paddlex 2.1.0__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1340) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -19
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/deploy/__init__.py +0 -1
  649. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  650. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  651. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  652. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  653. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  654. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  655. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  656. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  657. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  658. PaddleClas/deploy/python/__init__.py +0 -0
  659. PaddleClas/deploy/python/build_gallery.py +0 -214
  660. PaddleClas/deploy/python/det_preprocess.py +0 -205
  661. PaddleClas/deploy/python/postprocess.py +0 -161
  662. PaddleClas/deploy/python/predict_cls.py +0 -142
  663. PaddleClas/deploy/python/predict_det.py +0 -158
  664. PaddleClas/deploy/python/predict_rec.py +0 -138
  665. PaddleClas/deploy/python/predict_system.py +0 -144
  666. PaddleClas/deploy/python/preprocess.py +0 -337
  667. PaddleClas/deploy/utils/__init__.py +0 -5
  668. PaddleClas/deploy/utils/config.py +0 -197
  669. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  670. PaddleClas/deploy/utils/encode_decode.py +0 -31
  671. PaddleClas/deploy/utils/get_image_list.py +0 -49
  672. PaddleClas/deploy/utils/logger.py +0 -120
  673. PaddleClas/deploy/utils/predictor.py +0 -71
  674. PaddleClas/deploy/vector_search/__init__.py +0 -1
  675. PaddleClas/deploy/vector_search/interface.py +0 -272
  676. PaddleClas/deploy/vector_search/test.py +0 -34
  677. PaddleClas/hubconf.py +0 -788
  678. PaddleClas/paddleclas.py +0 -552
  679. PaddleClas/ppcls/__init__.py +0 -20
  680. PaddleClas/ppcls/arch/__init__.py +0 -127
  681. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  682. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  683. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  684. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  685. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  686. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  687. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  688. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  689. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  690. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  691. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  692. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  693. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  694. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  695. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  696. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  697. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  698. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  699. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  700. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  701. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  702. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  703. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  704. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  705. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  706. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  707. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  708. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  709. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  710. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  711. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  712. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  713. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  714. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  715. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  716. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  717. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  718. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  719. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  720. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  721. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  722. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  723. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  724. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  725. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  726. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  727. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  728. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  729. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  730. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  731. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  732. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  733. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  734. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  735. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  736. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  737. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  738. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  739. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  740. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  741. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  742. PaddleClas/ppcls/arch/utils.py +0 -53
  743. PaddleClas/ppcls/data/__init__.py +0 -144
  744. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  745. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  746. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  747. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  748. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  749. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  750. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  751. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  752. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  753. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  754. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  755. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  756. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  757. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  758. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  759. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  760. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  761. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  762. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  763. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  764. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  765. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  766. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  767. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  768. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  769. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  770. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  771. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  772. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  773. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  774. PaddleClas/ppcls/engine/__init__.py +0 -0
  775. PaddleClas/ppcls/engine/engine.py +0 -436
  776. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  777. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  778. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  779. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  780. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  781. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  782. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  783. PaddleClas/ppcls/engine/train/train.py +0 -79
  784. PaddleClas/ppcls/engine/train/utils.py +0 -72
  785. PaddleClas/ppcls/loss/__init__.py +0 -65
  786. PaddleClas/ppcls/loss/celoss.py +0 -67
  787. PaddleClas/ppcls/loss/centerloss.py +0 -54
  788. PaddleClas/ppcls/loss/comfunc.py +0 -45
  789. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  790. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  791. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  792. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  793. PaddleClas/ppcls/loss/emlloss.py +0 -97
  794. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  795. PaddleClas/ppcls/loss/msmloss.py +0 -78
  796. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  797. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  798. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  799. PaddleClas/ppcls/loss/supconloss.py +0 -108
  800. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  801. PaddleClas/ppcls/loss/triplet.py +0 -137
  802. PaddleClas/ppcls/metric/__init__.py +0 -51
  803. PaddleClas/ppcls/metric/metrics.py +0 -308
  804. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  805. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  806. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  807. PaddleClas/ppcls/utils/__init__.py +0 -27
  808. PaddleClas/ppcls/utils/check.py +0 -151
  809. PaddleClas/ppcls/utils/config.py +0 -210
  810. PaddleClas/ppcls/utils/download.py +0 -319
  811. PaddleClas/ppcls/utils/ema.py +0 -63
  812. PaddleClas/ppcls/utils/logger.py +0 -137
  813. PaddleClas/ppcls/utils/metrics.py +0 -107
  814. PaddleClas/ppcls/utils/misc.py +0 -63
  815. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  816. PaddleClas/ppcls/utils/profiler.py +0 -111
  817. PaddleClas/ppcls/utils/save_load.py +0 -136
  818. PaddleClas/setup.py +0 -58
  819. PaddleClas/tools/__init__.py +0 -15
  820. PaddleClas/tools/eval.py +0 -31
  821. PaddleClas/tools/export_model.py +0 -34
  822. PaddleClas/tools/infer.py +0 -31
  823. PaddleClas/tools/train.py +0 -32
  824. paddlex/cls.py +0 -82
  825. paddlex/command.py +0 -215
  826. paddlex/cv/__init__.py +0 -17
  827. paddlex/cv/datasets/__init__.py +0 -18
  828. paddlex/cv/datasets/coco.py +0 -208
  829. paddlex/cv/datasets/imagenet.py +0 -88
  830. paddlex/cv/datasets/seg_dataset.py +0 -91
  831. paddlex/cv/datasets/voc.py +0 -445
  832. paddlex/cv/models/__init__.py +0 -18
  833. paddlex/cv/models/base.py +0 -631
  834. paddlex/cv/models/classifier.py +0 -989
  835. paddlex/cv/models/detector.py +0 -2292
  836. paddlex/cv/models/load_model.py +0 -148
  837. paddlex/cv/models/segmenter.py +0 -768
  838. paddlex/cv/models/slim/__init__.py +0 -13
  839. paddlex/cv/models/slim/prune.py +0 -55
  840. paddlex/cv/models/utils/__init__.py +0 -13
  841. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  842. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  843. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  844. paddlex/cv/models/utils/infer_nets.py +0 -45
  845. paddlex/cv/models/utils/seg_metrics.py +0 -62
  846. paddlex/cv/models/utils/visualize.py +0 -399
  847. paddlex/cv/transforms/__init__.py +0 -46
  848. paddlex/cv/transforms/batch_operators.py +0 -286
  849. paddlex/cv/transforms/box_utils.py +0 -41
  850. paddlex/cv/transforms/functions.py +0 -193
  851. paddlex/cv/transforms/operators.py +0 -1402
  852. paddlex/deploy.py +0 -268
  853. paddlex/det.py +0 -49
  854. paddlex/paddleseg/__init__.py +0 -17
  855. paddlex/paddleseg/core/__init__.py +0 -20
  856. paddlex/paddleseg/core/infer.py +0 -289
  857. paddlex/paddleseg/core/predict.py +0 -145
  858. paddlex/paddleseg/core/train.py +0 -258
  859. paddlex/paddleseg/core/val.py +0 -172
  860. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  861. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  862. paddlex/paddleseg/cvlibs/config.py +0 -359
  863. paddlex/paddleseg/cvlibs/manager.py +0 -142
  864. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  865. paddlex/paddleseg/datasets/__init__.py +0 -21
  866. paddlex/paddleseg/datasets/ade.py +0 -112
  867. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  868. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  869. paddlex/paddleseg/datasets/dataset.py +0 -164
  870. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  871. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  872. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  873. paddlex/paddleseg/datasets/voc.py +0 -113
  874. paddlex/paddleseg/models/__init__.py +0 -39
  875. paddlex/paddleseg/models/ann.py +0 -436
  876. paddlex/paddleseg/models/attention_unet.py +0 -189
  877. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  878. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  879. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  880. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  881. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  882. paddlex/paddleseg/models/bisenet.py +0 -311
  883. paddlex/paddleseg/models/danet.py +0 -220
  884. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  885. paddlex/paddleseg/models/deeplab.py +0 -258
  886. paddlex/paddleseg/models/dnlnet.py +0 -231
  887. paddlex/paddleseg/models/emanet.py +0 -219
  888. paddlex/paddleseg/models/fast_scnn.py +0 -318
  889. paddlex/paddleseg/models/fcn.py +0 -135
  890. paddlex/paddleseg/models/gcnet.py +0 -223
  891. paddlex/paddleseg/models/gscnn.py +0 -357
  892. paddlex/paddleseg/models/hardnet.py +0 -309
  893. paddlex/paddleseg/models/isanet.py +0 -202
  894. paddlex/paddleseg/models/layers/__init__.py +0 -19
  895. paddlex/paddleseg/models/layers/activation.py +0 -73
  896. paddlex/paddleseg/models/layers/attention.py +0 -146
  897. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  898. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  899. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  900. paddlex/paddleseg/models/losses/__init__.py +0 -27
  901. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  902. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  903. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  904. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  905. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  906. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  907. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  908. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  909. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  910. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  911. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  912. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  913. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  914. paddlex/paddleseg/models/ocrnet.py +0 -248
  915. paddlex/paddleseg/models/pspnet.py +0 -147
  916. paddlex/paddleseg/models/sfnet.py +0 -236
  917. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  918. paddlex/paddleseg/models/u2net.py +0 -574
  919. paddlex/paddleseg/models/unet.py +0 -155
  920. paddlex/paddleseg/models/unet_3plus.py +0 -316
  921. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  922. paddlex/paddleseg/transforms/__init__.py +0 -16
  923. paddlex/paddleseg/transforms/functional.py +0 -161
  924. paddlex/paddleseg/transforms/transforms.py +0 -937
  925. paddlex/paddleseg/utils/__init__.py +0 -22
  926. paddlex/paddleseg/utils/config_check.py +0 -60
  927. paddlex/paddleseg/utils/download.py +0 -163
  928. paddlex/paddleseg/utils/env/__init__.py +0 -16
  929. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  930. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  931. paddlex/paddleseg/utils/logger.py +0 -48
  932. paddlex/paddleseg/utils/metrics.py +0 -146
  933. paddlex/paddleseg/utils/progbar.py +0 -212
  934. paddlex/paddleseg/utils/timer.py +0 -53
  935. paddlex/paddleseg/utils/utils.py +0 -120
  936. paddlex/paddleseg/utils/visualize.py +0 -90
  937. paddlex/ppcls/__init__.py +0 -20
  938. paddlex/ppcls/arch/__init__.py +0 -127
  939. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  940. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  941. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  942. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  943. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  944. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  945. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  946. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  947. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  948. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  949. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  950. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  951. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  952. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  953. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  954. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  955. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  956. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  957. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  958. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  959. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  960. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  961. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  962. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  963. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  964. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  965. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  966. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  967. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  968. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  969. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  970. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  971. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  972. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  973. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  974. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  975. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  976. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  977. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  978. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  979. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  980. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  981. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  982. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  983. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  984. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  985. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  986. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  987. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  988. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  989. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  990. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  991. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  992. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  993. paddlex/ppcls/arch/gears/__init__.py +0 -32
  994. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  995. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  996. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  997. paddlex/ppcls/arch/gears/fc.py +0 -35
  998. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  999. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1000. paddlex/ppcls/arch/utils.py +0 -53
  1001. paddlex/ppcls/data/__init__.py +0 -144
  1002. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1003. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1004. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1005. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1006. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1007. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1008. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1009. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1010. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1011. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1012. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1013. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1014. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1015. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1016. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1017. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1018. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1019. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1020. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1021. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1022. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1023. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1024. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1025. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1026. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1027. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1028. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1029. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1030. paddlex/ppcls/data/utils/__init__.py +0 -13
  1031. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1032. paddlex/ppcls/engine/__init__.py +0 -0
  1033. paddlex/ppcls/engine/engine.py +0 -436
  1034. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1035. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1036. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1037. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1038. paddlex/ppcls/engine/slim/prune.py +0 -66
  1039. paddlex/ppcls/engine/slim/quant.py +0 -55
  1040. paddlex/ppcls/engine/train/__init__.py +0 -14
  1041. paddlex/ppcls/engine/train/train.py +0 -79
  1042. paddlex/ppcls/engine/train/utils.py +0 -72
  1043. paddlex/ppcls/loss/__init__.py +0 -65
  1044. paddlex/ppcls/loss/celoss.py +0 -67
  1045. paddlex/ppcls/loss/centerloss.py +0 -54
  1046. paddlex/ppcls/loss/comfunc.py +0 -45
  1047. paddlex/ppcls/loss/deephashloss.py +0 -96
  1048. paddlex/ppcls/loss/distanceloss.py +0 -43
  1049. paddlex/ppcls/loss/distillationloss.py +0 -141
  1050. paddlex/ppcls/loss/dmlloss.py +0 -46
  1051. paddlex/ppcls/loss/emlloss.py +0 -97
  1052. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1053. paddlex/ppcls/loss/msmloss.py +0 -78
  1054. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1055. paddlex/ppcls/loss/npairsloss.py +0 -38
  1056. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1057. paddlex/ppcls/loss/supconloss.py +0 -108
  1058. paddlex/ppcls/loss/trihardloss.py +0 -82
  1059. paddlex/ppcls/loss/triplet.py +0 -137
  1060. paddlex/ppcls/metric/__init__.py +0 -51
  1061. paddlex/ppcls/metric/metrics.py +0 -308
  1062. paddlex/ppcls/optimizer/__init__.py +0 -72
  1063. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1064. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1065. paddlex/ppcls/utils/__init__.py +0 -27
  1066. paddlex/ppcls/utils/check.py +0 -151
  1067. paddlex/ppcls/utils/config.py +0 -210
  1068. paddlex/ppcls/utils/download.py +0 -319
  1069. paddlex/ppcls/utils/ema.py +0 -63
  1070. paddlex/ppcls/utils/logger.py +0 -137
  1071. paddlex/ppcls/utils/metrics.py +0 -112
  1072. paddlex/ppcls/utils/misc.py +0 -63
  1073. paddlex/ppcls/utils/model_zoo.py +0 -213
  1074. paddlex/ppcls/utils/profiler.py +0 -111
  1075. paddlex/ppcls/utils/save_load.py +0 -136
  1076. paddlex/ppdet/__init__.py +0 -16
  1077. paddlex/ppdet/core/__init__.py +0 -15
  1078. paddlex/ppdet/core/config/__init__.py +0 -13
  1079. paddlex/ppdet/core/config/schema.py +0 -248
  1080. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1081. paddlex/ppdet/core/workspace.py +0 -278
  1082. paddlex/ppdet/data/__init__.py +0 -21
  1083. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1084. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1085. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1086. paddlex/ppdet/data/reader.py +0 -302
  1087. paddlex/ppdet/data/shm_utils.py +0 -67
  1088. paddlex/ppdet/data/source/__init__.py +0 -29
  1089. paddlex/ppdet/data/source/category.py +0 -904
  1090. paddlex/ppdet/data/source/coco.py +0 -251
  1091. paddlex/ppdet/data/source/dataset.py +0 -197
  1092. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1093. paddlex/ppdet/data/source/mot.py +0 -636
  1094. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1095. paddlex/ppdet/data/source/voc.py +0 -231
  1096. paddlex/ppdet/data/source/widerface.py +0 -180
  1097. paddlex/ppdet/data/transform/__init__.py +0 -28
  1098. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1099. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1100. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1101. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1102. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1103. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1104. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1105. paddlex/ppdet/data/transform/operators.py +0 -3025
  1106. paddlex/ppdet/engine/__init__.py +0 -30
  1107. paddlex/ppdet/engine/callbacks.py +0 -340
  1108. paddlex/ppdet/engine/env.py +0 -50
  1109. paddlex/ppdet/engine/export_utils.py +0 -177
  1110. paddlex/ppdet/engine/tracker.py +0 -538
  1111. paddlex/ppdet/engine/trainer.py +0 -723
  1112. paddlex/ppdet/metrics/__init__.py +0 -29
  1113. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1114. paddlex/ppdet/metrics/json_results.py +0 -149
  1115. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1116. paddlex/ppdet/metrics/map_utils.py +0 -444
  1117. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1118. paddlex/ppdet/metrics/metrics.py +0 -434
  1119. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1120. paddlex/ppdet/metrics/munkres.py +0 -428
  1121. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1122. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1123. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1124. paddlex/ppdet/modeling/__init__.py +0 -45
  1125. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1126. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1127. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1128. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1129. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1130. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1131. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1132. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1133. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1134. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1135. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1136. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1137. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1138. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1139. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1140. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1141. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1142. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1143. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1144. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1145. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1146. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1147. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1148. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1149. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1150. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1151. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1152. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1153. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1154. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1155. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1156. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1157. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1158. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1159. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1160. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1161. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1162. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1163. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1164. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1165. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1166. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1167. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1168. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1169. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1170. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1171. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1172. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1173. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1174. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1175. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1176. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1177. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1178. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1179. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1180. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1181. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1182. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1183. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1184. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1185. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1186. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1187. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1188. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1189. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1190. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1191. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1192. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1193. paddlex/ppdet/modeling/initializer.py +0 -317
  1194. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1195. paddlex/ppdet/modeling/layers.py +0 -1430
  1196. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1197. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1198. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1199. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1200. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1201. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1202. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1203. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1204. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1205. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1206. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1207. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1208. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1209. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1210. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1211. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1212. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1213. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1214. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1215. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1216. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1217. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1218. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1219. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1220. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1221. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1222. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1223. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1224. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1225. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1226. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1227. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1228. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1229. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1230. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1231. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1232. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1233. paddlex/ppdet/modeling/ops.py +0 -1611
  1234. paddlex/ppdet/modeling/post_process.py +0 -731
  1235. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1236. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1237. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1238. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1239. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1240. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1241. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1242. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1243. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1244. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1245. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1246. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1247. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1248. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1249. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1250. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1251. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1252. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1253. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1254. paddlex/ppdet/optimizer.py +0 -335
  1255. paddlex/ppdet/slim/__init__.py +0 -82
  1256. paddlex/ppdet/slim/distill.py +0 -110
  1257. paddlex/ppdet/slim/prune.py +0 -85
  1258. paddlex/ppdet/slim/quant.py +0 -84
  1259. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1260. paddlex/ppdet/utils/__init__.py +0 -13
  1261. paddlex/ppdet/utils/check.py +0 -112
  1262. paddlex/ppdet/utils/checkpoint.py +0 -226
  1263. paddlex/ppdet/utils/cli.py +0 -151
  1264. paddlex/ppdet/utils/colormap.py +0 -58
  1265. paddlex/ppdet/utils/download.py +0 -558
  1266. paddlex/ppdet/utils/logger.py +0 -70
  1267. paddlex/ppdet/utils/profiler.py +0 -111
  1268. paddlex/ppdet/utils/stats.py +0 -94
  1269. paddlex/ppdet/utils/visualizer.py +0 -321
  1270. paddlex/ppdet/utils/voc_utils.py +0 -86
  1271. paddlex/seg.py +0 -41
  1272. paddlex/tools/__init__.py +0 -17
  1273. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1274. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1275. paddlex/tools/convert.py +0 -52
  1276. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1277. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1278. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1279. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1280. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1281. paddlex/tools/dataset_split/__init__.py +0 -23
  1282. paddlex/tools/dataset_split/coco_split.py +0 -69
  1283. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1284. paddlex/tools/dataset_split/seg_split.py +0 -96
  1285. paddlex/tools/dataset_split/utils.py +0 -75
  1286. paddlex/tools/dataset_split/voc_split.py +0 -91
  1287. paddlex/tools/split.py +0 -41
  1288. paddlex/utils/checkpoint.py +0 -492
  1289. paddlex/utils/env.py +0 -67
  1290. paddlex/utils/shm.py +0 -67
  1291. paddlex/utils/stats.py +0 -68
  1292. paddlex/utils/utils.py +0 -229
  1293. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1294. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1295. paddlex-2.1.0.dist-info/METADATA +0 -32
  1296. paddlex-2.1.0.dist-info/RECORD +0 -698
  1297. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1298. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1299. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1300. paddlex_restful/__init__.py +0 -15
  1301. paddlex_restful/command.py +0 -63
  1302. paddlex_restful/restful/__init__.py +0 -15
  1303. paddlex_restful/restful/app.py +0 -969
  1304. paddlex_restful/restful/dataset/__init__.py +0 -13
  1305. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1306. paddlex_restful/restful/dataset/dataset.py +0 -266
  1307. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1308. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1309. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1310. paddlex_restful/restful/dataset/operate.py +0 -155
  1311. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1312. paddlex_restful/restful/dataset/utils.py +0 -267
  1313. paddlex_restful/restful/demo.py +0 -202
  1314. paddlex_restful/restful/dir.py +0 -45
  1315. paddlex_restful/restful/model.py +0 -312
  1316. paddlex_restful/restful/project/__init__.py +0 -13
  1317. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1318. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1319. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1320. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1321. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1322. paddlex_restful/restful/project/operate.py +0 -931
  1323. paddlex_restful/restful/project/project.py +0 -143
  1324. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1325. paddlex_restful/restful/project/prune/classification.py +0 -32
  1326. paddlex_restful/restful/project/prune/detection.py +0 -48
  1327. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1328. paddlex_restful/restful/project/task.py +0 -884
  1329. paddlex_restful/restful/project/train/__init__.py +0 -13
  1330. paddlex_restful/restful/project/train/classification.py +0 -141
  1331. paddlex_restful/restful/project/train/detection.py +0 -263
  1332. paddlex_restful/restful/project/train/params.py +0 -432
  1333. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1334. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1335. paddlex_restful/restful/project/visualize.py +0 -244
  1336. paddlex_restful/restful/system.py +0 -102
  1337. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1338. paddlex_restful/restful/utils.py +0 -841
  1339. paddlex_restful/restful/workspace.py +0 -343
  1340. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,2292 +0,0 @@
1
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
-
17
- import collections
18
- import copy
19
- import os
20
- import os.path as osp
21
- import numpy as np
22
- import paddle
23
- from paddle.static import InputSpec
24
- import paddlex.ppdet as ppdet
25
- from paddlex.ppdet.modeling.proposal_generator.target_layer import BBoxAssigner, MaskAssigner
26
- import paddlex
27
- import paddlex.utils.logging as logging
28
- from paddlex.cv.transforms.operators import _NormalizeBox, _PadBox, _BboxXYXY2XYWH, Resize, Padding
29
- from paddlex.cv.transforms.batch_operators import BatchCompose, BatchRandomResize, BatchRandomResizeByShort, \
30
- _BatchPadding, _Gt2YoloTarget
31
- from paddlex.cv.transforms import arrange_transforms
32
- from .base import BaseModel
33
- from .utils.det_metrics import VOCMetric, COCOMetric
34
- from paddlex.ppdet.optimizer import ModelEMA
35
- from paddlex.utils.checkpoint import det_pretrain_weights_dict
36
-
37
- __all__ = [
38
- "YOLOv3", "FasterRCNN", "PPYOLO", "PPYOLOTiny", "PPYOLOv2", "MaskRCNN",
39
- "PicoDet"
40
- ]
41
-
42
-
43
- class BaseDetector(BaseModel):
44
- def __init__(self, model_name, num_classes=80, **params):
45
- self.init_params.update(locals())
46
- if 'with_net' in self.init_params:
47
- del self.init_params['with_net']
48
- super(BaseDetector, self).__init__('detector')
49
- if not hasattr(ppdet.modeling, model_name):
50
- raise Exception("ERROR: There's no model named {}.".format(
51
- model_name))
52
-
53
- self.model_name = model_name
54
- self.num_classes = num_classes
55
- self.labels = None
56
- if params.get('with_net', True):
57
- params.pop('with_net', None)
58
- self.net = self.build_net(**params)
59
-
60
- def build_net(self, **params):
61
- with paddle.utils.unique_name.guard():
62
- net = ppdet.modeling.__dict__[self.model_name](**params)
63
- return net
64
-
65
- def _fix_transforms_shape(self, image_shape):
66
- raise NotImplementedError("_fix_transforms_shape: not implemented!")
67
-
68
- def _define_input_spec(self, image_shape):
69
- input_spec = [{
70
- "image": InputSpec(
71
- shape=image_shape, name='image', dtype='float32'),
72
- "im_shape": InputSpec(
73
- shape=[image_shape[0], 2], name='im_shape', dtype='float32'),
74
- "scale_factor": InputSpec(
75
- shape=[image_shape[0], 2],
76
- name='scale_factor',
77
- dtype='float32')
78
- }]
79
- return input_spec
80
-
81
- def _check_image_shape(self, image_shape):
82
- if len(image_shape) == 2:
83
- image_shape = [1, 3] + image_shape
84
- if image_shape[-2] % 32 > 0 or image_shape[-1] % 32 > 0:
85
- raise Exception(
86
- "Height and width in fixed_input_shape must be a multiple of 32, but received {}.".
87
- format(image_shape[-2:]))
88
- return image_shape
89
-
90
- def _get_test_inputs(self, image_shape):
91
- if image_shape is not None:
92
- image_shape = self._check_image_shape(image_shape)
93
- self._fix_transforms_shape(image_shape[-2:])
94
- else:
95
- image_shape = [None, 3, -1, -1]
96
- self.fixed_input_shape = image_shape
97
-
98
- return self._define_input_spec(image_shape)
99
-
100
- def _get_backbone(self, backbone_name, **params):
101
- backbone = getattr(ppdet.modeling, backbone_name)(**params)
102
- return backbone
103
-
104
- def run(self, net, inputs, mode):
105
- net_out = net(inputs)
106
- if mode in ['train', 'eval']:
107
- outputs = net_out
108
- else:
109
- outputs = dict()
110
- for key in net_out:
111
- outputs[key] = net_out[key].numpy()
112
-
113
- return outputs
114
-
115
- def default_optimizer(self,
116
- parameters,
117
- learning_rate,
118
- warmup_steps,
119
- warmup_start_lr,
120
- lr_decay_epochs,
121
- lr_decay_gamma,
122
- num_steps_each_epoch,
123
- reg_coeff=1e-04,
124
- scheduler='Piecewise',
125
- num_epochs=None):
126
- if scheduler.lower() == 'piecewise':
127
- if warmup_steps > 0 and warmup_steps > lr_decay_epochs[
128
- 0] * num_steps_each_epoch:
129
- logging.error(
130
- "In function train(), parameters must satisfy: "
131
- "warmup_steps <= lr_decay_epochs[0] * num_samples_in_train_dataset. "
132
- "See this doc for more information: "
133
- "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md",
134
- exit=False)
135
- logging.error(
136
- "Either `warmup_steps` be less than {} or lr_decay_epochs[0] be greater than {} "
137
- "must be satisfied, please modify 'warmup_steps' or 'lr_decay_epochs' in train function".
138
- format(lr_decay_epochs[0] * num_steps_each_epoch,
139
- warmup_steps // num_steps_each_epoch),
140
- exit=True)
141
- boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
142
- values = [(lr_decay_gamma**i) * learning_rate
143
- for i in range(len(lr_decay_epochs) + 1)]
144
- scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
145
- elif scheduler.lower() == 'cosine':
146
- if num_epochs is None:
147
- logging.error(
148
- "`num_epochs` must be set while using cosine annealing decay scheduler, but received {}".
149
- format(num_epochs),
150
- exit=False)
151
- if warmup_steps > 0 and warmup_steps > num_epochs * num_steps_each_epoch:
152
- logging.error(
153
- "In function train(), parameters must satisfy: "
154
- "warmup_steps <= num_epochs * num_samples_in_train_dataset. "
155
- "See this doc for more information: "
156
- "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md",
157
- exit=False)
158
- logging.error(
159
- "`warmup_steps` must be less than the total number of steps({}), "
160
- "please modify 'num_epochs' or 'warmup_steps' in train function".
161
- format(num_epochs * num_steps_each_epoch),
162
- exit=True)
163
- T_max = num_epochs * num_steps_each_epoch - warmup_steps
164
- scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
165
- learning_rate=learning_rate,
166
- T_max=T_max,
167
- eta_min=0.0,
168
- last_epoch=-1)
169
- else:
170
- logging.error(
171
- "Invalid learning rate scheduler: {}!".format(scheduler),
172
- exit=True)
173
-
174
- if warmup_steps > 0:
175
- scheduler = paddle.optimizer.lr.LinearWarmup(
176
- learning_rate=scheduler,
177
- warmup_steps=warmup_steps,
178
- start_lr=warmup_start_lr,
179
- end_lr=learning_rate)
180
- optimizer = paddle.optimizer.Momentum(
181
- scheduler,
182
- momentum=.9,
183
- weight_decay=paddle.regularizer.L2Decay(coeff=reg_coeff),
184
- parameters=parameters)
185
- return optimizer
186
-
187
- def train(self,
188
- num_epochs,
189
- train_dataset,
190
- train_batch_size=64,
191
- eval_dataset=None,
192
- optimizer=None,
193
- save_interval_epochs=1,
194
- log_interval_steps=10,
195
- save_dir='output',
196
- pretrain_weights='IMAGENET',
197
- learning_rate=.001,
198
- warmup_steps=0,
199
- warmup_start_lr=0.0,
200
- lr_decay_epochs=(216, 243),
201
- lr_decay_gamma=0.1,
202
- metric=None,
203
- use_ema=False,
204
- early_stop=False,
205
- early_stop_patience=5,
206
- use_vdl=True,
207
- resume_checkpoint=None):
208
- """
209
- Train the model.
210
- Args:
211
- num_epochs(int): The number of epochs.
212
- train_dataset(paddlex.dataset): Training dataset.
213
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
214
- eval_dataset(paddlex.dataset, optional):
215
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
216
- optimizer(paddle.optimizer.Optimizer or None, optional):
217
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
218
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
219
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
220
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
221
- pretrain_weights(str or None, optional):
222
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
223
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
224
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
225
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
226
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
227
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
228
- metric({'VOC', 'COCO', None}, optional):
229
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
230
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
231
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
232
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
233
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
234
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
235
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
236
- `pretrain_weights` can be set simultaneously. Defaults to None.
237
- """
238
- if self.status == 'Infer':
239
- logging.error(
240
- "Exported inference model does not support training.",
241
- exit=True)
242
- if pretrain_weights is not None and resume_checkpoint is not None:
243
- logging.error(
244
- "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
245
- exit=True)
246
- if train_dataset.__class__.__name__ == 'VOCDetection':
247
- train_dataset.data_fields = {
248
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
249
- 'difficult'
250
- }
251
- elif train_dataset.__class__.__name__ == 'CocoDetection':
252
- if self.__class__.__name__ == 'MaskRCNN':
253
- train_dataset.data_fields = {
254
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
255
- 'gt_poly', 'is_crowd'
256
- }
257
- else:
258
- train_dataset.data_fields = {
259
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
260
- 'is_crowd'
261
- }
262
-
263
- if metric is None:
264
- if eval_dataset.__class__.__name__ == 'VOCDetection':
265
- self.metric = 'voc'
266
- elif eval_dataset.__class__.__name__ == 'CocoDetection':
267
- self.metric = 'coco'
268
- else:
269
- assert metric.lower() in ['coco', 'voc'], \
270
- "Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
271
- self.metric = metric.lower()
272
-
273
- self.labels = train_dataset.labels
274
- self.num_max_boxes = train_dataset.num_max_boxes
275
- train_dataset.batch_transforms = self._compose_batch_transform(
276
- train_dataset.transforms, mode='train')
277
-
278
- # build optimizer if not defined
279
- if optimizer is None:
280
- num_steps_each_epoch = len(train_dataset) // train_batch_size
281
- self.optimizer = self.default_optimizer(
282
- parameters=self.net.parameters(),
283
- learning_rate=learning_rate,
284
- warmup_steps=warmup_steps,
285
- warmup_start_lr=warmup_start_lr,
286
- lr_decay_epochs=lr_decay_epochs,
287
- lr_decay_gamma=lr_decay_gamma,
288
- num_steps_each_epoch=num_steps_each_epoch)
289
- else:
290
- self.optimizer = optimizer
291
-
292
- # initiate weights
293
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
294
- if pretrain_weights not in det_pretrain_weights_dict['_'.join(
295
- [self.model_name, self.backbone_name])]:
296
- logging.warning(
297
- "Path of pretrain_weights('{}') does not exist!".format(
298
- pretrain_weights))
299
- pretrain_weights = det_pretrain_weights_dict['_'.join(
300
- [self.model_name, self.backbone_name])][0]
301
- logging.warning("Pretrain_weights is forcibly set to '{}'. "
302
- "If you don't want to use pretrain weights, "
303
- "set pretrain_weights to be None.".format(
304
- pretrain_weights))
305
- elif pretrain_weights is not None and osp.exists(pretrain_weights):
306
- if osp.splitext(pretrain_weights)[-1] != '.pdparams':
307
- logging.error(
308
- "Invalid pretrain weights. Please specify a '.pdparams' file.",
309
- exit=True)
310
- pretrained_dir = osp.join(save_dir, 'pretrain')
311
- self.net_initialize(
312
- pretrain_weights=pretrain_weights,
313
- save_dir=pretrained_dir,
314
- resume_checkpoint=resume_checkpoint,
315
- is_backbone_weights=(pretrain_weights == 'IMAGENET' and
316
- 'ESNet_' in self.backbone_name))
317
-
318
- if use_ema:
319
- ema = ModelEMA(model=self.net, decay=.9998, use_thres_step=True)
320
- else:
321
- ema = None
322
- # start train loop
323
- self.train_loop(
324
- num_epochs=num_epochs,
325
- train_dataset=train_dataset,
326
- train_batch_size=train_batch_size,
327
- eval_dataset=eval_dataset,
328
- save_interval_epochs=save_interval_epochs,
329
- log_interval_steps=log_interval_steps,
330
- save_dir=save_dir,
331
- ema=ema,
332
- early_stop=early_stop,
333
- early_stop_patience=early_stop_patience,
334
- use_vdl=use_vdl)
335
-
336
- def quant_aware_train(self,
337
- num_epochs,
338
- train_dataset,
339
- train_batch_size=64,
340
- eval_dataset=None,
341
- optimizer=None,
342
- save_interval_epochs=1,
343
- log_interval_steps=10,
344
- save_dir='output',
345
- learning_rate=.00001,
346
- warmup_steps=0,
347
- warmup_start_lr=0.0,
348
- lr_decay_epochs=(216, 243),
349
- lr_decay_gamma=0.1,
350
- metric=None,
351
- use_ema=False,
352
- early_stop=False,
353
- early_stop_patience=5,
354
- use_vdl=True,
355
- resume_checkpoint=None,
356
- quant_config=None):
357
- """
358
- Quantization-aware training.
359
- Args:
360
- num_epochs(int): The number of epochs.
361
- train_dataset(paddlex.dataset): Training dataset.
362
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
363
- eval_dataset(paddlex.dataset, optional):
364
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
365
- optimizer(paddle.optimizer.Optimizer or None, optional):
366
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
367
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
368
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
369
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
370
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
371
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
372
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
373
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
374
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
375
- metric({'VOC', 'COCO', None}, optional):
376
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
377
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
378
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
379
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
380
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
381
- quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
382
- configuration will be used. Defaults to None.
383
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
384
- from. If None, no training checkpoint will be resumed. Defaults to None.
385
- """
386
- self._prepare_qat(quant_config)
387
- self.train(
388
- num_epochs=num_epochs,
389
- train_dataset=train_dataset,
390
- train_batch_size=train_batch_size,
391
- eval_dataset=eval_dataset,
392
- optimizer=optimizer,
393
- save_interval_epochs=save_interval_epochs,
394
- log_interval_steps=log_interval_steps,
395
- save_dir=save_dir,
396
- pretrain_weights=None,
397
- learning_rate=learning_rate,
398
- warmup_steps=warmup_steps,
399
- warmup_start_lr=warmup_start_lr,
400
- lr_decay_epochs=lr_decay_epochs,
401
- lr_decay_gamma=lr_decay_gamma,
402
- metric=metric,
403
- use_ema=use_ema,
404
- early_stop=early_stop,
405
- early_stop_patience=early_stop_patience,
406
- use_vdl=use_vdl,
407
- resume_checkpoint=resume_checkpoint)
408
-
409
- def evaluate(self,
410
- eval_dataset,
411
- batch_size=1,
412
- metric=None,
413
- return_details=False):
414
- """
415
- Evaluate the model.
416
- Args:
417
- eval_dataset(paddlex.dataset): Evaluation dataset.
418
- batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
419
- metric({'VOC', 'COCO', None}, optional):
420
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
421
- return_details(bool, optional): Whether to return evaluation details. Defaults to False.
422
- Returns:
423
- collections.OrderedDict with key-value pairs: {"mAP(0.50, 11point)":`mean average precision`}.
424
- """
425
-
426
- if metric is None:
427
- if not hasattr(self, 'metric'):
428
- if eval_dataset.__class__.__name__ == 'VOCDetection':
429
- self.metric = 'voc'
430
- elif eval_dataset.__class__.__name__ == 'CocoDetection':
431
- self.metric = 'coco'
432
- else:
433
- assert metric.lower() in ['coco', 'voc'], \
434
- "Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
435
- self.metric = metric.lower()
436
-
437
- if self.metric == 'voc':
438
- eval_dataset.data_fields = {
439
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
440
- 'difficult'
441
- }
442
- elif self.metric == 'coco':
443
- if self.__class__.__name__ == 'MaskRCNN':
444
- eval_dataset.data_fields = {
445
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
446
- 'gt_poly', 'is_crowd'
447
- }
448
- else:
449
- eval_dataset.data_fields = {
450
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
451
- 'is_crowd'
452
- }
453
- eval_dataset.batch_transforms = self._compose_batch_transform(
454
- eval_dataset.transforms, mode='eval')
455
- arrange_transforms(
456
- model_type=self.model_type,
457
- transforms=eval_dataset.transforms,
458
- mode='eval')
459
-
460
- self.net.eval()
461
- nranks = paddle.distributed.get_world_size()
462
- local_rank = paddle.distributed.get_rank()
463
- if nranks > 1:
464
- # Initialize parallel environment if not done.
465
- if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
466
- ):
467
- paddle.distributed.init_parallel_env()
468
-
469
- if batch_size > 1:
470
- logging.warning(
471
- "Detector only supports single card evaluation with batch_size=1 "
472
- "during evaluation, so batch_size is forcibly set to 1.")
473
- batch_size = 1
474
-
475
- if nranks < 2 or local_rank == 0:
476
- self.eval_data_loader = self.build_data_loader(
477
- eval_dataset, batch_size=batch_size, mode='eval')
478
- is_bbox_normalized = False
479
- if eval_dataset.batch_transforms is not None:
480
- is_bbox_normalized = any(
481
- isinstance(t, _NormalizeBox)
482
- for t in eval_dataset.batch_transforms.batch_transforms)
483
- if self.metric == 'voc':
484
- eval_metric = VOCMetric(
485
- labels=eval_dataset.labels,
486
- coco_gt=copy.deepcopy(eval_dataset.coco_gt),
487
- is_bbox_normalized=is_bbox_normalized,
488
- classwise=False)
489
- else:
490
- eval_metric = COCOMetric(
491
- coco_gt=copy.deepcopy(eval_dataset.coco_gt),
492
- classwise=False)
493
- scores = collections.OrderedDict()
494
- logging.info(
495
- "Start to evaluate(total_samples={}, total_steps={})...".
496
- format(eval_dataset.num_samples, eval_dataset.num_samples))
497
- with paddle.no_grad():
498
- for step, data in enumerate(self.eval_data_loader):
499
- outputs = self.run(self.net, data, 'eval')
500
- eval_metric.update(data, outputs)
501
- eval_metric.accumulate()
502
- self.eval_details = eval_metric.details
503
- scores.update(eval_metric.get())
504
- eval_metric.reset()
505
-
506
- if return_details:
507
- return scores, self.eval_details
508
- return scores
509
-
510
- def predict(self, img_file, transforms=None):
511
- """
512
- Do inference.
513
- Args:
514
- img_file(List[np.ndarray or str], str or np.ndarray):
515
- Image path or decoded image data in a BGR format, which also could constitute a list,
516
- meaning all images to be predicted as a mini-batch.
517
- transforms(paddlex.transforms.Compose or None, optional):
518
- Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
519
- Returns:
520
- If img_file is a string or np.array, the result is a list of dict with key-value pairs:
521
- {"category_id": `category_id`, "category": `category`, "bbox": `[x, y, w, h]`, "score": `score`}.
522
- If img_file is a list, the result is a list composed of dicts with the corresponding fields:
523
- category_id(int): the predicted category ID. 0 represents the first category in the dataset, and so on.
524
- category(str): category name
525
- bbox(list): bounding box in [x, y, w, h] format
526
- score(str): confidence
527
- mask(dict): Only for instance segmentation task. Mask of the object in RLE format
528
- """
529
- if transforms is None and not hasattr(self, 'test_transforms'):
530
- raise Exception("transforms need to be defined, now is None.")
531
- if transforms is None:
532
- transforms = self.test_transforms
533
- if isinstance(img_file, (str, np.ndarray)):
534
- images = [img_file]
535
- else:
536
- images = img_file
537
-
538
- batch_samples = self._preprocess(images, transforms)
539
- self.net.eval()
540
- outputs = self.run(self.net, batch_samples, 'test')
541
- prediction = self._postprocess(outputs)
542
-
543
- if isinstance(img_file, (str, np.ndarray)):
544
- prediction = prediction[0]
545
- return prediction
546
-
547
- def _preprocess(self, images, transforms, to_tensor=True):
548
- arrange_transforms(
549
- model_type=self.model_type, transforms=transforms, mode='test')
550
- batch_samples = list()
551
- for im in images:
552
- sample = {'image': im}
553
- batch_samples.append(transforms(sample))
554
- batch_transforms = self._compose_batch_transform(transforms, 'test')
555
- batch_samples = batch_transforms(batch_samples)
556
- if to_tensor:
557
- for k in batch_samples:
558
- batch_samples[k] = paddle.to_tensor(batch_samples[k])
559
-
560
- return batch_samples
561
-
562
- def _postprocess(self, batch_pred):
563
- infer_result = {}
564
- if 'bbox' in batch_pred:
565
- bboxes = batch_pred['bbox']
566
- bbox_nums = batch_pred['bbox_num']
567
- det_res = []
568
- k = 0
569
- for i in range(len(bbox_nums)):
570
- det_nums = bbox_nums[i]
571
- for j in range(det_nums):
572
- dt = bboxes[k]
573
- k = k + 1
574
- num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
575
- if int(num_id) < 0:
576
- continue
577
- category = self.labels[int(num_id)]
578
- w = xmax - xmin
579
- h = ymax - ymin
580
- bbox = [xmin, ymin, w, h]
581
- dt_res = {
582
- 'category_id': int(num_id),
583
- 'category': category,
584
- 'bbox': bbox,
585
- 'score': score
586
- }
587
- det_res.append(dt_res)
588
- infer_result['bbox'] = det_res
589
-
590
- if 'mask' in batch_pred:
591
- masks = batch_pred['mask']
592
- bboxes = batch_pred['bbox']
593
- mask_nums = batch_pred['bbox_num']
594
- seg_res = []
595
- k = 0
596
- for i in range(len(mask_nums)):
597
- det_nums = mask_nums[i]
598
- for j in range(det_nums):
599
- mask = masks[k].astype(np.uint8)
600
- score = float(bboxes[k][1])
601
- label = int(bboxes[k][0])
602
- k = k + 1
603
- if label == -1:
604
- continue
605
- category = self.labels[int(label)]
606
- sg_res = {
607
- 'category_id': int(label),
608
- 'category': category,
609
- 'mask': mask.astype('uint8'),
610
- 'score': score
611
- }
612
- seg_res.append(sg_res)
613
- infer_result['mask'] = seg_res
614
-
615
- bbox_num = batch_pred['bbox_num']
616
- results = []
617
- start = 0
618
- for num in bbox_num:
619
- end = start + num
620
- curr_res = infer_result['bbox'][start:end]
621
- if 'mask' in infer_result:
622
- mask_res = infer_result['mask'][start:end]
623
- for box, mask in zip(curr_res, mask_res):
624
- box.update(mask)
625
- results.append(curr_res)
626
- start = end
627
-
628
- return results
629
-
630
-
631
- class PicoDet(BaseDetector):
632
- def __init__(self,
633
- num_classes=80,
634
- backbone='ESNet_m',
635
- nms_score_threshold=.025,
636
- nms_topk=1000,
637
- nms_keep_topk=100,
638
- nms_iou_threshold=.6,
639
- **params):
640
- self.init_params = locals()
641
- if backbone not in {
642
- 'ESNet_s', 'ESNet_m', 'ESNet_l', 'LCNet', 'MobileNetV3',
643
- 'ResNet18_vd'
644
- }:
645
- raise ValueError(
646
- "backbone: {} is not supported. Please choose one of "
647
- "('ESNet_s', 'ESNet_m', 'ESNet_l', 'LCNet', 'MobileNetV3', 'ResNet18_vd')".
648
- format(backbone))
649
- self.backbone_name = backbone
650
- if params.get('with_net', True):
651
- if backbone == 'ESNet_s':
652
- backbone = self._get_backbone(
653
- 'ESNet',
654
- scale=.75,
655
- feature_maps=[4, 11, 14],
656
- act="hard_swish",
657
- channel_ratio=[
658
- 0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5,
659
- 0.5, 0.5, 0.5
660
- ])
661
- neck_out_channels = 96
662
- head_num_convs = 2
663
- elif backbone == 'ESNet_m':
664
- backbone = self._get_backbone(
665
- 'ESNet',
666
- scale=1.0,
667
- feature_maps=[4, 11, 14],
668
- act="hard_swish",
669
- channel_ratio=[
670
- 0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5,
671
- 0.625, 1.0, 0.625, 0.75
672
- ])
673
- neck_out_channels = 128
674
- head_num_convs = 4
675
- elif backbone == 'ESNet_l':
676
- backbone = self._get_backbone(
677
- 'ESNet',
678
- scale=1.25,
679
- feature_maps=[4, 11, 14],
680
- act="hard_swish",
681
- channel_ratio=[
682
- 0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5,
683
- 0.625, 1.0, 0.625, 0.75
684
- ])
685
- neck_out_channels = 160
686
- head_num_convs = 4
687
- elif backbone == 'LCNet':
688
- backbone = self._get_backbone(
689
- 'LCNet', scale=1.5, feature_maps=[3, 4, 5])
690
- neck_out_channels = 128
691
- head_num_convs = 4
692
- elif backbone == 'MobileNetV3':
693
- backbone = self._get_backbone(
694
- 'MobileNetV3',
695
- scale=1.0,
696
- with_extra_blocks=False,
697
- extra_block_filters=[],
698
- feature_maps=[7, 13, 16])
699
- neck_out_channels = 128
700
- head_num_convs = 4
701
- else:
702
- backbone = self._get_backbone(
703
- 'ResNet',
704
- depth=18,
705
- variant='d',
706
- return_idx=[1, 2, 3],
707
- freeze_at=-1,
708
- freeze_norm=False,
709
- norm_decay=0.)
710
- neck_out_channels = 128
711
- head_num_convs = 4
712
-
713
- neck = ppdet.modeling.CSPPAN(
714
- in_channels=[i.channels for i in backbone.out_shape],
715
- out_channels=neck_out_channels,
716
- num_features=4,
717
- num_csp_blocks=1,
718
- use_depthwise=True)
719
-
720
- head_conv_feat = ppdet.modeling.PicoFeat(
721
- feat_in=neck_out_channels,
722
- feat_out=neck_out_channels,
723
- num_fpn_stride=4,
724
- num_convs=head_num_convs,
725
- norm_type='bn',
726
- share_cls_reg=True, )
727
- loss_class = ppdet.modeling.VarifocalLoss(
728
- use_sigmoid=True, iou_weighted=True, loss_weight=1.0)
729
- loss_dfl = ppdet.modeling.DistributionFocalLoss(loss_weight=.25)
730
- loss_bbox = ppdet.modeling.GIoULoss(loss_weight=2.0)
731
- assigner = ppdet.modeling.SimOTAAssigner(
732
- candidate_topk=10, iou_weight=6, num_classes=num_classes)
733
- nms = ppdet.modeling.MultiClassNMS(
734
- nms_top_k=nms_topk,
735
- keep_top_k=nms_keep_topk,
736
- score_threshold=nms_score_threshold,
737
- nms_threshold=nms_iou_threshold)
738
- head = ppdet.modeling.PicoHead(
739
- conv_feat=head_conv_feat,
740
- num_classes=num_classes,
741
- fpn_stride=[8, 16, 32, 64],
742
- prior_prob=0.01,
743
- reg_max=7,
744
- cell_offset=.5,
745
- loss_class=loss_class,
746
- loss_dfl=loss_dfl,
747
- loss_bbox=loss_bbox,
748
- assigner=assigner,
749
- feat_in_chan=neck_out_channels,
750
- nms=nms)
751
- params.update({
752
- 'backbone': backbone,
753
- 'neck': neck,
754
- 'head': head,
755
- })
756
- super(PicoDet, self).__init__(
757
- model_name='PicoDet', num_classes=num_classes, **params)
758
-
759
- def _compose_batch_transform(self, transforms, mode='train'):
760
- default_batch_transforms = [_BatchPadding(pad_to_stride=32)]
761
- if mode == 'eval':
762
- collate_batch = True
763
- else:
764
- collate_batch = False
765
-
766
- custom_batch_transforms = []
767
- for i, op in enumerate(transforms.transforms):
768
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
769
- if mode != 'train':
770
- raise Exception(
771
- "{} cannot be present in the {} transforms. ".format(
772
- op.__class__.__name__, mode) +
773
- "Please check the {} transforms.".format(mode))
774
- custom_batch_transforms.insert(0, copy.deepcopy(op))
775
-
776
- batch_transforms = BatchCompose(
777
- custom_batch_transforms + default_batch_transforms,
778
- collate_batch=collate_batch)
779
-
780
- return batch_transforms
781
-
782
- def _fix_transforms_shape(self, image_shape):
783
- if getattr(self, 'test_transforms', None):
784
- has_resize_op = False
785
- resize_op_idx = -1
786
- normalize_op_idx = len(self.test_transforms.transforms)
787
- for idx, op in enumerate(self.test_transforms.transforms):
788
- name = op.__class__.__name__
789
- if name == 'Resize':
790
- has_resize_op = True
791
- resize_op_idx = idx
792
- if name == 'Normalize':
793
- normalize_op_idx = idx
794
-
795
- if not has_resize_op:
796
- self.test_transforms.transforms.insert(
797
- normalize_op_idx,
798
- Resize(
799
- target_size=image_shape, interp='CUBIC'))
800
- else:
801
- self.test_transforms.transforms[
802
- resize_op_idx].target_size = image_shape
803
-
804
- def _get_test_inputs(self, image_shape):
805
- if image_shape is not None:
806
- image_shape = self._check_image_shape(image_shape)
807
- self._fix_transforms_shape(image_shape[-2:])
808
- else:
809
- image_shape = [None, 3, 320, 320]
810
- if getattr(self, 'test_transforms', None):
811
- for idx, op in enumerate(self.test_transforms.transforms):
812
- name = op.__class__.__name__
813
- if name == 'Resize':
814
- image_shape = [None, 3] + list(
815
- self.test_transforms.transforms[idx].target_size)
816
- logging.warning(
817
- '[Important!!!] When exporting inference model for {}, '
818
- 'if fixed_input_shape is not set, it will be forcibly set to {}. '
819
- 'Please ensure image shape after transforms is {}, if not, '
820
- 'fixed_input_shape should be specified manually.'
821
- .format(self.__class__.__name__, image_shape, image_shape[1:]))
822
-
823
- self.fixed_input_shape = image_shape
824
- return self._define_input_spec(image_shape)
825
-
826
- def train(self,
827
- num_epochs,
828
- train_dataset,
829
- train_batch_size=64,
830
- eval_dataset=None,
831
- optimizer=None,
832
- save_interval_epochs=1,
833
- log_interval_steps=10,
834
- save_dir='output',
835
- pretrain_weights='IMAGENET',
836
- learning_rate=.001,
837
- warmup_steps=0,
838
- warmup_start_lr=0.0,
839
- lr_decay_epochs=(216, 243),
840
- lr_decay_gamma=0.1,
841
- metric=None,
842
- use_ema=False,
843
- early_stop=False,
844
- early_stop_patience=5,
845
- use_vdl=True,
846
- resume_checkpoint=None):
847
- """
848
- Train the model.
849
- Args:
850
- num_epochs(int): The number of epochs.
851
- train_dataset(paddlex.dataset): Training dataset.
852
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
853
- eval_dataset(paddlex.dataset, optional):
854
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
855
- optimizer(paddle.optimizer.Optimizer or None, optional):
856
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
857
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
858
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
859
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
860
- pretrain_weights(str or None, optional):
861
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
862
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
863
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
864
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
865
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
866
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
867
- metric({'VOC', 'COCO', None}, optional):
868
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
869
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
870
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
871
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
872
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
873
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
874
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
875
- `pretrain_weights` can be set simultaneously. Defaults to None.
876
- """
877
- if optimizer is None:
878
- num_steps_each_epoch = len(train_dataset) // train_batch_size
879
- optimizer = self.default_optimizer(
880
- parameters=self.net.parameters(),
881
- learning_rate=learning_rate,
882
- warmup_steps=warmup_steps,
883
- warmup_start_lr=warmup_start_lr,
884
- lr_decay_epochs=lr_decay_epochs,
885
- lr_decay_gamma=lr_decay_gamma,
886
- num_steps_each_epoch=num_steps_each_epoch,
887
- reg_coeff=4e-05,
888
- scheduler='Cosine',
889
- num_epochs=num_epochs)
890
- super(PicoDet, self).train(
891
- num_epochs=num_epochs,
892
- train_dataset=train_dataset,
893
- train_batch_size=train_batch_size,
894
- eval_dataset=eval_dataset,
895
- optimizer=optimizer,
896
- save_interval_epochs=save_interval_epochs,
897
- log_interval_steps=log_interval_steps,
898
- save_dir=save_dir,
899
- pretrain_weights=pretrain_weights,
900
- learning_rate=learning_rate,
901
- warmup_steps=warmup_steps,
902
- warmup_start_lr=warmup_start_lr,
903
- lr_decay_epochs=lr_decay_epochs,
904
- lr_decay_gamma=lr_decay_gamma,
905
- metric=metric,
906
- use_ema=use_ema,
907
- early_stop=early_stop,
908
- early_stop_patience=early_stop_patience,
909
- use_vdl=use_vdl,
910
- resume_checkpoint=resume_checkpoint)
911
-
912
-
913
- class YOLOv3(BaseDetector):
914
- def __init__(self,
915
- num_classes=80,
916
- backbone='MobileNetV1',
917
- anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
918
- [59, 119], [116, 90], [156, 198], [373, 326]],
919
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
920
- ignore_threshold=0.7,
921
- nms_score_threshold=0.01,
922
- nms_topk=1000,
923
- nms_keep_topk=100,
924
- nms_iou_threshold=0.45,
925
- label_smooth=False,
926
- **params):
927
- self.init_params = locals()
928
- if backbone not in {
929
- 'MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3',
930
- 'MobileNetV3_ssld', 'DarkNet53', 'ResNet50_vd_dcn', 'ResNet34'
931
- }:
932
- raise ValueError(
933
- "backbone: {} is not supported. Please choose one of "
934
- "('MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3', 'MobileNetV3_ssld', 'DarkNet53', "
935
- "'ResNet50_vd_dcn', 'ResNet34')".format(backbone))
936
-
937
- self.backbone_name = backbone
938
- if params.get('with_net', True):
939
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
940
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
941
- norm_type = 'sync_bn'
942
- else:
943
- norm_type = 'bn'
944
-
945
- if 'MobileNetV1' in backbone:
946
- norm_type = 'bn'
947
- backbone = self._get_backbone('MobileNet', norm_type=norm_type)
948
- elif 'MobileNetV3' in backbone:
949
- backbone = self._get_backbone(
950
- 'MobileNetV3',
951
- norm_type=norm_type,
952
- feature_maps=[7, 13, 16])
953
- elif backbone == 'ResNet50_vd_dcn':
954
- backbone = self._get_backbone(
955
- 'ResNet',
956
- norm_type=norm_type,
957
- variant='d',
958
- return_idx=[1, 2, 3],
959
- dcn_v2_stages=[3],
960
- freeze_at=-1,
961
- freeze_norm=False)
962
- elif backbone == 'ResNet34':
963
- backbone = self._get_backbone(
964
- 'ResNet',
965
- depth=34,
966
- norm_type=norm_type,
967
- return_idx=[1, 2, 3],
968
- freeze_at=-1,
969
- freeze_norm=False,
970
- norm_decay=0.)
971
- else:
972
- backbone = self._get_backbone('DarkNet', norm_type=norm_type)
973
-
974
- neck = ppdet.modeling.YOLOv3FPN(
975
- norm_type=norm_type,
976
- in_channels=[i.channels for i in backbone.out_shape])
977
- loss = ppdet.modeling.YOLOv3Loss(
978
- num_classes=num_classes,
979
- ignore_thresh=ignore_threshold,
980
- label_smooth=label_smooth)
981
- yolo_head = ppdet.modeling.YOLOv3Head(
982
- in_channels=[i.channels for i in neck.out_shape],
983
- anchors=anchors,
984
- anchor_masks=anchor_masks,
985
- num_classes=num_classes,
986
- loss=loss)
987
- post_process = ppdet.modeling.BBoxPostProcess(
988
- decode=ppdet.modeling.YOLOBox(num_classes=num_classes),
989
- nms=ppdet.modeling.MultiClassNMS(
990
- score_threshold=nms_score_threshold,
991
- nms_top_k=nms_topk,
992
- keep_top_k=nms_keep_topk,
993
- nms_threshold=nms_iou_threshold))
994
- params.update({
995
- 'backbone': backbone,
996
- 'neck': neck,
997
- 'yolo_head': yolo_head,
998
- 'post_process': post_process
999
- })
1000
- super(YOLOv3, self).__init__(
1001
- model_name='YOLOv3', num_classes=num_classes, **params)
1002
- self.anchors = anchors
1003
- self.anchor_masks = anchor_masks
1004
-
1005
- def _compose_batch_transform(self, transforms, mode='train'):
1006
- if mode == 'train':
1007
- default_batch_transforms = [
1008
- _BatchPadding(pad_to_stride=-1), _NormalizeBox(),
1009
- _PadBox(getattr(self, 'num_max_boxes', 50)), _BboxXYXY2XYWH(),
1010
- _Gt2YoloTarget(
1011
- anchor_masks=self.anchor_masks,
1012
- anchors=self.anchors,
1013
- downsample_ratios=getattr(self, 'downsample_ratios',
1014
- [32, 16, 8]),
1015
- num_classes=self.num_classes)
1016
- ]
1017
- else:
1018
- default_batch_transforms = [_BatchPadding(pad_to_stride=-1)]
1019
- if mode == 'eval' and self.metric == 'voc':
1020
- collate_batch = False
1021
- else:
1022
- collate_batch = True
1023
-
1024
- custom_batch_transforms = []
1025
- for i, op in enumerate(transforms.transforms):
1026
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
1027
- if mode != 'train':
1028
- raise Exception(
1029
- "{} cannot be present in the {} transforms. ".format(
1030
- op.__class__.__name__, mode) +
1031
- "Please check the {} transforms.".format(mode))
1032
- custom_batch_transforms.insert(0, copy.deepcopy(op))
1033
-
1034
- batch_transforms = BatchCompose(
1035
- custom_batch_transforms + default_batch_transforms,
1036
- collate_batch=collate_batch)
1037
-
1038
- return batch_transforms
1039
-
1040
- def _fix_transforms_shape(self, image_shape):
1041
- if getattr(self, 'test_transforms', None):
1042
- has_resize_op = False
1043
- resize_op_idx = -1
1044
- normalize_op_idx = len(self.test_transforms.transforms)
1045
- for idx, op in enumerate(self.test_transforms.transforms):
1046
- name = op.__class__.__name__
1047
- if name == 'Resize':
1048
- has_resize_op = True
1049
- resize_op_idx = idx
1050
- if name == 'Normalize':
1051
- normalize_op_idx = idx
1052
-
1053
- if not has_resize_op:
1054
- self.test_transforms.transforms.insert(
1055
- normalize_op_idx,
1056
- Resize(
1057
- target_size=image_shape, interp='CUBIC'))
1058
- else:
1059
- self.test_transforms.transforms[
1060
- resize_op_idx].target_size = image_shape
1061
-
1062
-
1063
- class FasterRCNN(BaseDetector):
1064
- def __init__(self,
1065
- num_classes=80,
1066
- backbone='ResNet50',
1067
- with_fpn=True,
1068
- with_dcn=False,
1069
- aspect_ratios=[0.5, 1.0, 2.0],
1070
- anchor_sizes=[[32], [64], [128], [256], [512]],
1071
- keep_top_k=100,
1072
- nms_threshold=0.5,
1073
- score_threshold=0.05,
1074
- fpn_num_channels=256,
1075
- rpn_batch_size_per_im=256,
1076
- rpn_fg_fraction=0.5,
1077
- test_pre_nms_top_n=None,
1078
- test_post_nms_top_n=1000,
1079
- **params):
1080
- self.init_params = locals()
1081
- if backbone not in {
1082
- 'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34',
1083
- 'ResNet34_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18'
1084
- }:
1085
- raise ValueError(
1086
- "backbone: {} is not supported. Please choose one of "
1087
- "('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34', 'ResNet34_vd', "
1088
- "'ResNet101', 'ResNet101_vd', 'HRNet_W18')".format(backbone))
1089
- self.backbone_name = backbone
1090
-
1091
- if params.get('with_net', True):
1092
- dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
1093
- if backbone == 'HRNet_W18':
1094
- if not with_fpn:
1095
- logging.warning(
1096
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1097
- format(backbone))
1098
- with_fpn = True
1099
- if with_dcn:
1100
- logging.warning(
1101
- "Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
1102
- format(backbone))
1103
- backbone = self._get_backbone(
1104
- 'HRNet', width=18, freeze_at=0, return_idx=[0, 1, 2, 3])
1105
- elif backbone == 'ResNet50_vd_ssld':
1106
- if not with_fpn:
1107
- logging.warning(
1108
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1109
- format(backbone))
1110
- with_fpn = True
1111
- backbone = self._get_backbone(
1112
- 'ResNet',
1113
- variant='d',
1114
- norm_type='bn',
1115
- freeze_at=0,
1116
- return_idx=[0, 1, 2, 3],
1117
- num_stages=4,
1118
- lr_mult_list=[0.05, 0.05, 0.1, 0.15],
1119
- dcn_v2_stages=dcn_v2_stages)
1120
- elif 'ResNet50' in backbone:
1121
- if with_fpn:
1122
- backbone = self._get_backbone(
1123
- 'ResNet',
1124
- variant='d' if '_vd' in backbone else 'b',
1125
- norm_type='bn',
1126
- freeze_at=0,
1127
- return_idx=[0, 1, 2, 3],
1128
- num_stages=4,
1129
- dcn_v2_stages=dcn_v2_stages)
1130
- else:
1131
- if with_dcn:
1132
- logging.warning(
1133
- "Backbone {} without fpn should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
1134
- format(backbone))
1135
- backbone = self._get_backbone(
1136
- 'ResNet',
1137
- variant='d' if '_vd' in backbone else 'b',
1138
- norm_type='bn',
1139
- freeze_at=0,
1140
- return_idx=[2],
1141
- num_stages=3)
1142
- elif 'ResNet34' in backbone:
1143
- if not with_fpn:
1144
- logging.warning(
1145
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1146
- format(backbone))
1147
- with_fpn = True
1148
- backbone = self._get_backbone(
1149
- 'ResNet',
1150
- depth=34,
1151
- variant='d' if 'vd' in backbone else 'b',
1152
- norm_type='bn',
1153
- freeze_at=0,
1154
- return_idx=[0, 1, 2, 3],
1155
- num_stages=4,
1156
- dcn_v2_stages=dcn_v2_stages)
1157
- else:
1158
- if not with_fpn:
1159
- logging.warning(
1160
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1161
- format(backbone))
1162
- with_fpn = True
1163
- backbone = self._get_backbone(
1164
- 'ResNet',
1165
- depth=101,
1166
- variant='d' if 'vd' in backbone else 'b',
1167
- norm_type='bn',
1168
- freeze_at=0,
1169
- return_idx=[0, 1, 2, 3],
1170
- num_stages=4,
1171
- dcn_v2_stages=dcn_v2_stages)
1172
-
1173
- rpn_in_channel = backbone.out_shape[0].channels
1174
-
1175
- if with_fpn:
1176
- self.backbone_name = self.backbone_name + '_fpn'
1177
-
1178
- if 'HRNet' in self.backbone_name:
1179
- neck = ppdet.modeling.HRFPN(
1180
- in_channels=[i.channels for i in backbone.out_shape],
1181
- out_channel=fpn_num_channels,
1182
- spatial_scales=[
1183
- 1.0 / i.stride for i in backbone.out_shape
1184
- ],
1185
- share_conv=False)
1186
- else:
1187
- neck = ppdet.modeling.FPN(
1188
- in_channels=[i.channels for i in backbone.out_shape],
1189
- out_channel=fpn_num_channels,
1190
- spatial_scales=[
1191
- 1.0 / i.stride for i in backbone.out_shape
1192
- ])
1193
- rpn_in_channel = neck.out_shape[0].channels
1194
- anchor_generator_cfg = {
1195
- 'aspect_ratios': aspect_ratios,
1196
- 'anchor_sizes': anchor_sizes,
1197
- 'strides': [4, 8, 16, 32, 64]
1198
- }
1199
- train_proposal_cfg = {
1200
- 'min_size': 0.0,
1201
- 'nms_thresh': .7,
1202
- 'pre_nms_top_n': 2000,
1203
- 'post_nms_top_n': 1000,
1204
- 'topk_after_collect': True
1205
- }
1206
- test_proposal_cfg = {
1207
- 'min_size': 0.0,
1208
- 'nms_thresh': .7,
1209
- 'pre_nms_top_n': 1000
1210
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
1211
- 'post_nms_top_n': test_post_nms_top_n
1212
- }
1213
- head = ppdet.modeling.TwoFCHead(
1214
- in_channel=neck.out_shape[0].channels, out_channel=1024)
1215
- roi_extractor_cfg = {
1216
- 'resolution': 7,
1217
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
1218
- 'sampling_ratio': 0,
1219
- 'aligned': True
1220
- }
1221
- with_pool = False
1222
-
1223
- else:
1224
- neck = None
1225
- anchor_generator_cfg = {
1226
- 'aspect_ratios': aspect_ratios,
1227
- 'anchor_sizes': anchor_sizes,
1228
- 'strides': [16]
1229
- }
1230
- train_proposal_cfg = {
1231
- 'min_size': 0.0,
1232
- 'nms_thresh': .7,
1233
- 'pre_nms_top_n': 12000,
1234
- 'post_nms_top_n': 2000,
1235
- 'topk_after_collect': False
1236
- }
1237
- test_proposal_cfg = {
1238
- 'min_size': 0.0,
1239
- 'nms_thresh': .7,
1240
- 'pre_nms_top_n': 6000
1241
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
1242
- 'post_nms_top_n': test_post_nms_top_n
1243
- }
1244
- head = ppdet.modeling.Res5Head()
1245
- roi_extractor_cfg = {
1246
- 'resolution': 14,
1247
- 'spatial_scale':
1248
- [1. / i.stride for i in backbone.out_shape],
1249
- 'sampling_ratio': 0,
1250
- 'aligned': True
1251
- }
1252
- with_pool = True
1253
-
1254
- rpn_target_assign_cfg = {
1255
- 'batch_size_per_im': rpn_batch_size_per_im,
1256
- 'fg_fraction': rpn_fg_fraction,
1257
- 'negative_overlap': .3,
1258
- 'positive_overlap': .7,
1259
- 'use_random': True
1260
- }
1261
-
1262
- rpn_head = ppdet.modeling.RPNHead(
1263
- anchor_generator=anchor_generator_cfg,
1264
- rpn_target_assign=rpn_target_assign_cfg,
1265
- train_proposal=train_proposal_cfg,
1266
- test_proposal=test_proposal_cfg,
1267
- in_channel=rpn_in_channel)
1268
-
1269
- bbox_assigner = BBoxAssigner(num_classes=num_classes)
1270
-
1271
- bbox_head = ppdet.modeling.BBoxHead(
1272
- head=head,
1273
- in_channel=head.out_shape[0].channels,
1274
- roi_extractor=roi_extractor_cfg,
1275
- with_pool=with_pool,
1276
- bbox_assigner=bbox_assigner,
1277
- num_classes=num_classes)
1278
-
1279
- bbox_post_process = ppdet.modeling.BBoxPostProcess(
1280
- num_classes=num_classes,
1281
- decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
1282
- nms=ppdet.modeling.MultiClassNMS(
1283
- score_threshold=score_threshold,
1284
- keep_top_k=keep_top_k,
1285
- nms_threshold=nms_threshold))
1286
-
1287
- params.update({
1288
- 'backbone': backbone,
1289
- 'neck': neck,
1290
- 'rpn_head': rpn_head,
1291
- 'bbox_head': bbox_head,
1292
- 'bbox_post_process': bbox_post_process
1293
- })
1294
- else:
1295
- if backbone not in {'ResNet50', 'ResNet50_vd'}:
1296
- with_fpn = True
1297
-
1298
- self.with_fpn = with_fpn
1299
- super(FasterRCNN, self).__init__(
1300
- model_name='FasterRCNN', num_classes=num_classes, **params)
1301
-
1302
- def train(self,
1303
- num_epochs,
1304
- train_dataset,
1305
- train_batch_size=64,
1306
- eval_dataset=None,
1307
- optimizer=None,
1308
- save_interval_epochs=1,
1309
- log_interval_steps=10,
1310
- save_dir='output',
1311
- pretrain_weights='IMAGENET',
1312
- learning_rate=.001,
1313
- warmup_steps=0,
1314
- warmup_start_lr=0.0,
1315
- lr_decay_epochs=(216, 243),
1316
- lr_decay_gamma=0.1,
1317
- metric=None,
1318
- use_ema=False,
1319
- early_stop=False,
1320
- early_stop_patience=5,
1321
- use_vdl=True,
1322
- resume_checkpoint=None):
1323
- """
1324
- Train the model.
1325
- Args:
1326
- num_epochs(int): The number of epochs.
1327
- train_dataset(paddlex.dataset): Training dataset.
1328
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
1329
- eval_dataset(paddlex.dataset, optional):
1330
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
1331
- optimizer(paddle.optimizer.Optimizer or None, optional):
1332
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
1333
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
1334
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
1335
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
1336
- pretrain_weights(str or None, optional):
1337
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
1338
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
1339
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
1340
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
1341
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
1342
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
1343
- metric({'VOC', 'COCO', None}, optional):
1344
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
1345
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
1346
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
1347
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
1348
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
1349
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
1350
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
1351
- `pretrain_weights` can be set simultaneously. Defaults to None.
1352
- """
1353
- if train_dataset.pos_num < len(train_dataset.file_list):
1354
- train_dataset.num_workers = 0
1355
- if train_batch_size != 1:
1356
- train_batch_size = 1
1357
- logging.warning(
1358
- "Training RCNN models with negative samples only support batch size equals to 1 "
1359
- "on a single gpu/cpu card, `train_batch_size` is forcibly set to 1."
1360
- )
1361
- nranks = paddle.distributed.get_world_size()
1362
- local_rank = paddle.distributed.get_rank()
1363
- # single card training
1364
- if nranks < 2 or local_rank == 0:
1365
- super(FasterRCNN, self).train(
1366
- num_epochs, train_dataset, train_batch_size, eval_dataset,
1367
- optimizer, save_interval_epochs, log_interval_steps,
1368
- save_dir, pretrain_weights, learning_rate, warmup_steps,
1369
- warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric,
1370
- use_ema, early_stop, early_stop_patience, use_vdl,
1371
- resume_checkpoint)
1372
- else:
1373
- super(FasterRCNN, self).train(
1374
- num_epochs, train_dataset, train_batch_size, eval_dataset,
1375
- optimizer, save_interval_epochs, log_interval_steps, save_dir,
1376
- pretrain_weights, learning_rate, warmup_steps, warmup_start_lr,
1377
- lr_decay_epochs, lr_decay_gamma, metric, use_ema, early_stop,
1378
- early_stop_patience, use_vdl, resume_checkpoint)
1379
-
1380
- def _compose_batch_transform(self, transforms, mode='train'):
1381
- if mode == 'train':
1382
- default_batch_transforms = [
1383
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
1384
- ]
1385
- collate_batch = False
1386
- else:
1387
- default_batch_transforms = [
1388
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
1389
- ]
1390
- collate_batch = True
1391
- custom_batch_transforms = []
1392
- for i, op in enumerate(transforms.transforms):
1393
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
1394
- if mode != 'train':
1395
- raise Exception(
1396
- "{} cannot be present in the {} transforms. ".format(
1397
- op.__class__.__name__, mode) +
1398
- "Please check the {} transforms.".format(mode))
1399
- custom_batch_transforms.insert(0, copy.deepcopy(op))
1400
-
1401
- batch_transforms = BatchCompose(
1402
- custom_batch_transforms + default_batch_transforms,
1403
- collate_batch=collate_batch)
1404
-
1405
- return batch_transforms
1406
-
1407
- def _fix_transforms_shape(self, image_shape):
1408
- if getattr(self, 'test_transforms', None):
1409
- has_resize_op = False
1410
- resize_op_idx = -1
1411
- normalize_op_idx = len(self.test_transforms.transforms)
1412
- for idx, op in enumerate(self.test_transforms.transforms):
1413
- name = op.__class__.__name__
1414
- if name == 'ResizeByShort':
1415
- has_resize_op = True
1416
- resize_op_idx = idx
1417
- if name == 'Normalize':
1418
- normalize_op_idx = idx
1419
-
1420
- if not has_resize_op:
1421
- self.test_transforms.transforms.insert(
1422
- normalize_op_idx,
1423
- Resize(
1424
- target_size=image_shape,
1425
- keep_ratio=True,
1426
- interp='CUBIC'))
1427
- else:
1428
- self.test_transforms.transforms[resize_op_idx] = Resize(
1429
- target_size=image_shape, keep_ratio=True, interp='CUBIC')
1430
- self.test_transforms.transforms.append(
1431
- Padding(im_padding_value=[0., 0., 0.]))
1432
-
1433
- def _get_test_inputs(self, image_shape):
1434
- if image_shape is not None:
1435
- image_shape = self._check_image_shape(image_shape)
1436
- self._fix_transforms_shape(image_shape[-2:])
1437
- else:
1438
- image_shape = [None, 3, -1, -1]
1439
- if self.with_fpn:
1440
- self.test_transforms.transforms.append(
1441
- Padding(im_padding_value=[0., 0., 0.]))
1442
-
1443
- self.fixed_input_shape = image_shape
1444
- return self._define_input_spec(image_shape)
1445
-
1446
-
1447
- class PPYOLO(YOLOv3):
1448
- def __init__(self,
1449
- num_classes=80,
1450
- backbone='ResNet50_vd_dcn',
1451
- anchors=None,
1452
- anchor_masks=None,
1453
- use_coord_conv=True,
1454
- use_iou_aware=True,
1455
- use_spp=True,
1456
- use_drop_block=True,
1457
- scale_x_y=1.05,
1458
- ignore_threshold=0.7,
1459
- label_smooth=False,
1460
- use_iou_loss=True,
1461
- use_matrix_nms=True,
1462
- nms_score_threshold=0.01,
1463
- nms_topk=-1,
1464
- nms_keep_topk=100,
1465
- nms_iou_threshold=0.45,
1466
- **params):
1467
- self.init_params = locals()
1468
- if backbone not in {
1469
- 'ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large',
1470
- 'MobileNetV3_small'
1471
- }:
1472
- raise ValueError(
1473
- "backbone: {} is not supported. Please choose one of "
1474
- "('ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large', 'MobileNetV3_small')".
1475
- format(backbone))
1476
- self.backbone_name = backbone
1477
- self.downsample_ratios = [
1478
- 32, 16, 8
1479
- ] if backbone == 'ResNet50_vd_dcn' else [32, 16]
1480
-
1481
- if params.get('with_net', True):
1482
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1483
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1484
- norm_type = 'sync_bn'
1485
- else:
1486
- norm_type = 'bn'
1487
- if anchors is None and anchor_masks is None:
1488
- if 'MobileNetV3' in backbone:
1489
- anchors = [[11, 18], [34, 47], [51, 126], [115, 71],
1490
- [120, 195], [254, 235]]
1491
- anchor_masks = [[3, 4, 5], [0, 1, 2]]
1492
- elif backbone == 'ResNet50_vd_dcn':
1493
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61],
1494
- [62, 45], [59, 119], [116, 90], [156, 198],
1495
- [373, 326]]
1496
- anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
1497
- else:
1498
- anchors = [[10, 14], [23, 27], [37, 58], [81, 82],
1499
- [135, 169], [344, 319]]
1500
- anchor_masks = [[3, 4, 5], [0, 1, 2]]
1501
- elif anchors is None or anchor_masks is None:
1502
- raise ValueError(
1503
- "Please define both anchors and anchor_masks.")
1504
-
1505
- if backbone == 'ResNet50_vd_dcn':
1506
- backbone = self._get_backbone(
1507
- 'ResNet',
1508
- variant='d',
1509
- norm_type=norm_type,
1510
- return_idx=[1, 2, 3],
1511
- dcn_v2_stages=[3],
1512
- freeze_at=-1,
1513
- freeze_norm=False,
1514
- norm_decay=0.)
1515
-
1516
- elif backbone == 'ResNet18_vd':
1517
- backbone = self._get_backbone(
1518
- 'ResNet',
1519
- depth=18,
1520
- variant='d',
1521
- norm_type=norm_type,
1522
- return_idx=[2, 3],
1523
- freeze_at=-1,
1524
- freeze_norm=False,
1525
- norm_decay=0.)
1526
-
1527
- elif backbone == 'MobileNetV3_large':
1528
- backbone = self._get_backbone(
1529
- 'MobileNetV3',
1530
- model_name='large',
1531
- norm_type=norm_type,
1532
- scale=1,
1533
- with_extra_blocks=False,
1534
- extra_block_filters=[],
1535
- feature_maps=[13, 16])
1536
-
1537
- elif backbone == 'MobileNetV3_small':
1538
- backbone = self._get_backbone(
1539
- 'MobileNetV3',
1540
- model_name='small',
1541
- norm_type=norm_type,
1542
- scale=1,
1543
- with_extra_blocks=False,
1544
- extra_block_filters=[],
1545
- feature_maps=[9, 12])
1546
-
1547
- neck = ppdet.modeling.PPYOLOFPN(
1548
- norm_type=norm_type,
1549
- in_channels=[i.channels for i in backbone.out_shape],
1550
- coord_conv=use_coord_conv,
1551
- drop_block=use_drop_block,
1552
- spp=use_spp,
1553
- conv_block_num=0
1554
- if ('MobileNetV3' in self.backbone_name or
1555
- self.backbone_name == 'ResNet18_vd') else 2)
1556
-
1557
- loss = ppdet.modeling.YOLOv3Loss(
1558
- num_classes=num_classes,
1559
- ignore_thresh=ignore_threshold,
1560
- downsample=self.downsample_ratios,
1561
- label_smooth=label_smooth,
1562
- scale_x_y=scale_x_y,
1563
- iou_loss=ppdet.modeling.IouLoss(
1564
- loss_weight=2.5, loss_square=True)
1565
- if use_iou_loss else None,
1566
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1567
- if use_iou_aware else None)
1568
-
1569
- yolo_head = ppdet.modeling.YOLOv3Head(
1570
- in_channels=[i.channels for i in neck.out_shape],
1571
- anchors=anchors,
1572
- anchor_masks=anchor_masks,
1573
- num_classes=num_classes,
1574
- loss=loss,
1575
- iou_aware=use_iou_aware)
1576
-
1577
- if use_matrix_nms:
1578
- nms = ppdet.modeling.MatrixNMS(
1579
- keep_top_k=nms_keep_topk,
1580
- score_threshold=nms_score_threshold,
1581
- post_threshold=.05
1582
- if 'MobileNetV3' in self.backbone_name else .01,
1583
- nms_top_k=nms_topk,
1584
- background_label=-1)
1585
- else:
1586
- nms = ppdet.modeling.MultiClassNMS(
1587
- score_threshold=nms_score_threshold,
1588
- nms_top_k=nms_topk,
1589
- keep_top_k=nms_keep_topk,
1590
- nms_threshold=nms_iou_threshold)
1591
-
1592
- post_process = ppdet.modeling.BBoxPostProcess(
1593
- decode=ppdet.modeling.YOLOBox(
1594
- num_classes=num_classes,
1595
- conf_thresh=.005
1596
- if 'MobileNetV3' in self.backbone_name else .01,
1597
- scale_x_y=scale_x_y),
1598
- nms=nms)
1599
-
1600
- params.update({
1601
- 'backbone': backbone,
1602
- 'neck': neck,
1603
- 'yolo_head': yolo_head,
1604
- 'post_process': post_process
1605
- })
1606
-
1607
- super(YOLOv3, self).__init__(
1608
- model_name='YOLOv3', num_classes=num_classes, **params)
1609
- self.anchors = anchors
1610
- self.anchor_masks = anchor_masks
1611
- self.model_name = 'PPYOLO'
1612
-
1613
- def _get_test_inputs(self, image_shape):
1614
- if image_shape is not None:
1615
- image_shape = self._check_image_shape(image_shape)
1616
- self._fix_transforms_shape(image_shape[-2:])
1617
- else:
1618
- image_shape = [None, 3, 608, 608]
1619
- if getattr(self, 'test_transforms', None):
1620
- for idx, op in enumerate(self.test_transforms.transforms):
1621
- name = op.__class__.__name__
1622
- if name == 'Resize':
1623
- image_shape = [None, 3] + list(
1624
- self.test_transforms.transforms[idx].target_size)
1625
- logging.warning(
1626
- '[Important!!!] When exporting inference model for {}, '
1627
- 'if fixed_input_shape is not set, it will be forcibly set to {}. '
1628
- 'Please ensure image shape after transforms is {}, if not, '
1629
- 'fixed_input_shape should be specified manually.'
1630
- .format(self.__class__.__name__, image_shape, image_shape[1:]))
1631
-
1632
- self.fixed_input_shape = image_shape
1633
- return self._define_input_spec(image_shape)
1634
-
1635
-
1636
- class PPYOLOTiny(YOLOv3):
1637
- def __init__(self,
1638
- num_classes=80,
1639
- backbone='MobileNetV3',
1640
- anchors=[[10, 15], [24, 36], [72, 42], [35, 87], [102, 96],
1641
- [60, 170], [220, 125], [128, 222], [264, 266]],
1642
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
1643
- use_iou_aware=False,
1644
- use_spp=True,
1645
- use_drop_block=True,
1646
- scale_x_y=1.05,
1647
- ignore_threshold=0.5,
1648
- label_smooth=False,
1649
- use_iou_loss=True,
1650
- use_matrix_nms=False,
1651
- nms_score_threshold=0.005,
1652
- nms_topk=1000,
1653
- nms_keep_topk=100,
1654
- nms_iou_threshold=0.45,
1655
- **params):
1656
- self.init_params = locals()
1657
- if backbone != 'MobileNetV3':
1658
- logging.warning(
1659
- "PPYOLOTiny only supports MobileNetV3 as backbone. "
1660
- "Backbone is forcibly set to MobileNetV3.")
1661
- self.backbone_name = 'MobileNetV3'
1662
- self.downsample_ratios = [32, 16, 8]
1663
- if params.get('with_net', True):
1664
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1665
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1666
- norm_type = 'sync_bn'
1667
- else:
1668
- norm_type = 'bn'
1669
-
1670
- backbone = self._get_backbone(
1671
- 'MobileNetV3',
1672
- model_name='large',
1673
- norm_type=norm_type,
1674
- scale=.5,
1675
- with_extra_blocks=False,
1676
- extra_block_filters=[],
1677
- feature_maps=[7, 13, 16])
1678
-
1679
- neck = ppdet.modeling.PPYOLOTinyFPN(
1680
- detection_block_channels=[160, 128, 96],
1681
- in_channels=[i.channels for i in backbone.out_shape],
1682
- spp=use_spp,
1683
- drop_block=use_drop_block)
1684
-
1685
- loss = ppdet.modeling.YOLOv3Loss(
1686
- num_classes=num_classes,
1687
- ignore_thresh=ignore_threshold,
1688
- downsample=self.downsample_ratios,
1689
- label_smooth=label_smooth,
1690
- scale_x_y=scale_x_y,
1691
- iou_loss=ppdet.modeling.IouLoss(
1692
- loss_weight=2.5, loss_square=True)
1693
- if use_iou_loss else None,
1694
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1695
- if use_iou_aware else None)
1696
-
1697
- yolo_head = ppdet.modeling.YOLOv3Head(
1698
- in_channels=[i.channels for i in neck.out_shape],
1699
- anchors=anchors,
1700
- anchor_masks=anchor_masks,
1701
- num_classes=num_classes,
1702
- loss=loss,
1703
- iou_aware=use_iou_aware)
1704
-
1705
- if use_matrix_nms:
1706
- nms = ppdet.modeling.MatrixNMS(
1707
- keep_top_k=nms_keep_topk,
1708
- score_threshold=nms_score_threshold,
1709
- post_threshold=.05,
1710
- nms_top_k=nms_topk,
1711
- background_label=-1)
1712
- else:
1713
- nms = ppdet.modeling.MultiClassNMS(
1714
- score_threshold=nms_score_threshold,
1715
- nms_top_k=nms_topk,
1716
- keep_top_k=nms_keep_topk,
1717
- nms_threshold=nms_iou_threshold)
1718
-
1719
- post_process = ppdet.modeling.BBoxPostProcess(
1720
- decode=ppdet.modeling.YOLOBox(
1721
- num_classes=num_classes,
1722
- conf_thresh=.005,
1723
- downsample_ratio=32,
1724
- clip_bbox=True,
1725
- scale_x_y=scale_x_y),
1726
- nms=nms)
1727
-
1728
- params.update({
1729
- 'backbone': backbone,
1730
- 'neck': neck,
1731
- 'yolo_head': yolo_head,
1732
- 'post_process': post_process
1733
- })
1734
-
1735
- super(YOLOv3, self).__init__(
1736
- model_name='YOLOv3', num_classes=num_classes, **params)
1737
- self.anchors = anchors
1738
- self.anchor_masks = anchor_masks
1739
- self.model_name = 'PPYOLOTiny'
1740
-
1741
- def _get_test_inputs(self, image_shape):
1742
- if image_shape is not None:
1743
- image_shape = self._check_image_shape(image_shape)
1744
- self._fix_transforms_shape(image_shape[-2:])
1745
- else:
1746
- image_shape = [None, 3, 320, 320]
1747
- if getattr(self, 'test_transforms', None):
1748
- for idx, op in enumerate(self.test_transforms.transforms):
1749
- name = op.__class__.__name__
1750
- if name == 'Resize':
1751
- image_shape = [None, 3] + list(
1752
- self.test_transforms.transforms[idx].target_size)
1753
- logging.warning(
1754
- '[Important!!!] When exporting inference model for {},'.format(
1755
- self.__class__.__name__) +
1756
- ' if fixed_input_shape is not set, it will be forcibly set to {}. '.
1757
- format(image_shape) +
1758
- 'Please check image shape after transforms is {}, if not, fixed_input_shape '.
1759
- format(image_shape[1:]) + 'should be specified manually.')
1760
-
1761
- self.fixed_input_shape = image_shape
1762
- return self._define_input_spec(image_shape)
1763
-
1764
-
1765
- class PPYOLOv2(YOLOv3):
1766
- def __init__(self,
1767
- num_classes=80,
1768
- backbone='ResNet50_vd_dcn',
1769
- anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
1770
- [59, 119], [116, 90], [156, 198], [373, 326]],
1771
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
1772
- use_iou_aware=True,
1773
- use_spp=True,
1774
- use_drop_block=True,
1775
- scale_x_y=1.05,
1776
- ignore_threshold=0.7,
1777
- label_smooth=False,
1778
- use_iou_loss=True,
1779
- use_matrix_nms=True,
1780
- nms_score_threshold=0.01,
1781
- nms_topk=-1,
1782
- nms_keep_topk=100,
1783
- nms_iou_threshold=0.45,
1784
- **params):
1785
- self.init_params = locals()
1786
- if backbone not in {'ResNet50_vd_dcn', 'ResNet101_vd_dcn'}:
1787
- raise ValueError(
1788
- "backbone: {} is not supported. Please choose one of "
1789
- "('ResNet50_vd_dcn', 'ResNet101_vd_dcn')".format(backbone))
1790
- self.backbone_name = backbone
1791
- self.downsample_ratios = [32, 16, 8]
1792
-
1793
- if params.get('with_net', True):
1794
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1795
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1796
- norm_type = 'sync_bn'
1797
- else:
1798
- norm_type = 'bn'
1799
-
1800
- if backbone == 'ResNet50_vd_dcn':
1801
- backbone = self._get_backbone(
1802
- 'ResNet',
1803
- variant='d',
1804
- norm_type=norm_type,
1805
- return_idx=[1, 2, 3],
1806
- dcn_v2_stages=[3],
1807
- freeze_at=-1,
1808
- freeze_norm=False,
1809
- norm_decay=0.)
1810
-
1811
- elif backbone == 'ResNet101_vd_dcn':
1812
- backbone = self._get_backbone(
1813
- 'ResNet',
1814
- depth=101,
1815
- variant='d',
1816
- norm_type=norm_type,
1817
- return_idx=[1, 2, 3],
1818
- dcn_v2_stages=[3],
1819
- freeze_at=-1,
1820
- freeze_norm=False,
1821
- norm_decay=0.)
1822
-
1823
- neck = ppdet.modeling.PPYOLOPAN(
1824
- norm_type=norm_type,
1825
- in_channels=[i.channels for i in backbone.out_shape],
1826
- drop_block=use_drop_block,
1827
- block_size=3,
1828
- keep_prob=.9,
1829
- spp=use_spp)
1830
-
1831
- loss = ppdet.modeling.YOLOv3Loss(
1832
- num_classes=num_classes,
1833
- ignore_thresh=ignore_threshold,
1834
- downsample=self.downsample_ratios,
1835
- label_smooth=label_smooth,
1836
- scale_x_y=scale_x_y,
1837
- iou_loss=ppdet.modeling.IouLoss(
1838
- loss_weight=2.5, loss_square=True)
1839
- if use_iou_loss else None,
1840
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1841
- if use_iou_aware else None)
1842
-
1843
- yolo_head = ppdet.modeling.YOLOv3Head(
1844
- in_channels=[i.channels for i in neck.out_shape],
1845
- anchors=anchors,
1846
- anchor_masks=anchor_masks,
1847
- num_classes=num_classes,
1848
- loss=loss,
1849
- iou_aware=use_iou_aware,
1850
- iou_aware_factor=.5)
1851
-
1852
- if use_matrix_nms:
1853
- nms = ppdet.modeling.MatrixNMS(
1854
- keep_top_k=nms_keep_topk,
1855
- score_threshold=nms_score_threshold,
1856
- post_threshold=.01,
1857
- nms_top_k=nms_topk,
1858
- background_label=-1)
1859
- else:
1860
- nms = ppdet.modeling.MultiClassNMS(
1861
- score_threshold=nms_score_threshold,
1862
- nms_top_k=nms_topk,
1863
- keep_top_k=nms_keep_topk,
1864
- nms_threshold=nms_iou_threshold)
1865
-
1866
- post_process = ppdet.modeling.BBoxPostProcess(
1867
- decode=ppdet.modeling.YOLOBox(
1868
- num_classes=num_classes,
1869
- conf_thresh=.01,
1870
- downsample_ratio=32,
1871
- clip_bbox=True,
1872
- scale_x_y=scale_x_y),
1873
- nms=nms)
1874
-
1875
- params.update({
1876
- 'backbone': backbone,
1877
- 'neck': neck,
1878
- 'yolo_head': yolo_head,
1879
- 'post_process': post_process
1880
- })
1881
-
1882
- super(YOLOv3, self).__init__(
1883
- model_name='YOLOv3', num_classes=num_classes, **params)
1884
- self.anchors = anchors
1885
- self.anchor_masks = anchor_masks
1886
- self.model_name = 'PPYOLOv2'
1887
-
1888
- def _get_test_inputs(self, image_shape):
1889
- if image_shape is not None:
1890
- image_shape = self._check_image_shape(image_shape)
1891
- self._fix_transforms_shape(image_shape[-2:])
1892
- else:
1893
- image_shape = [None, 3, 640, 640]
1894
- if getattr(self, 'test_transforms', None):
1895
- for idx, op in enumerate(self.test_transforms.transforms):
1896
- name = op.__class__.__name__
1897
- if name == 'Resize':
1898
- image_shape = [None, 3] + list(
1899
- self.test_transforms.transforms[idx].target_size)
1900
- logging.warning(
1901
- '[Important!!!] When exporting inference model for {},'.format(
1902
- self.__class__.__name__) +
1903
- ' if fixed_input_shape is not set, it will be forcibly set to {}. '.
1904
- format(image_shape) +
1905
- 'Please check image shape after transforms is {}, if not, fixed_input_shape '.
1906
- format(image_shape[1:]) + 'should be specified manually.')
1907
-
1908
- self.fixed_input_shape = image_shape
1909
- return self._define_input_spec(image_shape)
1910
-
1911
-
1912
- class MaskRCNN(BaseDetector):
1913
- def __init__(self,
1914
- num_classes=80,
1915
- backbone='ResNet50_vd',
1916
- with_fpn=True,
1917
- with_dcn=False,
1918
- aspect_ratios=[0.5, 1.0, 2.0],
1919
- anchor_sizes=[[32], [64], [128], [256], [512]],
1920
- keep_top_k=100,
1921
- nms_threshold=0.5,
1922
- score_threshold=0.05,
1923
- fpn_num_channels=256,
1924
- rpn_batch_size_per_im=256,
1925
- rpn_fg_fraction=0.5,
1926
- test_pre_nms_top_n=None,
1927
- test_post_nms_top_n=1000,
1928
- **params):
1929
- self.init_params = locals()
1930
- if backbone not in {
1931
- 'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101',
1932
- 'ResNet101_vd'
1933
- }:
1934
- raise ValueError(
1935
- "backbone: {} is not supported. Please choose one of "
1936
- "('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101', 'ResNet101_vd')".
1937
- format(backbone))
1938
-
1939
- self.backbone_name = backbone + '_fpn' if with_fpn else backbone
1940
- dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
1941
-
1942
- if params.get('with_net', True):
1943
- if backbone == 'ResNet50':
1944
- if with_fpn:
1945
- backbone = self._get_backbone(
1946
- 'ResNet',
1947
- norm_type='bn',
1948
- freeze_at=0,
1949
- return_idx=[0, 1, 2, 3],
1950
- num_stages=4,
1951
- dcn_v2_stages=dcn_v2_stages)
1952
- else:
1953
- if with_dcn:
1954
- logging.warning(
1955
- "Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
1956
- format(backbone))
1957
- backbone = self._get_backbone(
1958
- 'ResNet',
1959
- norm_type='bn',
1960
- freeze_at=0,
1961
- return_idx=[2],
1962
- num_stages=3)
1963
-
1964
- elif 'ResNet50_vd' in backbone:
1965
- if not with_fpn:
1966
- logging.warning(
1967
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1968
- format(backbone))
1969
- with_fpn = True
1970
- backbone = self._get_backbone(
1971
- 'ResNet',
1972
- variant='d',
1973
- norm_type='bn',
1974
- freeze_at=0,
1975
- return_idx=[0, 1, 2, 3],
1976
- num_stages=4,
1977
- lr_mult_list=[0.05, 0.05, 0.1, 0.15]
1978
- if '_ssld' in backbone else [1.0, 1.0, 1.0, 1.0],
1979
- dcn_v2_stages=dcn_v2_stages)
1980
-
1981
- else:
1982
- if not with_fpn:
1983
- logging.warning(
1984
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1985
- format(backbone))
1986
- with_fpn = True
1987
- backbone = self._get_backbone(
1988
- 'ResNet',
1989
- variant='d' if '_vd' in backbone else 'b',
1990
- depth=101,
1991
- norm_type='bn',
1992
- freeze_at=0,
1993
- return_idx=[0, 1, 2, 3],
1994
- num_stages=4,
1995
- dcn_v2_stages=dcn_v2_stages)
1996
-
1997
- rpn_in_channel = backbone.out_shape[0].channels
1998
-
1999
- if with_fpn:
2000
- neck = ppdet.modeling.FPN(
2001
- in_channels=[i.channels for i in backbone.out_shape],
2002
- out_channel=fpn_num_channels,
2003
- spatial_scales=[
2004
- 1.0 / i.stride for i in backbone.out_shape
2005
- ])
2006
- rpn_in_channel = neck.out_shape[0].channels
2007
- anchor_generator_cfg = {
2008
- 'aspect_ratios': aspect_ratios,
2009
- 'anchor_sizes': anchor_sizes,
2010
- 'strides': [4, 8, 16, 32, 64]
2011
- }
2012
- train_proposal_cfg = {
2013
- 'min_size': 0.0,
2014
- 'nms_thresh': .7,
2015
- 'pre_nms_top_n': 2000,
2016
- 'post_nms_top_n': 1000,
2017
- 'topk_after_collect': True
2018
- }
2019
- test_proposal_cfg = {
2020
- 'min_size': 0.0,
2021
- 'nms_thresh': .7,
2022
- 'pre_nms_top_n': 1000
2023
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
2024
- 'post_nms_top_n': test_post_nms_top_n
2025
- }
2026
- bb_head = ppdet.modeling.TwoFCHead(
2027
- in_channel=neck.out_shape[0].channels, out_channel=1024)
2028
- bb_roi_extractor_cfg = {
2029
- 'resolution': 7,
2030
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
2031
- 'sampling_ratio': 0,
2032
- 'aligned': True
2033
- }
2034
- with_pool = False
2035
- m_head = ppdet.modeling.MaskFeat(
2036
- in_channel=neck.out_shape[0].channels,
2037
- out_channel=256,
2038
- num_convs=4)
2039
- m_roi_extractor_cfg = {
2040
- 'resolution': 14,
2041
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
2042
- 'sampling_ratio': 0,
2043
- 'aligned': True
2044
- }
2045
- mask_assigner = MaskAssigner(
2046
- num_classes=num_classes, mask_resolution=28)
2047
- share_bbox_feat = False
2048
-
2049
- else:
2050
- neck = None
2051
- anchor_generator_cfg = {
2052
- 'aspect_ratios': aspect_ratios,
2053
- 'anchor_sizes': anchor_sizes,
2054
- 'strides': [16]
2055
- }
2056
- train_proposal_cfg = {
2057
- 'min_size': 0.0,
2058
- 'nms_thresh': .7,
2059
- 'pre_nms_top_n': 12000,
2060
- 'post_nms_top_n': 2000,
2061
- 'topk_after_collect': False
2062
- }
2063
- test_proposal_cfg = {
2064
- 'min_size': 0.0,
2065
- 'nms_thresh': .7,
2066
- 'pre_nms_top_n': 6000
2067
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
2068
- 'post_nms_top_n': test_post_nms_top_n
2069
- }
2070
- bb_head = ppdet.modeling.Res5Head()
2071
- bb_roi_extractor_cfg = {
2072
- 'resolution': 14,
2073
- 'spatial_scale':
2074
- [1. / i.stride for i in backbone.out_shape],
2075
- 'sampling_ratio': 0,
2076
- 'aligned': True
2077
- }
2078
- with_pool = True
2079
- m_head = ppdet.modeling.MaskFeat(
2080
- in_channel=bb_head.out_shape[0].channels,
2081
- out_channel=256,
2082
- num_convs=0)
2083
- m_roi_extractor_cfg = {
2084
- 'resolution': 14,
2085
- 'spatial_scale':
2086
- [1. / i.stride for i in backbone.out_shape],
2087
- 'sampling_ratio': 0,
2088
- 'aligned': True
2089
- }
2090
- mask_assigner = MaskAssigner(
2091
- num_classes=num_classes, mask_resolution=14)
2092
- share_bbox_feat = True
2093
-
2094
- rpn_target_assign_cfg = {
2095
- 'batch_size_per_im': rpn_batch_size_per_im,
2096
- 'fg_fraction': rpn_fg_fraction,
2097
- 'negative_overlap': .3,
2098
- 'positive_overlap': .7,
2099
- 'use_random': True
2100
- }
2101
-
2102
- rpn_head = ppdet.modeling.RPNHead(
2103
- anchor_generator=anchor_generator_cfg,
2104
- rpn_target_assign=rpn_target_assign_cfg,
2105
- train_proposal=train_proposal_cfg,
2106
- test_proposal=test_proposal_cfg,
2107
- in_channel=rpn_in_channel)
2108
-
2109
- bbox_assigner = BBoxAssigner(num_classes=num_classes)
2110
-
2111
- bbox_head = ppdet.modeling.BBoxHead(
2112
- head=bb_head,
2113
- in_channel=bb_head.out_shape[0].channels,
2114
- roi_extractor=bb_roi_extractor_cfg,
2115
- with_pool=with_pool,
2116
- bbox_assigner=bbox_assigner,
2117
- num_classes=num_classes)
2118
-
2119
- mask_head = ppdet.modeling.MaskHead(
2120
- head=m_head,
2121
- roi_extractor=m_roi_extractor_cfg,
2122
- mask_assigner=mask_assigner,
2123
- share_bbox_feat=share_bbox_feat,
2124
- num_classes=num_classes)
2125
-
2126
- bbox_post_process = ppdet.modeling.BBoxPostProcess(
2127
- num_classes=num_classes,
2128
- decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
2129
- nms=ppdet.modeling.MultiClassNMS(
2130
- score_threshold=score_threshold,
2131
- keep_top_k=keep_top_k,
2132
- nms_threshold=nms_threshold))
2133
-
2134
- mask_post_process = ppdet.modeling.MaskPostProcess(
2135
- binary_thresh=.5)
2136
-
2137
- params.update({
2138
- 'backbone': backbone,
2139
- 'neck': neck,
2140
- 'rpn_head': rpn_head,
2141
- 'bbox_head': bbox_head,
2142
- 'mask_head': mask_head,
2143
- 'bbox_post_process': bbox_post_process,
2144
- 'mask_post_process': mask_post_process
2145
- })
2146
- self.with_fpn = with_fpn
2147
- super(MaskRCNN, self).__init__(
2148
- model_name='MaskRCNN', num_classes=num_classes, **params)
2149
-
2150
- def train(self,
2151
- num_epochs,
2152
- train_dataset,
2153
- train_batch_size=64,
2154
- eval_dataset=None,
2155
- optimizer=None,
2156
- save_interval_epochs=1,
2157
- log_interval_steps=10,
2158
- save_dir='output',
2159
- pretrain_weights='IMAGENET',
2160
- learning_rate=.001,
2161
- warmup_steps=0,
2162
- warmup_start_lr=0.0,
2163
- lr_decay_epochs=(216, 243),
2164
- lr_decay_gamma=0.1,
2165
- metric=None,
2166
- use_ema=False,
2167
- early_stop=False,
2168
- early_stop_patience=5,
2169
- use_vdl=True,
2170
- resume_checkpoint=None):
2171
- """
2172
- Train the model.
2173
- Args:
2174
- num_epochs(int): The number of epochs.
2175
- train_dataset(paddlex.dataset): Training dataset.
2176
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
2177
- eval_dataset(paddlex.dataset, optional):
2178
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
2179
- optimizer(paddle.optimizer.Optimizer or None, optional):
2180
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
2181
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
2182
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
2183
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
2184
- pretrain_weights(str or None, optional):
2185
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
2186
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
2187
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
2188
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
2189
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
2190
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
2191
- metric({'VOC', 'COCO', None}, optional):
2192
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
2193
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
2194
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
2195
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
2196
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
2197
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
2198
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
2199
- `pretrain_weights` can be set simultaneously. Defaults to None.
2200
- """
2201
- if train_dataset.pos_num < len(train_dataset.file_list):
2202
- train_dataset.num_workers = 0
2203
- if train_batch_size != 1:
2204
- train_batch_size = 1
2205
- logging.warning(
2206
- "Training RCNN models with negative samples only support batch size equals to 1 "
2207
- "on a single gpu/cpu card, `train_batch_size` is forcibly set to 1."
2208
- )
2209
- nranks = paddle.distributed.get_world_size()
2210
- local_rank = paddle.distributed.get_rank()
2211
- # single card training
2212
- if nranks < 2 or local_rank == 0:
2213
- super(MaskRCNN, self).train(
2214
- num_epochs, train_dataset, train_batch_size, eval_dataset,
2215
- optimizer, save_interval_epochs, log_interval_steps,
2216
- save_dir, pretrain_weights, learning_rate, warmup_steps,
2217
- warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric,
2218
- use_ema, early_stop, early_stop_patience, use_vdl,
2219
- resume_checkpoint)
2220
- else:
2221
- super(MaskRCNN, self).train(
2222
- num_epochs, train_dataset, train_batch_size, eval_dataset,
2223
- optimizer, save_interval_epochs, log_interval_steps, save_dir,
2224
- pretrain_weights, learning_rate, warmup_steps, warmup_start_lr,
2225
- lr_decay_epochs, lr_decay_gamma, metric, use_ema, early_stop,
2226
- early_stop_patience, use_vdl, resume_checkpoint)
2227
-
2228
- def _compose_batch_transform(self, transforms, mode='train'):
2229
- if mode == 'train':
2230
- default_batch_transforms = [
2231
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
2232
- ]
2233
- collate_batch = False
2234
- else:
2235
- default_batch_transforms = [
2236
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
2237
- ]
2238
- collate_batch = True
2239
- custom_batch_transforms = []
2240
- for i, op in enumerate(transforms.transforms):
2241
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
2242
- if mode != 'train':
2243
- raise Exception(
2244
- "{} cannot be present in the {} transforms. ".format(
2245
- op.__class__.__name__, mode) +
2246
- "Please check the {} transforms.".format(mode))
2247
- custom_batch_transforms.insert(0, copy.deepcopy(op))
2248
-
2249
- batch_transforms = BatchCompose(
2250
- custom_batch_transforms + default_batch_transforms,
2251
- collate_batch=collate_batch)
2252
-
2253
- return batch_transforms
2254
-
2255
- def _fix_transforms_shape(self, image_shape):
2256
- if getattr(self, 'test_transforms', None):
2257
- has_resize_op = False
2258
- resize_op_idx = -1
2259
- normalize_op_idx = len(self.test_transforms.transforms)
2260
- for idx, op in enumerate(self.test_transforms.transforms):
2261
- name = op.__class__.__name__
2262
- if name == 'ResizeByShort':
2263
- has_resize_op = True
2264
- resize_op_idx = idx
2265
- if name == 'Normalize':
2266
- normalize_op_idx = idx
2267
-
2268
- if not has_resize_op:
2269
- self.test_transforms.transforms.insert(
2270
- normalize_op_idx,
2271
- Resize(
2272
- target_size=image_shape,
2273
- keep_ratio=True,
2274
- interp='CUBIC'))
2275
- else:
2276
- self.test_transforms.transforms[resize_op_idx] = Resize(
2277
- target_size=image_shape, keep_ratio=True, interp='CUBIC')
2278
- self.test_transforms.transforms.append(
2279
- Padding(im_padding_value=[0., 0., 0.]))
2280
-
2281
- def _get_test_inputs(self, image_shape):
2282
- if image_shape is not None:
2283
- image_shape = self._check_image_shape(image_shape)
2284
- self._fix_transforms_shape(image_shape[-2:])
2285
- else:
2286
- image_shape = [None, 3, -1, -1]
2287
- if self.with_fpn:
2288
- self.test_transforms.transforms.append(
2289
- Padding(im_padding_value=[0., 0., 0.]))
2290
- self.fixed_input_shape = image_shape
2291
-
2292
- return self._define_input_spec(image_shape)