paddlex 2.1.0__py3-none-any.whl → 3.0.0rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1708) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +52 -19
  3. paddlex/__main__.py +39 -0
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  11. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  12. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  14. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  15. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  16. paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
  19. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  20. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  21. paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
  22. paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
  23. paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
  24. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  25. paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
  26. paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
  27. paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
  28. paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
  29. paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
  30. paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
  31. paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
  32. paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
  33. paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
  34. paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
  35. paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
  36. paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
  37. paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
  38. paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
  39. paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
  40. paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
  41. paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
  42. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  43. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  44. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  45. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  46. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  47. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  48. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  49. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  50. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  51. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  52. paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
  53. paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  54. paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
  55. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  56. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  57. paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
  58. paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
  59. paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
  60. paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
  61. paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
  62. paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
  63. paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
  64. paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
  65. paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
  66. paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
  67. paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
  68. paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
  69. paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
  70. paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
  71. paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
  72. paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
  73. paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
  74. paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
  75. paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
  76. paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
  77. paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
  78. paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
  79. paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
  80. paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
  81. paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
  82. paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
  83. paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
  84. paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
  85. paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
  86. paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
  87. paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
  88. paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
  89. paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
  90. paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
  91. paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
  92. paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
  93. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  94. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  95. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  96. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  99. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
  100. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  101. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  102. paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  103. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  104. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  105. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  106. paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  107. paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
  108. paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
  109. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  111. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  112. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  113. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  114. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  115. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  116. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  117. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  118. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  119. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  120. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  121. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  122. paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  123. paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
  124. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  125. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  126. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  127. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  128. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  129. paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
  130. paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
  131. paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
  132. paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
  133. paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
  134. paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
  135. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
  136. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
  137. paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  138. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  139. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  140. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  141. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  142. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  143. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  144. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  145. paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
  146. paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
  147. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  148. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  149. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  150. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  151. paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
  152. paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
  153. paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  154. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  155. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  156. paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  157. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  158. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  159. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  160. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  161. paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  162. paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  163. paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  164. paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  165. paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  166. paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
  167. paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
  168. paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
  169. paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
  170. paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
  171. paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
  172. paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
  173. paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
  174. paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
  175. paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
  176. paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
  177. paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
  178. paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
  179. paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
  180. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  181. paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  182. paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  183. paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  184. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  185. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  186. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  187. paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  188. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  189. paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
  190. paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
  191. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  192. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  193. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  194. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  195. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  196. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  197. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  198. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  199. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  200. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  201. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  202. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  203. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  204. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  205. paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
  206. paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
  207. paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
  208. paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
  209. paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
  210. paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
  211. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  212. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  213. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  214. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  215. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  216. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  217. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  218. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  219. paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
  220. paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
  221. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  222. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  223. paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  224. paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
  225. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  226. paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  227. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  228. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  229. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  230. paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  231. paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  232. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  233. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  234. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  235. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  236. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  237. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  238. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  239. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  240. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  241. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  242. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  243. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  244. paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  245. paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  246. paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  247. paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  248. paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  249. paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
  250. paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
  251. paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
  252. paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
  253. paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
  254. paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
  255. paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
  256. paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
  257. paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  258. paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  259. paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  260. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  261. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  262. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  263. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  264. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  265. paddlex/configs/pipelines/OCR.yaml +44 -0
  266. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +149 -0
  267. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +184 -0
  268. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  269. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  270. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  271. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  272. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  273. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  274. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  275. paddlex/configs/pipelines/image_classification.yaml +10 -0
  276. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  277. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  278. paddlex/configs/pipelines/layout_parsing.yaml +101 -0
  279. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  280. paddlex/configs/pipelines/object_detection.yaml +10 -0
  281. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  282. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  283. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  284. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  285. paddlex/configs/pipelines/seal_recognition.yaml +51 -0
  286. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  287. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  288. paddlex/configs/pipelines/table_recognition.yaml +56 -0
  289. paddlex/configs/pipelines/table_recognition_v2.yaml +76 -0
  290. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  291. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  292. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  293. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  294. paddlex/configs/pipelines/video_classification.yaml +9 -0
  295. paddlex/configs/pipelines/video_detection.yaml +10 -0
  296. paddlex/engine.py +54 -0
  297. paddlex/hpip_links.html +19 -0
  298. paddlex/inference/__init__.py +19 -0
  299. paddlex/inference/common/__init__.py +13 -0
  300. paddlex/inference/common/batch_sampler/__init__.py +20 -0
  301. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +84 -0
  302. paddlex/inference/common/batch_sampler/base_batch_sampler.py +90 -0
  303. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +147 -0
  304. paddlex/inference/common/batch_sampler/image_batch_sampler.py +136 -0
  305. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +110 -0
  306. paddlex/inference/common/batch_sampler/video_batch_sampler.py +94 -0
  307. paddlex/inference/common/reader/__init__.py +19 -0
  308. paddlex/inference/common/reader/audio_reader.py +46 -0
  309. paddlex/inference/common/reader/det_3d_reader.py +239 -0
  310. paddlex/inference/common/reader/image_reader.py +69 -0
  311. paddlex/inference/common/reader/ts_reader.py +45 -0
  312. paddlex/inference/common/reader/video_reader.py +42 -0
  313. paddlex/inference/common/result/__init__.py +29 -0
  314. paddlex/inference/common/result/base_cv_result.py +31 -0
  315. paddlex/inference/common/result/base_result.py +70 -0
  316. paddlex/inference/common/result/base_ts_result.py +42 -0
  317. paddlex/inference/common/result/base_video_result.py +36 -0
  318. paddlex/inference/common/result/mixin.py +703 -0
  319. paddlex/inference/models/3d_bev_detection/__init__.py +15 -0
  320. paddlex/inference/models/3d_bev_detection/predictor.py +314 -0
  321. paddlex/inference/models/3d_bev_detection/processors.py +978 -0
  322. paddlex/inference/models/3d_bev_detection/result.py +65 -0
  323. paddlex/inference/models/3d_bev_detection/visualizer_3d.py +131 -0
  324. paddlex/inference/models/__init__.py +130 -0
  325. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  326. paddlex/inference/models/anomaly_detection/predictor.py +145 -0
  327. paddlex/inference/models/anomaly_detection/processors.py +46 -0
  328. paddlex/inference/models/anomaly_detection/result.py +70 -0
  329. paddlex/inference/models/base/__init__.py +15 -0
  330. paddlex/inference/models/base/predictor/__init__.py +16 -0
  331. paddlex/inference/models/base/predictor/base_predictor.py +175 -0
  332. paddlex/inference/models/base/predictor/basic_predictor.py +139 -0
  333. paddlex/inference/models/common/__init__.py +35 -0
  334. paddlex/inference/models/common/static_infer.py +329 -0
  335. paddlex/inference/models/common/tokenizer/__init__.py +17 -0
  336. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  337. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +451 -0
  338. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2141 -0
  339. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3504 -0
  340. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  341. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  342. paddlex/inference/models/common/ts/__init__.py +15 -0
  343. paddlex/inference/models/common/ts/funcs.py +533 -0
  344. paddlex/inference/models/common/ts/processors.py +313 -0
  345. paddlex/inference/models/common/vision/__init__.py +23 -0
  346. paddlex/inference/models/common/vision/funcs.py +93 -0
  347. paddlex/inference/models/common/vision/processors.py +270 -0
  348. paddlex/inference/models/face_feature/__init__.py +15 -0
  349. paddlex/inference/models/face_feature/predictor.py +65 -0
  350. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  351. paddlex/inference/models/formula_recognition/predictor.py +203 -0
  352. paddlex/inference/models/formula_recognition/processors.py +986 -0
  353. paddlex/inference/models/formula_recognition/result.py +403 -0
  354. paddlex/inference/models/image_classification/__init__.py +15 -0
  355. paddlex/inference/models/image_classification/predictor.py +182 -0
  356. paddlex/inference/models/image_classification/processors.py +87 -0
  357. paddlex/inference/models/image_classification/result.py +92 -0
  358. paddlex/inference/models/image_feature/__init__.py +15 -0
  359. paddlex/inference/models/image_feature/predictor.py +156 -0
  360. paddlex/inference/models/image_feature/processors.py +29 -0
  361. paddlex/inference/models/image_feature/result.py +33 -0
  362. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  363. paddlex/inference/models/image_multilabel_classification/predictor.py +94 -0
  364. paddlex/inference/models/image_multilabel_classification/processors.py +85 -0
  365. paddlex/inference/models/image_multilabel_classification/result.py +95 -0
  366. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  367. paddlex/inference/models/image_unwarping/predictor.py +105 -0
  368. paddlex/inference/models/image_unwarping/processors.py +88 -0
  369. paddlex/inference/models/image_unwarping/result.py +45 -0
  370. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  371. paddlex/inference/models/instance_segmentation/predictor.py +210 -0
  372. paddlex/inference/models/instance_segmentation/processors.py +105 -0
  373. paddlex/inference/models/instance_segmentation/result.py +161 -0
  374. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  375. paddlex/inference/models/keypoint_detection/predictor.py +188 -0
  376. paddlex/inference/models/keypoint_detection/processors.py +359 -0
  377. paddlex/inference/models/keypoint_detection/result.py +192 -0
  378. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  379. paddlex/inference/models/multilingual_speech_recognition/predictor.py +141 -0
  380. paddlex/inference/models/multilingual_speech_recognition/processors.py +1941 -0
  381. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  382. paddlex/inference/models/object_detection/__init__.py +15 -0
  383. paddlex/inference/models/object_detection/predictor.py +348 -0
  384. paddlex/inference/models/object_detection/processors.py +855 -0
  385. paddlex/inference/models/object_detection/result.py +113 -0
  386. paddlex/inference/models/object_detection/utils.py +68 -0
  387. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  388. paddlex/inference/models/open_vocabulary_detection/predictor.py +155 -0
  389. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +15 -0
  390. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +485 -0
  391. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  392. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +120 -0
  393. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  394. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  395. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  396. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +147 -0
  397. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  398. paddlex/inference/models/semantic_segmentation/predictor.py +167 -0
  399. paddlex/inference/models/semantic_segmentation/processors.py +114 -0
  400. paddlex/inference/models/semantic_segmentation/result.py +72 -0
  401. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  402. paddlex/inference/models/table_structure_recognition/predictor.py +171 -0
  403. paddlex/inference/models/table_structure_recognition/processors.py +235 -0
  404. paddlex/inference/models/table_structure_recognition/result.py +70 -0
  405. paddlex/inference/models/text_detection/__init__.py +15 -0
  406. paddlex/inference/models/text_detection/predictor.py +191 -0
  407. paddlex/inference/models/text_detection/processors.py +466 -0
  408. paddlex/inference/models/text_detection/result.py +51 -0
  409. paddlex/inference/models/text_recognition/__init__.py +15 -0
  410. paddlex/inference/models/text_recognition/predictor.py +106 -0
  411. paddlex/inference/models/text_recognition/processors.py +231 -0
  412. paddlex/inference/models/text_recognition/result.py +75 -0
  413. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  414. paddlex/inference/models/ts_anomaly_detection/predictor.py +146 -0
  415. paddlex/inference/models/ts_anomaly_detection/processors.py +94 -0
  416. paddlex/inference/models/ts_anomaly_detection/result.py +72 -0
  417. paddlex/inference/models/ts_classification/__init__.py +15 -0
  418. paddlex/inference/models/ts_classification/predictor.py +135 -0
  419. paddlex/inference/models/ts_classification/processors.py +117 -0
  420. paddlex/inference/models/ts_classification/result.py +78 -0
  421. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  422. paddlex/inference/models/ts_forecasting/predictor.py +159 -0
  423. paddlex/inference/models/ts_forecasting/processors.py +149 -0
  424. paddlex/inference/models/ts_forecasting/result.py +83 -0
  425. paddlex/inference/models/video_classification/__init__.py +15 -0
  426. paddlex/inference/models/video_classification/predictor.py +147 -0
  427. paddlex/inference/models/video_classification/processors.py +409 -0
  428. paddlex/inference/models/video_classification/result.py +92 -0
  429. paddlex/inference/models/video_detection/__init__.py +15 -0
  430. paddlex/inference/models/video_detection/predictor.py +136 -0
  431. paddlex/inference/models/video_detection/processors.py +450 -0
  432. paddlex/inference/models/video_detection/result.py +104 -0
  433. paddlex/inference/pipelines/3d_bev_detection/__init__.py +15 -0
  434. paddlex/inference/pipelines/3d_bev_detection/pipeline.py +67 -0
  435. paddlex/inference/pipelines/__init__.py +228 -0
  436. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  437. paddlex/inference/pipelines/anomaly_detection/pipeline.py +62 -0
  438. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  439. paddlex/inference/pipelines/attribute_recognition/pipeline.py +105 -0
  440. paddlex/inference/pipelines/attribute_recognition/result.py +100 -0
  441. paddlex/inference/pipelines/base.py +132 -0
  442. paddlex/inference/pipelines/components/__init__.py +23 -0
  443. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  444. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  445. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  446. paddlex/inference/pipelines/components/common/__init__.py +18 -0
  447. paddlex/inference/pipelines/components/common/base_operator.py +36 -0
  448. paddlex/inference/pipelines/components/common/base_result.py +65 -0
  449. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +46 -0
  450. paddlex/inference/pipelines/components/common/crop_image_regions.py +550 -0
  451. paddlex/inference/pipelines/components/common/seal_det_warp.py +941 -0
  452. paddlex/inference/pipelines/components/common/sort_boxes.py +83 -0
  453. paddlex/inference/pipelines/components/faisser.py +352 -0
  454. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  455. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  456. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +127 -0
  457. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  458. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  459. paddlex/inference/pipelines/components/retriever/base.py +226 -0
  460. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  461. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +163 -0
  462. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  463. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  464. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  465. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +190 -0
  466. paddlex/inference/pipelines/doc_preprocessor/result.py +103 -0
  467. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  468. paddlex/inference/pipelines/face_recognition/pipeline.py +61 -0
  469. paddlex/inference/pipelines/face_recognition/result.py +43 -0
  470. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  471. paddlex/inference/pipelines/formula_recognition/pipeline.py +303 -0
  472. paddlex/inference/pipelines/formula_recognition/result.py +291 -0
  473. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  474. paddlex/inference/pipelines/image_classification/pipeline.py +71 -0
  475. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  476. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +78 -0
  477. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  478. paddlex/inference/pipelines/instance_segmentation/pipeline.py +70 -0
  479. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  480. paddlex/inference/pipelines/keypoint_detection/pipeline.py +137 -0
  481. paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
  482. paddlex/inference/pipelines/layout_parsing/pipeline.py +570 -0
  483. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +739 -0
  484. paddlex/inference/pipelines/layout_parsing/result.py +203 -0
  485. paddlex/inference/pipelines/layout_parsing/result_v2.py +470 -0
  486. paddlex/inference/pipelines/layout_parsing/utils.py +2385 -0
  487. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  488. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +67 -0
  489. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  490. paddlex/inference/pipelines/object_detection/pipeline.py +95 -0
  491. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  492. paddlex/inference/pipelines/ocr/pipeline.py +389 -0
  493. paddlex/inference/pipelines/ocr/result.py +248 -0
  494. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  495. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +75 -0
  496. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  497. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +89 -0
  498. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  499. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +102 -0
  500. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +773 -0
  501. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +977 -0
  502. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  503. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +152 -0
  504. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  505. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  506. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +74 -0
  507. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  508. paddlex/inference/pipelines/seal_recognition/pipeline.py +271 -0
  509. paddlex/inference/pipelines/seal_recognition/result.py +87 -0
  510. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  511. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +74 -0
  512. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  513. paddlex/inference/pipelines/small_object_detection/pipeline.py +74 -0
  514. paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
  515. paddlex/inference/pipelines/table_recognition/pipeline.py +462 -0
  516. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +792 -0
  517. paddlex/inference/pipelines/table_recognition/result.py +216 -0
  518. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +362 -0
  519. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +470 -0
  520. paddlex/inference/pipelines/table_recognition/utils.py +44 -0
  521. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  522. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +62 -0
  523. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  524. paddlex/inference/pipelines/ts_classification/pipeline.py +62 -0
  525. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  526. paddlex/inference/pipelines/ts_forecasting/pipeline.py +62 -0
  527. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  528. paddlex/inference/pipelines/video_classification/pipeline.py +68 -0
  529. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  530. paddlex/inference/pipelines/video_detection/pipeline.py +73 -0
  531. paddlex/inference/serving/__init__.py +13 -0
  532. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  533. paddlex/inference/serving/basic_serving/_app.py +209 -0
  534. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +41 -0
  535. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  536. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +96 -0
  537. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  538. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +90 -0
  539. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +64 -0
  540. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +97 -0
  541. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +223 -0
  542. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +97 -0
  543. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +78 -0
  544. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +66 -0
  545. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +70 -0
  546. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +81 -0
  547. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +115 -0
  548. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +76 -0
  549. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +89 -0
  550. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +74 -0
  551. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +99 -0
  552. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +78 -0
  553. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +85 -0
  554. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +81 -0
  555. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +191 -0
  556. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +221 -0
  557. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +218 -0
  558. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +136 -0
  559. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +78 -0
  560. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +103 -0
  561. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +64 -0
  562. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +69 -0
  563. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +105 -0
  564. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +107 -0
  565. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +62 -0
  566. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +61 -0
  567. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +62 -0
  568. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +81 -0
  569. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +73 -0
  570. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +89 -0
  571. paddlex/inference/serving/basic_serving/_server.py +35 -0
  572. paddlex/inference/serving/infra/__init__.py +13 -0
  573. paddlex/inference/serving/infra/config.py +36 -0
  574. paddlex/inference/serving/infra/models.py +72 -0
  575. paddlex/inference/serving/infra/storage.py +175 -0
  576. paddlex/inference/serving/infra/utils.py +259 -0
  577. paddlex/inference/serving/schemas/__init__.py +13 -0
  578. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  579. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  580. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  581. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  582. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  583. paddlex/inference/serving/schemas/image_classification.py +45 -0
  584. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  585. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  586. paddlex/inference/serving/schemas/layout_parsing.py +72 -0
  587. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  588. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  589. paddlex/inference/serving/schemas/object_detection.py +52 -0
  590. paddlex/inference/serving/schemas/ocr.py +60 -0
  591. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  592. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  593. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  594. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +134 -0
  595. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +151 -0
  596. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  597. paddlex/inference/serving/schemas/pp_structurev3.py +84 -0
  598. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  599. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  600. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  601. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  602. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  603. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  604. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  605. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  606. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  607. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  608. paddlex/inference/serving/schemas/table_recognition_v2.py +66 -0
  609. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  610. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  611. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  612. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  613. paddlex/inference/serving/schemas/video_classification.py +44 -0
  614. paddlex/inference/serving/schemas/video_detection.py +56 -0
  615. paddlex/inference/utils/__init__.py +13 -0
  616. paddlex/inference/utils/benchmark.py +226 -0
  617. paddlex/inference/utils/color_map.py +123 -0
  618. paddlex/inference/utils/get_pipeline_path.py +27 -0
  619. paddlex/inference/utils/io/__init__.py +36 -0
  620. paddlex/inference/utils/io/readers.py +500 -0
  621. paddlex/inference/utils/io/style.py +374 -0
  622. paddlex/inference/utils/io/tablepyxl.py +149 -0
  623. paddlex/inference/utils/io/writers.py +459 -0
  624. paddlex/inference/utils/new_ir_blacklist.py +28 -0
  625. paddlex/inference/utils/official_models.py +352 -0
  626. paddlex/inference/utils/pp_option.py +256 -0
  627. paddlex/model.py +113 -0
  628. paddlex/modules/3d_bev_detection/__init__.py +18 -0
  629. paddlex/modules/3d_bev_detection/dataset_checker/__init__.py +95 -0
  630. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  631. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  632. paddlex/modules/3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +102 -0
  633. paddlex/modules/3d_bev_detection/evaluator.py +46 -0
  634. paddlex/modules/3d_bev_detection/exportor.py +22 -0
  635. paddlex/modules/3d_bev_detection/model_list.py +18 -0
  636. paddlex/modules/3d_bev_detection/trainer.py +70 -0
  637. paddlex/modules/__init__.py +138 -0
  638. paddlex/modules/anomaly_detection/__init__.py +18 -0
  639. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  640. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  641. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  642. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  643. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  644. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  645. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  646. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  647. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  648. paddlex/modules/anomaly_detection/exportor.py +22 -0
  649. paddlex/modules/anomaly_detection/model_list.py +16 -0
  650. paddlex/modules/anomaly_detection/trainer.py +71 -0
  651. paddlex/modules/base/__init__.py +18 -0
  652. paddlex/modules/base/build_model.py +34 -0
  653. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  654. paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
  655. paddlex/modules/base/dataset_checker/utils.py +110 -0
  656. paddlex/modules/base/evaluator.py +170 -0
  657. paddlex/modules/base/exportor.py +146 -0
  658. paddlex/modules/base/trainer.py +134 -0
  659. paddlex/modules/face_recognition/__init__.py +18 -0
  660. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  661. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  662. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  663. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  664. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  665. paddlex/modules/face_recognition/evaluator.py +52 -0
  666. paddlex/modules/face_recognition/exportor.py +22 -0
  667. paddlex/modules/face_recognition/model_list.py +15 -0
  668. paddlex/modules/face_recognition/trainer.py +75 -0
  669. paddlex/modules/formula_recognition/__init__.py +18 -0
  670. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  671. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  672. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +157 -0
  673. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +80 -0
  674. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  675. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  676. paddlex/modules/formula_recognition/evaluator.py +77 -0
  677. paddlex/modules/formula_recognition/exportor.py +22 -0
  678. paddlex/modules/formula_recognition/model_list.py +20 -0
  679. paddlex/modules/formula_recognition/trainer.py +121 -0
  680. paddlex/modules/general_recognition/__init__.py +18 -0
  681. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  682. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  683. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  684. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  685. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  686. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  687. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  688. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  689. paddlex/modules/general_recognition/evaluator.py +31 -0
  690. paddlex/modules/general_recognition/exportor.py +22 -0
  691. paddlex/modules/general_recognition/model_list.py +19 -0
  692. paddlex/modules/general_recognition/trainer.py +52 -0
  693. paddlex/modules/image_classification/__init__.py +18 -0
  694. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  695. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  696. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  697. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  698. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  699. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  700. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  701. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  702. paddlex/modules/image_classification/evaluator.py +43 -0
  703. paddlex/modules/image_classification/exportor.py +22 -0
  704. paddlex/modules/image_classification/model_list.py +99 -0
  705. paddlex/modules/image_classification/trainer.py +82 -0
  706. paddlex/modules/image_unwarping/__init__.py +13 -0
  707. paddlex/modules/image_unwarping/model_list.py +17 -0
  708. paddlex/modules/instance_segmentation/__init__.py +18 -0
  709. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +108 -0
  710. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  711. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  712. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  713. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  714. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  715. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  716. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  717. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  718. paddlex/modules/instance_segmentation/exportor.py +22 -0
  719. paddlex/modules/instance_segmentation/model_list.py +33 -0
  720. paddlex/modules/instance_segmentation/trainer.py +31 -0
  721. paddlex/modules/keypoint_detection/__init__.py +18 -0
  722. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  723. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  724. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  725. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  726. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +119 -0
  727. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  728. paddlex/modules/keypoint_detection/exportor.py +22 -0
  729. paddlex/modules/keypoint_detection/model_list.py +16 -0
  730. paddlex/modules/keypoint_detection/trainer.py +39 -0
  731. paddlex/modules/multilabel_classification/__init__.py +18 -0
  732. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  733. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  734. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  735. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  736. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  737. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  738. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  739. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  740. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  741. paddlex/modules/multilabel_classification/exportor.py +22 -0
  742. paddlex/modules/multilabel_classification/model_list.py +24 -0
  743. paddlex/modules/multilabel_classification/trainer.py +85 -0
  744. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  745. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  746. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  747. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  748. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  749. paddlex/modules/multilingual_speech_recognition/trainer.py +40 -0
  750. paddlex/modules/object_detection/__init__.py +18 -0
  751. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  752. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  753. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  754. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  755. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  756. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  757. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  758. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  759. paddlex/modules/object_detection/evaluator.py +52 -0
  760. paddlex/modules/object_detection/exportor.py +22 -0
  761. paddlex/modules/object_detection/model_list.py +84 -0
  762. paddlex/modules/object_detection/trainer.py +99 -0
  763. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  764. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  765. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  766. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  767. paddlex/modules/open_vocabulary_detection/model_list.py +18 -0
  768. paddlex/modules/open_vocabulary_detection/trainer.py +42 -0
  769. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  770. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  771. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  772. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  773. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  774. paddlex/modules/open_vocabulary_segmentation/trainer.py +42 -0
  775. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  776. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +110 -0
  777. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  778. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  779. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  780. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  781. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  782. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  783. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  784. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  785. paddlex/modules/semantic_segmentation/exportor.py +31 -0
  786. paddlex/modules/semantic_segmentation/model_list.py +37 -0
  787. paddlex/modules/semantic_segmentation/trainer.py +73 -0
  788. paddlex/modules/table_recognition/__init__.py +18 -0
  789. paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
  790. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  791. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  792. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +86 -0
  793. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  794. paddlex/modules/table_recognition/evaluator.py +43 -0
  795. paddlex/modules/table_recognition/exportor.py +22 -0
  796. paddlex/modules/table_recognition/model_list.py +21 -0
  797. paddlex/modules/table_recognition/trainer.py +70 -0
  798. paddlex/modules/text_detection/__init__.py +18 -0
  799. paddlex/modules/text_detection/dataset_checker/__init__.py +109 -0
  800. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  801. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  802. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
  803. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  804. paddlex/modules/text_detection/evaluator.py +41 -0
  805. paddlex/modules/text_detection/exportor.py +22 -0
  806. paddlex/modules/text_detection/model_list.py +24 -0
  807. paddlex/modules/text_detection/trainer.py +68 -0
  808. paddlex/modules/text_recognition/__init__.py +18 -0
  809. paddlex/modules/text_recognition/dataset_checker/__init__.py +126 -0
  810. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  811. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  812. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +107 -0
  813. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  814. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  815. paddlex/modules/text_recognition/evaluator.py +64 -0
  816. paddlex/modules/text_recognition/exportor.py +22 -0
  817. paddlex/modules/text_recognition/model_list.py +34 -0
  818. paddlex/modules/text_recognition/trainer.py +106 -0
  819. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  820. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +112 -0
  821. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  822. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  823. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  824. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  825. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  826. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  827. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  828. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  829. paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
  830. paddlex/modules/ts_classification/__init__.py +19 -0
  831. paddlex/modules/ts_classification/dataset_checker/__init__.py +112 -0
  832. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  833. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  834. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  835. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  836. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  837. paddlex/modules/ts_classification/evaluator.py +66 -0
  838. paddlex/modules/ts_classification/exportor.py +45 -0
  839. paddlex/modules/ts_classification/model_list.py +18 -0
  840. paddlex/modules/ts_classification/trainer.py +108 -0
  841. paddlex/modules/ts_forecast/__init__.py +19 -0
  842. paddlex/modules/ts_forecast/dataset_checker/__init__.py +112 -0
  843. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  844. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  845. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  846. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  847. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  848. paddlex/modules/ts_forecast/evaluator.py +66 -0
  849. paddlex/modules/ts_forecast/exportor.py +45 -0
  850. paddlex/modules/ts_forecast/model_list.py +24 -0
  851. paddlex/modules/ts_forecast/trainer.py +108 -0
  852. paddlex/modules/video_classification/__init__.py +18 -0
  853. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  854. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  855. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  856. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +121 -0
  857. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  858. paddlex/modules/video_classification/evaluator.py +44 -0
  859. paddlex/modules/video_classification/exportor.py +22 -0
  860. paddlex/modules/video_classification/model_list.py +19 -0
  861. paddlex/modules/video_classification/trainer.py +88 -0
  862. paddlex/modules/video_detection/__init__.py +18 -0
  863. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  864. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  865. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +101 -0
  866. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +134 -0
  867. paddlex/modules/video_detection/evaluator.py +42 -0
  868. paddlex/modules/video_detection/exportor.py +22 -0
  869. paddlex/modules/video_detection/model_list.py +15 -0
  870. paddlex/modules/video_detection/trainer.py +82 -0
  871. paddlex/ops/__init__.py +149 -0
  872. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +264 -0
  873. paddlex/ops/iou3d_nms/iou3d_cpu.h +27 -0
  874. paddlex/ops/iou3d_nms/iou3d_nms.cpp +204 -0
  875. paddlex/ops/iou3d_nms/iou3d_nms.h +33 -0
  876. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +108 -0
  877. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +482 -0
  878. paddlex/ops/setup.py +37 -0
  879. paddlex/ops/voxel/voxelize_op.cc +191 -0
  880. paddlex/ops/voxel/voxelize_op.cu +346 -0
  881. paddlex/paddle2onnx_requirements.txt +1 -0
  882. paddlex/paddlex_cli.py +464 -0
  883. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  884. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  885. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  886. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  887. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  888. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  889. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +144 -0
  890. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  891. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  892. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  893. paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
  894. paddlex/repo_apis/PaddleClas_api/cls/register.py +908 -0
  895. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  896. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  897. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  898. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  899. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  900. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  901. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  902. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  903. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  904. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +458 -0
  905. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
  906. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  907. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  908. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  909. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +539 -0
  910. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +430 -0
  911. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +220 -0
  912. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1106 -0
  913. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  914. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  915. paddlex/repo_apis/PaddleOCR_api/__init__.py +21 -0
  916. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  917. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  918. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +570 -0
  919. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +402 -0
  920. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +73 -0
  921. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +240 -0
  922. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  923. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  924. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  925. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +71 -0
  926. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  927. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  928. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  929. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  930. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +90 -0
  931. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  932. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  933. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +563 -0
  934. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +402 -0
  935. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +199 -0
  936. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  937. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  938. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  939. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  940. paddlex/repo_apis/PaddleSeg_api/seg/config.py +186 -0
  941. paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
  942. paddlex/repo_apis/PaddleSeg_api/seg/register.py +273 -0
  943. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  944. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  945. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  946. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  947. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  948. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  949. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  950. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +246 -0
  951. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
  952. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  953. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  954. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  955. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  956. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  957. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  958. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  959. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  960. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  961. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  962. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  963. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +547 -0
  964. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  965. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +71 -0
  966. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +205 -0
  967. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  968. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +548 -0
  969. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  970. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +45 -0
  971. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +200 -0
  972. paddlex/repo_apis/__init__.py +13 -0
  973. paddlex/repo_apis/base/__init__.py +23 -0
  974. paddlex/repo_apis/base/config.py +238 -0
  975. paddlex/repo_apis/base/model.py +571 -0
  976. paddlex/repo_apis/base/register.py +135 -0
  977. paddlex/repo_apis/base/runner.py +391 -0
  978. paddlex/repo_apis/base/utils/__init__.py +13 -0
  979. paddlex/repo_apis/base/utils/arg.py +64 -0
  980. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  981. paddlex/repo_manager/__init__.py +24 -0
  982. paddlex/repo_manager/core.py +271 -0
  983. paddlex/repo_manager/meta.py +170 -0
  984. paddlex/repo_manager/repo.py +415 -0
  985. paddlex/repo_manager/requirements.txt +21 -0
  986. paddlex/repo_manager/utils.py +359 -0
  987. paddlex/serving_requirements.txt +9 -0
  988. paddlex/utils/__init__.py +1 -12
  989. paddlex/utils/cache.py +148 -0
  990. paddlex/utils/config.py +215 -0
  991. paddlex/utils/custom_device_whitelist.py +457 -0
  992. paddlex/utils/device.py +151 -0
  993. paddlex/utils/download.py +168 -182
  994. paddlex/utils/env.py +11 -50
  995. paddlex/utils/errors/__init__.py +17 -0
  996. paddlex/utils/errors/dataset_checker.py +78 -0
  997. paddlex/utils/errors/others.py +152 -0
  998. paddlex/utils/file_interface.py +212 -0
  999. paddlex/utils/flags.py +65 -0
  1000. paddlex/utils/fonts/__init__.py +67 -0
  1001. paddlex/utils/func_register.py +41 -0
  1002. paddlex/utils/interactive_get_pipeline.py +55 -0
  1003. paddlex/utils/lazy_loader.py +68 -0
  1004. paddlex/utils/logging.py +131 -33
  1005. paddlex/utils/misc.py +201 -0
  1006. paddlex/utils/pipeline_arguments.py +711 -0
  1007. paddlex/utils/result_saver.py +59 -0
  1008. paddlex/utils/subclass_register.py +101 -0
  1009. paddlex/version.py +54 -0
  1010. paddlex-3.0.0rc0.dist-info/LICENSE +169 -0
  1011. paddlex-3.0.0rc0.dist-info/METADATA +1035 -0
  1012. paddlex-3.0.0rc0.dist-info/RECORD +1015 -0
  1013. paddlex-3.0.0rc0.dist-info/WHEEL +5 -0
  1014. paddlex-3.0.0rc0.dist-info/entry_points.txt +2 -0
  1015. paddlex-3.0.0rc0.dist-info/top_level.txt +1 -0
  1016. PaddleClas/__init__.py +0 -16
  1017. PaddleClas/deploy/__init__.py +0 -1
  1018. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  1019. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  1020. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  1021. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  1022. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  1023. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  1024. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  1025. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  1026. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  1027. PaddleClas/deploy/python/__init__.py +0 -0
  1028. PaddleClas/deploy/python/build_gallery.py +0 -214
  1029. PaddleClas/deploy/python/det_preprocess.py +0 -205
  1030. PaddleClas/deploy/python/postprocess.py +0 -161
  1031. PaddleClas/deploy/python/predict_cls.py +0 -142
  1032. PaddleClas/deploy/python/predict_det.py +0 -158
  1033. PaddleClas/deploy/python/predict_rec.py +0 -138
  1034. PaddleClas/deploy/python/predict_system.py +0 -144
  1035. PaddleClas/deploy/python/preprocess.py +0 -337
  1036. PaddleClas/deploy/utils/__init__.py +0 -5
  1037. PaddleClas/deploy/utils/config.py +0 -197
  1038. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  1039. PaddleClas/deploy/utils/encode_decode.py +0 -31
  1040. PaddleClas/deploy/utils/get_image_list.py +0 -49
  1041. PaddleClas/deploy/utils/logger.py +0 -120
  1042. PaddleClas/deploy/utils/predictor.py +0 -71
  1043. PaddleClas/deploy/vector_search/__init__.py +0 -1
  1044. PaddleClas/deploy/vector_search/interface.py +0 -272
  1045. PaddleClas/deploy/vector_search/test.py +0 -34
  1046. PaddleClas/hubconf.py +0 -788
  1047. PaddleClas/paddleclas.py +0 -552
  1048. PaddleClas/ppcls/__init__.py +0 -20
  1049. PaddleClas/ppcls/arch/__init__.py +0 -127
  1050. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  1051. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  1052. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  1053. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1054. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1055. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  1056. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1057. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1058. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1059. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1060. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1061. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  1062. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1063. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1064. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1065. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1066. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1067. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1068. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1069. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1070. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1071. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1072. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1073. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1074. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1075. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1076. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1077. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1078. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1079. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1080. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1081. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1082. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1083. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1084. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1085. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1086. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1087. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1088. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1089. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1090. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1091. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1092. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1093. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1094. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1095. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1096. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1097. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1098. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1099. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1100. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1101. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1102. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1103. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1104. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  1105. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  1106. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  1107. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  1108. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  1109. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  1110. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  1111. PaddleClas/ppcls/arch/utils.py +0 -53
  1112. PaddleClas/ppcls/data/__init__.py +0 -144
  1113. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1114. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  1115. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  1116. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  1117. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1118. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1119. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  1120. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  1121. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  1122. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1123. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  1124. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1125. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  1126. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  1127. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  1128. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  1129. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1130. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  1131. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1132. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  1133. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  1134. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  1135. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  1136. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1137. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  1138. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1139. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1140. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1141. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  1142. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  1143. PaddleClas/ppcls/engine/__init__.py +0 -0
  1144. PaddleClas/ppcls/engine/engine.py +0 -436
  1145. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  1146. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  1147. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  1148. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  1149. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  1150. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  1151. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  1152. PaddleClas/ppcls/engine/train/train.py +0 -79
  1153. PaddleClas/ppcls/engine/train/utils.py +0 -72
  1154. PaddleClas/ppcls/loss/__init__.py +0 -65
  1155. PaddleClas/ppcls/loss/celoss.py +0 -67
  1156. PaddleClas/ppcls/loss/centerloss.py +0 -54
  1157. PaddleClas/ppcls/loss/comfunc.py +0 -45
  1158. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  1159. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  1160. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  1161. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  1162. PaddleClas/ppcls/loss/emlloss.py +0 -97
  1163. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  1164. PaddleClas/ppcls/loss/msmloss.py +0 -78
  1165. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  1166. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  1167. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  1168. PaddleClas/ppcls/loss/supconloss.py +0 -108
  1169. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  1170. PaddleClas/ppcls/loss/triplet.py +0 -137
  1171. PaddleClas/ppcls/metric/__init__.py +0 -51
  1172. PaddleClas/ppcls/metric/metrics.py +0 -308
  1173. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  1174. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  1175. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  1176. PaddleClas/ppcls/utils/__init__.py +0 -27
  1177. PaddleClas/ppcls/utils/check.py +0 -151
  1178. PaddleClas/ppcls/utils/config.py +0 -210
  1179. PaddleClas/ppcls/utils/download.py +0 -319
  1180. PaddleClas/ppcls/utils/ema.py +0 -63
  1181. PaddleClas/ppcls/utils/logger.py +0 -137
  1182. PaddleClas/ppcls/utils/metrics.py +0 -107
  1183. PaddleClas/ppcls/utils/misc.py +0 -63
  1184. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  1185. PaddleClas/ppcls/utils/profiler.py +0 -111
  1186. PaddleClas/ppcls/utils/save_load.py +0 -136
  1187. PaddleClas/setup.py +0 -58
  1188. PaddleClas/tools/__init__.py +0 -15
  1189. PaddleClas/tools/eval.py +0 -31
  1190. PaddleClas/tools/export_model.py +0 -34
  1191. PaddleClas/tools/infer.py +0 -31
  1192. PaddleClas/tools/train.py +0 -32
  1193. paddlex/cls.py +0 -82
  1194. paddlex/command.py +0 -215
  1195. paddlex/cv/__init__.py +0 -17
  1196. paddlex/cv/datasets/__init__.py +0 -18
  1197. paddlex/cv/datasets/coco.py +0 -208
  1198. paddlex/cv/datasets/imagenet.py +0 -88
  1199. paddlex/cv/datasets/seg_dataset.py +0 -91
  1200. paddlex/cv/datasets/voc.py +0 -445
  1201. paddlex/cv/models/__init__.py +0 -18
  1202. paddlex/cv/models/base.py +0 -631
  1203. paddlex/cv/models/classifier.py +0 -989
  1204. paddlex/cv/models/detector.py +0 -2292
  1205. paddlex/cv/models/load_model.py +0 -148
  1206. paddlex/cv/models/segmenter.py +0 -768
  1207. paddlex/cv/models/slim/__init__.py +0 -13
  1208. paddlex/cv/models/slim/prune.py +0 -55
  1209. paddlex/cv/models/utils/__init__.py +0 -13
  1210. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  1211. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  1212. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  1213. paddlex/cv/models/utils/infer_nets.py +0 -45
  1214. paddlex/cv/models/utils/seg_metrics.py +0 -62
  1215. paddlex/cv/models/utils/visualize.py +0 -399
  1216. paddlex/cv/transforms/__init__.py +0 -46
  1217. paddlex/cv/transforms/batch_operators.py +0 -286
  1218. paddlex/cv/transforms/box_utils.py +0 -41
  1219. paddlex/cv/transforms/functions.py +0 -193
  1220. paddlex/cv/transforms/operators.py +0 -1402
  1221. paddlex/deploy.py +0 -268
  1222. paddlex/det.py +0 -49
  1223. paddlex/paddleseg/__init__.py +0 -17
  1224. paddlex/paddleseg/core/__init__.py +0 -20
  1225. paddlex/paddleseg/core/infer.py +0 -289
  1226. paddlex/paddleseg/core/predict.py +0 -145
  1227. paddlex/paddleseg/core/train.py +0 -258
  1228. paddlex/paddleseg/core/val.py +0 -172
  1229. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  1230. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  1231. paddlex/paddleseg/cvlibs/config.py +0 -359
  1232. paddlex/paddleseg/cvlibs/manager.py +0 -142
  1233. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  1234. paddlex/paddleseg/datasets/__init__.py +0 -21
  1235. paddlex/paddleseg/datasets/ade.py +0 -112
  1236. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  1237. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  1238. paddlex/paddleseg/datasets/dataset.py +0 -164
  1239. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  1240. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  1241. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  1242. paddlex/paddleseg/datasets/voc.py +0 -113
  1243. paddlex/paddleseg/models/__init__.py +0 -39
  1244. paddlex/paddleseg/models/ann.py +0 -436
  1245. paddlex/paddleseg/models/attention_unet.py +0 -189
  1246. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  1247. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  1248. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  1249. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  1250. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  1251. paddlex/paddleseg/models/bisenet.py +0 -311
  1252. paddlex/paddleseg/models/danet.py +0 -220
  1253. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  1254. paddlex/paddleseg/models/deeplab.py +0 -258
  1255. paddlex/paddleseg/models/dnlnet.py +0 -231
  1256. paddlex/paddleseg/models/emanet.py +0 -219
  1257. paddlex/paddleseg/models/fast_scnn.py +0 -318
  1258. paddlex/paddleseg/models/fcn.py +0 -135
  1259. paddlex/paddleseg/models/gcnet.py +0 -223
  1260. paddlex/paddleseg/models/gscnn.py +0 -357
  1261. paddlex/paddleseg/models/hardnet.py +0 -309
  1262. paddlex/paddleseg/models/isanet.py +0 -202
  1263. paddlex/paddleseg/models/layers/__init__.py +0 -19
  1264. paddlex/paddleseg/models/layers/activation.py +0 -73
  1265. paddlex/paddleseg/models/layers/attention.py +0 -146
  1266. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  1267. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  1268. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  1269. paddlex/paddleseg/models/losses/__init__.py +0 -27
  1270. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  1271. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  1272. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  1273. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  1274. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  1275. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  1276. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  1277. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  1278. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  1279. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  1280. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  1281. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  1282. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  1283. paddlex/paddleseg/models/ocrnet.py +0 -248
  1284. paddlex/paddleseg/models/pspnet.py +0 -147
  1285. paddlex/paddleseg/models/sfnet.py +0 -236
  1286. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  1287. paddlex/paddleseg/models/u2net.py +0 -574
  1288. paddlex/paddleseg/models/unet.py +0 -155
  1289. paddlex/paddleseg/models/unet_3plus.py +0 -316
  1290. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  1291. paddlex/paddleseg/transforms/__init__.py +0 -16
  1292. paddlex/paddleseg/transforms/functional.py +0 -161
  1293. paddlex/paddleseg/transforms/transforms.py +0 -937
  1294. paddlex/paddleseg/utils/__init__.py +0 -22
  1295. paddlex/paddleseg/utils/config_check.py +0 -60
  1296. paddlex/paddleseg/utils/download.py +0 -163
  1297. paddlex/paddleseg/utils/env/__init__.py +0 -16
  1298. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  1299. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  1300. paddlex/paddleseg/utils/logger.py +0 -48
  1301. paddlex/paddleseg/utils/metrics.py +0 -146
  1302. paddlex/paddleseg/utils/progbar.py +0 -212
  1303. paddlex/paddleseg/utils/timer.py +0 -53
  1304. paddlex/paddleseg/utils/utils.py +0 -120
  1305. paddlex/paddleseg/utils/visualize.py +0 -90
  1306. paddlex/ppcls/__init__.py +0 -20
  1307. paddlex/ppcls/arch/__init__.py +0 -127
  1308. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  1309. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  1310. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  1311. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1312. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1313. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  1314. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1315. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1316. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1317. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1318. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1319. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  1320. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1321. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1322. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1323. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1324. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1325. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1326. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1327. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1328. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1329. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1330. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1331. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1332. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1333. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1334. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1335. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1336. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1337. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1338. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1339. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1340. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1341. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1342. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1343. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1344. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1345. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1346. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1347. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1348. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1349. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1350. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1351. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1352. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1353. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1354. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1355. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1356. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1357. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1358. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1359. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1360. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1361. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1362. paddlex/ppcls/arch/gears/__init__.py +0 -32
  1363. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  1364. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  1365. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  1366. paddlex/ppcls/arch/gears/fc.py +0 -35
  1367. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  1368. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1369. paddlex/ppcls/arch/utils.py +0 -53
  1370. paddlex/ppcls/data/__init__.py +0 -144
  1371. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1372. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1373. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1374. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1375. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1376. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1377. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1378. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1379. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1380. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1381. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1382. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1383. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1384. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1385. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1386. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1387. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1388. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1389. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1390. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1391. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1392. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1393. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1394. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1395. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1396. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1397. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1398. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1399. paddlex/ppcls/data/utils/__init__.py +0 -13
  1400. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1401. paddlex/ppcls/engine/__init__.py +0 -0
  1402. paddlex/ppcls/engine/engine.py +0 -436
  1403. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1404. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1405. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1406. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1407. paddlex/ppcls/engine/slim/prune.py +0 -66
  1408. paddlex/ppcls/engine/slim/quant.py +0 -55
  1409. paddlex/ppcls/engine/train/__init__.py +0 -14
  1410. paddlex/ppcls/engine/train/train.py +0 -79
  1411. paddlex/ppcls/engine/train/utils.py +0 -72
  1412. paddlex/ppcls/loss/__init__.py +0 -65
  1413. paddlex/ppcls/loss/celoss.py +0 -67
  1414. paddlex/ppcls/loss/centerloss.py +0 -54
  1415. paddlex/ppcls/loss/comfunc.py +0 -45
  1416. paddlex/ppcls/loss/deephashloss.py +0 -96
  1417. paddlex/ppcls/loss/distanceloss.py +0 -43
  1418. paddlex/ppcls/loss/distillationloss.py +0 -141
  1419. paddlex/ppcls/loss/dmlloss.py +0 -46
  1420. paddlex/ppcls/loss/emlloss.py +0 -97
  1421. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1422. paddlex/ppcls/loss/msmloss.py +0 -78
  1423. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1424. paddlex/ppcls/loss/npairsloss.py +0 -38
  1425. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1426. paddlex/ppcls/loss/supconloss.py +0 -108
  1427. paddlex/ppcls/loss/trihardloss.py +0 -82
  1428. paddlex/ppcls/loss/triplet.py +0 -137
  1429. paddlex/ppcls/metric/__init__.py +0 -51
  1430. paddlex/ppcls/metric/metrics.py +0 -308
  1431. paddlex/ppcls/optimizer/__init__.py +0 -72
  1432. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1433. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1434. paddlex/ppcls/utils/__init__.py +0 -27
  1435. paddlex/ppcls/utils/check.py +0 -151
  1436. paddlex/ppcls/utils/config.py +0 -210
  1437. paddlex/ppcls/utils/download.py +0 -319
  1438. paddlex/ppcls/utils/ema.py +0 -63
  1439. paddlex/ppcls/utils/logger.py +0 -137
  1440. paddlex/ppcls/utils/metrics.py +0 -112
  1441. paddlex/ppcls/utils/misc.py +0 -63
  1442. paddlex/ppcls/utils/model_zoo.py +0 -213
  1443. paddlex/ppcls/utils/profiler.py +0 -111
  1444. paddlex/ppcls/utils/save_load.py +0 -136
  1445. paddlex/ppdet/__init__.py +0 -16
  1446. paddlex/ppdet/core/__init__.py +0 -15
  1447. paddlex/ppdet/core/config/__init__.py +0 -13
  1448. paddlex/ppdet/core/config/schema.py +0 -248
  1449. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1450. paddlex/ppdet/core/workspace.py +0 -278
  1451. paddlex/ppdet/data/__init__.py +0 -21
  1452. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1453. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1454. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1455. paddlex/ppdet/data/reader.py +0 -302
  1456. paddlex/ppdet/data/shm_utils.py +0 -67
  1457. paddlex/ppdet/data/source/__init__.py +0 -29
  1458. paddlex/ppdet/data/source/category.py +0 -904
  1459. paddlex/ppdet/data/source/coco.py +0 -251
  1460. paddlex/ppdet/data/source/dataset.py +0 -197
  1461. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1462. paddlex/ppdet/data/source/mot.py +0 -636
  1463. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1464. paddlex/ppdet/data/source/voc.py +0 -231
  1465. paddlex/ppdet/data/source/widerface.py +0 -180
  1466. paddlex/ppdet/data/transform/__init__.py +0 -28
  1467. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1468. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1469. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1470. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1471. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1472. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1473. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1474. paddlex/ppdet/data/transform/operators.py +0 -3025
  1475. paddlex/ppdet/engine/__init__.py +0 -30
  1476. paddlex/ppdet/engine/callbacks.py +0 -340
  1477. paddlex/ppdet/engine/env.py +0 -50
  1478. paddlex/ppdet/engine/export_utils.py +0 -177
  1479. paddlex/ppdet/engine/tracker.py +0 -538
  1480. paddlex/ppdet/engine/trainer.py +0 -723
  1481. paddlex/ppdet/metrics/__init__.py +0 -29
  1482. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1483. paddlex/ppdet/metrics/json_results.py +0 -149
  1484. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1485. paddlex/ppdet/metrics/map_utils.py +0 -444
  1486. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1487. paddlex/ppdet/metrics/metrics.py +0 -434
  1488. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1489. paddlex/ppdet/metrics/munkres.py +0 -428
  1490. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1491. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1492. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1493. paddlex/ppdet/modeling/__init__.py +0 -45
  1494. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1495. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1496. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1497. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1498. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1499. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1500. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1501. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1502. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1503. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1504. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1505. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1506. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1507. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1508. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1509. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1510. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1511. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1512. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1513. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1514. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1515. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1516. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1517. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1518. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1519. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1520. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1521. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1522. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1523. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1524. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1525. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1526. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1527. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1528. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1529. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1530. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1531. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1532. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1533. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1534. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1535. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1536. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1537. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1538. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1539. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1540. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1541. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1542. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1543. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1544. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1545. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1546. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1547. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1548. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1549. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1550. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1551. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1552. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1553. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1554. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1555. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1556. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1557. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1558. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1559. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1560. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1561. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1562. paddlex/ppdet/modeling/initializer.py +0 -317
  1563. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1564. paddlex/ppdet/modeling/layers.py +0 -1430
  1565. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1566. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1567. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1568. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1569. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1570. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1571. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1572. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1573. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1574. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1575. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1576. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1577. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1578. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1579. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1580. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1581. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1582. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1583. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1584. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1585. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1586. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1587. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1588. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1589. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1590. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1591. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1592. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1593. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1594. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1595. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1596. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1597. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1598. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1599. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1600. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1601. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1602. paddlex/ppdet/modeling/ops.py +0 -1611
  1603. paddlex/ppdet/modeling/post_process.py +0 -731
  1604. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1605. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1606. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1607. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1608. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1609. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1610. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1611. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1612. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1613. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1614. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1615. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1616. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1617. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1618. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1619. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1620. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1621. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1622. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1623. paddlex/ppdet/optimizer.py +0 -335
  1624. paddlex/ppdet/slim/__init__.py +0 -82
  1625. paddlex/ppdet/slim/distill.py +0 -110
  1626. paddlex/ppdet/slim/prune.py +0 -85
  1627. paddlex/ppdet/slim/quant.py +0 -84
  1628. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1629. paddlex/ppdet/utils/__init__.py +0 -13
  1630. paddlex/ppdet/utils/check.py +0 -112
  1631. paddlex/ppdet/utils/checkpoint.py +0 -226
  1632. paddlex/ppdet/utils/cli.py +0 -151
  1633. paddlex/ppdet/utils/colormap.py +0 -58
  1634. paddlex/ppdet/utils/download.py +0 -558
  1635. paddlex/ppdet/utils/logger.py +0 -70
  1636. paddlex/ppdet/utils/profiler.py +0 -111
  1637. paddlex/ppdet/utils/stats.py +0 -94
  1638. paddlex/ppdet/utils/visualizer.py +0 -321
  1639. paddlex/ppdet/utils/voc_utils.py +0 -86
  1640. paddlex/seg.py +0 -41
  1641. paddlex/tools/__init__.py +0 -17
  1642. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1643. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1644. paddlex/tools/convert.py +0 -52
  1645. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1646. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1647. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1648. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1649. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1650. paddlex/tools/dataset_split/__init__.py +0 -23
  1651. paddlex/tools/dataset_split/coco_split.py +0 -69
  1652. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1653. paddlex/tools/dataset_split/seg_split.py +0 -96
  1654. paddlex/tools/dataset_split/utils.py +0 -75
  1655. paddlex/tools/dataset_split/voc_split.py +0 -91
  1656. paddlex/tools/split.py +0 -41
  1657. paddlex/utils/checkpoint.py +0 -492
  1658. paddlex/utils/shm.py +0 -67
  1659. paddlex/utils/stats.py +0 -68
  1660. paddlex/utils/utils.py +0 -229
  1661. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1662. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1663. paddlex-2.1.0.dist-info/METADATA +0 -32
  1664. paddlex-2.1.0.dist-info/RECORD +0 -698
  1665. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1666. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1667. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1668. paddlex_restful/__init__.py +0 -15
  1669. paddlex_restful/command.py +0 -63
  1670. paddlex_restful/restful/__init__.py +0 -15
  1671. paddlex_restful/restful/app.py +0 -969
  1672. paddlex_restful/restful/dataset/__init__.py +0 -13
  1673. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1674. paddlex_restful/restful/dataset/dataset.py +0 -266
  1675. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1676. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1677. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1678. paddlex_restful/restful/dataset/operate.py +0 -155
  1679. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1680. paddlex_restful/restful/dataset/utils.py +0 -267
  1681. paddlex_restful/restful/demo.py +0 -202
  1682. paddlex_restful/restful/dir.py +0 -45
  1683. paddlex_restful/restful/model.py +0 -312
  1684. paddlex_restful/restful/project/__init__.py +0 -13
  1685. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1686. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1687. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1688. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1689. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1690. paddlex_restful/restful/project/operate.py +0 -931
  1691. paddlex_restful/restful/project/project.py +0 -143
  1692. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1693. paddlex_restful/restful/project/prune/classification.py +0 -32
  1694. paddlex_restful/restful/project/prune/detection.py +0 -48
  1695. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1696. paddlex_restful/restful/project/task.py +0 -884
  1697. paddlex_restful/restful/project/train/__init__.py +0 -13
  1698. paddlex_restful/restful/project/train/classification.py +0 -141
  1699. paddlex_restful/restful/project/train/detection.py +0 -263
  1700. paddlex_restful/restful/project/train/params.py +0 -432
  1701. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1702. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1703. paddlex_restful/restful/project/visualize.py +0 -244
  1704. paddlex_restful/restful/system.py +0 -102
  1705. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1706. paddlex_restful/restful/utils.py +0 -841
  1707. paddlex_restful/restful/workspace.py +0 -343
  1708. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,1591 +0,0 @@
1
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # Reference:
15
- # https://github.com/tensorflow/tpu/blob/master/models/official/detection/utils/autoaugment_utils.py
16
- """AutoAugment util file."""
17
-
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import inspect
23
- import math
24
- from PIL import Image, ImageEnhance
25
- import numpy as np
26
- import cv2
27
- from copy import deepcopy
28
-
29
- # This signifies the max integer that the controller RNN could predict for the
30
- # augmentation scheme.
31
- _MAX_LEVEL = 10.
32
-
33
- # Represents an invalid bounding box that is used for checking for padding
34
- # lists of bounding box coordinates for a few augmentation operations
35
- _INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]]
36
-
37
-
38
- def policy_v0():
39
- """Autoaugment policy that was used in AutoAugment Detection Paper."""
40
- # Each tuple is an augmentation operation of the form
41
- # (operation, probability, magnitude). Each element in policy is a
42
- # sub-policy that will be applied sequentially on the image.
43
- policy = [
44
- [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
45
- [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
46
- [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
47
- [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
48
- [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
49
- ]
50
- return policy
51
-
52
-
53
- def policy_v1():
54
- """Autoaugment policy that was used in AutoAugment Detection Paper."""
55
- # Each tuple is an augmentation operation of the form
56
- # (operation, probability, magnitude). Each element in policy is a
57
- # sub-policy that will be applied sequentially on the image.
58
- policy = [
59
- [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
60
- [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
61
- [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
62
- [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
63
- [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
64
- [('Color', 0.0, 0), ('ShearX_Only_BBoxes', 0.8, 4)],
65
- [('ShearY_Only_BBoxes', 0.8, 2), ('Flip_Only_BBoxes', 0.0, 10)],
66
- [('Equalize', 0.6, 10), ('TranslateX_BBox', 0.2, 2)],
67
- [('Color', 1.0, 10), ('TranslateY_Only_BBoxes', 0.4, 6)],
68
- [('Rotate_BBox', 0.8, 10), ('Contrast', 0.0, 10)], # ,
69
- [('Cutout', 0.2, 2), ('Brightness', 0.8, 10)],
70
- [('Color', 1.0, 6), ('Equalize', 1.0, 2)],
71
- [('Cutout_Only_BBoxes', 0.4, 6), ('TranslateY_Only_BBoxes', 0.8, 2)],
72
- [('Color', 0.2, 8), ('Rotate_BBox', 0.8, 10)],
73
- [('Sharpness', 0.4, 4), ('TranslateY_Only_BBoxes', 0.0, 4)],
74
- [('Sharpness', 1.0, 4), ('SolarizeAdd', 0.4, 4)],
75
- [('Rotate_BBox', 1.0, 8), ('Sharpness', 0.2, 8)],
76
- [('ShearY_BBox', 0.6, 10), ('Equalize_Only_BBoxes', 0.6, 8)],
77
- [('ShearX_BBox', 0.2, 6), ('TranslateY_Only_BBoxes', 0.2, 10)],
78
- [('SolarizeAdd', 0.6, 8), ('Brightness', 0.8, 10)],
79
- ]
80
- return policy
81
-
82
-
83
- def policy_vtest():
84
- """Autoaugment test policy for debugging."""
85
- # Each tuple is an augmentation operation of the form
86
- # (operation, probability, magnitude). Each element in policy is a
87
- # sub-policy that will be applied sequentially on the image.
88
- policy = [[('TranslateX_BBox', 1.0, 4), ('Equalize', 1.0, 10)], ]
89
- return policy
90
-
91
-
92
- def policy_v2():
93
- """Additional policy that performs well on object detection."""
94
- # Each tuple is an augmentation operation of the form
95
- # (operation, probability, magnitude). Each element in policy is a
96
- # sub-policy that will be applied sequentially on the image.
97
- policy = [
98
- [('Color', 0.0, 6), ('Cutout', 0.6, 8), ('Sharpness', 0.4, 8)],
99
- [('Rotate_BBox', 0.4, 8), ('Sharpness', 0.4, 2),
100
- ('Rotate_BBox', 0.8, 10)],
101
- [('TranslateY_BBox', 1.0, 8), ('AutoContrast', 0.8, 2)],
102
- [('AutoContrast', 0.4, 6), ('ShearX_BBox', 0.8, 8),
103
- ('Brightness', 0.0, 10)],
104
- [('SolarizeAdd', 0.2, 6), ('Contrast', 0.0, 10),
105
- ('AutoContrast', 0.6, 0)],
106
- [('Cutout', 0.2, 0), ('Solarize', 0.8, 8), ('Color', 1.0, 4)],
107
- [('TranslateY_BBox', 0.0, 4), ('Equalize', 0.6, 8),
108
- ('Solarize', 0.0, 10)],
109
- [('TranslateY_BBox', 0.2, 2), ('ShearY_BBox', 0.8, 8),
110
- ('Rotate_BBox', 0.8, 8)],
111
- [('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)],
112
- [('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6),
113
- ('Rotate_BBox', 0.6, 6)],
114
- [('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4),
115
- ('Cutout', 0.2, 8)],
116
- [('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6),
117
- ('ShearY_BBox', 0.6, 8)],
118
- [('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2),
119
- ('Brightness', 0.2, 2)],
120
- [('TranslateY_BBox', 0.4, 8), ('Solarize', 0.4, 6),
121
- ('SolarizeAdd', 0.2, 10)],
122
- [('Contrast', 1.0, 10), ('SolarizeAdd', 0.2, 8), ('Equalize', 0.2, 4)],
123
- ]
124
- return policy
125
-
126
-
127
- def policy_v3():
128
- """"Additional policy that performs well on object detection."""
129
- # Each tuple is an augmentation operation of the form
130
- # (operation, probability, magnitude). Each element in policy is a
131
- # sub-policy that will be applied sequentially on the image.
132
- policy = [
133
- [('Posterize', 0.8, 2), ('TranslateX_BBox', 1.0, 8)],
134
- [('BBox_Cutout', 0.2, 10), ('Sharpness', 1.0, 8)],
135
- [('Rotate_BBox', 0.6, 8), ('Rotate_BBox', 0.8, 10)],
136
- [('Equalize', 0.8, 10), ('AutoContrast', 0.2, 10)],
137
- [('SolarizeAdd', 0.2, 2), ('TranslateY_BBox', 0.2, 8)],
138
- [('Sharpness', 0.0, 2), ('Color', 0.4, 8)],
139
- [('Equalize', 1.0, 8), ('TranslateY_BBox', 1.0, 8)],
140
- [('Posterize', 0.6, 2), ('Rotate_BBox', 0.0, 10)],
141
- [('AutoContrast', 0.6, 0), ('Rotate_BBox', 1.0, 6)],
142
- [('Equalize', 0.0, 4), ('Cutout', 0.8, 10)],
143
- [('Brightness', 1.0, 2), ('TranslateY_BBox', 1.0, 6)],
144
- [('Contrast', 0.0, 2), ('ShearY_BBox', 0.8, 0)],
145
- [('AutoContrast', 0.8, 10), ('Contrast', 0.2, 10)],
146
- [('Rotate_BBox', 1.0, 10), ('Cutout', 1.0, 10)],
147
- [('SolarizeAdd', 0.8, 6), ('Equalize', 0.8, 8)],
148
- ]
149
- return policy
150
-
151
-
152
- def _equal(val1, val2, eps=1e-8):
153
- return abs(val1 - val2) <= eps
154
-
155
-
156
- def blend(image1, image2, factor):
157
- """Blend image1 and image2 using 'factor'.
158
-
159
- Factor can be above 0.0. A value of 0.0 means only image1 is used.
160
- A value of 1.0 means only image2 is used. A value between 0.0 and
161
- 1.0 means we linearly interpolate the pixel values between the two
162
- images. A value greater than 1.0 "extrapolates" the difference
163
- between the two pixel values, and we clip the results to values
164
- between 0 and 255.
165
-
166
- Args:
167
- image1: An image Tensor of type uint8.
168
- image2: An image Tensor of type uint8.
169
- factor: A floating point value above 0.0.
170
-
171
- Returns:
172
- A blended image Tensor of type uint8.
173
- """
174
- if factor == 0.0:
175
- return image1
176
- if factor == 1.0:
177
- return image2
178
-
179
- image1 = image1.astype(np.float32)
180
- image2 = image2.astype(np.float32)
181
-
182
- difference = image2 - image1
183
- scaled = factor * difference
184
-
185
- # Do addition in float.
186
- temp = image1 + scaled
187
-
188
- # Interpolate
189
- if factor > 0.0 and factor < 1.0:
190
- # Interpolation means we always stay within 0 and 255.
191
- return temp.astype(np.uint8)
192
-
193
- # Extrapolate:
194
- #
195
- # We need to clip and then cast.
196
- return np.clip(temp, a_min=0, a_max=255).astype(np.uint8)
197
-
198
-
199
- def cutout(image, pad_size, replace=0):
200
- """Apply cutout (https://arxiv.org/abs/1708.04552) to image.
201
-
202
- This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
203
- a random location within `img`. The pixel values filled in will be of the
204
- value `replace`. The located where the mask will be applied is randomly
205
- chosen uniformly over the whole image.
206
-
207
- Args:
208
- image: An image Tensor of type uint8.
209
- pad_size: Specifies how big the zero mask that will be generated is that
210
- is applied to the image. The mask will be of size
211
- (2*pad_size x 2*pad_size).
212
- replace: What pixel value to fill in the image in the area that has
213
- the cutout mask applied to it.
214
-
215
- Returns:
216
- An image Tensor that is of type uint8.
217
- Example:
218
- img = cv2.imread( "/home/vis/gry/train/img_data/test.jpg", cv2.COLOR_BGR2RGB )
219
- new_img = cutout(img, pad_size=50, replace=0)
220
- """
221
- image_height, image_width = image.shape[0], image.shape[1]
222
-
223
- cutout_center_height = np.random.randint(low=0, high=image_height)
224
- cutout_center_width = np.random.randint(low=0, high=image_width)
225
-
226
- lower_pad = np.maximum(0, cutout_center_height - pad_size)
227
- upper_pad = np.maximum(0, image_height - cutout_center_height - pad_size)
228
- left_pad = np.maximum(0, cutout_center_width - pad_size)
229
- right_pad = np.maximum(0, image_width - cutout_center_width - pad_size)
230
-
231
- cutout_shape = [
232
- image_height - (lower_pad + upper_pad),
233
- image_width - (left_pad + right_pad)
234
- ]
235
- padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
236
- mask = np.pad(np.zeros(
237
- cutout_shape, dtype=image.dtype),
238
- padding_dims,
239
- 'constant',
240
- constant_values=1)
241
- mask = np.expand_dims(mask, -1)
242
- mask = np.tile(mask, [1, 1, 3])
243
- image = np.where(
244
- np.equal(mask, 0),
245
- np.ones_like(
246
- image, dtype=image.dtype) * replace,
247
- image)
248
- return image.astype(np.uint8)
249
-
250
-
251
- def solarize(image, threshold=128):
252
- # For each pixel in the image, select the pixel
253
- # if the value is less than the threshold.
254
- # Otherwise, subtract 255 from the pixel.
255
- return np.where(image < threshold, image, 255 - image)
256
-
257
-
258
- def solarize_add(image, addition=0, threshold=128):
259
- # For each pixel in the image less than threshold
260
- # we add 'addition' amount to it and then clip the
261
- # pixel value to be between 0 and 255. The value
262
- # of 'addition' is between -128 and 128.
263
- added_image = image.astype(np.int64) + addition
264
- added_image = np.clip(added_image, a_min=0, a_max=255).astype(np.uint8)
265
- return np.where(image < threshold, added_image, image)
266
-
267
-
268
- def color(image, factor):
269
- """use cv2 to deal"""
270
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
271
- degenerate = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
272
- return blend(degenerate, image, factor)
273
-
274
-
275
- # refer to https://github.com/4uiiurz1/pytorch-auto-augment/blob/024b2eac4140c38df8342f09998e307234cafc80/auto_augment.py#L197
276
- def contrast(img, factor):
277
- img = ImageEnhance.Contrast(Image.fromarray(img)).enhance(factor)
278
- return np.array(img)
279
-
280
-
281
- def brightness(image, factor):
282
- """Equivalent of PIL Brightness."""
283
- degenerate = np.zeros_like(image)
284
- return blend(degenerate, image, factor)
285
-
286
-
287
- def posterize(image, bits):
288
- """Equivalent of PIL Posterize."""
289
- shift = 8 - bits
290
- return np.left_shift(np.right_shift(image, shift), shift)
291
-
292
-
293
- def rotate(image, degrees, replace):
294
- """Rotates the image by degrees either clockwise or counterclockwise.
295
-
296
- Args:
297
- image: An image Tensor of type uint8.
298
- degrees: Float, a scalar angle in degrees to rotate all images by. If
299
- degrees is positive the image will be rotated clockwise otherwise it will
300
- be rotated counterclockwise.
301
- replace: A one or three value 1D tensor to fill empty pixels caused by
302
- the rotate operation.
303
-
304
- Returns:
305
- The rotated version of image.
306
- """
307
- image = wrap(image)
308
- image = Image.fromarray(image)
309
- image = image.rotate(degrees)
310
- image = np.array(image, dtype=np.uint8)
311
- return unwrap(image, replace)
312
-
313
-
314
- def random_shift_bbox(image,
315
- bbox,
316
- pixel_scaling,
317
- replace,
318
- new_min_bbox_coords=None):
319
- """Move the bbox and the image content to a slightly new random location.
320
-
321
- Args:
322
- image: 3D uint8 Tensor.
323
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
324
- of type float that represents the normalized coordinates between 0 and 1.
325
- The potential values for the new min corner of the bbox will be between
326
- [old_min - pixel_scaling * bbox_height/2,
327
- old_min - pixel_scaling * bbox_height/2].
328
- pixel_scaling: A float between 0 and 1 that specifies the pixel range
329
- that the new bbox location will be sampled from.
330
- replace: A one or three value 1D tensor to fill empty pixels.
331
- new_min_bbox_coords: If not None, then this is a tuple that specifies the
332
- (min_y, min_x) coordinates of the new bbox. Normally this is randomly
333
- specified, but this allows it to be manually set. The coordinates are
334
- the absolute coordinates between 0 and image height/width and are int32.
335
-
336
- Returns:
337
- The new image that will have the shifted bbox location in it along with
338
- the new bbox that contains the new coordinates.
339
- """
340
- # Obtains image height and width and create helper clip functions.
341
- image_height, image_width = image.shape[0], image.shape[1]
342
- image_height = float(image_height)
343
- image_width = float(image_width)
344
-
345
- def clip_y(val):
346
- return np.clip(val, a_min=0, a_max=image_height - 1).astype(np.int32)
347
-
348
- def clip_x(val):
349
- return np.clip(val, a_min=0, a_max=image_width - 1).astype(np.int32)
350
-
351
- # Convert bbox to pixel coordinates.
352
- min_y = int(image_height * bbox[0])
353
- min_x = int(image_width * bbox[1])
354
- max_y = clip_y(image_height * bbox[2])
355
- max_x = clip_x(image_width * bbox[3])
356
-
357
- bbox_height, bbox_width = (max_y - min_y + 1, max_x - min_x + 1)
358
- image_height = int(image_height)
359
- image_width = int(image_width)
360
-
361
- # Select the new min/max bbox ranges that are used for sampling the
362
- # new min x/y coordinates of the shifted bbox.
363
- minval_y = clip_y(min_y - np.int32(pixel_scaling * float(bbox_height) /
364
- 2.0))
365
- maxval_y = clip_y(min_y + np.int32(pixel_scaling * float(bbox_height) /
366
- 2.0))
367
- minval_x = clip_x(min_x - np.int32(pixel_scaling * float(bbox_width) /
368
- 2.0))
369
- maxval_x = clip_x(min_x + np.int32(pixel_scaling * float(bbox_width) /
370
- 2.0))
371
-
372
- # Sample and calculate the new unclipped min/max coordinates of the new bbox.
373
- if new_min_bbox_coords is None:
374
- unclipped_new_min_y = np.random.randint(
375
- low=minval_y, high=maxval_y, dtype=np.int32)
376
- unclipped_new_min_x = np.random.randint(
377
- low=minval_x, high=maxval_x, dtype=np.int32)
378
- else:
379
- unclipped_new_min_y, unclipped_new_min_x = (
380
- clip_y(new_min_bbox_coords[0]), clip_x(new_min_bbox_coords[1]))
381
- unclipped_new_max_y = unclipped_new_min_y + bbox_height - 1
382
- unclipped_new_max_x = unclipped_new_min_x + bbox_width - 1
383
-
384
- # Determine if any of the new bbox was shifted outside the current image.
385
- # This is used for determining if any of the original bbox content should be
386
- # discarded.
387
- new_min_y, new_min_x, new_max_y, new_max_x = (
388
- clip_y(unclipped_new_min_y), clip_x(unclipped_new_min_x),
389
- clip_y(unclipped_new_max_y), clip_x(unclipped_new_max_x))
390
- shifted_min_y = (new_min_y - unclipped_new_min_y) + min_y
391
- shifted_max_y = max_y - (unclipped_new_max_y - new_max_y)
392
- shifted_min_x = (new_min_x - unclipped_new_min_x) + min_x
393
- shifted_max_x = max_x - (unclipped_new_max_x - new_max_x)
394
-
395
- # Create the new bbox tensor by converting pixel integer values to floats.
396
- new_bbox = np.stack([
397
- float(new_min_y) / float(image_height), float(new_min_x) /
398
- float(image_width), float(new_max_y) / float(image_height),
399
- float(new_max_x) / float(image_width)
400
- ])
401
-
402
- # Copy the contents in the bbox and fill the old bbox location
403
- # with gray (128).
404
- bbox_content = image[shifted_min_y:shifted_max_y + 1, shifted_min_x:
405
- shifted_max_x + 1, :]
406
-
407
- def mask_and_add_image(min_y_, min_x_, max_y_, max_x_, mask,
408
- content_tensor, image_):
409
- """Applies mask to bbox region in image then adds content_tensor to it."""
410
- mask = np.pad(mask, [[min_y_, (image_height - 1) - max_y_],
411
- [min_x_, (image_width - 1) - max_x_], [0, 0]],
412
- 'constant',
413
- constant_values=1)
414
-
415
- content_tensor = np.pad(content_tensor,
416
- [[min_y_, (image_height - 1) - max_y_],
417
- [min_x_, (image_width - 1) - max_x_], [0, 0]],
418
- 'constant',
419
- constant_values=0)
420
- return image_ * mask + content_tensor
421
-
422
- # Zero out original bbox location.
423
- mask = np.zeros_like(image)[min_y:max_y + 1, min_x:max_x + 1, :]
424
- grey_tensor = np.zeros_like(mask) + replace[0]
425
- image = mask_and_add_image(min_y, min_x, max_y, max_x, mask, grey_tensor,
426
- image)
427
-
428
- # Fill in bbox content to new bbox location.
429
- mask = np.zeros_like(bbox_content)
430
- image = mask_and_add_image(new_min_y, new_min_x, new_max_y, new_max_x,
431
- mask, bbox_content, image)
432
-
433
- return image.astype(np.uint8), new_bbox
434
-
435
-
436
- def _clip_bbox(min_y, min_x, max_y, max_x):
437
- """Clip bounding box coordinates between 0 and 1.
438
-
439
- Args:
440
- min_y: Normalized bbox coordinate of type float between 0 and 1.
441
- min_x: Normalized bbox coordinate of type float between 0 and 1.
442
- max_y: Normalized bbox coordinate of type float between 0 and 1.
443
- max_x: Normalized bbox coordinate of type float between 0 and 1.
444
-
445
- Returns:
446
- Clipped coordinate values between 0 and 1.
447
- """
448
- min_y = np.clip(min_y, a_min=0, a_max=1.0)
449
- min_x = np.clip(min_x, a_min=0, a_max=1.0)
450
- max_y = np.clip(max_y, a_min=0, a_max=1.0)
451
- max_x = np.clip(max_x, a_min=0, a_max=1.0)
452
- return min_y, min_x, max_y, max_x
453
-
454
-
455
- def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05):
456
- """Adjusts bbox coordinates to make sure the area is > 0.
457
-
458
- Args:
459
- min_y: Normalized bbox coordinate of type float between 0 and 1.
460
- min_x: Normalized bbox coordinate of type float between 0 and 1.
461
- max_y: Normalized bbox coordinate of type float between 0 and 1.
462
- max_x: Normalized bbox coordinate of type float between 0 and 1.
463
- delta: Float, this is used to create a gap of size 2 * delta between
464
- bbox min/max coordinates that are the same on the boundary.
465
- This prevents the bbox from having an area of zero.
466
-
467
- Returns:
468
- Tuple of new bbox coordinates between 0 and 1 that will now have a
469
- guaranteed area > 0.
470
- """
471
- height = max_y - min_y
472
- width = max_x - min_x
473
-
474
- def _adjust_bbox_boundaries(min_coord, max_coord):
475
- # Make sure max is never 0 and min is never 1.
476
- max_coord = np.maximum(max_coord, 0.0 + delta)
477
- min_coord = np.minimum(min_coord, 1.0 - delta)
478
- return min_coord, max_coord
479
-
480
- if _equal(height, 0):
481
- min_y, max_y = _adjust_bbox_boundaries(min_y, max_y)
482
-
483
- if _equal(width, 0):
484
- min_x, max_x = _adjust_bbox_boundaries(min_x, max_x)
485
-
486
- return min_y, min_x, max_y, max_x
487
-
488
-
489
- def _scale_bbox_only_op_probability(prob):
490
- """Reduce the probability of the bbox-only operation.
491
-
492
- Probability is reduced so that we do not distort the content of too many
493
- bounding boxes that are close to each other. The value of 3.0 was a chosen
494
- hyper parameter when designing the autoaugment algorithm that we found
495
- empirically to work well.
496
-
497
- Args:
498
- prob: Float that is the probability of applying the bbox-only operation.
499
-
500
- Returns:
501
- Reduced probability.
502
- """
503
- return prob / 3.0
504
-
505
-
506
- def _apply_bbox_augmentation(image, bbox, augmentation_func, *args):
507
- """Applies augmentation_func to the subsection of image indicated by bbox.
508
-
509
- Args:
510
- image: 3D uint8 Tensor.
511
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
512
- of type float that represents the normalized coordinates between 0 and 1.
513
- augmentation_func: Augmentation function that will be applied to the
514
- subsection of image.
515
- *args: Additional parameters that will be passed into augmentation_func
516
- when it is called.
517
-
518
- Returns:
519
- A modified version of image, where the bbox location in the image will
520
- have `ugmentation_func applied to it.
521
- """
522
- image_height = image.shape[0]
523
- image_width = image.shape[1]
524
-
525
- min_y = int(image_height * bbox[0])
526
- min_x = int(image_width * bbox[1])
527
- max_y = int(image_height * bbox[2])
528
- max_x = int(image_width * bbox[3])
529
-
530
- # Clip to be sure the max values do not fall out of range.
531
- max_y = np.minimum(max_y, image_height - 1)
532
- max_x = np.minimum(max_x, image_width - 1)
533
-
534
- # Get the sub-tensor that is the image within the bounding box region.
535
- bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :]
536
-
537
- # Apply the augmentation function to the bbox portion of the image.
538
- augmented_bbox_content = augmentation_func(bbox_content, *args)
539
-
540
- # Pad the augmented_bbox_content and the mask to match the shape of original
541
- # image.
542
- augmented_bbox_content = np.pad(
543
- augmented_bbox_content, [[min_y, (image_height - 1) - max_y],
544
- [min_x, (image_width - 1) - max_x], [0, 0]],
545
- 'constant',
546
- constant_values=1)
547
-
548
- # Create a mask that will be used to zero out a part of the original image.
549
- mask_tensor = np.zeros_like(bbox_content)
550
-
551
- mask_tensor = np.pad(mask_tensor,
552
- [[min_y, (image_height - 1) - max_y],
553
- [min_x, (image_width - 1) - max_x], [0, 0]],
554
- 'constant',
555
- constant_values=1)
556
- # Replace the old bbox content with the new augmented content.
557
- image = image * mask_tensor + augmented_bbox_content
558
- return image.astype(np.uint8)
559
-
560
-
561
- def _concat_bbox(bbox, bboxes):
562
- """Helper function that concates bbox to bboxes along the first dimension."""
563
-
564
- # Note if all elements in bboxes are -1 (_INVALID_BOX), then this means
565
- # we discard bboxes and start the bboxes Tensor with the current bbox.
566
- bboxes_sum_check = np.sum(bboxes)
567
- bbox = np.expand_dims(bbox, 0)
568
- # This check will be true when it is an _INVALID_BOX
569
- if _equal(bboxes_sum_check, -4):
570
- bboxes = bbox
571
- else:
572
- bboxes = np.concatenate([bboxes, bbox], 0)
573
- return bboxes
574
-
575
-
576
- def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob,
577
- augmentation_func, func_changes_bbox,
578
- *args):
579
- """Applies _apply_bbox_augmentation with probability prob.
580
-
581
- Args:
582
- image: 3D uint8 Tensor.
583
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
584
- of type float that represents the normalized coordinates between 0 and 1.
585
- new_bboxes: 2D Tensor that is a list of the bboxes in the image after they
586
- have been altered by aug_func. These will only be changed when
587
- func_changes_bbox is set to true. Each bbox has 4 elements
588
- (min_y, min_x, max_y, max_x) of type float that are the normalized
589
- bbox coordinates between 0 and 1.
590
- prob: Float that is the probability of applying _apply_bbox_augmentation.
591
- augmentation_func: Augmentation function that will be applied to the
592
- subsection of image.
593
- func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
594
- to image.
595
- *args: Additional parameters that will be passed into augmentation_func
596
- when it is called.
597
-
598
- Returns:
599
- A tuple. Fist element is a modified version of image, where the bbox
600
- location in the image will have augmentation_func applied to it if it is
601
- chosen to be called with probability `prob`. The second element is a
602
- Tensor of Tensors of length 4 that will contain the altered bbox after
603
- applying augmentation_func.
604
- """
605
- should_apply_op = (np.random.rand() + prob >= 1)
606
- if func_changes_bbox:
607
- if should_apply_op:
608
- augmented_image, bbox = augmentation_func(image, bbox, *args)
609
- else:
610
- augmented_image, bbox = (image, bbox)
611
- else:
612
- if should_apply_op:
613
- augmented_image = _apply_bbox_augmentation(
614
- image, bbox, augmentation_func, *args)
615
- else:
616
- augmented_image = image
617
- new_bboxes = _concat_bbox(bbox, new_bboxes)
618
- return augmented_image.astype(np.uint8), new_bboxes
619
-
620
-
621
- def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func,
622
- func_changes_bbox, *args):
623
- """Applies aug_func to the image for each bbox in bboxes.
624
-
625
- Args:
626
- image: 3D uint8 Tensor.
627
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
628
- has 4 elements (min_y, min_x, max_y, max_x) of type float.
629
- prob: Float that is the probability of applying aug_func to a specific
630
- bounding box within the image.
631
- aug_func: Augmentation function that will be applied to the
632
- subsections of image indicated by the bbox values in bboxes.
633
- func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
634
- to image.
635
- *args: Additional parameters that will be passed into augmentation_func
636
- when it is called.
637
-
638
- Returns:
639
- A modified version of image, where each bbox location in the image will
640
- have augmentation_func applied to it if it is chosen to be called with
641
- probability prob independently across all bboxes. Also the final
642
- bboxes are returned that will be unchanged if func_changes_bbox is set to
643
- false and if true, the new altered ones will be returned.
644
- """
645
- # Will keep track of the new altered bboxes after aug_func is repeatedly
646
- # applied. The -1 values are a dummy value and this first Tensor will be
647
- # removed upon appending the first real bbox.
648
- new_bboxes = np.array(_INVALID_BOX)
649
-
650
- # If the bboxes are empty, then just give it _INVALID_BOX. The result
651
- # will be thrown away.
652
- bboxes = np.array((_INVALID_BOX)) if bboxes.size == 0 else bboxes
653
-
654
- assert bboxes.shape[1] == 4, "bboxes.shape[1] must be 4!!!!"
655
-
656
- # pylint:disable=g-long-lambda
657
- # pylint:disable=line-too-long
658
- wrapped_aug_func = lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper(_image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args)
659
- # pylint:enable=g-long-lambda
660
- # pylint:enable=line-too-long
661
-
662
- # Setup the while_loop.
663
- num_bboxes = bboxes.shape[0] # We loop until we go over all bboxes.
664
- idx = 0 # Counter for the while loop.
665
-
666
- # Conditional function when to end the loop once we go over all bboxes
667
- # images_and_bboxes contain (_image, _new_bboxes)
668
- def cond(_idx, _images_and_bboxes):
669
- return _idx < num_bboxes
670
-
671
- # Shuffle the bboxes so that the augmentation order is not deterministic if
672
- # we are not changing the bboxes with aug_func.
673
- # if not func_changes_bbox:
674
- # print(bboxes)
675
- # loop_bboxes = np.take(bboxes,np.random.permutation(bboxes.shape[0]),axis=0)
676
- # print(loop_bboxes)
677
- # else:
678
- # loop_bboxes = bboxes
679
- # we can not shuffle the bbox because it does not contain class information here
680
- loop_bboxes = deepcopy(bboxes)
681
-
682
- # Main function of while_loop where we repeatedly apply augmentation on the
683
- # bboxes in the image.
684
- # pylint:disable=g-long-lambda
685
- body = lambda _idx, _images_and_bboxes: [
686
- _idx + 1, wrapped_aug_func(_images_and_bboxes[0],
687
- loop_bboxes[_idx],
688
- _images_and_bboxes[1])]
689
- while (cond(idx, (image, new_bboxes))):
690
- idx, (image, new_bboxes) = body(idx, (image, new_bboxes))
691
-
692
- # Either return the altered bboxes or the original ones depending on if
693
- # we altered them in anyway.
694
- if func_changes_bbox:
695
- final_bboxes = new_bboxes
696
- else:
697
- final_bboxes = bboxes
698
- return image, final_bboxes
699
-
700
-
701
- def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func,
702
- func_changes_bbox, *args):
703
- """Checks to be sure num bboxes > 0 before calling inner function."""
704
- num_bboxes = len(bboxes)
705
- new_image = deepcopy(image)
706
- new_bboxes = deepcopy(bboxes)
707
- if num_bboxes != 0:
708
- new_image, new_bboxes = _apply_multi_bbox_augmentation(
709
- new_image, new_bboxes, prob, aug_func, func_changes_bbox, *args)
710
- return new_image, new_bboxes
711
-
712
-
713
- def rotate_only_bboxes(image, bboxes, prob, degrees, replace):
714
- """Apply rotate to each bbox in the image with probability prob."""
715
- func_changes_bbox = False
716
- prob = _scale_bbox_only_op_probability(prob)
717
- return _apply_multi_bbox_augmentation_wrapper(
718
- image, bboxes, prob, rotate, func_changes_bbox, degrees, replace)
719
-
720
-
721
- def shear_x_only_bboxes(image, bboxes, prob, level, replace):
722
- """Apply shear_x to each bbox in the image with probability prob."""
723
- func_changes_bbox = False
724
- prob = _scale_bbox_only_op_probability(prob)
725
- return _apply_multi_bbox_augmentation_wrapper(
726
- image, bboxes, prob, shear_x, func_changes_bbox, level, replace)
727
-
728
-
729
- def shear_y_only_bboxes(image, bboxes, prob, level, replace):
730
- """Apply shear_y to each bbox in the image with probability prob."""
731
- func_changes_bbox = False
732
- prob = _scale_bbox_only_op_probability(prob)
733
- return _apply_multi_bbox_augmentation_wrapper(
734
- image, bboxes, prob, shear_y, func_changes_bbox, level, replace)
735
-
736
-
737
- def translate_x_only_bboxes(image, bboxes, prob, pixels, replace):
738
- """Apply translate_x to each bbox in the image with probability prob."""
739
- func_changes_bbox = False
740
- prob = _scale_bbox_only_op_probability(prob)
741
- return _apply_multi_bbox_augmentation_wrapper(
742
- image, bboxes, prob, translate_x, func_changes_bbox, pixels, replace)
743
-
744
-
745
- def translate_y_only_bboxes(image, bboxes, prob, pixels, replace):
746
- """Apply translate_y to each bbox in the image with probability prob."""
747
- func_changes_bbox = False
748
- prob = _scale_bbox_only_op_probability(prob)
749
- return _apply_multi_bbox_augmentation_wrapper(
750
- image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace)
751
-
752
-
753
- def flip_only_bboxes(image, bboxes, prob):
754
- """Apply flip_lr to each bbox in the image with probability prob."""
755
- func_changes_bbox = False
756
- prob = _scale_bbox_only_op_probability(prob)
757
- return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob,
758
- np.fliplr, func_changes_bbox)
759
-
760
-
761
- def solarize_only_bboxes(image, bboxes, prob, threshold):
762
- """Apply solarize to each bbox in the image with probability prob."""
763
- func_changes_bbox = False
764
- prob = _scale_bbox_only_op_probability(prob)
765
- return _apply_multi_bbox_augmentation_wrapper(
766
- image, bboxes, prob, solarize, func_changes_bbox, threshold)
767
-
768
-
769
- def equalize_only_bboxes(image, bboxes, prob):
770
- """Apply equalize to each bbox in the image with probability prob."""
771
- func_changes_bbox = False
772
- prob = _scale_bbox_only_op_probability(prob)
773
- return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob,
774
- equalize, func_changes_bbox)
775
-
776
-
777
- def cutout_only_bboxes(image, bboxes, prob, pad_size, replace):
778
- """Apply cutout to each bbox in the image with probability prob."""
779
- func_changes_bbox = False
780
- prob = _scale_bbox_only_op_probability(prob)
781
- return _apply_multi_bbox_augmentation_wrapper(
782
- image, bboxes, prob, cutout, func_changes_bbox, pad_size, replace)
783
-
784
-
785
- def _rotate_bbox(bbox, image_height, image_width, degrees):
786
- """Rotates the bbox coordinated by degrees.
787
-
788
- Args:
789
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
790
- of type float that represents the normalized coordinates between 0 and 1.
791
- image_height: Int, height of the image.
792
- image_width: Int, height of the image.
793
- degrees: Float, a scalar angle in degrees to rotate all images by. If
794
- degrees is positive the image will be rotated clockwise otherwise it will
795
- be rotated counterclockwise.
796
-
797
- Returns:
798
- A tensor of the same shape as bbox, but now with the rotated coordinates.
799
- """
800
- image_height, image_width = (float(image_height), float(image_width))
801
-
802
- # Convert from degrees to radians.
803
- degrees_to_radians = math.pi / 180.0
804
- radians = degrees * degrees_to_radians
805
-
806
- # Translate the bbox to the center of the image and turn the normalized 0-1
807
- # coordinates to absolute pixel locations.
808
- # Y coordinates are made negative as the y axis of images goes down with
809
- # increasing pixel values, so we negate to make sure x axis and y axis points
810
- # are in the traditionally positive direction.
811
- min_y = -int(image_height * (bbox[0] - 0.5))
812
- min_x = int(image_width * (bbox[1] - 0.5))
813
- max_y = -int(image_height * (bbox[2] - 0.5))
814
- max_x = int(image_width * (bbox[3] - 0.5))
815
- coordinates = np.stack([[min_y, min_x], [min_y, max_x], [max_y, min_x],
816
- [max_y, max_x]]).astype(np.float32)
817
- # Rotate the coordinates according to the rotation matrix clockwise if
818
- # radians is positive, else negative
819
- rotation_matrix = np.stack([[math.cos(radians), math.sin(radians)],
820
- [-math.sin(radians), math.cos(radians)]])
821
- new_coords = np.matmul(rotation_matrix,
822
- np.transpose(coordinates)).astype(np.int32)
823
-
824
- # Find min/max values and convert them back to normalized 0-1 floats.
825
- min_y = -(float(np.max(new_coords[0, :])) / image_height - 0.5)
826
- min_x = float(np.min(new_coords[1, :])) / image_width + 0.5
827
- max_y = -(float(np.min(new_coords[0, :])) / image_height - 0.5)
828
- max_x = float(np.max(new_coords[1, :])) / image_width + 0.5
829
-
830
- # Clip the bboxes to be sure the fall between [0, 1].
831
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
832
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
833
- return np.stack([min_y, min_x, max_y, max_x])
834
-
835
-
836
- def rotate_with_bboxes(image, bboxes, degrees, replace):
837
- # Rotate the image.
838
- image = rotate(image, degrees, replace)
839
-
840
- # Convert bbox coordinates to pixel values.
841
- image_height, image_width = image.shape[:2]
842
- # pylint:disable=g-long-lambda
843
- wrapped_rotate_bbox = lambda bbox: _rotate_bbox(bbox, image_height, image_width, degrees)
844
- # pylint:enable=g-long-lambda
845
- new_bboxes = np.zeros_like(bboxes)
846
- for idx in range(len(bboxes)):
847
- new_bboxes[idx] = wrapped_rotate_bbox(bboxes[idx])
848
- return image, new_bboxes
849
-
850
-
851
- def translate_x(image, pixels, replace):
852
- """Equivalent of PIL Translate in X dimension."""
853
- image = Image.fromarray(wrap(image))
854
- image = image.transform(image.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0))
855
- return unwrap(np.array(image), replace)
856
-
857
-
858
- def translate_y(image, pixels, replace):
859
- """Equivalent of PIL Translate in Y dimension."""
860
- image = Image.fromarray(wrap(image))
861
- image = image.transform(image.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels))
862
- return unwrap(np.array(image), replace)
863
-
864
-
865
- def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal):
866
- """Shifts the bbox coordinates by pixels.
867
-
868
- Args:
869
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
870
- of type float that represents the normalized coordinates between 0 and 1.
871
- image_height: Int, height of the image.
872
- image_width: Int, width of the image.
873
- pixels: An int. How many pixels to shift the bbox.
874
- shift_horizontal: Boolean. If true then shift in X dimension else shift in
875
- Y dimension.
876
-
877
- Returns:
878
- A tensor of the same shape as bbox, but now with the shifted coordinates.
879
- """
880
- pixels = int(pixels)
881
- # Convert bbox to integer pixel locations.
882
- min_y = int(float(image_height) * bbox[0])
883
- min_x = int(float(image_width) * bbox[1])
884
- max_y = int(float(image_height) * bbox[2])
885
- max_x = int(float(image_width) * bbox[3])
886
-
887
- if shift_horizontal:
888
- min_x = np.maximum(0, min_x - pixels)
889
- max_x = np.minimum(image_width, max_x - pixels)
890
- else:
891
- min_y = np.maximum(0, min_y - pixels)
892
- max_y = np.minimum(image_height, max_y - pixels)
893
-
894
- # Convert bbox back to floats.
895
- min_y = float(min_y) / float(image_height)
896
- min_x = float(min_x) / float(image_width)
897
- max_y = float(max_y) / float(image_height)
898
- max_x = float(max_x) / float(image_width)
899
-
900
- # Clip the bboxes to be sure the fall between [0, 1].
901
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
902
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
903
- return np.stack([min_y, min_x, max_y, max_x])
904
-
905
-
906
- def translate_bbox(image, bboxes, pixels, replace, shift_horizontal):
907
- """Equivalent of PIL Translate in X/Y dimension that shifts image and bbox.
908
-
909
- Args:
910
- image: 3D uint8 Tensor.
911
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
912
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
913
- between [0, 1].
914
- pixels: An int. How many pixels to shift the image and bboxes
915
- replace: A one or three value 1D tensor to fill empty pixels.
916
- shift_horizontal: Boolean. If true then shift in X dimension else shift in
917
- Y dimension.
918
-
919
- Returns:
920
- A tuple containing a 3D uint8 Tensor that will be the result of translating
921
- image by pixels. The second element of the tuple is bboxes, where now
922
- the coordinates will be shifted to reflect the shifted image.
923
- """
924
- if shift_horizontal:
925
- image = translate_x(image, pixels, replace)
926
- else:
927
- image = translate_y(image, pixels, replace)
928
-
929
- # Convert bbox coordinates to pixel values.
930
- image_height, image_width = image.shape[0], image.shape[1]
931
- # pylint:disable=g-long-lambda
932
- wrapped_shift_bbox = lambda bbox: _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal)
933
- # pylint:enable=g-long-lambda
934
- new_bboxes = deepcopy(bboxes)
935
- num_bboxes = len(bboxes)
936
- for idx in range(num_bboxes):
937
- new_bboxes[idx] = wrapped_shift_bbox(bboxes[idx])
938
- return image.astype(np.uint8), new_bboxes
939
-
940
-
941
- def shear_x(image, level, replace):
942
- """Equivalent of PIL Shearing in X dimension."""
943
- # Shear parallel to x axis is a projective transform
944
- # with a matrix form of:
945
- # [1 level
946
- # 0 1].
947
- image = Image.fromarray(wrap(image))
948
- image = image.transform(image.size, Image.AFFINE, (1, level, 0, 0, 1, 0))
949
- return unwrap(np.array(image), replace)
950
-
951
-
952
- def shear_y(image, level, replace):
953
- """Equivalent of PIL Shearing in Y dimension."""
954
- # Shear parallel to y axis is a projective transform
955
- # with a matrix form of:
956
- # [1 0
957
- # level 1].
958
- image = Image.fromarray(wrap(image))
959
- image = image.transform(image.size, Image.AFFINE, (1, 0, 0, level, 1, 0))
960
- return unwrap(np.array(image), replace)
961
-
962
-
963
- def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal):
964
- """Shifts the bbox according to how the image was sheared.
965
-
966
- Args:
967
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
968
- of type float that represents the normalized coordinates between 0 and 1.
969
- image_height: Int, height of the image.
970
- image_width: Int, height of the image.
971
- level: Float. How much to shear the image.
972
- shear_horizontal: If true then shear in X dimension else shear in
973
- the Y dimension.
974
-
975
- Returns:
976
- A tensor of the same shape as bbox, but now with the shifted coordinates.
977
- """
978
- image_height, image_width = (float(image_height), float(image_width))
979
-
980
- # Change bbox coordinates to be pixels.
981
- min_y = int(image_height * bbox[0])
982
- min_x = int(image_width * bbox[1])
983
- max_y = int(image_height * bbox[2])
984
- max_x = int(image_width * bbox[3])
985
- coordinates = np.stack(
986
- [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
987
- coordinates = coordinates.astype(np.float32)
988
-
989
- # Shear the coordinates according to the translation matrix.
990
- if shear_horizontal:
991
- translation_matrix = np.stack([[1, 0], [-level, 1]])
992
- else:
993
- translation_matrix = np.stack([[1, -level], [0, 1]])
994
- translation_matrix = translation_matrix.astype(np.float32)
995
- new_coords = np.matmul(translation_matrix,
996
- np.transpose(coordinates)).astype(np.int32)
997
-
998
- # Find min/max values and convert them back to floats.
999
- min_y = float(np.min(new_coords[0, :])) / image_height
1000
- min_x = float(np.min(new_coords[1, :])) / image_width
1001
- max_y = float(np.max(new_coords[0, :])) / image_height
1002
- max_x = float(np.max(new_coords[1, :])) / image_width
1003
-
1004
- # Clip the bboxes to be sure the fall between [0, 1].
1005
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
1006
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
1007
- return np.stack([min_y, min_x, max_y, max_x])
1008
-
1009
-
1010
- def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal):
1011
- """Applies Shear Transformation to the image and shifts the bboxes.
1012
-
1013
- Args:
1014
- image: 3D uint8 Tensor.
1015
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
1016
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
1017
- between [0, 1].
1018
- level: Float. How much to shear the image. This value will be between
1019
- -0.3 to 0.3.
1020
- replace: A one or three value 1D tensor to fill empty pixels.
1021
- shear_horizontal: Boolean. If true then shear in X dimension else shear in
1022
- the Y dimension.
1023
-
1024
- Returns:
1025
- A tuple containing a 3D uint8 Tensor that will be the result of shearing
1026
- image by level. The second element of the tuple is bboxes, where now
1027
- the coordinates will be shifted to reflect the sheared image.
1028
- """
1029
- if shear_horizontal:
1030
- image = shear_x(image, level, replace)
1031
- else:
1032
- image = shear_y(image, level, replace)
1033
-
1034
- # Convert bbox coordinates to pixel values.
1035
- image_height, image_width = image.shape[:2]
1036
- # pylint:disable=g-long-lambda
1037
- wrapped_shear_bbox = lambda bbox: _shear_bbox(bbox, image_height, image_width, level, shear_horizontal)
1038
- # pylint:enable=g-long-lambda
1039
- new_bboxes = deepcopy(bboxes)
1040
- num_bboxes = len(bboxes)
1041
- for idx in range(num_bboxes):
1042
- new_bboxes[idx] = wrapped_shear_bbox(bboxes[idx])
1043
- return image.astype(np.uint8), new_bboxes
1044
-
1045
-
1046
- def autocontrast(image):
1047
- """Implements Autocontrast function from PIL.
1048
-
1049
- Args:
1050
- image: A 3D uint8 tensor.
1051
-
1052
- Returns:
1053
- The image after it has had autocontrast applied to it and will be of type
1054
- uint8.
1055
- """
1056
-
1057
- def scale_channel(image):
1058
- """Scale the 2D image using the autocontrast rule."""
1059
- # A possibly cheaper version can be done using cumsum/unique_with_counts
1060
- # over the histogram values, rather than iterating over the entire image.
1061
- # to compute mins and maxes.
1062
- lo = float(np.min(image))
1063
- hi = float(np.max(image))
1064
-
1065
- # Scale the image, making the lowest value 0 and the highest value 255.
1066
- def scale_values(im):
1067
- scale = 255.0 / (hi - lo)
1068
- offset = -lo * scale
1069
- im = im.astype(np.float32) * scale + offset
1070
- img = np.clip(im, a_min=0, a_max=255.0)
1071
- return im.astype(np.uint8)
1072
-
1073
- result = scale_values(image) if hi > lo else image
1074
- return result
1075
-
1076
- # Assumes RGB for now. Scales each channel independently
1077
- # and then stacks the result.
1078
- s1 = scale_channel(image[:, :, 0])
1079
- s2 = scale_channel(image[:, :, 1])
1080
- s3 = scale_channel(image[:, :, 2])
1081
- image = np.stack([s1, s2, s3], 2)
1082
- return image
1083
-
1084
-
1085
- def sharpness(image, factor):
1086
- """Implements Sharpness function from PIL."""
1087
- orig_image = image
1088
- image = image.astype(np.float32)
1089
- # Make image 4D for conv operation.
1090
- # SMOOTH PIL Kernel.
1091
- kernel = np.array(
1092
- [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=np.float32) / 13.
1093
- result = cv2.filter2D(image, -1, kernel).astype(np.uint8)
1094
-
1095
- # Blend the final result.
1096
- return blend(result, orig_image, factor)
1097
-
1098
-
1099
- def equalize(image):
1100
- """Implements Equalize function from PIL using."""
1101
-
1102
- def scale_channel(im, c):
1103
- """Scale the data in the channel to implement equalize."""
1104
- im = im[:, :, c].astype(np.int32)
1105
- # Compute the histogram of the image channel.
1106
- histo, _ = np.histogram(im, range=[0, 255], bins=256)
1107
-
1108
- # For the purposes of computing the step, filter out the nonzeros.
1109
- nonzero = np.where(np.not_equal(histo, 0))
1110
- nonzero_histo = np.reshape(np.take(histo, nonzero), [-1])
1111
- step = (np.sum(nonzero_histo) - nonzero_histo[-1]) // 255
1112
-
1113
- def build_lut(histo, step):
1114
- # Compute the cumulative sum, shifting by step // 2
1115
- # and then normalization by step.
1116
- lut = (np.cumsum(histo) + (step // 2)) // step
1117
- # Shift lut, prepending with 0.
1118
- lut = np.concatenate([[0], lut[:-1]], 0)
1119
- # Clip the counts to be in range. This is done
1120
- # in the C code for image.point.
1121
- return np.clip(lut, a_min=0, a_max=255).astype(np.uint8)
1122
-
1123
- # If step is zero, return the original image. Otherwise, build
1124
- # lut from the full histogram and step and then index from it.
1125
- if step == 0:
1126
- result = im
1127
- else:
1128
- result = np.take(build_lut(histo, step), im)
1129
-
1130
- return result.astype(np.uint8)
1131
-
1132
- # Assumes RGB for now. Scales each channel independently
1133
- # and then stacks the result.
1134
- s1 = scale_channel(image, 0)
1135
- s2 = scale_channel(image, 1)
1136
- s3 = scale_channel(image, 2)
1137
- image = np.stack([s1, s2, s3], 2)
1138
- return image
1139
-
1140
-
1141
- def wrap(image):
1142
- """Returns 'image' with an extra channel set to all 1s."""
1143
- shape = image.shape
1144
- extended_channel = 255 * np.ones([shape[0], shape[1], 1], image.dtype)
1145
- extended = np.concatenate([image, extended_channel], 2).astype(image.dtype)
1146
- return extended
1147
-
1148
-
1149
- def unwrap(image, replace):
1150
- """Unwraps an image produced by wrap.
1151
-
1152
- Where there is a 0 in the last channel for every spatial position,
1153
- the rest of the three channels in that spatial dimension are grayed
1154
- (set to 128). Operations like translate and shear on a wrapped
1155
- Tensor will leave 0s in empty locations. Some transformations look
1156
- at the intensity of values to do preprocessing, and we want these
1157
- empty pixels to assume the 'average' value, rather than pure black.
1158
-
1159
-
1160
- Args:
1161
- image: A 3D Image Tensor with 4 channels.
1162
- replace: A one or three value 1D tensor to fill empty pixels.
1163
-
1164
- Returns:
1165
- image: A 3D image Tensor with 3 channels.
1166
- """
1167
- image_shape = image.shape
1168
- # Flatten the spatial dimensions.
1169
- flattened_image = np.reshape(image, [-1, image_shape[2]])
1170
-
1171
- # Find all pixels where the last channel is zero.
1172
- alpha_channel = flattened_image[:, 3]
1173
-
1174
- replace = np.concatenate([replace, np.ones([1], image.dtype)], 0)
1175
-
1176
- # Where they are zero, fill them in with 'replace'.
1177
- alpha_channel = np.reshape(alpha_channel, (-1, 1))
1178
- alpha_channel = np.tile(alpha_channel, reps=(1, flattened_image.shape[1]))
1179
-
1180
- flattened_image = np.where(
1181
- np.equal(alpha_channel, 0),
1182
- np.ones_like(
1183
- flattened_image, dtype=image.dtype) * replace,
1184
- flattened_image)
1185
-
1186
- image = np.reshape(flattened_image, image_shape)
1187
- image = image[:, :, :3]
1188
- return image.astype(np.uint8)
1189
-
1190
-
1191
- def _cutout_inside_bbox(image, bbox, pad_fraction):
1192
- """Generates cutout mask and the mean pixel value of the bbox.
1193
-
1194
- First a location is randomly chosen within the image as the center where the
1195
- cutout mask will be applied. Note this can be towards the boundaries of the
1196
- image, so the full cutout mask may not be applied.
1197
-
1198
- Args:
1199
- image: 3D uint8 Tensor.
1200
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
1201
- of type float that represents the normalized coordinates between 0 and 1.
1202
- pad_fraction: Float that specifies how large the cutout mask should be in
1203
- in reference to the size of the original bbox. If pad_fraction is 0.25,
1204
- then the cutout mask will be of shape
1205
- (0.25 * bbox height, 0.25 * bbox width).
1206
-
1207
- Returns:
1208
- A tuple. Fist element is a tensor of the same shape as image where each
1209
- element is either a 1 or 0 that is used to determine where the image
1210
- will have cutout applied. The second element is the mean of the pixels
1211
- in the image where the bbox is located.
1212
- mask value: [0,1]
1213
- """
1214
- image_height, image_width = image.shape[0], image.shape[1]
1215
- # Transform from shape [1, 4] to [4].
1216
- bbox = np.squeeze(bbox)
1217
-
1218
- min_y = int(float(image_height) * bbox[0])
1219
- min_x = int(float(image_width) * bbox[1])
1220
- max_y = int(float(image_height) * bbox[2])
1221
- max_x = int(float(image_width) * bbox[3])
1222
-
1223
- # Calculate the mean pixel values in the bounding box, which will be used
1224
- # to fill the cutout region.
1225
- mean = np.mean(image[min_y:max_y + 1, min_x:max_x + 1], axis=(0, 1))
1226
- # Cutout mask will be size pad_size_heigh * 2 by pad_size_width * 2 if the
1227
- # region lies entirely within the bbox.
1228
- box_height = max_y - min_y + 1
1229
- box_width = max_x - min_x + 1
1230
- pad_size_height = int(pad_fraction * (box_height / 2))
1231
- pad_size_width = int(pad_fraction * (box_width / 2))
1232
-
1233
- # Sample the center location in the image where the zero mask will be applied.
1234
- cutout_center_height = np.random.randint(min_y, max_y + 1, dtype=np.int32)
1235
- cutout_center_width = np.random.randint(min_x, max_x + 1, dtype=np.int32)
1236
-
1237
- lower_pad = np.maximum(0, cutout_center_height - pad_size_height)
1238
- upper_pad = np.maximum(
1239
- 0, image_height - cutout_center_height - pad_size_height)
1240
- left_pad = np.maximum(0, cutout_center_width - pad_size_width)
1241
- right_pad = np.maximum(0,
1242
- image_width - cutout_center_width - pad_size_width)
1243
-
1244
- cutout_shape = [
1245
- image_height - (lower_pad + upper_pad),
1246
- image_width - (left_pad + right_pad)
1247
- ]
1248
- padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
1249
-
1250
- mask = np.pad(np.zeros(
1251
- cutout_shape, dtype=image.dtype),
1252
- padding_dims,
1253
- 'constant',
1254
- constant_values=1)
1255
-
1256
- mask = np.expand_dims(mask, 2)
1257
- mask = np.tile(mask, [1, 1, 3])
1258
- return mask, mean
1259
-
1260
-
1261
- def bbox_cutout(image, bboxes, pad_fraction, replace_with_mean):
1262
- """Applies cutout to the image according to bbox information.
1263
-
1264
- This is a cutout variant that using bbox information to make more informed
1265
- decisions on where to place the cutout mask.
1266
-
1267
- Args:
1268
- image: 3D uint8 Tensor.
1269
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
1270
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
1271
- between [0, 1].
1272
- pad_fraction: Float that specifies how large the cutout mask should be in
1273
- in reference to the size of the original bbox. If pad_fraction is 0.25,
1274
- then the cutout mask will be of shape
1275
- (0.25 * bbox height, 0.25 * bbox width).
1276
- replace_with_mean: Boolean that specified what value should be filled in
1277
- where the cutout mask is applied. Since the incoming image will be of
1278
- uint8 and will not have had any mean normalization applied, by default
1279
- we set the value to be 128. If replace_with_mean is True then we find
1280
- the mean pixel values across the channel dimension and use those to fill
1281
- in where the cutout mask is applied.
1282
-
1283
- Returns:
1284
- A tuple. First element is a tensor of the same shape as image that has
1285
- cutout applied to it. Second element is the bboxes that were passed in
1286
- that will be unchanged.
1287
- """
1288
-
1289
- def apply_bbox_cutout(image, bboxes, pad_fraction):
1290
- """Applies cutout to a single bounding box within image."""
1291
- # Choose a single bounding box to apply cutout to.
1292
- random_index = np.random.randint(0, bboxes.shape[0], dtype=np.int32)
1293
- # Select the corresponding bbox and apply cutout.
1294
- chosen_bbox = np.take(bboxes, random_index, axis=0)
1295
- mask, mean = _cutout_inside_bbox(image, chosen_bbox, pad_fraction)
1296
-
1297
- # When applying cutout we either set the pixel value to 128 or to the mean
1298
- # value inside the bbox.
1299
- replace = mean if replace_with_mean else [128] * 3
1300
-
1301
- # Apply the cutout mask to the image. Where the mask is 0 we fill it with
1302
- # `replace`.
1303
- image = np.where(
1304
- np.equal(mask, 0),
1305
- np.ones_like(
1306
- image, dtype=image.dtype) * replace,
1307
- image).astype(image.dtype)
1308
- return image
1309
-
1310
- # Check to see if there are boxes, if so then apply boxcutout.
1311
- if len(bboxes) != 0:
1312
- image = apply_bbox_cutout(image, bboxes, pad_fraction)
1313
-
1314
- return image, bboxes
1315
-
1316
-
1317
- NAME_TO_FUNC = {
1318
- 'AutoContrast': autocontrast,
1319
- 'Equalize': equalize,
1320
- 'Posterize': posterize,
1321
- 'Solarize': solarize,
1322
- 'SolarizeAdd': solarize_add,
1323
- 'Color': color,
1324
- 'Contrast': contrast,
1325
- 'Brightness': brightness,
1326
- 'Sharpness': sharpness,
1327
- 'Cutout': cutout,
1328
- 'BBox_Cutout': bbox_cutout,
1329
- 'Rotate_BBox': rotate_with_bboxes,
1330
- # pylint:disable=g-long-lambda
1331
- 'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
1332
- image, bboxes, pixels, replace, shift_horizontal=True),
1333
- 'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
1334
- image, bboxes, pixels, replace, shift_horizontal=False),
1335
- 'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
1336
- image, bboxes, level, replace, shear_horizontal=True),
1337
- 'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
1338
- image, bboxes, level, replace, shear_horizontal=False),
1339
- # pylint:enable=g-long-lambda
1340
- 'Rotate_Only_BBoxes': rotate_only_bboxes,
1341
- 'ShearX_Only_BBoxes': shear_x_only_bboxes,
1342
- 'ShearY_Only_BBoxes': shear_y_only_bboxes,
1343
- 'TranslateX_Only_BBoxes': translate_x_only_bboxes,
1344
- 'TranslateY_Only_BBoxes': translate_y_only_bboxes,
1345
- 'Flip_Only_BBoxes': flip_only_bboxes,
1346
- 'Solarize_Only_BBoxes': solarize_only_bboxes,
1347
- 'Equalize_Only_BBoxes': equalize_only_bboxes,
1348
- 'Cutout_Only_BBoxes': cutout_only_bboxes,
1349
- }
1350
-
1351
-
1352
- def _randomly_negate_tensor(tensor):
1353
- """With 50% prob turn the tensor negative."""
1354
- should_flip = np.floor(np.random.rand() + 0.5) >= 1
1355
- final_tensor = tensor if should_flip else -tensor
1356
- return final_tensor
1357
-
1358
-
1359
- def _rotate_level_to_arg(level):
1360
- level = (level / _MAX_LEVEL) * 30.
1361
- level = _randomly_negate_tensor(level)
1362
- return (level, )
1363
-
1364
-
1365
- def _shrink_level_to_arg(level):
1366
- """Converts level to ratio by which we shrink the image content."""
1367
- if level == 0:
1368
- return (1.0, ) # if level is zero, do not shrink the image
1369
- # Maximum shrinking ratio is 2.9.
1370
- level = 2. / (_MAX_LEVEL / level) + 0.9
1371
- return (level, )
1372
-
1373
-
1374
- def _enhance_level_to_arg(level):
1375
- return ((level / _MAX_LEVEL) * 1.8 + 0.1, )
1376
-
1377
-
1378
- def _shear_level_to_arg(level):
1379
- level = (level / _MAX_LEVEL) * 0.3
1380
- # Flip level to negative with 50% chance.
1381
- level = _randomly_negate_tensor(level)
1382
- return (level, )
1383
-
1384
-
1385
- def _translate_level_to_arg(level, translate_const):
1386
- level = (level / _MAX_LEVEL) * float(translate_const)
1387
- # Flip level to negative with 50% chance.
1388
- level = _randomly_negate_tensor(level)
1389
- return (level, )
1390
-
1391
-
1392
- def _bbox_cutout_level_to_arg(level, hparams):
1393
- cutout_pad_fraction = (
1394
- level / _MAX_LEVEL) * 0.75 # hparams.cutout_max_pad_fraction
1395
- return (cutout_pad_fraction,
1396
- False) # hparams.cutout_bbox_replace_with_mean
1397
-
1398
-
1399
- def level_to_arg(hparams):
1400
- return {
1401
- 'AutoContrast': lambda level: (),
1402
- 'Equalize': lambda level: (),
1403
- 'Posterize': lambda level: (int((level / _MAX_LEVEL) * 4), ),
1404
- 'Solarize': lambda level: (int((level / _MAX_LEVEL) * 256), ),
1405
- 'SolarizeAdd': lambda level: (int((level / _MAX_LEVEL) * 110), ),
1406
- 'Color': _enhance_level_to_arg,
1407
- 'Contrast': _enhance_level_to_arg,
1408
- 'Brightness': _enhance_level_to_arg,
1409
- 'Sharpness': _enhance_level_to_arg,
1410
- 'Cutout':
1411
- lambda level: (int((level / _MAX_LEVEL) * 100), ), # hparams.cutout_const=100
1412
- # pylint:disable=g-long-lambda
1413
- 'BBox_Cutout': lambda level: _bbox_cutout_level_to_arg(level, hparams),
1414
- 'TranslateX_BBox':
1415
- lambda level: _translate_level_to_arg(level, 250), # hparams.translate_const=250
1416
- 'TranslateY_BBox':
1417
- lambda level: _translate_level_to_arg(level, 250), # hparams.translate_cons
1418
- # pylint:enable=g-long-lambda
1419
- 'ShearX_BBox': _shear_level_to_arg,
1420
- 'ShearY_BBox': _shear_level_to_arg,
1421
- 'Rotate_BBox': _rotate_level_to_arg,
1422
- 'Rotate_Only_BBoxes': _rotate_level_to_arg,
1423
- 'ShearX_Only_BBoxes': _shear_level_to_arg,
1424
- 'ShearY_Only_BBoxes': _shear_level_to_arg,
1425
- # pylint:disable=g-long-lambda
1426
- 'TranslateX_Only_BBoxes':
1427
- lambda level: _translate_level_to_arg(level, 120), # hparams.translate_bbox_const
1428
- 'TranslateY_Only_BBoxes':
1429
- lambda level: _translate_level_to_arg(level, 120), # hparams.translate_bbox_const
1430
- # pylint:enable=g-long-lambda
1431
- 'Flip_Only_BBoxes': lambda level: (),
1432
- 'Solarize_Only_BBoxes':
1433
- lambda level: (int((level / _MAX_LEVEL) * 256), ),
1434
- 'Equalize_Only_BBoxes': lambda level: (),
1435
- # pylint:disable=g-long-lambda
1436
- 'Cutout_Only_BBoxes':
1437
- lambda level: (int((level / _MAX_LEVEL) * 50), ), # hparams.cutout_bbox_const
1438
- # pylint:enable=g-long-lambda
1439
- }
1440
-
1441
-
1442
- def bbox_wrapper(func):
1443
- """Adds a bboxes function argument to func and returns unchanged bboxes."""
1444
-
1445
- def wrapper(images, bboxes, *args, **kwargs):
1446
- return (func(images, *args, **kwargs), bboxes)
1447
-
1448
- return wrapper
1449
-
1450
-
1451
- def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams):
1452
- """Return the function that corresponds to `name` and update `level` param."""
1453
- func = NAME_TO_FUNC[name]
1454
- args = level_to_arg(augmentation_hparams)[name](level)
1455
-
1456
- # Check to see if prob is passed into function. This is used for operations
1457
- # where we alter bboxes independently.
1458
- # pytype:disable=wrong-arg-types
1459
- if 'prob' in inspect.getfullargspec(func)[0]:
1460
- args = tuple([prob] + list(args))
1461
- # pytype:enable=wrong-arg-types
1462
-
1463
- # Add in replace arg if it is required for the function that is being called.
1464
- if 'replace' in inspect.getfullargspec(func)[0]:
1465
- # Make sure replace is the final argument
1466
- assert 'replace' == inspect.getfullargspec(func)[0][-1]
1467
- args = tuple(list(args) + [replace_value])
1468
-
1469
- # Add bboxes as the second positional argument for the function if it does
1470
- # not already exist.
1471
- if 'bboxes' not in inspect.getfullargspec(func)[0]:
1472
- func = bbox_wrapper(func)
1473
- return (func, prob, args)
1474
-
1475
-
1476
- def _apply_func_with_prob(func, image, args, prob, bboxes):
1477
- """Apply `func` to image w/ `args` as input with probability `prob`."""
1478
- assert isinstance(args, tuple)
1479
- assert 'bboxes' == inspect.getfullargspec(func)[0][1]
1480
-
1481
- # If prob is a function argument, then this randomness is being handled
1482
- # inside the function, so make sure it is always called.
1483
- if 'prob' in inspect.getfullargspec(func)[0]:
1484
- prob = 1.0
1485
-
1486
- # Apply the function with probability `prob`.
1487
- should_apply_op = np.floor(np.random.rand() + 0.5) >= 1
1488
- if should_apply_op:
1489
- augmented_image, augmented_bboxes = func(image, bboxes, *args)
1490
- else:
1491
- augmented_image, augmented_bboxes = (image, bboxes)
1492
- return augmented_image, augmented_bboxes
1493
-
1494
-
1495
- def select_and_apply_random_policy(policies, image, bboxes):
1496
- """Select a random policy from `policies` and apply it to `image`."""
1497
- policy_to_select = np.random.randint(0, len(policies), dtype=np.int32)
1498
- # policy_to_select = 6 # for test
1499
- for (i, policy) in enumerate(policies):
1500
- if i == policy_to_select:
1501
- image, bboxes = policy(image, bboxes)
1502
- return (image, bboxes)
1503
-
1504
-
1505
- def build_and_apply_nas_policy(policies, image, bboxes, augmentation_hparams):
1506
- """Build a policy from the given policies passed in and apply to image.
1507
-
1508
- Args:
1509
- policies: list of lists of tuples in the form `(func, prob, level)`, `func`
1510
- is a string name of the augmentation function, `prob` is the probability
1511
- of applying the `func` operation, `level` is the input argument for
1512
- `func`.
1513
- image: numpy array that the resulting policy will be applied to.
1514
- bboxes:
1515
- augmentation_hparams: Hparams associated with the NAS learned policy.
1516
-
1517
- Returns:
1518
- A version of image that now has data augmentation applied to it based on
1519
- the `policies` pass into the function. Additionally, returns bboxes if
1520
- a value for them is passed in that is not None
1521
- """
1522
- replace_value = [128, 128, 128]
1523
-
1524
- # func is the string name of the augmentation function, prob is the
1525
- # probability of applying the operation and level is the parameter associated
1526
-
1527
- # tf_policies are functions that take in an image and return an augmented
1528
- # image.
1529
- tf_policies = []
1530
- for policy in policies:
1531
- tf_policy = []
1532
- # Link string name to the correct python function and make sure the correct
1533
- # argument is passed into that function.
1534
- for policy_info in policy:
1535
- policy_info = list(
1536
- policy_info) + [replace_value, augmentation_hparams]
1537
-
1538
- tf_policy.append(_parse_policy_info(*policy_info))
1539
- # Now build the tf policy that will apply the augmentation procedue
1540
- # on image.
1541
- def make_final_policy(tf_policy_):
1542
- def final_policy(image_, bboxes_):
1543
- for func, prob, args in tf_policy_:
1544
- image_, bboxes_ = _apply_func_with_prob(func, image_, args,
1545
- prob, bboxes_)
1546
- return image_, bboxes_
1547
-
1548
- return final_policy
1549
-
1550
- tf_policies.append(make_final_policy(tf_policy))
1551
-
1552
- augmented_images, augmented_bboxes = select_and_apply_random_policy(
1553
- tf_policies, image, bboxes)
1554
- # If no bounding boxes were specified, then just return the images.
1555
- return (augmented_images, augmented_bboxes)
1556
-
1557
-
1558
- # TODO(barretzoph): Add in ArXiv link once paper is out.
1559
- def distort_image_with_autoaugment(image, bboxes, augmentation_name):
1560
- """Applies the AutoAugment policy to `image` and `bboxes`.
1561
-
1562
- Args:
1563
- image: `Tensor` of shape [height, width, 3] representing an image.
1564
- bboxes: `Tensor` of shape [N, 4] representing ground truth boxes that are
1565
- normalized between [0, 1].
1566
- augmentation_name: The name of the AutoAugment policy to use. The available
1567
- options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for
1568
- all of the results in the paper and was found to achieve the best results
1569
- on the COCO dataset. `v1`, `v2` and `v3` are additional good policies
1570
- found on the COCO dataset that have slight variation in what operations
1571
- were used during the search procedure along with how many operations are
1572
- applied in parallel to a single image (2 vs 3).
1573
-
1574
- Returns:
1575
- A tuple containing the augmented versions of `image` and `bboxes`.
1576
- """
1577
- available_policies = {
1578
- 'v0': policy_v0,
1579
- 'v1': policy_v1,
1580
- 'v2': policy_v2,
1581
- 'v3': policy_v3,
1582
- 'test': policy_vtest
1583
- }
1584
- if augmentation_name not in available_policies:
1585
- raise ValueError('Invalid augmentation_name: {}'.format(
1586
- augmentation_name))
1587
-
1588
- policy = available_policies[augmentation_name]()
1589
- augmentation_hparams = {}
1590
- return build_and_apply_nas_policy(policy, image, bboxes,
1591
- augmentation_hparams)