paddlex 2.1.0__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1340) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -19
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/deploy/__init__.py +0 -1
  649. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  650. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  651. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  652. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  653. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  654. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  655. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  656. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  657. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  658. PaddleClas/deploy/python/__init__.py +0 -0
  659. PaddleClas/deploy/python/build_gallery.py +0 -214
  660. PaddleClas/deploy/python/det_preprocess.py +0 -205
  661. PaddleClas/deploy/python/postprocess.py +0 -161
  662. PaddleClas/deploy/python/predict_cls.py +0 -142
  663. PaddleClas/deploy/python/predict_det.py +0 -158
  664. PaddleClas/deploy/python/predict_rec.py +0 -138
  665. PaddleClas/deploy/python/predict_system.py +0 -144
  666. PaddleClas/deploy/python/preprocess.py +0 -337
  667. PaddleClas/deploy/utils/__init__.py +0 -5
  668. PaddleClas/deploy/utils/config.py +0 -197
  669. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  670. PaddleClas/deploy/utils/encode_decode.py +0 -31
  671. PaddleClas/deploy/utils/get_image_list.py +0 -49
  672. PaddleClas/deploy/utils/logger.py +0 -120
  673. PaddleClas/deploy/utils/predictor.py +0 -71
  674. PaddleClas/deploy/vector_search/__init__.py +0 -1
  675. PaddleClas/deploy/vector_search/interface.py +0 -272
  676. PaddleClas/deploy/vector_search/test.py +0 -34
  677. PaddleClas/hubconf.py +0 -788
  678. PaddleClas/paddleclas.py +0 -552
  679. PaddleClas/ppcls/__init__.py +0 -20
  680. PaddleClas/ppcls/arch/__init__.py +0 -127
  681. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  682. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  683. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  684. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  685. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  686. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  687. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  688. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  689. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  690. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  691. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  692. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  693. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  694. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  695. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  696. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  697. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  698. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  699. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  700. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  701. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  702. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  703. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  704. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  705. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  706. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  707. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  708. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  709. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  710. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  711. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  712. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  713. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  714. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  715. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  716. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  717. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  718. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  719. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  720. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  721. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  722. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  723. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  724. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  725. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  726. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  727. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  728. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  729. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  730. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  731. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  732. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  733. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  734. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  735. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  736. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  737. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  738. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  739. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  740. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  741. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  742. PaddleClas/ppcls/arch/utils.py +0 -53
  743. PaddleClas/ppcls/data/__init__.py +0 -144
  744. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  745. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  746. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  747. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  748. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  749. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  750. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  751. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  752. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  753. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  754. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  755. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  756. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  757. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  758. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  759. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  760. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  761. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  762. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  763. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  764. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  765. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  766. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  767. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  768. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  769. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  770. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  771. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  772. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  773. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  774. PaddleClas/ppcls/engine/__init__.py +0 -0
  775. PaddleClas/ppcls/engine/engine.py +0 -436
  776. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  777. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  778. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  779. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  780. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  781. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  782. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  783. PaddleClas/ppcls/engine/train/train.py +0 -79
  784. PaddleClas/ppcls/engine/train/utils.py +0 -72
  785. PaddleClas/ppcls/loss/__init__.py +0 -65
  786. PaddleClas/ppcls/loss/celoss.py +0 -67
  787. PaddleClas/ppcls/loss/centerloss.py +0 -54
  788. PaddleClas/ppcls/loss/comfunc.py +0 -45
  789. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  790. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  791. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  792. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  793. PaddleClas/ppcls/loss/emlloss.py +0 -97
  794. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  795. PaddleClas/ppcls/loss/msmloss.py +0 -78
  796. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  797. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  798. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  799. PaddleClas/ppcls/loss/supconloss.py +0 -108
  800. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  801. PaddleClas/ppcls/loss/triplet.py +0 -137
  802. PaddleClas/ppcls/metric/__init__.py +0 -51
  803. PaddleClas/ppcls/metric/metrics.py +0 -308
  804. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  805. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  806. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  807. PaddleClas/ppcls/utils/__init__.py +0 -27
  808. PaddleClas/ppcls/utils/check.py +0 -151
  809. PaddleClas/ppcls/utils/config.py +0 -210
  810. PaddleClas/ppcls/utils/download.py +0 -319
  811. PaddleClas/ppcls/utils/ema.py +0 -63
  812. PaddleClas/ppcls/utils/logger.py +0 -137
  813. PaddleClas/ppcls/utils/metrics.py +0 -107
  814. PaddleClas/ppcls/utils/misc.py +0 -63
  815. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  816. PaddleClas/ppcls/utils/profiler.py +0 -111
  817. PaddleClas/ppcls/utils/save_load.py +0 -136
  818. PaddleClas/setup.py +0 -58
  819. PaddleClas/tools/__init__.py +0 -15
  820. PaddleClas/tools/eval.py +0 -31
  821. PaddleClas/tools/export_model.py +0 -34
  822. PaddleClas/tools/infer.py +0 -31
  823. PaddleClas/tools/train.py +0 -32
  824. paddlex/cls.py +0 -82
  825. paddlex/command.py +0 -215
  826. paddlex/cv/__init__.py +0 -17
  827. paddlex/cv/datasets/__init__.py +0 -18
  828. paddlex/cv/datasets/coco.py +0 -208
  829. paddlex/cv/datasets/imagenet.py +0 -88
  830. paddlex/cv/datasets/seg_dataset.py +0 -91
  831. paddlex/cv/datasets/voc.py +0 -445
  832. paddlex/cv/models/__init__.py +0 -18
  833. paddlex/cv/models/base.py +0 -631
  834. paddlex/cv/models/classifier.py +0 -989
  835. paddlex/cv/models/detector.py +0 -2292
  836. paddlex/cv/models/load_model.py +0 -148
  837. paddlex/cv/models/segmenter.py +0 -768
  838. paddlex/cv/models/slim/__init__.py +0 -13
  839. paddlex/cv/models/slim/prune.py +0 -55
  840. paddlex/cv/models/utils/__init__.py +0 -13
  841. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  842. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  843. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  844. paddlex/cv/models/utils/infer_nets.py +0 -45
  845. paddlex/cv/models/utils/seg_metrics.py +0 -62
  846. paddlex/cv/models/utils/visualize.py +0 -399
  847. paddlex/cv/transforms/__init__.py +0 -46
  848. paddlex/cv/transforms/batch_operators.py +0 -286
  849. paddlex/cv/transforms/box_utils.py +0 -41
  850. paddlex/cv/transforms/functions.py +0 -193
  851. paddlex/cv/transforms/operators.py +0 -1402
  852. paddlex/deploy.py +0 -268
  853. paddlex/det.py +0 -49
  854. paddlex/paddleseg/__init__.py +0 -17
  855. paddlex/paddleseg/core/__init__.py +0 -20
  856. paddlex/paddleseg/core/infer.py +0 -289
  857. paddlex/paddleseg/core/predict.py +0 -145
  858. paddlex/paddleseg/core/train.py +0 -258
  859. paddlex/paddleseg/core/val.py +0 -172
  860. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  861. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  862. paddlex/paddleseg/cvlibs/config.py +0 -359
  863. paddlex/paddleseg/cvlibs/manager.py +0 -142
  864. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  865. paddlex/paddleseg/datasets/__init__.py +0 -21
  866. paddlex/paddleseg/datasets/ade.py +0 -112
  867. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  868. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  869. paddlex/paddleseg/datasets/dataset.py +0 -164
  870. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  871. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  872. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  873. paddlex/paddleseg/datasets/voc.py +0 -113
  874. paddlex/paddleseg/models/__init__.py +0 -39
  875. paddlex/paddleseg/models/ann.py +0 -436
  876. paddlex/paddleseg/models/attention_unet.py +0 -189
  877. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  878. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  879. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  880. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  881. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  882. paddlex/paddleseg/models/bisenet.py +0 -311
  883. paddlex/paddleseg/models/danet.py +0 -220
  884. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  885. paddlex/paddleseg/models/deeplab.py +0 -258
  886. paddlex/paddleseg/models/dnlnet.py +0 -231
  887. paddlex/paddleseg/models/emanet.py +0 -219
  888. paddlex/paddleseg/models/fast_scnn.py +0 -318
  889. paddlex/paddleseg/models/fcn.py +0 -135
  890. paddlex/paddleseg/models/gcnet.py +0 -223
  891. paddlex/paddleseg/models/gscnn.py +0 -357
  892. paddlex/paddleseg/models/hardnet.py +0 -309
  893. paddlex/paddleseg/models/isanet.py +0 -202
  894. paddlex/paddleseg/models/layers/__init__.py +0 -19
  895. paddlex/paddleseg/models/layers/activation.py +0 -73
  896. paddlex/paddleseg/models/layers/attention.py +0 -146
  897. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  898. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  899. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  900. paddlex/paddleseg/models/losses/__init__.py +0 -27
  901. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  902. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  903. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  904. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  905. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  906. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  907. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  908. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  909. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  910. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  911. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  912. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  913. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  914. paddlex/paddleseg/models/ocrnet.py +0 -248
  915. paddlex/paddleseg/models/pspnet.py +0 -147
  916. paddlex/paddleseg/models/sfnet.py +0 -236
  917. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  918. paddlex/paddleseg/models/u2net.py +0 -574
  919. paddlex/paddleseg/models/unet.py +0 -155
  920. paddlex/paddleseg/models/unet_3plus.py +0 -316
  921. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  922. paddlex/paddleseg/transforms/__init__.py +0 -16
  923. paddlex/paddleseg/transforms/functional.py +0 -161
  924. paddlex/paddleseg/transforms/transforms.py +0 -937
  925. paddlex/paddleseg/utils/__init__.py +0 -22
  926. paddlex/paddleseg/utils/config_check.py +0 -60
  927. paddlex/paddleseg/utils/download.py +0 -163
  928. paddlex/paddleseg/utils/env/__init__.py +0 -16
  929. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  930. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  931. paddlex/paddleseg/utils/logger.py +0 -48
  932. paddlex/paddleseg/utils/metrics.py +0 -146
  933. paddlex/paddleseg/utils/progbar.py +0 -212
  934. paddlex/paddleseg/utils/timer.py +0 -53
  935. paddlex/paddleseg/utils/utils.py +0 -120
  936. paddlex/paddleseg/utils/visualize.py +0 -90
  937. paddlex/ppcls/__init__.py +0 -20
  938. paddlex/ppcls/arch/__init__.py +0 -127
  939. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  940. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  941. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  942. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  943. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  944. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  945. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  946. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  947. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  948. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  949. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  950. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  951. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  952. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  953. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  954. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  955. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  956. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  957. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  958. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  959. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  960. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  961. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  962. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  963. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  964. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  965. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  966. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  967. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  968. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  969. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  970. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  971. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  972. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  973. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  974. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  975. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  976. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  977. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  978. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  979. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  980. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  981. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  982. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  983. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  984. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  985. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  986. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  987. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  988. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  989. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  990. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  991. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  992. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  993. paddlex/ppcls/arch/gears/__init__.py +0 -32
  994. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  995. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  996. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  997. paddlex/ppcls/arch/gears/fc.py +0 -35
  998. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  999. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1000. paddlex/ppcls/arch/utils.py +0 -53
  1001. paddlex/ppcls/data/__init__.py +0 -144
  1002. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1003. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1004. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1005. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1006. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1007. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1008. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1009. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1010. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1011. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1012. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1013. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1014. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1015. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1016. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1017. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1018. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1019. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1020. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1021. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1022. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1023. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1024. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1025. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1026. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1027. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1028. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1029. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1030. paddlex/ppcls/data/utils/__init__.py +0 -13
  1031. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1032. paddlex/ppcls/engine/__init__.py +0 -0
  1033. paddlex/ppcls/engine/engine.py +0 -436
  1034. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1035. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1036. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1037. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1038. paddlex/ppcls/engine/slim/prune.py +0 -66
  1039. paddlex/ppcls/engine/slim/quant.py +0 -55
  1040. paddlex/ppcls/engine/train/__init__.py +0 -14
  1041. paddlex/ppcls/engine/train/train.py +0 -79
  1042. paddlex/ppcls/engine/train/utils.py +0 -72
  1043. paddlex/ppcls/loss/__init__.py +0 -65
  1044. paddlex/ppcls/loss/celoss.py +0 -67
  1045. paddlex/ppcls/loss/centerloss.py +0 -54
  1046. paddlex/ppcls/loss/comfunc.py +0 -45
  1047. paddlex/ppcls/loss/deephashloss.py +0 -96
  1048. paddlex/ppcls/loss/distanceloss.py +0 -43
  1049. paddlex/ppcls/loss/distillationloss.py +0 -141
  1050. paddlex/ppcls/loss/dmlloss.py +0 -46
  1051. paddlex/ppcls/loss/emlloss.py +0 -97
  1052. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1053. paddlex/ppcls/loss/msmloss.py +0 -78
  1054. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1055. paddlex/ppcls/loss/npairsloss.py +0 -38
  1056. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1057. paddlex/ppcls/loss/supconloss.py +0 -108
  1058. paddlex/ppcls/loss/trihardloss.py +0 -82
  1059. paddlex/ppcls/loss/triplet.py +0 -137
  1060. paddlex/ppcls/metric/__init__.py +0 -51
  1061. paddlex/ppcls/metric/metrics.py +0 -308
  1062. paddlex/ppcls/optimizer/__init__.py +0 -72
  1063. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1064. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1065. paddlex/ppcls/utils/__init__.py +0 -27
  1066. paddlex/ppcls/utils/check.py +0 -151
  1067. paddlex/ppcls/utils/config.py +0 -210
  1068. paddlex/ppcls/utils/download.py +0 -319
  1069. paddlex/ppcls/utils/ema.py +0 -63
  1070. paddlex/ppcls/utils/logger.py +0 -137
  1071. paddlex/ppcls/utils/metrics.py +0 -112
  1072. paddlex/ppcls/utils/misc.py +0 -63
  1073. paddlex/ppcls/utils/model_zoo.py +0 -213
  1074. paddlex/ppcls/utils/profiler.py +0 -111
  1075. paddlex/ppcls/utils/save_load.py +0 -136
  1076. paddlex/ppdet/__init__.py +0 -16
  1077. paddlex/ppdet/core/__init__.py +0 -15
  1078. paddlex/ppdet/core/config/__init__.py +0 -13
  1079. paddlex/ppdet/core/config/schema.py +0 -248
  1080. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1081. paddlex/ppdet/core/workspace.py +0 -278
  1082. paddlex/ppdet/data/__init__.py +0 -21
  1083. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1084. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1085. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1086. paddlex/ppdet/data/reader.py +0 -302
  1087. paddlex/ppdet/data/shm_utils.py +0 -67
  1088. paddlex/ppdet/data/source/__init__.py +0 -29
  1089. paddlex/ppdet/data/source/category.py +0 -904
  1090. paddlex/ppdet/data/source/coco.py +0 -251
  1091. paddlex/ppdet/data/source/dataset.py +0 -197
  1092. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1093. paddlex/ppdet/data/source/mot.py +0 -636
  1094. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1095. paddlex/ppdet/data/source/voc.py +0 -231
  1096. paddlex/ppdet/data/source/widerface.py +0 -180
  1097. paddlex/ppdet/data/transform/__init__.py +0 -28
  1098. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1099. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1100. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1101. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1102. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1103. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1104. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1105. paddlex/ppdet/data/transform/operators.py +0 -3025
  1106. paddlex/ppdet/engine/__init__.py +0 -30
  1107. paddlex/ppdet/engine/callbacks.py +0 -340
  1108. paddlex/ppdet/engine/env.py +0 -50
  1109. paddlex/ppdet/engine/export_utils.py +0 -177
  1110. paddlex/ppdet/engine/tracker.py +0 -538
  1111. paddlex/ppdet/engine/trainer.py +0 -723
  1112. paddlex/ppdet/metrics/__init__.py +0 -29
  1113. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1114. paddlex/ppdet/metrics/json_results.py +0 -149
  1115. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1116. paddlex/ppdet/metrics/map_utils.py +0 -444
  1117. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1118. paddlex/ppdet/metrics/metrics.py +0 -434
  1119. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1120. paddlex/ppdet/metrics/munkres.py +0 -428
  1121. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1122. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1123. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1124. paddlex/ppdet/modeling/__init__.py +0 -45
  1125. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1126. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1127. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1128. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1129. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1130. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1131. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1132. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1133. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1134. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1135. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1136. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1137. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1138. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1139. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1140. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1141. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1142. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1143. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1144. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1145. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1146. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1147. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1148. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1149. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1150. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1151. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1152. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1153. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1154. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1155. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1156. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1157. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1158. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1159. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1160. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1161. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1162. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1163. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1164. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1165. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1166. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1167. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1168. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1169. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1170. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1171. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1172. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1173. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1174. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1175. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1176. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1177. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1178. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1179. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1180. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1181. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1182. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1183. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1184. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1185. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1186. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1187. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1188. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1189. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1190. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1191. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1192. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1193. paddlex/ppdet/modeling/initializer.py +0 -317
  1194. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1195. paddlex/ppdet/modeling/layers.py +0 -1430
  1196. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1197. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1198. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1199. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1200. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1201. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1202. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1203. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1204. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1205. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1206. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1207. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1208. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1209. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1210. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1211. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1212. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1213. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1214. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1215. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1216. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1217. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1218. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1219. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1220. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1221. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1222. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1223. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1224. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1225. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1226. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1227. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1228. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1229. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1230. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1231. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1232. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1233. paddlex/ppdet/modeling/ops.py +0 -1611
  1234. paddlex/ppdet/modeling/post_process.py +0 -731
  1235. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1236. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1237. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1238. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1239. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1240. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1241. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1242. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1243. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1244. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1245. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1246. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1247. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1248. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1249. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1250. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1251. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1252. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1253. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1254. paddlex/ppdet/optimizer.py +0 -335
  1255. paddlex/ppdet/slim/__init__.py +0 -82
  1256. paddlex/ppdet/slim/distill.py +0 -110
  1257. paddlex/ppdet/slim/prune.py +0 -85
  1258. paddlex/ppdet/slim/quant.py +0 -84
  1259. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1260. paddlex/ppdet/utils/__init__.py +0 -13
  1261. paddlex/ppdet/utils/check.py +0 -112
  1262. paddlex/ppdet/utils/checkpoint.py +0 -226
  1263. paddlex/ppdet/utils/cli.py +0 -151
  1264. paddlex/ppdet/utils/colormap.py +0 -58
  1265. paddlex/ppdet/utils/download.py +0 -558
  1266. paddlex/ppdet/utils/logger.py +0 -70
  1267. paddlex/ppdet/utils/profiler.py +0 -111
  1268. paddlex/ppdet/utils/stats.py +0 -94
  1269. paddlex/ppdet/utils/visualizer.py +0 -321
  1270. paddlex/ppdet/utils/voc_utils.py +0 -86
  1271. paddlex/seg.py +0 -41
  1272. paddlex/tools/__init__.py +0 -17
  1273. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1274. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1275. paddlex/tools/convert.py +0 -52
  1276. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1277. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1278. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1279. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1280. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1281. paddlex/tools/dataset_split/__init__.py +0 -23
  1282. paddlex/tools/dataset_split/coco_split.py +0 -69
  1283. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1284. paddlex/tools/dataset_split/seg_split.py +0 -96
  1285. paddlex/tools/dataset_split/utils.py +0 -75
  1286. paddlex/tools/dataset_split/voc_split.py +0 -91
  1287. paddlex/tools/split.py +0 -41
  1288. paddlex/utils/checkpoint.py +0 -492
  1289. paddlex/utils/env.py +0 -67
  1290. paddlex/utils/shm.py +0 -67
  1291. paddlex/utils/stats.py +0 -68
  1292. paddlex/utils/utils.py +0 -229
  1293. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1294. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1295. paddlex-2.1.0.dist-info/METADATA +0 -32
  1296. paddlex-2.1.0.dist-info/RECORD +0 -698
  1297. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1298. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1299. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1300. paddlex_restful/__init__.py +0 -15
  1301. paddlex_restful/command.py +0 -63
  1302. paddlex_restful/restful/__init__.py +0 -15
  1303. paddlex_restful/restful/app.py +0 -969
  1304. paddlex_restful/restful/dataset/__init__.py +0 -13
  1305. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1306. paddlex_restful/restful/dataset/dataset.py +0 -266
  1307. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1308. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1309. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1310. paddlex_restful/restful/dataset/operate.py +0 -155
  1311. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1312. paddlex_restful/restful/dataset/utils.py +0 -267
  1313. paddlex_restful/restful/demo.py +0 -202
  1314. paddlex_restful/restful/dir.py +0 -45
  1315. paddlex_restful/restful/model.py +0 -312
  1316. paddlex_restful/restful/project/__init__.py +0 -13
  1317. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1318. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1319. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1320. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1321. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1322. paddlex_restful/restful/project/operate.py +0 -931
  1323. paddlex_restful/restful/project/project.py +0 -143
  1324. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1325. paddlex_restful/restful/project/prune/classification.py +0 -32
  1326. paddlex_restful/restful/project/prune/detection.py +0 -48
  1327. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1328. paddlex_restful/restful/project/task.py +0 -884
  1329. paddlex_restful/restful/project/train/__init__.py +0 -13
  1330. paddlex_restful/restful/project/train/classification.py +0 -141
  1331. paddlex_restful/restful/project/train/detection.py +0 -263
  1332. paddlex_restful/restful/project/train/params.py +0 -432
  1333. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1334. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1335. paddlex_restful/restful/project/visualize.py +0 -244
  1336. paddlex_restful/restful/system.py +0 -102
  1337. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1338. paddlex_restful/restful/utils.py +0 -841
  1339. paddlex_restful/restful/workspace.py +0 -343
  1340. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,1611 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import paddle
16
- import paddle.nn.functional as F
17
- import paddle.nn as nn
18
- from paddle import ParamAttr
19
- from paddle.regularizer import L2Decay
20
-
21
- from paddle.fluid.framework import Variable, in_dygraph_mode
22
- from paddle.fluid import core
23
- from paddle.fluid.layer_helper import LayerHelper
24
- from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
25
-
26
- __all__ = [
27
- 'roi_pool',
28
- 'roi_align',
29
- 'prior_box',
30
- 'generate_proposals',
31
- 'iou_similarity',
32
- 'box_coder',
33
- 'yolo_box',
34
- 'multiclass_nms',
35
- 'distribute_fpn_proposals',
36
- 'collect_fpn_proposals',
37
- 'matrix_nms',
38
- 'batch_norm',
39
- 'mish',
40
- ]
41
-
42
-
43
- def mish(x):
44
- return x * paddle.tanh(F.softplus(x))
45
-
46
-
47
- def batch_norm(ch,
48
- norm_type='bn',
49
- norm_decay=0.,
50
- freeze_norm=False,
51
- initializer=None,
52
- data_format='NCHW'):
53
- if norm_type == 'sync_bn':
54
- batch_norm = nn.SyncBatchNorm
55
- else:
56
- batch_norm = nn.BatchNorm2D
57
-
58
- norm_lr = 0. if freeze_norm else 1.
59
- weight_attr = ParamAttr(
60
- initializer=initializer,
61
- learning_rate=norm_lr,
62
- regularizer=L2Decay(norm_decay),
63
- trainable=False if freeze_norm else True)
64
- bias_attr = ParamAttr(
65
- learning_rate=norm_lr,
66
- regularizer=L2Decay(norm_decay),
67
- trainable=False if freeze_norm else True)
68
-
69
- norm_layer = batch_norm(
70
- ch,
71
- weight_attr=weight_attr,
72
- bias_attr=bias_attr,
73
- data_format=data_format)
74
-
75
- norm_params = norm_layer.parameters()
76
- if freeze_norm:
77
- for param in norm_params:
78
- param.stop_gradient = True
79
-
80
- return norm_layer
81
-
82
-
83
- @paddle.jit.not_to_static
84
- def roi_pool(input,
85
- rois,
86
- output_size,
87
- spatial_scale=1.0,
88
- rois_num=None,
89
- name=None):
90
- """
91
-
92
- This operator implements the roi_pooling layer.
93
- Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
94
-
95
- The operator has three steps:
96
-
97
- 1. Dividing each region proposal into equal-sized sections with output_size(h, w);
98
- 2. Finding the largest value in each section;
99
- 3. Copying these max values to the output buffer.
100
-
101
- For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
102
-
103
- Args:
104
- input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
105
- where N is the batch size, C is the input channel, H is Height, W is weight.
106
- The data type is float32 or float64.
107
- rois (Tensor): ROIs (Regions of Interest) to pool over.
108
- 2D-Tensor or 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1.
109
- Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
110
- and (x2, y2) is the bottom right coordinates.
111
- output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
112
- spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
113
- rois_num (Tensor): The number of RoIs in each image. Default: None
114
- name(str, optional): For detailed information, please refer
115
- to :ref:`api_guide_Name`. Usually name is no need to set and
116
- None by default.
117
-
118
-
119
- Returns:
120
- Tensor: The pooled feature, 4D-Tensor with the shape of [num_rois, C, output_size[0], output_size[1]].
121
-
122
-
123
- Examples:
124
-
125
- .. code-block:: python
126
-
127
- import paddle
128
- from paddlex.ppdet.modeling import ops
129
- paddle.enable_static()
130
-
131
- x = paddle.static.data(
132
- name='data', shape=[None, 256, 32, 32], dtype='float32')
133
- rois = paddle.static.data(
134
- name='rois', shape=[None, 4], dtype='float32')
135
- rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
136
-
137
- pool_out = ops.roi_pool(
138
- input=x,
139
- rois=rois,
140
- output_size=(1, 1),
141
- spatial_scale=1.0,
142
- rois_num=rois_num)
143
- """
144
- check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
145
- if isinstance(output_size, int):
146
- output_size = (output_size, output_size)
147
-
148
- pooled_height, pooled_width = output_size
149
- if in_dygraph_mode():
150
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
151
- pool_out, argmaxes = core.ops.roi_pool(
152
- input, rois, rois_num, "pooled_height", pooled_height,
153
- "pooled_width", pooled_width, "spatial_scale", spatial_scale)
154
- return pool_out, argmaxes
155
-
156
- else:
157
- check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool')
158
- check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool')
159
- helper = LayerHelper('roi_pool', **locals())
160
- dtype = helper.input_dtype()
161
- pool_out = helper.create_variable_for_type_inference(dtype)
162
- argmaxes = helper.create_variable_for_type_inference(dtype='int32')
163
-
164
- inputs = {
165
- "X": input,
166
- "ROIs": rois,
167
- }
168
- if rois_num is not None:
169
- inputs['RoisNum'] = rois_num
170
- helper.append_op(
171
- type="roi_pool",
172
- inputs=inputs,
173
- outputs={"Out": pool_out,
174
- "Argmax": argmaxes},
175
- attrs={
176
- "pooled_height": pooled_height,
177
- "pooled_width": pooled_width,
178
- "spatial_scale": spatial_scale
179
- })
180
- return pool_out, argmaxes
181
-
182
-
183
- @paddle.jit.not_to_static
184
- def roi_align(input,
185
- rois,
186
- output_size,
187
- spatial_scale=1.0,
188
- sampling_ratio=-1,
189
- rois_num=None,
190
- aligned=True,
191
- name=None):
192
- """
193
-
194
- Region of interest align (also known as RoI align) is to perform
195
- bilinear interpolation on inputs of nonuniform sizes to obtain
196
- fixed-size feature maps (e.g. 7*7)
197
-
198
- Dividing each region proposal into equal-sized sections with
199
- the pooled_width and pooled_height. Location remains the origin
200
- result.
201
-
202
- In each ROI bin, the value of the four regularly sampled locations
203
- are computed directly through bilinear interpolation. The output is
204
- the mean of four locations.
205
- Thus avoid the misaligned problem.
206
-
207
- Args:
208
- input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
209
- where N is the batch size, C is the input channel, H is Height, W is weight.
210
- The data type is float32 or float64.
211
- rois (Tensor): ROIs (Regions of Interest) to pool over.It should be
212
- a 2-D Tensor or 2-D LoDTensor of shape (num_rois, 4), the lod level is 1.
213
- The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...],
214
- (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
215
- output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
216
- spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords
217
- from their input scale to the scale used when pooling. Default: 1.0
218
- sampling_ratio(int32, optional): number of sampling points in the interpolation grid.
219
- If <=0, then grid points are adaptive to roi_width and pooled_w, likewise for height. Default: -1
220
- rois_num (Tensor): The number of RoIs in each image. Default: None
221
- name(str, optional): For detailed information, please refer
222
- to :ref:`api_guide_Name`. Usually name is no need to set and
223
- None by default.
224
-
225
- Returns:
226
- Tensor:
227
-
228
- Output: The output of ROIAlignOp is a 4-D tensor with shape (num_rois, channels, pooled_h, pooled_w). The data type is float32 or float64.
229
-
230
-
231
- Examples:
232
- .. code-block:: python
233
-
234
- import paddle
235
- from paddlex.ppdet.modeling import ops
236
- paddle.enable_static()
237
-
238
- x = paddle.static.data(
239
- name='data', shape=[None, 256, 32, 32], dtype='float32')
240
- rois = paddle.static.data(
241
- name='rois', shape=[None, 4], dtype='float32')
242
- rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
243
- align_out = ops.roi_align(input=x,
244
- rois=rois,
245
- ouput_size=(7, 7),
246
- spatial_scale=0.5,
247
- sampling_ratio=-1,
248
- rois_num=rois_num)
249
- """
250
- check_type(output_size, 'output_size', (int, tuple), 'roi_align')
251
- if isinstance(output_size, int):
252
- output_size = (output_size, output_size)
253
-
254
- pooled_height, pooled_width = output_size
255
-
256
- if in_dygraph_mode():
257
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
258
- align_out = core.ops.roi_align(
259
- input, rois, rois_num, "pooled_height", pooled_height,
260
- "pooled_width", pooled_width, "spatial_scale", spatial_scale,
261
- "sampling_ratio", sampling_ratio, "aligned", aligned)
262
- return align_out
263
-
264
- else:
265
- check_variable_and_dtype(input, 'input', ['float32', 'float64'],
266
- 'roi_align')
267
- check_variable_and_dtype(rois, 'rois', ['float32', 'float64'],
268
- 'roi_align')
269
- helper = LayerHelper('roi_align', **locals())
270
- dtype = helper.input_dtype()
271
- align_out = helper.create_variable_for_type_inference(dtype)
272
- inputs = {
273
- "X": input,
274
- "ROIs": rois,
275
- }
276
- if rois_num is not None:
277
- inputs['RoisNum'] = rois_num
278
- helper.append_op(
279
- type="roi_align",
280
- inputs=inputs,
281
- outputs={"Out": align_out},
282
- attrs={
283
- "pooled_height": pooled_height,
284
- "pooled_width": pooled_width,
285
- "spatial_scale": spatial_scale,
286
- "sampling_ratio": sampling_ratio,
287
- "aligned": aligned,
288
- })
289
- return align_out
290
-
291
-
292
- @paddle.jit.not_to_static
293
- def iou_similarity(x, y, box_normalized=True, name=None):
294
- """
295
- Computes intersection-over-union (IOU) between two box lists.
296
- Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
297
- boxes in 'Y' are shared by all instance of the batched inputs of X.
298
- Given two boxes A and B, the calculation of IOU is as follows:
299
-
300
- $$
301
- IOU(A, B) =
302
- \\frac{area(A\\cap B)}{area(A)+area(B)-area(A\\cap B)}
303
- $$
304
-
305
- Args:
306
- x (Tensor): Box list X is a 2-D Tensor with shape [N, 4] holds N
307
- boxes, each box is represented as [xmin, ymin, xmax, ymax],
308
- the shape of X is [N, 4]. [xmin, ymin] is the left top
309
- coordinate of the box if the input is image feature map, they
310
- are close to the origin of the coordinate system.
311
- [xmax, ymax] is the right bottom coordinate of the box.
312
- The data type is float32 or float64.
313
- y (Tensor): Box list Y holds M boxes, each box is represented as
314
- [xmin, ymin, xmax, ymax], the shape of X is [N, 4].
315
- [xmin, ymin] is the left top coordinate of the box if the
316
- input is image feature map, and [xmax, ymax] is the right
317
- bottom coordinate of the box. The data type is float32 or float64.
318
- box_normalized(bool): Whether treat the priorbox as a normalized box.
319
- Set true by default.
320
- name(str, optional): For detailed information, please refer
321
- to :ref:`api_guide_Name`. Usually name is no need to set and
322
- None by default.
323
-
324
- Returns:
325
- Tensor: The output of iou_similarity op, a tensor with shape [N, M]
326
- representing pairwise iou scores. The data type is same with x.
327
-
328
- Examples:
329
- .. code-block:: python
330
-
331
- import paddle
332
- from paddlex.ppdet.modeling import ops
333
- paddle.enable_static()
334
-
335
- x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
336
- y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
337
- iou = ops.iou_similarity(x=x, y=y)
338
- """
339
-
340
- if in_dygraph_mode():
341
- out = core.ops.iou_similarity(x, y, 'box_normalized', box_normalized)
342
- return out
343
- else:
344
- helper = LayerHelper("iou_similarity", **locals())
345
- out = helper.create_variable_for_type_inference(dtype=x.dtype)
346
-
347
- helper.append_op(
348
- type="iou_similarity",
349
- inputs={"X": x,
350
- "Y": y},
351
- attrs={"box_normalized": box_normalized},
352
- outputs={"Out": out})
353
- return out
354
-
355
-
356
- @paddle.jit.not_to_static
357
- def collect_fpn_proposals(multi_rois,
358
- multi_scores,
359
- min_level,
360
- max_level,
361
- post_nms_top_n,
362
- rois_num_per_level=None,
363
- name=None):
364
- """
365
-
366
- **This OP only supports LoDTensor as input**. Concat multi-level RoIs
367
- (Region of Interest) and select N RoIs with respect to multi_scores.
368
- This operation performs the following steps:
369
-
370
- 1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
371
- 2. Concat multi-level RoIs and scores
372
- 3. Sort scores and select post_nms_top_n scores
373
- 4. Gather RoIs by selected indices from scores
374
- 5. Re-sort RoIs by corresponding batch_id
375
-
376
- Args:
377
- multi_rois(list): List of RoIs to collect. Element in list is 2-D
378
- LoDTensor with shape [N, 4] and data type is float32 or float64,
379
- N is the number of RoIs.
380
- multi_scores(list): List of scores of RoIs to collect. Element in list
381
- is 2-D LoDTensor with shape [N, 1] and data type is float32 or
382
- float64, N is the number of RoIs.
383
- min_level(int): The lowest level of FPN layer to collect
384
- max_level(int): The highest level of FPN layer to collect
385
- post_nms_top_n(int): The number of selected RoIs
386
- rois_num_per_level(list, optional): The List of RoIs' numbers.
387
- Each element is 1-D Tensor which contains the RoIs' number of each
388
- image on each level and the shape is [B] and data type is
389
- int32, B is the number of images. If it is not None then return
390
- a 1-D Tensor contains the output RoIs' number of each image and
391
- the shape is [B]. Default: None
392
- name(str, optional): For detailed information, please refer
393
- to :ref:`api_guide_Name`. Usually name is no need to set and
394
- None by default.
395
-
396
- Returns:
397
- Variable:
398
-
399
- fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
400
- float32 or float64. Selected RoIs.
401
-
402
- rois_num(Tensor): 1-D Tensor contains the RoIs's number of each
403
- image. The shape is [B] and data type is int32. B is the number of
404
- images.
405
-
406
- Examples:
407
- .. code-block:: python
408
-
409
- import paddle
410
- from paddlex.ppdet.modeling import ops
411
- paddle.enable_static()
412
- multi_rois = []
413
- multi_scores = []
414
- for i in range(4):
415
- multi_rois.append(paddle.static.data(
416
- name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
417
- for i in range(4):
418
- multi_scores.append(paddle.static.data(
419
- name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
420
-
421
- fpn_rois = ops.collect_fpn_proposals(
422
- multi_rois=multi_rois,
423
- multi_scores=multi_scores,
424
- min_level=2,
425
- max_level=5,
426
- post_nms_top_n=2000)
427
- """
428
- check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
429
- check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
430
- num_lvl = max_level - min_level + 1
431
- input_rois = multi_rois[:num_lvl]
432
- input_scores = multi_scores[:num_lvl]
433
-
434
- if in_dygraph_mode():
435
- assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
436
- attrs = ('post_nms_topN', post_nms_top_n)
437
- output_rois, rois_num = core.ops.collect_fpn_proposals(
438
- input_rois, input_scores, rois_num_per_level, *attrs)
439
- return output_rois, rois_num
440
-
441
- else:
442
- helper = LayerHelper('collect_fpn_proposals', **locals())
443
- dtype = helper.input_dtype('multi_rois')
444
- check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
445
- 'collect_fpn_proposals')
446
- output_rois = helper.create_variable_for_type_inference(dtype)
447
- output_rois.stop_gradient = True
448
-
449
- inputs = {
450
- 'MultiLevelRois': input_rois,
451
- 'MultiLevelScores': input_scores,
452
- }
453
- outputs = {'FpnRois': output_rois}
454
- if rois_num_per_level is not None:
455
- inputs['MultiLevelRoIsNum'] = rois_num_per_level
456
- rois_num = helper.create_variable_for_type_inference(dtype='int32')
457
- rois_num.stop_gradient = True
458
- outputs['RoisNum'] = rois_num
459
- helper.append_op(
460
- type='collect_fpn_proposals',
461
- inputs=inputs,
462
- outputs=outputs,
463
- attrs={'post_nms_topN': post_nms_top_n})
464
- return output_rois, rois_num
465
-
466
-
467
- @paddle.jit.not_to_static
468
- def distribute_fpn_proposals(fpn_rois,
469
- min_level,
470
- max_level,
471
- refer_level,
472
- refer_scale,
473
- pixel_offset=False,
474
- rois_num=None,
475
- name=None):
476
- r"""
477
-
478
- **This op only takes LoDTensor as input.** In Feature Pyramid Networks
479
- (FPN) models, it is needed to distribute all proposals into different FPN
480
- level, with respect to scale of the proposals, the referring scale and the
481
- referring level. Besides, to restore the order of proposals, we return an
482
- array which indicates the original index of rois in current proposals.
483
- To compute FPN level for each roi, the formula is given as follows:
484
-
485
- .. math::
486
-
487
- roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
488
-
489
- level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
490
-
491
- where BBoxArea is a function to compute the area of each roi.
492
-
493
- Args:
494
-
495
- fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is
496
- float32 or float64. The input fpn_rois.
497
- min_level(int32): The lowest level of FPN layer where the proposals come
498
- from.
499
- max_level(int32): The highest level of FPN layer where the proposals
500
- come from.
501
- refer_level(int32): The referring level of FPN layer with specified scale.
502
- refer_scale(int32): The referring scale of FPN layer with specified level.
503
- rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
504
- The shape is [B] and data type is int32. B is the number of images.
505
- If it is not None then return a list of 1-D Tensor. Each element
506
- is the output RoIs' number of each image on the corresponding level
507
- and the shape is [B]. None by default.
508
- name(str, optional): For detailed information, please refer
509
- to :ref:`api_guide_Name`. Usually name is no need to set and
510
- None by default.
511
-
512
- Returns:
513
- Tuple:
514
-
515
- multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4]
516
- and data type of float32 and float64. The length is
517
- max_level-min_level+1. The proposals in each FPN level.
518
-
519
- restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is
520
- the number of total rois. The data type is int32. It is
521
- used to restore the order of fpn_rois.
522
-
523
- rois_num_per_level(List): A list of 1-D Tensor and each Tensor is
524
- the RoIs' number in each image on the corresponding level. The shape
525
- is [B] and data type of int32. B is the number of images
526
-
527
-
528
- Examples:
529
- .. code-block:: python
530
-
531
- import paddle
532
- from paddlex.ppdet.modeling import ops
533
- paddle.enable_static()
534
- fpn_rois = paddle.static.data(
535
- name='data', shape=[None, 4], dtype='float32', lod_level=1)
536
- multi_rois, restore_ind = ops.distribute_fpn_proposals(
537
- fpn_rois=fpn_rois,
538
- min_level=2,
539
- max_level=5,
540
- refer_level=4,
541
- refer_scale=224)
542
- """
543
- num_lvl = max_level - min_level + 1
544
-
545
- if in_dygraph_mode():
546
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
547
- attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
548
- refer_level, 'refer_scale', refer_scale, 'pixel_offset',
549
- pixel_offset)
550
- multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals(
551
- fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
552
- return multi_rois, restore_ind, rois_num_per_level
553
-
554
- else:
555
- check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
556
- 'distribute_fpn_proposals')
557
- helper = LayerHelper('distribute_fpn_proposals', **locals())
558
- dtype = helper.input_dtype('fpn_rois')
559
- multi_rois = [
560
- helper.create_variable_for_type_inference(dtype)
561
- for i in range(num_lvl)
562
- ]
563
-
564
- restore_ind = helper.create_variable_for_type_inference(dtype='int32')
565
-
566
- inputs = {'FpnRois': fpn_rois}
567
- outputs = {
568
- 'MultiFpnRois': multi_rois,
569
- 'RestoreIndex': restore_ind,
570
- }
571
-
572
- if rois_num is not None:
573
- inputs['RoisNum'] = rois_num
574
- rois_num_per_level = [
575
- helper.create_variable_for_type_inference(dtype='int32')
576
- for i in range(num_lvl)
577
- ]
578
- outputs['MultiLevelRoIsNum'] = rois_num_per_level
579
-
580
- helper.append_op(
581
- type='distribute_fpn_proposals',
582
- inputs=inputs,
583
- outputs=outputs,
584
- attrs={
585
- 'min_level': min_level,
586
- 'max_level': max_level,
587
- 'refer_level': refer_level,
588
- 'refer_scale': refer_scale,
589
- 'pixel_offset': pixel_offset
590
- })
591
- return multi_rois, restore_ind, rois_num_per_level
592
-
593
-
594
- @paddle.jit.not_to_static
595
- def yolo_box(
596
- x,
597
- origin_shape,
598
- anchors,
599
- class_num,
600
- conf_thresh,
601
- downsample_ratio,
602
- clip_bbox=True,
603
- scale_x_y=1.,
604
- name=None, ):
605
- """
606
-
607
- This operator generates YOLO detection boxes from output of YOLOv3 network.
608
-
609
- The output of previous network is in shape [N, C, H, W], while H and W
610
- should be the same, H and W specify the grid size, each grid point predict
611
- given number boxes, this given number, which following will be represented as S,
612
- is specified by the number of anchors. In the second dimension(the channel
613
- dimension), C should be equal to S * (5 + class_num), class_num is the object
614
- category number of source dataset(such as 80 in coco dataset), so the
615
- second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
616
- also includes confidence score of the box and class one-hot key of each anchor
617
- box.
618
- Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
619
- predictions should be as follows:
620
- $$
621
- b_x = \\sigma(t_x) + c_x
622
- $$
623
- $$
624
- b_y = \\sigma(t_y) + c_y
625
- $$
626
- $$
627
- b_w = p_w e^{t_w}
628
- $$
629
- $$
630
- b_h = p_h e^{t_h}
631
- $$
632
- in the equation above, :math:`c_x, c_y` is the left top corner of current grid
633
- and :math:`p_w, p_h` is specified by anchors.
634
- The logistic regression value of the 5th channel of each anchor prediction boxes
635
- represents the confidence score of each prediction box, and the logistic
636
- regression value of the last :attr:`class_num` channels of each anchor prediction
637
- boxes represents the classifcation scores. Boxes with confidence scores less than
638
- :attr:`conf_thresh` should be ignored, and box final scores is the product of
639
- confidence scores and classification scores.
640
- $$
641
- score_{pred} = score_{conf} * score_{class}
642
- $$
643
-
644
- Args:
645
- x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with shape of [N, C, H, W].
646
- The second dimension(C) stores box locations, confidence score and
647
- classification one-hot keys of each anchor box. Generally, X should be the output of YOLOv3 network.
648
- The data type is float32 or float64.
649
- origin_shape (Tensor): The image size tensor of YoloBox operator, This is a 2-D tensor with shape of [N, 2].
650
- This tensor holds height and width of each input image used for resizing output box in input image
651
- scale. The data type is int32.
652
- anchors (list|tuple): The anchor width and height, it will be parsed pair by pair.
653
- class_num (int): The number of classes to predict.
654
- conf_thresh (float): The confidence scores threshold of detection boxes. Boxes with confidence scores
655
- under threshold should be ignored.
656
- downsample_ratio (int): The downsample ratio from network input to YoloBox operator input,
657
- so 32, 16, 8 should be set for the first, second, and thrid YoloBox operators.
658
- clip_bbox (bool): Whether clip output bonding box in Input(ImgSize) boundary. Default true.
659
- scale_x_y (float): Scale the center point of decoded bounding box. Default 1.0.
660
- name (string): The default value is None. Normally there is no need
661
- for user to set this property. For more information,
662
- please refer to :ref:`api_guide_Name`
663
-
664
- Returns:
665
- boxes Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes, N is the batch num,
666
- M is output box number, and the 3rd dimension stores [xmin, ymin, xmax, ymax] coordinates of boxes.
667
- scores Tensor: A 3-D tensor with shape [N, M, :attr:`class_num`], the coordinates of boxes, N is the batch num,
668
- M is output box number.
669
-
670
- Raises:
671
- TypeError: Attr anchors of yolo box must be list or tuple
672
- TypeError: Attr class_num of yolo box must be an integer
673
- TypeError: Attr conf_thresh of yolo box must be a float number
674
-
675
- Examples:
676
-
677
- .. code-block:: python
678
-
679
- import paddle
680
- from paddlex.ppdet.modeling import ops
681
-
682
- paddle.enable_static()
683
- x = paddle.static.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
684
- img_size = paddle.static.data(name='img_size',shape=[None, 2],dtype='int64')
685
- anchors = [10, 13, 16, 30, 33, 23]
686
- boxes,scores = ops.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors,
687
- conf_thresh=0.01, downsample_ratio=32)
688
- """
689
- helper = LayerHelper('yolo_box', **locals())
690
-
691
- if not isinstance(anchors, list) and not isinstance(anchors, tuple):
692
- raise TypeError("Attr anchors of yolo_box must be list or tuple")
693
- if not isinstance(class_num, int):
694
- raise TypeError("Attr class_num of yolo_box must be an integer")
695
- if not isinstance(conf_thresh, float):
696
- raise TypeError(
697
- "Attr ignore_thresh of yolo_box must be a float number")
698
-
699
- if in_dygraph_mode():
700
- attrs = ('anchors', anchors, 'class_num', class_num, 'conf_thresh',
701
- conf_thresh, 'downsample_ratio', downsample_ratio,
702
- 'clip_bbox', clip_bbox, 'scale_x_y', scale_x_y)
703
- boxes, scores = core.ops.yolo_box(x, origin_shape, *attrs)
704
- return boxes, scores
705
- else:
706
- boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
707
- scores = helper.create_variable_for_type_inference(dtype=x.dtype)
708
-
709
- attrs = {
710
- "anchors": anchors,
711
- "class_num": class_num,
712
- "conf_thresh": conf_thresh,
713
- "downsample_ratio": downsample_ratio,
714
- "clip_bbox": clip_bbox,
715
- "scale_x_y": scale_x_y,
716
- }
717
-
718
- helper.append_op(
719
- type='yolo_box',
720
- inputs={
721
- "X": x,
722
- "ImgSize": origin_shape,
723
- },
724
- outputs={
725
- 'Boxes': boxes,
726
- 'Scores': scores,
727
- },
728
- attrs=attrs)
729
- return boxes, scores
730
-
731
-
732
- @paddle.jit.not_to_static
733
- def prior_box(input,
734
- image,
735
- min_sizes,
736
- max_sizes=None,
737
- aspect_ratios=[1.],
738
- variance=[0.1, 0.1, 0.2, 0.2],
739
- flip=False,
740
- clip=False,
741
- steps=[0.0, 0.0],
742
- offset=0.5,
743
- min_max_aspect_ratios_order=False,
744
- name=None):
745
- """
746
-
747
- This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
748
- Each position of the input produce N prior boxes, N is determined by
749
- the count of min_sizes, max_sizes and aspect_ratios, The size of the
750
- box is in range(min_size, max_size) interval, which is generated in
751
- sequence according to the aspect_ratios.
752
-
753
- Parameters:
754
- input(Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
755
- image(Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
756
- the data type should be float32 or float64.
757
- min_sizes(list|tuple|float): the min sizes of generated prior boxes.
758
- max_sizes(list|tuple|None): the max sizes of generated prior boxes.
759
- Default: None.
760
- aspect_ratios(list|tuple|float): the aspect ratios of generated
761
- prior boxes. Default: [1.].
762
- variance(list|tuple): the variances to be encoded in prior boxes.
763
- Default:[0.1, 0.1, 0.2, 0.2].
764
- flip(bool): Whether to flip aspect ratios. Default:False.
765
- clip(bool): Whether to clip out-of-boundary boxes. Default: False.
766
- step(list|tuple): Prior boxes step across width and height, If
767
- step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
768
- height or weight of the input will be automatically calculated.
769
- Default: [0., 0.]
770
- offset(float): Prior boxes center offset. Default: 0.5
771
- min_max_aspect_ratios_order(bool): If set True, the output prior box is
772
- in order of [min, max, aspect_ratios], which is consistent with
773
- Caffe. Please note, this order affects the weights order of
774
- convolution layer followed by and does not affect the final
775
- detection results. Default: False.
776
- name(str, optional): The default value is None. Normally there is no need for
777
- user to set this property. For more information, please refer to :ref:`api_guide_Name`
778
-
779
- Returns:
780
- Tuple: A tuple with two Variable (boxes, variances)
781
-
782
- boxes(Tensor): the output prior boxes of PriorBox.
783
- 4-D tensor, the layout is [H, W, num_priors, 4].
784
- H is the height of input, W is the width of input,
785
- num_priors is the total box count of each position of input.
786
-
787
- variances(Tensor): the expanded variances of PriorBox.
788
- 4-D tensor, the layput is [H, W, num_priors, 4].
789
- H is the height of input, W is the width of input
790
- num_priors is the total box count of each position of input
791
-
792
- Examples:
793
- .. code-block:: python
794
-
795
- import paddle
796
- from paddlex.ppdet.modeling import ops
797
-
798
- paddle.enable_static()
799
- input = paddle.static.data(name="input", shape=[None,3,6,9])
800
- image = paddle.static.data(name="image", shape=[None,3,9,12])
801
- box, var = ops.prior_box(
802
- input=input,
803
- image=image,
804
- min_sizes=[100.],
805
- clip=True,
806
- flip=True)
807
- """
808
- helper = LayerHelper("prior_box", **locals())
809
- dtype = helper.input_dtype()
810
- check_variable_and_dtype(
811
- input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
812
-
813
- def _is_list_or_tuple_(data):
814
- return (isinstance(data, list) or isinstance(data, tuple))
815
-
816
- if not _is_list_or_tuple_(min_sizes):
817
- min_sizes = [min_sizes]
818
- if not _is_list_or_tuple_(aspect_ratios):
819
- aspect_ratios = [aspect_ratios]
820
- if not (_is_list_or_tuple_(steps) and len(steps) == 2):
821
- raise ValueError('steps should be a list or tuple ',
822
- 'with length 2, (step_width, step_height).')
823
-
824
- min_sizes = list(map(float, min_sizes))
825
- aspect_ratios = list(map(float, aspect_ratios))
826
- steps = list(map(float, steps))
827
-
828
- cur_max_sizes = None
829
- if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
830
- if not _is_list_or_tuple_(max_sizes):
831
- max_sizes = [max_sizes]
832
- cur_max_sizes = max_sizes
833
-
834
- if in_dygraph_mode():
835
- attrs = ('min_sizes', min_sizes, 'aspect_ratios', aspect_ratios,
836
- 'variances', variance, 'flip', flip, 'clip', clip, 'step_w',
837
- steps[0], 'step_h', steps[1], 'offset', offset,
838
- 'min_max_aspect_ratios_order', min_max_aspect_ratios_order)
839
- if cur_max_sizes is not None:
840
- attrs += ('max_sizes', cur_max_sizes)
841
- box, var = core.ops.prior_box(input, image, *attrs)
842
- return box, var
843
- else:
844
- attrs = {
845
- 'min_sizes': min_sizes,
846
- 'aspect_ratios': aspect_ratios,
847
- 'variances': variance,
848
- 'flip': flip,
849
- 'clip': clip,
850
- 'step_w': steps[0],
851
- 'step_h': steps[1],
852
- 'offset': offset,
853
- 'min_max_aspect_ratios_order': min_max_aspect_ratios_order
854
- }
855
-
856
- if cur_max_sizes is not None:
857
- attrs['max_sizes'] = cur_max_sizes
858
-
859
- box = helper.create_variable_for_type_inference(dtype)
860
- var = helper.create_variable_for_type_inference(dtype)
861
- helper.append_op(
862
- type="prior_box",
863
- inputs={"Input": input,
864
- "Image": image},
865
- outputs={"Boxes": box,
866
- "Variances": var},
867
- attrs=attrs, )
868
- box.stop_gradient = True
869
- var.stop_gradient = True
870
- return box, var
871
-
872
-
873
- @paddle.jit.not_to_static
874
- def multiclass_nms(bboxes,
875
- scores,
876
- score_threshold,
877
- nms_top_k,
878
- keep_top_k,
879
- nms_threshold=0.3,
880
- normalized=True,
881
- nms_eta=1.,
882
- background_label=-1,
883
- return_index=False,
884
- return_rois_num=True,
885
- rois_num=None,
886
- name=None):
887
- """
888
- This operator is to do multi-class non maximum suppression (NMS) on
889
- boxes and scores.
890
- In the NMS step, this operator greedily selects a subset of detection bounding
891
- boxes that have high scores larger than score_threshold, if providing this
892
- threshold, then selects the largest nms_top_k confidences scores if nms_top_k
893
- is larger than -1. Then this operator pruns away boxes that have high IOU
894
- (intersection over union) overlap with already selected boxes by adaptive
895
- threshold NMS based on parameters of nms_threshold and nms_eta.
896
- Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
897
- per image if keep_top_k is larger than -1.
898
- Args:
899
- bboxes (Tensor): Two types of bboxes are supported:
900
- 1. (Tensor) A 3-D Tensor with shape
901
- [N, M, 4 or 8 16 24 32] represents the
902
- predicted locations of M bounding bboxes,
903
- N is the batch size. Each bounding box has four
904
- coordinate values and the layout is
905
- [xmin, ymin, xmax, ymax], when box size equals to 4.
906
- 2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
907
- M is the number of bounding boxes, C is the
908
- class number
909
- scores (Tensor): Two types of scores are supported:
910
- 1. (Tensor) A 3-D Tensor with shape [N, C, M]
911
- represents the predicted confidence predictions.
912
- N is the batch size, C is the class number, M is
913
- number of bounding boxes. For each category there
914
- are total M scores which corresponding M bounding
915
- boxes. Please note, M is equal to the 2nd dimension
916
- of BBoxes.
917
- 2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
918
- M is the number of bbox, C is the class number.
919
- In this case, input BBoxes should be the second
920
- case with shape [M, C, 4].
921
- background_label (int): The index of background label, the background
922
- label will be ignored. If set to -1, then all
923
- categories will be considered. Default: 0
924
- score_threshold (float): Threshold to filter out bounding boxes with
925
- low confidence score. If not provided,
926
- consider all boxes.
927
- nms_top_k (int): Maximum number of detections to be kept according to
928
- the confidences after the filtering detections based
929
- on score_threshold.
930
- nms_threshold (float): The threshold to be used in NMS. Default: 0.3
931
- nms_eta (float): The threshold to be used in NMS. Default: 1.0
932
- keep_top_k (int): Number of total bboxes to be kept per image after NMS
933
- step. -1 means keeping all bboxes after NMS step.
934
- normalized (bool): Whether detections are normalized. Default: True
935
- return_index(bool): Whether return selected index. Default: False
936
- rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
937
- The shape is [B] and data type is int32. B is the number of images.
938
- If it is not None then return a list of 1-D Tensor. Each element
939
- is the output RoIs' number of each image on the corresponding level
940
- and the shape is [B]. None by default.
941
- name(str): Name of the multiclass nms op. Default: None.
942
- Returns:
943
- A tuple with two Variables: (Out, Index) if return_index is True,
944
- otherwise, a tuple with one Variable(Out) is returned.
945
- Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
946
- Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
947
- or A 2-D LoDTensor with shape [No, 10] represents the detections.
948
- Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
949
- x4, y4]. No is the total number of detections.
950
- If all images have not detected results, all elements in LoD will be
951
- 0, and output tensor is empty (None).
952
- Index: Only return when return_index is True. A 2-D LoDTensor with
953
- shape [No, 1] represents the selected index which type is Integer.
954
- The index is the absolute value cross batches. No is the same number
955
- as Out. If the index is used to gather other attribute such as age,
956
- one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
957
- N is the batch size and M is the number of boxes.
958
- Examples:
959
- .. code-block:: python
960
-
961
- import paddle
962
- from paddlex.ppdet.modeling import ops
963
- boxes = paddle.static.data(name='bboxes', shape=[81, 4],
964
- dtype='float32', lod_level=1)
965
- scores = paddle.static.data(name='scores', shape=[81],
966
- dtype='float32', lod_level=1)
967
- out, index = ops.multiclass_nms(bboxes=boxes,
968
- scores=scores,
969
- background_label=0,
970
- score_threshold=0.5,
971
- nms_top_k=400,
972
- nms_threshold=0.3,
973
- keep_top_k=200,
974
- normalized=False,
975
- return_index=True)
976
- """
977
- helper = LayerHelper('multiclass_nms3', **locals())
978
-
979
- if in_dygraph_mode():
980
- attrs = ('background_label', background_label, 'score_threshold',
981
- score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
982
- nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
983
- 'normalized', normalized)
984
- output, index, nms_rois_num = core.ops.multiclass_nms3(
985
- bboxes, scores, rois_num, *attrs)
986
- if not return_index:
987
- index = None
988
- return output, nms_rois_num, index
989
-
990
- else:
991
- output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
992
- index = helper.create_variable_for_type_inference(dtype='int32')
993
-
994
- inputs = {'BBoxes': bboxes, 'Scores': scores}
995
- outputs = {'Out': output, 'Index': index}
996
-
997
- if rois_num is not None:
998
- inputs['RoisNum'] = rois_num
999
-
1000
- if return_rois_num:
1001
- nms_rois_num = helper.create_variable_for_type_inference(
1002
- dtype='int32')
1003
- outputs['NmsRoisNum'] = nms_rois_num
1004
-
1005
- helper.append_op(
1006
- type="multiclass_nms3",
1007
- inputs=inputs,
1008
- attrs={
1009
- 'background_label': background_label,
1010
- 'score_threshold': score_threshold,
1011
- 'nms_top_k': nms_top_k,
1012
- 'nms_threshold': nms_threshold,
1013
- 'keep_top_k': keep_top_k,
1014
- 'nms_eta': nms_eta,
1015
- 'normalized': normalized
1016
- },
1017
- outputs=outputs)
1018
- output.stop_gradient = True
1019
- index.stop_gradient = True
1020
- if not return_index:
1021
- index = None
1022
- if not return_rois_num:
1023
- nms_rois_num = None
1024
-
1025
- return output, nms_rois_num, index
1026
-
1027
-
1028
- @paddle.jit.not_to_static
1029
- def matrix_nms(bboxes,
1030
- scores,
1031
- score_threshold,
1032
- post_threshold,
1033
- nms_top_k,
1034
- keep_top_k,
1035
- use_gaussian=False,
1036
- gaussian_sigma=2.,
1037
- background_label=0,
1038
- normalized=True,
1039
- return_index=False,
1040
- return_rois_num=True,
1041
- name=None):
1042
- """
1043
- **Matrix NMS**
1044
- This operator does matrix non maximum suppression (NMS).
1045
- First selects a subset of candidate bounding boxes that have higher scores
1046
- than score_threshold (if provided), then the top k candidate is selected if
1047
- nms_top_k is larger than -1. Score of the remaining candidate are then
1048
- decayed according to the Matrix NMS scheme.
1049
- Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
1050
- per image if keep_top_k is larger than -1.
1051
- Args:
1052
- bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
1053
- predicted locations of M bounding bboxes,
1054
- N is the batch size. Each bounding box has four
1055
- coordinate values and the layout is
1056
- [xmin, ymin, xmax, ymax], when box size equals to 4.
1057
- The data type is float32 or float64.
1058
- scores (Tensor): A 3-D Tensor with shape [N, C, M]
1059
- represents the predicted confidence predictions.
1060
- N is the batch size, C is the class number, M is
1061
- number of bounding boxes. For each category there
1062
- are total M scores which corresponding M bounding
1063
- boxes. Please note, M is equal to the 2nd dimension
1064
- of BBoxes. The data type is float32 or float64.
1065
- score_threshold (float): Threshold to filter out bounding boxes with
1066
- low confidence score.
1067
- post_threshold (float): Threshold to filter out bounding boxes with
1068
- low confidence score AFTER decaying.
1069
- nms_top_k (int): Maximum number of detections to be kept according to
1070
- the confidences after the filtering detections based
1071
- on score_threshold.
1072
- keep_top_k (int): Number of total bboxes to be kept per image after NMS
1073
- step. -1 means keeping all bboxes after NMS step.
1074
- use_gaussian (bool): Use Gaussian as the decay function. Default: False
1075
- gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
1076
- background_label (int): The index of background label, the background
1077
- label will be ignored. If set to -1, then all
1078
- categories will be considered. Default: 0
1079
- normalized (bool): Whether detections are normalized. Default: True
1080
- return_index(bool): Whether return selected index. Default: False
1081
- return_rois_num(bool): whether return rois_num. Default: True
1082
- name(str): Name of the matrix nms op. Default: None.
1083
- Returns:
1084
- A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
1085
- otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
1086
- Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
1087
- detection results.
1088
- Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
1089
- (After version 1.3, when no boxes detected, the lod is changed
1090
- from {0} to {1})
1091
- Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
1092
- selected indices, which are absolute values cross batches.
1093
- rois_num (Tensor): A 1-D Tensor with shape [N] containing
1094
- the number of detected boxes in each image.
1095
- Examples:
1096
- .. code-block:: python
1097
- import paddle
1098
- from paddlex.ppdet.modeling import ops
1099
- boxes = paddle.static.data(name='bboxes', shape=[None,81, 4],
1100
- dtype='float32', lod_level=1)
1101
- scores = paddle.static.data(name='scores', shape=[None,81],
1102
- dtype='float32', lod_level=1)
1103
- out = ops.matrix_nms(bboxes=boxes, scores=scores, background_label=0,
1104
- score_threshold=0.5, post_threshold=0.1,
1105
- nms_top_k=400, keep_top_k=200, normalized=False)
1106
- """
1107
- check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
1108
- 'matrix_nms')
1109
- check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
1110
- 'matrix_nms')
1111
- check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
1112
- check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
1113
- check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
1114
- check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
1115
- check_type(normalized, 'normalized', bool, 'matrix_nms')
1116
- check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
1117
- check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
1118
- check_type(background_label, 'background_label', int, 'matrix_nms')
1119
-
1120
- if in_dygraph_mode():
1121
- attrs = ('background_label', background_label, 'score_threshold',
1122
- score_threshold, 'post_threshold', post_threshold,
1123
- 'nms_top_k', nms_top_k, 'gaussian_sigma', gaussian_sigma,
1124
- 'use_gaussian', use_gaussian, 'keep_top_k', keep_top_k,
1125
- 'normalized', normalized)
1126
- out, index, rois_num = core.ops.matrix_nms(bboxes, scores, *attrs)
1127
- if not return_index:
1128
- index = None
1129
- if not return_rois_num:
1130
- rois_num = None
1131
- return out, rois_num, index
1132
- else:
1133
- helper = LayerHelper('matrix_nms', **locals())
1134
- output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
1135
- index = helper.create_variable_for_type_inference(dtype='int32')
1136
- outputs = {'Out': output, 'Index': index}
1137
- if return_rois_num:
1138
- rois_num = helper.create_variable_for_type_inference(dtype='int32')
1139
- outputs['RoisNum'] = rois_num
1140
-
1141
- helper.append_op(
1142
- type="matrix_nms",
1143
- inputs={'BBoxes': bboxes,
1144
- 'Scores': scores},
1145
- attrs={
1146
- 'background_label': background_label,
1147
- 'score_threshold': score_threshold,
1148
- 'post_threshold': post_threshold,
1149
- 'nms_top_k': nms_top_k,
1150
- 'gaussian_sigma': gaussian_sigma,
1151
- 'use_gaussian': use_gaussian,
1152
- 'keep_top_k': keep_top_k,
1153
- 'normalized': normalized
1154
- },
1155
- outputs=outputs)
1156
- output.stop_gradient = True
1157
-
1158
- if not return_index:
1159
- index = None
1160
- if not return_rois_num:
1161
- rois_num = None
1162
- return output, rois_num, index
1163
-
1164
-
1165
- def bipartite_match(dist_matrix,
1166
- match_type=None,
1167
- dist_threshold=None,
1168
- name=None):
1169
- """
1170
-
1171
- This operator implements a greedy bipartite matching algorithm, which is
1172
- used to obtain the matching with the maximum distance based on the input
1173
- distance matrix. For input 2D matrix, the bipartite matching algorithm can
1174
- find the matched column for each row (matched means the largest distance),
1175
- also can find the matched row for each column. And this operator only
1176
- calculate matched indices from column to row. For each instance,
1177
- the number of matched indices is the column number of the input distance
1178
- matrix. **The OP only supports CPU**.
1179
-
1180
- There are two outputs, matched indices and distance.
1181
- A simple description, this algorithm matched the best (maximum distance)
1182
- row entity to the column entity and the matched indices are not duplicated
1183
- in each row of ColToRowMatchIndices. If the column entity is not matched
1184
- any row entity, set -1 in ColToRowMatchIndices.
1185
-
1186
- NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1187
- If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
1188
- If Tensor, the height of ColToRowMatchIndices is 1.
1189
-
1190
- NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
1191
- layer. Please consider to use :code:`ssd_loss` instead.
1192
-
1193
- Args:
1194
- dist_matrix(Tensor): This input is a 2-D LoDTensor with shape
1195
- [K, M]. The data type is float32 or float64. It is pair-wise
1196
- distance matrix between the entities represented by each row and
1197
- each column. For example, assumed one entity is A with shape [K],
1198
- another entity is B with shape [M]. The dist_matrix[i][j] is the
1199
- distance between A[i] and B[j]. The bigger the distance is, the
1200
- better matching the pairs are. NOTE: This tensor can contain LoD
1201
- information to represent a batch of inputs. One instance of this
1202
- batch can contain different numbers of entities.
1203
- match_type(str, optional): The type of matching method, should be
1204
- 'bipartite' or 'per_prediction'. None ('bipartite') by default.
1205
- dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1206
- this threshold is to determine the extra matching bboxes based
1207
- on the maximum distance, 0.5 by default.
1208
- name(str, optional): For detailed information, please refer
1209
- to :ref:`api_guide_Name`. Usually name is no need to set and
1210
- None by default.
1211
-
1212
- Returns:
1213
- Tuple:
1214
-
1215
- matched_indices(Tensor): A 2-D Tensor with shape [N, M]. The data
1216
- type is int32. N is the batch size. If match_indices[i][j] is -1, it
1217
- means B[j] does not match any entity in i-th instance.
1218
- Otherwise, it means B[j] is matched to row
1219
- match_indices[i][j] in i-th instance. The row number of
1220
- i-th instance is saved in match_indices[i][j].
1221
-
1222
- matched_distance(Tensor): A 2-D Tensor with shape [N, M]. The data
1223
- type is float32. N is batch size. If match_indices[i][j] is -1,
1224
- match_distance[i][j] is also -1.0. Otherwise, assumed
1225
- match_distance[i][j] = d, and the row offsets of each instance
1226
- are called LoD. Then match_distance[i][j] =
1227
- dist_matrix[d+LoD[i]][j].
1228
-
1229
- Examples:
1230
-
1231
- .. code-block:: python
1232
- import paddle
1233
- from paddlex.ppdet.modeling import ops
1234
- from paddlex.ppdet.modeling.utils import iou_similarity
1235
-
1236
- paddle.enable_static()
1237
-
1238
- x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
1239
- y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
1240
- iou = iou_similarity(x=x, y=y)
1241
- matched_indices, matched_dist = ops.bipartite_match(iou)
1242
- """
1243
- check_variable_and_dtype(dist_matrix, 'dist_matrix',
1244
- ['float32', 'float64'], 'bipartite_match')
1245
-
1246
- if in_dygraph_mode():
1247
- match_indices, match_distance = core.ops.bipartite_match(
1248
- dist_matrix, "match_type", match_type, "dist_threshold",
1249
- dist_threshold)
1250
- return match_indices, match_distance
1251
-
1252
- helper = LayerHelper('bipartite_match', **locals())
1253
- match_indices = helper.create_variable_for_type_inference(dtype='int32')
1254
- match_distance = helper.create_variable_for_type_inference(
1255
- dtype=dist_matrix.dtype)
1256
- helper.append_op(
1257
- type='bipartite_match',
1258
- inputs={'DistMat': dist_matrix},
1259
- attrs={
1260
- 'match_type': match_type,
1261
- 'dist_threshold': dist_threshold,
1262
- },
1263
- outputs={
1264
- 'ColToRowMatchIndices': match_indices,
1265
- 'ColToRowMatchDist': match_distance
1266
- })
1267
- return match_indices, match_distance
1268
-
1269
-
1270
- @paddle.jit.not_to_static
1271
- def box_coder(prior_box,
1272
- prior_box_var,
1273
- target_box,
1274
- code_type="encode_center_size",
1275
- box_normalized=True,
1276
- axis=0,
1277
- name=None):
1278
- r"""
1279
- **Box Coder Layer**
1280
- Encode/Decode the target bounding box with the priorbox information.
1281
-
1282
- The Encoding schema described below:
1283
- .. math::
1284
- ox = (tx - px) / pw / pxv
1285
- oy = (ty - py) / ph / pyv
1286
- ow = \log(\abs(tw / pw)) / pwv
1287
- oh = \log(\abs(th / ph)) / phv
1288
- The Decoding schema described below:
1289
-
1290
- .. math::
1291
-
1292
- ox = (pw * pxv * tx * + px) - tw / 2
1293
- oy = (ph * pyv * ty * + py) - th / 2
1294
- ow = \exp(pwv * tw) * pw + tw / 2
1295
- oh = \exp(phv * th) * ph + th / 2
1296
- where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
1297
- width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
1298
- the priorbox's (anchor) center coordinates, width and height. `pxv`,
1299
- `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
1300
- `ow`, `oh` denote the encoded/decoded coordinates, width and height.
1301
- During Box Decoding, two modes for broadcast are supported. Say target
1302
- box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
1303
- [M, 4]. Then prior box will broadcast to target box along the
1304
- assigned axis.
1305
-
1306
- Args:
1307
- prior_box(Tensor): Box list prior_box is a 2-D Tensor with shape
1308
- [M, 4] holds M boxes and data type is float32 or float64. Each box
1309
- is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
1310
- left top coordinate of the anchor box, if the input is image feature
1311
- map, they are close to the origin of the coordinate system.
1312
- [xmax, ymax] is the right bottom coordinate of the anchor box.
1313
- prior_box_var(List|Tensor|None): prior_box_var supports three types
1314
- of input. One is Tensor with shape [M, 4] which holds M group and
1315
- data type is float32 or float64. The second is list consist of
1316
- 4 elements shared by all boxes and data type is float32 or float64.
1317
- Other is None and not involved in calculation.
1318
- target_box(Tensor): This input can be a 2-D LoDTensor with shape
1319
- [N, 4] when code_type is 'encode_center_size'. This input also can
1320
- be a 3-D Tensor with shape [N, M, 4] when code_type is
1321
- 'decode_center_size'. Each box is represented as
1322
- [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
1323
- code_type(str): The code type used with the target box. It can be
1324
- `encode_center_size` or `decode_center_size`. `encode_center_size`
1325
- by default.
1326
- box_normalized(bool): Whether treat the priorbox as a normalized box.
1327
- Set true by default.
1328
- axis(int): Which axis in PriorBox to broadcast for box decode,
1329
- for example, if axis is 0 and TargetBox has shape [N, M, 4] and
1330
- PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
1331
- for decoding. It is only valid when code type is
1332
- `decode_center_size`. Set 0 by default.
1333
- name(str, optional): For detailed information, please refer
1334
- to :ref:`api_guide_Name`. Usually name is no need to set and
1335
- None by default.
1336
-
1337
- Returns:
1338
- Tensor:
1339
- output_box(Tensor): When code_type is 'encode_center_size', the
1340
- output tensor of box_coder_op with shape [N, M, 4] representing the
1341
- result of N target boxes encoded with M Prior boxes and variances.
1342
- When code_type is 'decode_center_size', N represents the batch size
1343
- and M represents the number of decoded boxes.
1344
-
1345
- Examples:
1346
-
1347
- .. code-block:: python
1348
-
1349
- import paddle
1350
- from paddlex.ppdet.modeling import ops
1351
- paddle.enable_static()
1352
- # For encode
1353
- prior_box_encode = paddle.static.data(name='prior_box_encode',
1354
- shape=[512, 4],
1355
- dtype='float32')
1356
- target_box_encode = paddle.static.data(name='target_box_encode',
1357
- shape=[81, 4],
1358
- dtype='float32')
1359
- output_encode = ops.box_coder(prior_box=prior_box_encode,
1360
- prior_box_var=[0.1,0.1,0.2,0.2],
1361
- target_box=target_box_encode,
1362
- code_type="encode_center_size")
1363
- # For decode
1364
- prior_box_decode = paddle.static.data(name='prior_box_decode',
1365
- shape=[512, 4],
1366
- dtype='float32')
1367
- target_box_decode = paddle.static.data(name='target_box_decode',
1368
- shape=[512, 81, 4],
1369
- dtype='float32')
1370
- output_decode = ops.box_coder(prior_box=prior_box_decode,
1371
- prior_box_var=[0.1,0.1,0.2,0.2],
1372
- target_box=target_box_decode,
1373
- code_type="decode_center_size",
1374
- box_normalized=False,
1375
- axis=1)
1376
- """
1377
- check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
1378
- 'box_coder')
1379
- check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
1380
- 'box_coder')
1381
-
1382
- if in_dygraph_mode():
1383
- if isinstance(prior_box_var, Variable):
1384
- output_box = core.ops.box_coder(
1385
- prior_box, prior_box_var, target_box, "code_type", code_type,
1386
- "box_normalized", box_normalized, "axis", axis)
1387
-
1388
- elif isinstance(prior_box_var, list):
1389
- output_box = core.ops.box_coder(
1390
- prior_box, None, target_box, "code_type", code_type,
1391
- "box_normalized", box_normalized, "axis", axis, "variance",
1392
- prior_box_var)
1393
- else:
1394
- raise TypeError(
1395
- "Input variance of box_coder must be Variable or list")
1396
- return output_box
1397
- else:
1398
- helper = LayerHelper("box_coder", **locals())
1399
-
1400
- output_box = helper.create_variable_for_type_inference(
1401
- dtype=prior_box.dtype)
1402
-
1403
- inputs = {"PriorBox": prior_box, "TargetBox": target_box}
1404
- attrs = {
1405
- "code_type": code_type,
1406
- "box_normalized": box_normalized,
1407
- "axis": axis
1408
- }
1409
- if isinstance(prior_box_var, Variable):
1410
- inputs['PriorBoxVar'] = prior_box_var
1411
- elif isinstance(prior_box_var, list):
1412
- attrs['variance'] = prior_box_var
1413
- else:
1414
- raise TypeError(
1415
- "Input variance of box_coder must be Variable or list")
1416
- helper.append_op(
1417
- type="box_coder",
1418
- inputs=inputs,
1419
- attrs=attrs,
1420
- outputs={"OutputBox": output_box})
1421
- return output_box
1422
-
1423
-
1424
- @paddle.jit.not_to_static
1425
- def generate_proposals(scores,
1426
- bbox_deltas,
1427
- im_shape,
1428
- anchors,
1429
- variances,
1430
- pre_nms_top_n=6000,
1431
- post_nms_top_n=1000,
1432
- nms_thresh=0.5,
1433
- min_size=0.1,
1434
- eta=1.0,
1435
- pixel_offset=False,
1436
- return_rois_num=False,
1437
- name=None):
1438
- """
1439
- **Generate proposal Faster-RCNN**
1440
- This operation proposes RoIs according to each box with their
1441
- probability to be a foreground object and
1442
- the box can be calculated by anchors. Bbox_deltais and scores
1443
- to be an object are the output of RPN. Final proposals
1444
- could be used to train detection net.
1445
- For generating proposals, this operation performs following steps:
1446
- 1. Transposes and resizes scores and bbox_deltas in size of
1447
- (H*W*A, 1) and (H*W*A, 4)
1448
- 2. Calculate box locations as proposals candidates.
1449
- 3. Clip boxes to image
1450
- 4. Remove predicted boxes with small area.
1451
- 5. Apply NMS to get final proposals as output.
1452
- Args:
1453
- scores(Tensor): A 4-D Tensor with shape [N, A, H, W] represents
1454
- the probability for each box to be an object.
1455
- N is batch size, A is number of anchors, H and W are height and
1456
- width of the feature map. The data type must be float32.
1457
- bbox_deltas(Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
1458
- represents the difference between predicted box location and
1459
- anchor location. The data type must be float32.
1460
- im_shape(Tensor): A 2-D Tensor with shape [N, 2] represents H, W, the
1461
- origin image size or input size. The data type can be float32 or
1462
- float64.
1463
- anchors(Tensor): A 4-D Tensor represents the anchors with a layout
1464
- of [H, W, A, 4]. H and W are height and width of the feature map,
1465
- num_anchors is the box count of each position. Each anchor is
1466
- in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
1467
- variances(Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
1468
- [H, W, num_priors, 4]. Each variance is in
1469
- (xcenter, ycenter, w, h) format. The data type must be float32.
1470
- pre_nms_top_n(float): Number of total bboxes to be kept per
1471
- image before NMS. The data type must be float32. `6000` by default.
1472
- post_nms_top_n(float): Number of total bboxes to be kept per
1473
- image after NMS. The data type must be float32. `1000` by default.
1474
- nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
1475
- min_size(float): Remove predicted boxes with either height or
1476
- width < min_size. The data type must be float32. `0.1` by default.
1477
- eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
1478
- `adaptive_threshold = adaptive_threshold * eta` in each iteration.
1479
- return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
1480
- num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
1481
- the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model.
1482
- 'False' by default.
1483
- name(str, optional): For detailed information, please refer
1484
- to :ref:`api_guide_Name`. Usually name is no need to set and
1485
- None by default.
1486
-
1487
- Returns:
1488
- tuple:
1489
- A tuple with format ``(rpn_rois, rpn_roi_probs)``.
1490
- - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
1491
- - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
1492
-
1493
- Examples:
1494
- .. code-block:: python
1495
-
1496
- import paddle
1497
- from paddlex.ppdet.modeling import ops
1498
- paddle.enable_static()
1499
- scores = paddle.static.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
1500
- bbox_deltas = paddle.static.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
1501
- im_shape = paddle.static.data(name='im_shape', shape=[None, 2], dtype='float32')
1502
- anchors = paddle.static.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
1503
- variances = paddle.static.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
1504
- rois, roi_probs = ops.generate_proposals(scores, bbox_deltas,
1505
- im_shape, anchors, variances)
1506
- """
1507
- if in_dygraph_mode():
1508
- assert return_rois_num, "return_rois_num should be True in dygraph mode."
1509
- attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN',
1510
- post_nms_top_n, 'nms_thresh', nms_thresh, 'min_size',
1511
- min_size, 'eta', eta, 'pixel_offset', pixel_offset)
1512
- rpn_rois, rpn_roi_probs, rpn_rois_num = core.ops.generate_proposals_v2(
1513
- scores, bbox_deltas, im_shape, anchors, variances, *attrs)
1514
- return rpn_rois, rpn_roi_probs, rpn_rois_num
1515
-
1516
- else:
1517
- helper = LayerHelper('generate_proposals_v2', **locals())
1518
-
1519
- check_variable_and_dtype(scores, 'scores', ['float32'],
1520
- 'generate_proposals_v2')
1521
- check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
1522
- 'generate_proposals_v2')
1523
- check_variable_and_dtype(im_shape, 'im_shape', ['float32', 'float64'],
1524
- 'generate_proposals_v2')
1525
- check_variable_and_dtype(anchors, 'anchors', ['float32'],
1526
- 'generate_proposals_v2')
1527
- check_variable_and_dtype(variances, 'variances', ['float32'],
1528
- 'generate_proposals_v2')
1529
-
1530
- rpn_rois = helper.create_variable_for_type_inference(
1531
- dtype=bbox_deltas.dtype)
1532
- rpn_roi_probs = helper.create_variable_for_type_inference(
1533
- dtype=scores.dtype)
1534
- outputs = {
1535
- 'RpnRois': rpn_rois,
1536
- 'RpnRoiProbs': rpn_roi_probs,
1537
- }
1538
- if return_rois_num:
1539
- rpn_rois_num = helper.create_variable_for_type_inference(
1540
- dtype='int32')
1541
- rpn_rois_num.stop_gradient = True
1542
- outputs['RpnRoisNum'] = rpn_rois_num
1543
-
1544
- helper.append_op(
1545
- type="generate_proposals_v2",
1546
- inputs={
1547
- 'Scores': scores,
1548
- 'BboxDeltas': bbox_deltas,
1549
- 'ImShape': im_shape,
1550
- 'Anchors': anchors,
1551
- 'Variances': variances
1552
- },
1553
- attrs={
1554
- 'pre_nms_topN': pre_nms_top_n,
1555
- 'post_nms_topN': post_nms_top_n,
1556
- 'nms_thresh': nms_thresh,
1557
- 'min_size': min_size,
1558
- 'eta': eta,
1559
- 'pixel_offset': pixel_offset
1560
- },
1561
- outputs=outputs)
1562
- rpn_rois.stop_gradient = True
1563
- rpn_roi_probs.stop_gradient = True
1564
-
1565
- return rpn_rois, rpn_roi_probs, rpn_rois_num
1566
-
1567
-
1568
- def sigmoid_cross_entropy_with_logits(input,
1569
- label,
1570
- ignore_index=-100,
1571
- normalize=False):
1572
- output = F.binary_cross_entropy_with_logits(input, label, reduction='none')
1573
- mask_tensor = paddle.cast(label != ignore_index, 'float32')
1574
- output = paddle.multiply(output, mask_tensor)
1575
- if normalize:
1576
- sum_valid_mask = paddle.sum(mask_tensor)
1577
- output = output / sum_valid_mask
1578
- return output
1579
-
1580
-
1581
- def smooth_l1(input,
1582
- label,
1583
- inside_weight=None,
1584
- outside_weight=None,
1585
- sigma=None):
1586
- input_new = paddle.multiply(input, inside_weight)
1587
- label_new = paddle.multiply(label, inside_weight)
1588
- delta = 1 / (sigma * sigma)
1589
- out = F.smooth_l1_loss(input_new, label_new, reduction='none', delta=delta)
1590
- out = paddle.multiply(out, outside_weight)
1591
- out = out / delta
1592
- out = paddle.reshape(out, shape=[out.shape[0], -1])
1593
- out = paddle.sum(out, axis=1)
1594
- return out
1595
-
1596
-
1597
- def channel_shuffle(x, groups):
1598
- batch_size, num_channels, height, width = x.shape[0:4]
1599
- assert num_channels % groups == 0, 'num_channels should be divisible by groups'
1600
- channels_per_group = num_channels // groups
1601
- x = paddle.reshape(
1602
- x=x, shape=[batch_size, groups, channels_per_group, height, width])
1603
- x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
1604
- x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
1605
- return x
1606
-
1607
-
1608
- def get_static_shape(tensor):
1609
- shape = paddle.shape(tensor)
1610
- shape.stop_gradient = True
1611
- return shape