."
1509
- attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN',
1510
- post_nms_top_n, 'nms_thresh', nms_thresh, 'min_size',
1511
- min_size, 'eta', eta, 'pixel_offset', pixel_offset)
1512
- rpn_rois, rpn_roi_probs, rpn_rois_num = core.ops.generate_proposals_v2(
1513
- scores, bbox_deltas, im_shape, anchors, variances, *attrs)
1514
- return rpn_rois, rpn_roi_probs, rpn_rois_num
1515
-
1516
- else:
1517
- helper = LayerHelper('generate_proposals_v2', **locals())
1518
-
1519
- check_variable_and_dtype(scores, 'scores', ['float32'],
1520
- 'generate_proposals_v2')
1521
- check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
1522
- 'generate_proposals_v2')
1523
- check_variable_and_dtype(im_shape, 'im_shape', ['float32', 'float64'],
1524
- 'generate_proposals_v2')
1525
- check_variable_and_dtype(anchors, 'anchors', ['float32'],
1526
- 'generate_proposals_v2')
1527
- check_variable_and_dtype(variances, 'variances', ['float32'],
1528
- 'generate_proposals_v2')
1529
-
1530
- rpn_rois = helper.create_variable_for_type_inference(
1531
- dtype=bbox_deltas.dtype)
1532
- rpn_roi_probs = helper.create_variable_for_type_inference(
1533
- dtype=scores.dtype)
1534
- outputs = {
1535
- 'RpnRois': rpn_rois,
1536
- 'RpnRoiProbs': rpn_roi_probs,
1537
- }
1538
- if return_rois_num:
1539
- rpn_rois_num = helper.create_variable_for_type_inference(
1540
- dtype='int32')
1541
- rpn_rois_num.stop_gradient = True
1542
- outputs['RpnRoisNum'] = rpn_rois_num
1543
-
1544
- helper.append_op(
1545
- type="generate_proposals_v2",
1546
- inputs={
1547
- 'Scores': scores,
1548
- 'BboxDeltas': bbox_deltas,
1549
- 'ImShape': im_shape,
1550
- 'Anchors': anchors,
1551
- 'Variances': variances
1552
- },
1553
- attrs={
1554
- 'pre_nms_topN': pre_nms_top_n,
1555
- 'post_nms_topN': post_nms_top_n,
1556
- 'nms_thresh': nms_thresh,
1557
- 'min_size': min_size,
1558
- 'eta': eta,
1559
- 'pixel_offset': pixel_offset
1560
- },
1561
- outputs=outputs)
1562
- rpn_rois.stop_gradient = True
1563
- rpn_roi_probs.stop_gradient = True
1564
-
1565
- return rpn_rois, rpn_roi_probs, rpn_rois_num
1566
-
1567
-
1568
- def sigmoid_cross_entropy_with_logits(input,
1569
- label,
1570
- ignore_index=-100,
1571
- normalize=False):
1572
- output = F.binary_cross_entropy_with_logits(input, label, reduction='none')
1573
- mask_tensor = paddle.cast(label != ignore_index, 'float32')
1574
- output = paddle.multiply(output, mask_tensor)
1575
- if normalize:
1576
- sum_valid_mask = paddle.sum(mask_tensor)
1577
- output = output / sum_valid_mask
1578
- return output
1579
-
1580
-
1581
- def smooth_l1(input,
1582
- label,
1583
- inside_weight=None,
1584
- outside_weight=None,
1585
- sigma=None):
1586
- input_new = paddle.multiply(input, inside_weight)
1587
- label_new = paddle.multiply(label, inside_weight)
1588
- delta = 1 / (sigma * sigma)
1589
- out = F.smooth_l1_loss(input_new, label_new, reduction='none', delta=delta)
1590
- out = paddle.multiply(out, outside_weight)
1591
- out = out / delta
1592
- out = paddle.reshape(out, shape=[out.shape[0], -1])
1593
- out = paddle.sum(out, axis=1)
1594
- return out
1595
-
1596
-
1597
- def channel_shuffle(x, groups):
1598
- batch_size, num_channels, height, width = x.shape[0:4]
1599
- assert num_channels % groups == 0, 'num_channels should be divisible by groups'
1600
- channels_per_group = num_channels // groups
1601
- x = paddle.reshape(
1602
- x=x, shape=[batch_size, groups, channels_per_group, height, width])
1603
- x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
1604
- x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
1605
- return x
1606
-
1607
-
1608
- def get_static_shape(tensor):
1609
- shape = paddle.shape(tensor)
1610
- shape.stop_gradient = True
1611
- return shape