paddlex 2.1.0__py3-none-any.whl → 3.0.0b2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -0
- paddlex/__init__.py +51 -19
- paddlex/__main__.py +40 -0
- paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
- paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
- paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
- paddlex/configs/face_detection/BlazeFace.yaml +40 -0
- paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
- paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
- paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
- paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
- paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
- paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
- paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
- paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
- paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
- paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
- paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
- paddlex/configs/image_classification/ResNet101.yaml +41 -0
- paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet152.yaml +41 -0
- paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet18.yaml +41 -0
- paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet34.yaml +41 -0
- paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet50.yaml +41 -0
- paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
- paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
- paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
- paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
- paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
- paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
- paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
- paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
- paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
- paddlex/configs/object_detection/DETR-R50.yaml +42 -0
- paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
- paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
- paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
- paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
- paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
- paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
- paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
- paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
- paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
- paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
- paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
- paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
- paddlex/configs/table_recognition/SLANet.yaml +39 -0
- paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
- paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
- paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
- paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
- paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
- paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
- paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
- paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
- paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
- paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
- paddlex/configs/ts_forecast/DLinear.yaml +38 -0
- paddlex/configs/ts_forecast/NLinear.yaml +38 -0
- paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
- paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
- paddlex/configs/ts_forecast/RLinear.yaml +38 -0
- paddlex/configs/ts_forecast/TiDE.yaml +38 -0
- paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
- paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
- paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
- paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
- paddlex/engine.py +54 -0
- paddlex/inference/__init__.py +17 -0
- paddlex/inference/components/__init__.py +18 -0
- paddlex/inference/components/base.py +292 -0
- paddlex/inference/components/llm/__init__.py +25 -0
- paddlex/inference/components/llm/base.py +65 -0
- paddlex/inference/components/llm/erniebot.py +212 -0
- paddlex/inference/components/paddle_predictor/__init__.py +20 -0
- paddlex/inference/components/paddle_predictor/predictor.py +332 -0
- paddlex/inference/components/retrieval/__init__.py +15 -0
- paddlex/inference/components/retrieval/faiss.py +359 -0
- paddlex/inference/components/task_related/__init__.py +33 -0
- paddlex/inference/components/task_related/clas.py +124 -0
- paddlex/inference/components/task_related/det.py +284 -0
- paddlex/inference/components/task_related/instance_seg.py +89 -0
- paddlex/inference/components/task_related/seal_det_warp.py +940 -0
- paddlex/inference/components/task_related/seg.py +40 -0
- paddlex/inference/components/task_related/table_rec.py +191 -0
- paddlex/inference/components/task_related/text_det.py +895 -0
- paddlex/inference/components/task_related/text_rec.py +353 -0
- paddlex/inference/components/task_related/warp.py +43 -0
- paddlex/inference/components/transforms/__init__.py +16 -0
- paddlex/inference/components/transforms/image/__init__.py +15 -0
- paddlex/inference/components/transforms/image/common.py +598 -0
- paddlex/inference/components/transforms/image/funcs.py +58 -0
- paddlex/inference/components/transforms/read_data.py +67 -0
- paddlex/inference/components/transforms/ts/__init__.py +15 -0
- paddlex/inference/components/transforms/ts/common.py +393 -0
- paddlex/inference/components/transforms/ts/funcs.py +424 -0
- paddlex/inference/models/__init__.py +106 -0
- paddlex/inference/models/anomaly_detection.py +87 -0
- paddlex/inference/models/base/__init__.py +16 -0
- paddlex/inference/models/base/base_predictor.py +76 -0
- paddlex/inference/models/base/basic_predictor.py +122 -0
- paddlex/inference/models/face_recognition.py +21 -0
- paddlex/inference/models/formula_recognition.py +55 -0
- paddlex/inference/models/general_recognition.py +99 -0
- paddlex/inference/models/image_classification.py +101 -0
- paddlex/inference/models/image_unwarping.py +43 -0
- paddlex/inference/models/instance_segmentation.py +66 -0
- paddlex/inference/models/multilabel_classification.py +33 -0
- paddlex/inference/models/object_detection.py +129 -0
- paddlex/inference/models/semantic_segmentation.py +86 -0
- paddlex/inference/models/table_recognition.py +106 -0
- paddlex/inference/models/text_detection.py +105 -0
- paddlex/inference/models/text_recognition.py +78 -0
- paddlex/inference/models/ts_ad.py +68 -0
- paddlex/inference/models/ts_cls.py +57 -0
- paddlex/inference/models/ts_fc.py +73 -0
- paddlex/inference/pipelines/__init__.py +127 -0
- paddlex/inference/pipelines/attribute_recognition.py +92 -0
- paddlex/inference/pipelines/base.py +86 -0
- paddlex/inference/pipelines/face_recognition.py +49 -0
- paddlex/inference/pipelines/formula_recognition.py +102 -0
- paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
- paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
- paddlex/inference/pipelines/ocr.py +80 -0
- paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
- paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
- paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
- paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
- paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
- paddlex/inference/pipelines/seal_recognition.py +152 -0
- paddlex/inference/pipelines/serving/__init__.py +17 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
- paddlex/inference/pipelines/serving/app.py +164 -0
- paddlex/inference/pipelines/serving/models.py +30 -0
- paddlex/inference/pipelines/serving/server.py +25 -0
- paddlex/inference/pipelines/serving/storage.py +161 -0
- paddlex/inference/pipelines/serving/utils.py +190 -0
- paddlex/inference/pipelines/single_model_pipeline.py +76 -0
- paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
- paddlex/inference/pipelines/table_recognition/utils.py +457 -0
- paddlex/inference/results/__init__.py +31 -0
- paddlex/inference/results/attribute_rec.py +89 -0
- paddlex/inference/results/base.py +43 -0
- paddlex/inference/results/chat_ocr.py +158 -0
- paddlex/inference/results/clas.py +133 -0
- paddlex/inference/results/det.py +86 -0
- paddlex/inference/results/face_rec.py +34 -0
- paddlex/inference/results/formula_rec.py +363 -0
- paddlex/inference/results/instance_seg.py +152 -0
- paddlex/inference/results/ocr.py +157 -0
- paddlex/inference/results/seal_rec.py +50 -0
- paddlex/inference/results/seg.py +72 -0
- paddlex/inference/results/shitu.py +35 -0
- paddlex/inference/results/table_rec.py +109 -0
- paddlex/inference/results/text_det.py +33 -0
- paddlex/inference/results/text_rec.py +66 -0
- paddlex/inference/results/ts.py +37 -0
- paddlex/inference/results/utils/__init__.py +13 -0
- paddlex/inference/results/utils/mixin.py +204 -0
- paddlex/inference/results/warp.py +31 -0
- paddlex/inference/utils/__init__.py +13 -0
- paddlex/inference/utils/benchmark.py +214 -0
- paddlex/inference/utils/color_map.py +123 -0
- paddlex/inference/utils/get_pipeline_path.py +26 -0
- paddlex/inference/utils/io/__init__.py +33 -0
- paddlex/inference/utils/io/readers.py +353 -0
- paddlex/inference/utils/io/style.py +374 -0
- paddlex/inference/utils/io/tablepyxl.py +149 -0
- paddlex/inference/utils/io/writers.py +376 -0
- paddlex/inference/utils/new_ir_blacklist.py +22 -0
- paddlex/inference/utils/official_models.py +286 -0
- paddlex/inference/utils/pp_option.py +236 -0
- paddlex/inference/utils/process_hook.py +54 -0
- paddlex/model.py +106 -0
- paddlex/modules/__init__.py +105 -0
- paddlex/modules/anomaly_detection/__init__.py +18 -0
- paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
- paddlex/modules/anomaly_detection/evaluator.py +58 -0
- paddlex/modules/anomaly_detection/exportor.py +22 -0
- paddlex/modules/anomaly_detection/model_list.py +16 -0
- paddlex/modules/anomaly_detection/trainer.py +71 -0
- paddlex/modules/base/__init__.py +18 -0
- paddlex/modules/base/build_model.py +34 -0
- paddlex/modules/base/dataset_checker/__init__.py +16 -0
- paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
- paddlex/modules/base/dataset_checker/utils.py +110 -0
- paddlex/modules/base/evaluator.py +154 -0
- paddlex/modules/base/exportor.py +121 -0
- paddlex/modules/base/trainer.py +111 -0
- paddlex/modules/face_recognition/__init__.py +18 -0
- paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
- paddlex/modules/face_recognition/evaluator.py +52 -0
- paddlex/modules/face_recognition/exportor.py +22 -0
- paddlex/modules/face_recognition/model_list.py +15 -0
- paddlex/modules/face_recognition/trainer.py +97 -0
- paddlex/modules/formula_recognition/__init__.py +13 -0
- paddlex/modules/formula_recognition/model_list.py +17 -0
- paddlex/modules/general_recognition/__init__.py +18 -0
- paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
- paddlex/modules/general_recognition/evaluator.py +31 -0
- paddlex/modules/general_recognition/exportor.py +22 -0
- paddlex/modules/general_recognition/model_list.py +19 -0
- paddlex/modules/general_recognition/trainer.py +52 -0
- paddlex/modules/image_classification/__init__.py +18 -0
- paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
- paddlex/modules/image_classification/evaluator.py +43 -0
- paddlex/modules/image_classification/exportor.py +22 -0
- paddlex/modules/image_classification/model_list.py +97 -0
- paddlex/modules/image_classification/trainer.py +82 -0
- paddlex/modules/image_unwarping/__init__.py +13 -0
- paddlex/modules/image_unwarping/model_list.py +17 -0
- paddlex/modules/instance_segmentation/__init__.py +18 -0
- paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
- paddlex/modules/instance_segmentation/evaluator.py +32 -0
- paddlex/modules/instance_segmentation/exportor.py +22 -0
- paddlex/modules/instance_segmentation/model_list.py +33 -0
- paddlex/modules/instance_segmentation/trainer.py +31 -0
- paddlex/modules/multilabel_classification/__init__.py +18 -0
- paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
- paddlex/modules/multilabel_classification/evaluator.py +43 -0
- paddlex/modules/multilabel_classification/exportor.py +22 -0
- paddlex/modules/multilabel_classification/model_list.py +24 -0
- paddlex/modules/multilabel_classification/trainer.py +85 -0
- paddlex/modules/object_detection/__init__.py +18 -0
- paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
- paddlex/modules/object_detection/evaluator.py +41 -0
- paddlex/modules/object_detection/exportor.py +22 -0
- paddlex/modules/object_detection/model_list.py +74 -0
- paddlex/modules/object_detection/trainer.py +85 -0
- paddlex/modules/semantic_segmentation/__init__.py +18 -0
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
- paddlex/modules/semantic_segmentation/evaluator.py +58 -0
- paddlex/modules/semantic_segmentation/exportor.py +22 -0
- paddlex/modules/semantic_segmentation/model_list.py +35 -0
- paddlex/modules/semantic_segmentation/trainer.py +71 -0
- paddlex/modules/table_recognition/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
- paddlex/modules/table_recognition/evaluator.py +43 -0
- paddlex/modules/table_recognition/exportor.py +22 -0
- paddlex/modules/table_recognition/model_list.py +19 -0
- paddlex/modules/table_recognition/trainer.py +70 -0
- paddlex/modules/text_detection/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
- paddlex/modules/text_detection/evaluator.py +41 -0
- paddlex/modules/text_detection/exportor.py +22 -0
- paddlex/modules/text_detection/model_list.py +22 -0
- paddlex/modules/text_detection/trainer.py +68 -0
- paddlex/modules/text_recognition/__init__.py +18 -0
- paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/text_recognition/evaluator.py +63 -0
- paddlex/modules/text_recognition/exportor.py +25 -0
- paddlex/modules/text_recognition/model_list.py +20 -0
- paddlex/modules/text_recognition/trainer.py +105 -0
- paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
- paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
- paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
- paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
- paddlex/modules/ts_classification/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
- paddlex/modules/ts_classification/evaluator.py +66 -0
- paddlex/modules/ts_classification/exportor.py +45 -0
- paddlex/modules/ts_classification/model_list.py +18 -0
- paddlex/modules/ts_classification/trainer.py +92 -0
- paddlex/modules/ts_forecast/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_forecast/evaluator.py +66 -0
- paddlex/modules/ts_forecast/exportor.py +45 -0
- paddlex/modules/ts_forecast/model_list.py +24 -0
- paddlex/modules/ts_forecast/trainer.py +92 -0
- paddlex/paddlex_cli.py +197 -0
- paddlex/pipelines/OCR.yaml +8 -0
- paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
- paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
- paddlex/pipelines/anomaly_detection.yaml +7 -0
- paddlex/pipelines/face_recognition.yaml +13 -0
- paddlex/pipelines/formula_recognition.yaml +8 -0
- paddlex/pipelines/image_classification.yaml +7 -0
- paddlex/pipelines/instance_segmentation.yaml +7 -0
- paddlex/pipelines/layout_parsing.yaml +14 -0
- paddlex/pipelines/multi_label_image_classification.yaml +7 -0
- paddlex/pipelines/object_detection.yaml +7 -0
- paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
- paddlex/pipelines/seal_recognition.yaml +10 -0
- paddlex/pipelines/semantic_segmentation.yaml +7 -0
- paddlex/pipelines/small_object_detection.yaml +7 -0
- paddlex/pipelines/table_recognition.yaml +12 -0
- paddlex/pipelines/ts_ad.yaml +7 -0
- paddlex/pipelines/ts_cls.yaml +7 -0
- paddlex/pipelines/ts_fc.yaml +7 -0
- paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
- paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
- paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
- paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
- paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
- paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
- paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
- paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
- paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
- paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
- paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
- paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
- paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
- paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
- paddlex/repo_apis/__init__.py +13 -0
- paddlex/repo_apis/base/__init__.py +23 -0
- paddlex/repo_apis/base/config.py +238 -0
- paddlex/repo_apis/base/model.py +571 -0
- paddlex/repo_apis/base/register.py +135 -0
- paddlex/repo_apis/base/runner.py +390 -0
- paddlex/repo_apis/base/utils/__init__.py +13 -0
- paddlex/repo_apis/base/utils/arg.py +64 -0
- paddlex/repo_apis/base/utils/subprocess.py +107 -0
- paddlex/repo_manager/__init__.py +24 -0
- paddlex/repo_manager/core.py +271 -0
- paddlex/repo_manager/meta.py +143 -0
- paddlex/repo_manager/repo.py +396 -0
- paddlex/repo_manager/requirements.txt +18 -0
- paddlex/repo_manager/utils.py +298 -0
- paddlex/utils/__init__.py +1 -12
- paddlex/utils/cache.py +148 -0
- paddlex/utils/config.py +214 -0
- paddlex/utils/device.py +103 -0
- paddlex/utils/download.py +168 -182
- paddlex/utils/errors/__init__.py +17 -0
- paddlex/utils/errors/dataset_checker.py +78 -0
- paddlex/utils/errors/others.py +152 -0
- paddlex/utils/file_interface.py +212 -0
- paddlex/utils/flags.py +61 -0
- paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
- paddlex/utils/fonts/__init__.py +24 -0
- paddlex/utils/func_register.py +41 -0
- paddlex/utils/interactive_get_pipeline.py +55 -0
- paddlex/utils/lazy_loader.py +66 -0
- paddlex/utils/logging.py +132 -33
- paddlex/utils/misc.py +201 -0
- paddlex/utils/result_saver.py +59 -0
- paddlex/utils/subclass_register.py +101 -0
- paddlex/version.py +54 -0
- paddlex-3.0.0b2.dist-info/LICENSE +169 -0
- paddlex-3.0.0b2.dist-info/METADATA +760 -0
- paddlex-3.0.0b2.dist-info/RECORD +646 -0
- paddlex-3.0.0b2.dist-info/WHEEL +5 -0
- paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
- paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
- PaddleClas/__init__.py +0 -16
- PaddleClas/deploy/__init__.py +0 -1
- PaddleClas/deploy/paddleserving/__init__.py +0 -0
- PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
- PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
- PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
- PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
- PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
- PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
- PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
- PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
- PaddleClas/deploy/python/__init__.py +0 -0
- PaddleClas/deploy/python/build_gallery.py +0 -214
- PaddleClas/deploy/python/det_preprocess.py +0 -205
- PaddleClas/deploy/python/postprocess.py +0 -161
- PaddleClas/deploy/python/predict_cls.py +0 -142
- PaddleClas/deploy/python/predict_det.py +0 -158
- PaddleClas/deploy/python/predict_rec.py +0 -138
- PaddleClas/deploy/python/predict_system.py +0 -144
- PaddleClas/deploy/python/preprocess.py +0 -337
- PaddleClas/deploy/utils/__init__.py +0 -5
- PaddleClas/deploy/utils/config.py +0 -197
- PaddleClas/deploy/utils/draw_bbox.py +0 -61
- PaddleClas/deploy/utils/encode_decode.py +0 -31
- PaddleClas/deploy/utils/get_image_list.py +0 -49
- PaddleClas/deploy/utils/logger.py +0 -120
- PaddleClas/deploy/utils/predictor.py +0 -71
- PaddleClas/deploy/vector_search/__init__.py +0 -1
- PaddleClas/deploy/vector_search/interface.py +0 -272
- PaddleClas/deploy/vector_search/test.py +0 -34
- PaddleClas/hubconf.py +0 -788
- PaddleClas/paddleclas.py +0 -552
- PaddleClas/ppcls/__init__.py +0 -20
- PaddleClas/ppcls/arch/__init__.py +0 -127
- PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
- PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
- PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
- PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
- PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
- PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
- PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
- PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
- PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
- PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
- PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
- PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
- PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
- PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
- PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
- PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
- PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
- PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
- PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
- PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
- PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
- PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
- PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
- PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
- PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
- PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
- PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
- PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
- PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
- PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
- PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
- PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
- PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
- PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
- PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
- PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
- PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
- PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
- PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
- PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
- PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
- PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
- PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
- PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
- PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
- PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
- PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
- PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
- PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
- PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
- PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
- PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
- PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
- PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
- PaddleClas/ppcls/arch/gears/__init__.py +0 -32
- PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
- PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
- PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
- PaddleClas/ppcls/arch/gears/fc.py +0 -35
- PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
- PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
- PaddleClas/ppcls/arch/utils.py +0 -53
- PaddleClas/ppcls/data/__init__.py +0 -144
- PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
- PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
- PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
- PaddleClas/ppcls/data/dataloader/dali.py +0 -319
- PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
- PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
- PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
- PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
- PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
- PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
- PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
- PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
- PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
- PaddleClas/ppcls/data/postprocess/topk.py +0 -85
- PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
- PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
- PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
- PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
- PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
- PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
- PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
- PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
- PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
- PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
- PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
- PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
- PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
- PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
- PaddleClas/ppcls/data/utils/__init__.py +0 -13
- PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
- PaddleClas/ppcls/engine/__init__.py +0 -0
- PaddleClas/ppcls/engine/engine.py +0 -436
- PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
- PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
- PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
- PaddleClas/ppcls/engine/slim/__init__.py +0 -16
- PaddleClas/ppcls/engine/slim/prune.py +0 -66
- PaddleClas/ppcls/engine/slim/quant.py +0 -55
- PaddleClas/ppcls/engine/train/__init__.py +0 -14
- PaddleClas/ppcls/engine/train/train.py +0 -79
- PaddleClas/ppcls/engine/train/utils.py +0 -72
- PaddleClas/ppcls/loss/__init__.py +0 -65
- PaddleClas/ppcls/loss/celoss.py +0 -67
- PaddleClas/ppcls/loss/centerloss.py +0 -54
- PaddleClas/ppcls/loss/comfunc.py +0 -45
- PaddleClas/ppcls/loss/deephashloss.py +0 -92
- PaddleClas/ppcls/loss/distanceloss.py +0 -43
- PaddleClas/ppcls/loss/distillationloss.py +0 -141
- PaddleClas/ppcls/loss/dmlloss.py +0 -46
- PaddleClas/ppcls/loss/emlloss.py +0 -97
- PaddleClas/ppcls/loss/googlenetloss.py +0 -41
- PaddleClas/ppcls/loss/msmloss.py +0 -78
- PaddleClas/ppcls/loss/multilabelloss.py +0 -43
- PaddleClas/ppcls/loss/npairsloss.py +0 -38
- PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
- PaddleClas/ppcls/loss/supconloss.py +0 -108
- PaddleClas/ppcls/loss/trihardloss.py +0 -82
- PaddleClas/ppcls/loss/triplet.py +0 -137
- PaddleClas/ppcls/metric/__init__.py +0 -51
- PaddleClas/ppcls/metric/metrics.py +0 -308
- PaddleClas/ppcls/optimizer/__init__.py +0 -72
- PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
- PaddleClas/ppcls/optimizer/optimizer.py +0 -207
- PaddleClas/ppcls/utils/__init__.py +0 -27
- PaddleClas/ppcls/utils/check.py +0 -151
- PaddleClas/ppcls/utils/config.py +0 -210
- PaddleClas/ppcls/utils/download.py +0 -319
- PaddleClas/ppcls/utils/ema.py +0 -63
- PaddleClas/ppcls/utils/logger.py +0 -137
- PaddleClas/ppcls/utils/metrics.py +0 -107
- PaddleClas/ppcls/utils/misc.py +0 -63
- PaddleClas/ppcls/utils/model_zoo.py +0 -213
- PaddleClas/ppcls/utils/profiler.py +0 -111
- PaddleClas/ppcls/utils/save_load.py +0 -136
- PaddleClas/setup.py +0 -58
- PaddleClas/tools/__init__.py +0 -15
- PaddleClas/tools/eval.py +0 -31
- PaddleClas/tools/export_model.py +0 -34
- PaddleClas/tools/infer.py +0 -31
- PaddleClas/tools/train.py +0 -32
- paddlex/cls.py +0 -82
- paddlex/command.py +0 -215
- paddlex/cv/__init__.py +0 -17
- paddlex/cv/datasets/__init__.py +0 -18
- paddlex/cv/datasets/coco.py +0 -208
- paddlex/cv/datasets/imagenet.py +0 -88
- paddlex/cv/datasets/seg_dataset.py +0 -91
- paddlex/cv/datasets/voc.py +0 -445
- paddlex/cv/models/__init__.py +0 -18
- paddlex/cv/models/base.py +0 -631
- paddlex/cv/models/classifier.py +0 -989
- paddlex/cv/models/detector.py +0 -2292
- paddlex/cv/models/load_model.py +0 -148
- paddlex/cv/models/segmenter.py +0 -768
- paddlex/cv/models/slim/__init__.py +0 -13
- paddlex/cv/models/slim/prune.py +0 -55
- paddlex/cv/models/utils/__init__.py +0 -13
- paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
- paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
- paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
- paddlex/cv/models/utils/infer_nets.py +0 -45
- paddlex/cv/models/utils/seg_metrics.py +0 -62
- paddlex/cv/models/utils/visualize.py +0 -399
- paddlex/cv/transforms/__init__.py +0 -46
- paddlex/cv/transforms/batch_operators.py +0 -286
- paddlex/cv/transforms/box_utils.py +0 -41
- paddlex/cv/transforms/functions.py +0 -193
- paddlex/cv/transforms/operators.py +0 -1402
- paddlex/deploy.py +0 -268
- paddlex/det.py +0 -49
- paddlex/paddleseg/__init__.py +0 -17
- paddlex/paddleseg/core/__init__.py +0 -20
- paddlex/paddleseg/core/infer.py +0 -289
- paddlex/paddleseg/core/predict.py +0 -145
- paddlex/paddleseg/core/train.py +0 -258
- paddlex/paddleseg/core/val.py +0 -172
- paddlex/paddleseg/cvlibs/__init__.py +0 -17
- paddlex/paddleseg/cvlibs/callbacks.py +0 -279
- paddlex/paddleseg/cvlibs/config.py +0 -359
- paddlex/paddleseg/cvlibs/manager.py +0 -142
- paddlex/paddleseg/cvlibs/param_init.py +0 -91
- paddlex/paddleseg/datasets/__init__.py +0 -21
- paddlex/paddleseg/datasets/ade.py +0 -112
- paddlex/paddleseg/datasets/cityscapes.py +0 -86
- paddlex/paddleseg/datasets/cocostuff.py +0 -79
- paddlex/paddleseg/datasets/dataset.py +0 -164
- paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
- paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
- paddlex/paddleseg/datasets/pascal_context.py +0 -80
- paddlex/paddleseg/datasets/voc.py +0 -113
- paddlex/paddleseg/models/__init__.py +0 -39
- paddlex/paddleseg/models/ann.py +0 -436
- paddlex/paddleseg/models/attention_unet.py +0 -189
- paddlex/paddleseg/models/backbones/__init__.py +0 -18
- paddlex/paddleseg/models/backbones/hrnet.py +0 -815
- paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
- paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
- paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
- paddlex/paddleseg/models/bisenet.py +0 -311
- paddlex/paddleseg/models/danet.py +0 -220
- paddlex/paddleseg/models/decoupled_segnet.py +0 -233
- paddlex/paddleseg/models/deeplab.py +0 -258
- paddlex/paddleseg/models/dnlnet.py +0 -231
- paddlex/paddleseg/models/emanet.py +0 -219
- paddlex/paddleseg/models/fast_scnn.py +0 -318
- paddlex/paddleseg/models/fcn.py +0 -135
- paddlex/paddleseg/models/gcnet.py +0 -223
- paddlex/paddleseg/models/gscnn.py +0 -357
- paddlex/paddleseg/models/hardnet.py +0 -309
- paddlex/paddleseg/models/isanet.py +0 -202
- paddlex/paddleseg/models/layers/__init__.py +0 -19
- paddlex/paddleseg/models/layers/activation.py +0 -73
- paddlex/paddleseg/models/layers/attention.py +0 -146
- paddlex/paddleseg/models/layers/layer_libs.py +0 -168
- paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
- paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
- paddlex/paddleseg/models/losses/__init__.py +0 -27
- paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
- paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
- paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
- paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
- paddlex/paddleseg/models/losses/dice_loss.py +0 -61
- paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
- paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
- paddlex/paddleseg/models/losses/l1_loss.py +0 -76
- paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
- paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
- paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
- paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
- paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
- paddlex/paddleseg/models/ocrnet.py +0 -248
- paddlex/paddleseg/models/pspnet.py +0 -147
- paddlex/paddleseg/models/sfnet.py +0 -236
- paddlex/paddleseg/models/shufflenet_slim.py +0 -268
- paddlex/paddleseg/models/u2net.py +0 -574
- paddlex/paddleseg/models/unet.py +0 -155
- paddlex/paddleseg/models/unet_3plus.py +0 -316
- paddlex/paddleseg/models/unet_plusplus.py +0 -237
- paddlex/paddleseg/transforms/__init__.py +0 -16
- paddlex/paddleseg/transforms/functional.py +0 -161
- paddlex/paddleseg/transforms/transforms.py +0 -937
- paddlex/paddleseg/utils/__init__.py +0 -22
- paddlex/paddleseg/utils/config_check.py +0 -60
- paddlex/paddleseg/utils/download.py +0 -163
- paddlex/paddleseg/utils/env/__init__.py +0 -16
- paddlex/paddleseg/utils/env/seg_env.py +0 -56
- paddlex/paddleseg/utils/env/sys_env.py +0 -122
- paddlex/paddleseg/utils/logger.py +0 -48
- paddlex/paddleseg/utils/metrics.py +0 -146
- paddlex/paddleseg/utils/progbar.py +0 -212
- paddlex/paddleseg/utils/timer.py +0 -53
- paddlex/paddleseg/utils/utils.py +0 -120
- paddlex/paddleseg/utils/visualize.py +0 -90
- paddlex/ppcls/__init__.py +0 -20
- paddlex/ppcls/arch/__init__.py +0 -127
- paddlex/ppcls/arch/backbone/__init__.py +0 -80
- paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
- paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
- paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
- paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
- paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
- paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
- paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
- paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
- paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
- paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
- paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
- paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
- paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
- paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
- paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
- paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
- paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
- paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
- paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
- paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
- paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
- paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
- paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
- paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
- paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
- paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
- paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
- paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
- paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
- paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
- paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
- paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
- paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
- paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
- paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
- paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
- paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
- paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
- paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
- paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
- paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
- paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
- paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
- paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
- paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
- paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
- paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
- paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
- paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
- paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
- paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
- paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
- paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
- paddlex/ppcls/arch/gears/__init__.py +0 -32
- paddlex/ppcls/arch/gears/arcmargin.py +0 -72
- paddlex/ppcls/arch/gears/circlemargin.py +0 -59
- paddlex/ppcls/arch/gears/cosmargin.py +0 -55
- paddlex/ppcls/arch/gears/fc.py +0 -35
- paddlex/ppcls/arch/gears/identity_head.py +0 -9
- paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
- paddlex/ppcls/arch/utils.py +0 -53
- paddlex/ppcls/data/__init__.py +0 -144
- paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
- paddlex/ppcls/data/dataloader/__init__.py +0 -9
- paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
- paddlex/ppcls/data/dataloader/dali.py +0 -319
- paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
- paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
- paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
- paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
- paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
- paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
- paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
- paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
- paddlex/ppcls/data/postprocess/__init__.py +0 -41
- paddlex/ppcls/data/postprocess/topk.py +0 -85
- paddlex/ppcls/data/preprocess/__init__.py +0 -100
- paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
- paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
- paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
- paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
- paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
- paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
- paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
- paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
- paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
- paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
- paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
- paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
- paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
- paddlex/ppcls/data/utils/__init__.py +0 -13
- paddlex/ppcls/data/utils/get_image_list.py +0 -49
- paddlex/ppcls/engine/__init__.py +0 -0
- paddlex/ppcls/engine/engine.py +0 -436
- paddlex/ppcls/engine/evaluation/__init__.py +0 -16
- paddlex/ppcls/engine/evaluation/classification.py +0 -143
- paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
- paddlex/ppcls/engine/slim/__init__.py +0 -16
- paddlex/ppcls/engine/slim/prune.py +0 -66
- paddlex/ppcls/engine/slim/quant.py +0 -55
- paddlex/ppcls/engine/train/__init__.py +0 -14
- paddlex/ppcls/engine/train/train.py +0 -79
- paddlex/ppcls/engine/train/utils.py +0 -72
- paddlex/ppcls/loss/__init__.py +0 -65
- paddlex/ppcls/loss/celoss.py +0 -67
- paddlex/ppcls/loss/centerloss.py +0 -54
- paddlex/ppcls/loss/comfunc.py +0 -45
- paddlex/ppcls/loss/deephashloss.py +0 -96
- paddlex/ppcls/loss/distanceloss.py +0 -43
- paddlex/ppcls/loss/distillationloss.py +0 -141
- paddlex/ppcls/loss/dmlloss.py +0 -46
- paddlex/ppcls/loss/emlloss.py +0 -97
- paddlex/ppcls/loss/googlenetloss.py +0 -42
- paddlex/ppcls/loss/msmloss.py +0 -78
- paddlex/ppcls/loss/multilabelloss.py +0 -43
- paddlex/ppcls/loss/npairsloss.py +0 -38
- paddlex/ppcls/loss/pairwisecosface.py +0 -59
- paddlex/ppcls/loss/supconloss.py +0 -108
- paddlex/ppcls/loss/trihardloss.py +0 -82
- paddlex/ppcls/loss/triplet.py +0 -137
- paddlex/ppcls/metric/__init__.py +0 -51
- paddlex/ppcls/metric/metrics.py +0 -308
- paddlex/ppcls/optimizer/__init__.py +0 -72
- paddlex/ppcls/optimizer/learning_rate.py +0 -326
- paddlex/ppcls/optimizer/optimizer.py +0 -208
- paddlex/ppcls/utils/__init__.py +0 -27
- paddlex/ppcls/utils/check.py +0 -151
- paddlex/ppcls/utils/config.py +0 -210
- paddlex/ppcls/utils/download.py +0 -319
- paddlex/ppcls/utils/ema.py +0 -63
- paddlex/ppcls/utils/logger.py +0 -137
- paddlex/ppcls/utils/metrics.py +0 -112
- paddlex/ppcls/utils/misc.py +0 -63
- paddlex/ppcls/utils/model_zoo.py +0 -213
- paddlex/ppcls/utils/profiler.py +0 -111
- paddlex/ppcls/utils/save_load.py +0 -136
- paddlex/ppdet/__init__.py +0 -16
- paddlex/ppdet/core/__init__.py +0 -15
- paddlex/ppdet/core/config/__init__.py +0 -13
- paddlex/ppdet/core/config/schema.py +0 -248
- paddlex/ppdet/core/config/yaml_helpers.py +0 -118
- paddlex/ppdet/core/workspace.py +0 -278
- paddlex/ppdet/data/__init__.py +0 -21
- paddlex/ppdet/data/crop_utils/__init__.py +0 -13
- paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
- paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
- paddlex/ppdet/data/reader.py +0 -302
- paddlex/ppdet/data/shm_utils.py +0 -67
- paddlex/ppdet/data/source/__init__.py +0 -29
- paddlex/ppdet/data/source/category.py +0 -904
- paddlex/ppdet/data/source/coco.py +0 -251
- paddlex/ppdet/data/source/dataset.py +0 -197
- paddlex/ppdet/data/source/keypoint_coco.py +0 -669
- paddlex/ppdet/data/source/mot.py +0 -636
- paddlex/ppdet/data/source/sniper_coco.py +0 -191
- paddlex/ppdet/data/source/voc.py +0 -231
- paddlex/ppdet/data/source/widerface.py +0 -180
- paddlex/ppdet/data/transform/__init__.py +0 -28
- paddlex/ppdet/data/transform/atss_assigner.py +0 -270
- paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
- paddlex/ppdet/data/transform/batch_operators.py +0 -1080
- paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
- paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
- paddlex/ppdet/data/transform/mot_operators.py +0 -628
- paddlex/ppdet/data/transform/op_helper.py +0 -498
- paddlex/ppdet/data/transform/operators.py +0 -3025
- paddlex/ppdet/engine/__init__.py +0 -30
- paddlex/ppdet/engine/callbacks.py +0 -340
- paddlex/ppdet/engine/env.py +0 -50
- paddlex/ppdet/engine/export_utils.py +0 -177
- paddlex/ppdet/engine/tracker.py +0 -538
- paddlex/ppdet/engine/trainer.py +0 -723
- paddlex/ppdet/metrics/__init__.py +0 -29
- paddlex/ppdet/metrics/coco_utils.py +0 -184
- paddlex/ppdet/metrics/json_results.py +0 -149
- paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
- paddlex/ppdet/metrics/map_utils.py +0 -444
- paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
- paddlex/ppdet/metrics/metrics.py +0 -434
- paddlex/ppdet/metrics/mot_metrics.py +0 -1236
- paddlex/ppdet/metrics/munkres.py +0 -428
- paddlex/ppdet/metrics/widerface_utils.py +0 -393
- paddlex/ppdet/model_zoo/__init__.py +0 -18
- paddlex/ppdet/model_zoo/model_zoo.py +0 -84
- paddlex/ppdet/modeling/__init__.py +0 -45
- paddlex/ppdet/modeling/architectures/__init__.py +0 -51
- paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
- paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
- paddlex/ppdet/modeling/architectures/centernet.py +0 -108
- paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
- paddlex/ppdet/modeling/architectures/detr.py +0 -93
- paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
- paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
- paddlex/ppdet/modeling/architectures/fcos.py +0 -105
- paddlex/ppdet/modeling/architectures/gfl.py +0 -87
- paddlex/ppdet/modeling/architectures/jde.py +0 -111
- paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
- paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
- paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
- paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
- paddlex/ppdet/modeling/architectures/picodet.py +0 -91
- paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
- paddlex/ppdet/modeling/architectures/solov2.py +0 -110
- paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
- paddlex/ppdet/modeling/architectures/ssd.py +0 -93
- paddlex/ppdet/modeling/architectures/tood.py +0 -78
- paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
- paddlex/ppdet/modeling/architectures/yolo.py +0 -124
- paddlex/ppdet/modeling/assigners/__init__.py +0 -23
- paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
- paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
- paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
- paddlex/ppdet/modeling/assigners/utils.py +0 -195
- paddlex/ppdet/modeling/backbones/__init__.py +0 -49
- paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
- paddlex/ppdet/modeling/backbones/darknet.py +0 -340
- paddlex/ppdet/modeling/backbones/dla.py +0 -244
- paddlex/ppdet/modeling/backbones/esnet.py +0 -290
- paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
- paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
- paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
- paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
- paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
- paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
- paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
- paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
- paddlex/ppdet/modeling/backbones/res2net.py +0 -358
- paddlex/ppdet/modeling/backbones/resnet.py +0 -613
- paddlex/ppdet/modeling/backbones/senet.py +0 -139
- paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
- paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
- paddlex/ppdet/modeling/backbones/vgg.py +0 -210
- paddlex/ppdet/modeling/bbox_utils.py +0 -778
- paddlex/ppdet/modeling/heads/__init__.py +0 -53
- paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
- paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
- paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
- paddlex/ppdet/modeling/heads/detr_head.py +0 -368
- paddlex/ppdet/modeling/heads/face_head.py +0 -110
- paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
- paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
- paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
- paddlex/ppdet/modeling/heads/mask_head.py +0 -250
- paddlex/ppdet/modeling/heads/pico_head.py +0 -278
- paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
- paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
- paddlex/ppdet/modeling/heads/simota_head.py +0 -506
- paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
- paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
- paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
- paddlex/ppdet/modeling/heads/tood_head.py +0 -366
- paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
- paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
- paddlex/ppdet/modeling/initializer.py +0 -317
- paddlex/ppdet/modeling/keypoint_utils.py +0 -342
- paddlex/ppdet/modeling/layers.py +0 -1430
- paddlex/ppdet/modeling/losses/__init__.py +0 -43
- paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
- paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
- paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
- paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
- paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
- paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
- paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
- paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
- paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
- paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
- paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
- paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
- paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
- paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
- paddlex/ppdet/modeling/mot/__init__.py +0 -25
- paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
- paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
- paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
- paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
- paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
- paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
- paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
- paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
- paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
- paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
- paddlex/ppdet/modeling/mot/utils.py +0 -263
- paddlex/ppdet/modeling/mot/visualization.py +0 -150
- paddlex/ppdet/modeling/necks/__init__.py +0 -30
- paddlex/ppdet/modeling/necks/bifpn.py +0 -302
- paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
- paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
- paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
- paddlex/ppdet/modeling/necks/fpn.py +0 -231
- paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
- paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
- paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
- paddlex/ppdet/modeling/ops.py +0 -1611
- paddlex/ppdet/modeling/post_process.py +0 -731
- paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
- paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
- paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
- paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
- paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
- paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
- paddlex/ppdet/modeling/reid/__init__.py +0 -25
- paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
- paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
- paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
- paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
- paddlex/ppdet/modeling/reid/resnet.py +0 -310
- paddlex/ppdet/modeling/shape_spec.py +0 -25
- paddlex/ppdet/modeling/transformers/__init__.py +0 -25
- paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
- paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
- paddlex/ppdet/modeling/transformers/matchers.py +0 -127
- paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
- paddlex/ppdet/modeling/transformers/utils.py +0 -110
- paddlex/ppdet/optimizer.py +0 -335
- paddlex/ppdet/slim/__init__.py +0 -82
- paddlex/ppdet/slim/distill.py +0 -110
- paddlex/ppdet/slim/prune.py +0 -85
- paddlex/ppdet/slim/quant.py +0 -84
- paddlex/ppdet/slim/unstructured_prune.py +0 -66
- paddlex/ppdet/utils/__init__.py +0 -13
- paddlex/ppdet/utils/check.py +0 -112
- paddlex/ppdet/utils/checkpoint.py +0 -226
- paddlex/ppdet/utils/cli.py +0 -151
- paddlex/ppdet/utils/colormap.py +0 -58
- paddlex/ppdet/utils/download.py +0 -558
- paddlex/ppdet/utils/logger.py +0 -70
- paddlex/ppdet/utils/profiler.py +0 -111
- paddlex/ppdet/utils/stats.py +0 -94
- paddlex/ppdet/utils/visualizer.py +0 -321
- paddlex/ppdet/utils/voc_utils.py +0 -86
- paddlex/seg.py +0 -41
- paddlex/tools/__init__.py +0 -17
- paddlex/tools/anchor_clustering/__init__.py +0 -15
- paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
- paddlex/tools/convert.py +0 -52
- paddlex/tools/dataset_conversion/__init__.py +0 -24
- paddlex/tools/dataset_conversion/x2coco.py +0 -379
- paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
- paddlex/tools/dataset_conversion/x2seg.py +0 -343
- paddlex/tools/dataset_conversion/x2voc.py +0 -230
- paddlex/tools/dataset_split/__init__.py +0 -23
- paddlex/tools/dataset_split/coco_split.py +0 -69
- paddlex/tools/dataset_split/imagenet_split.py +0 -75
- paddlex/tools/dataset_split/seg_split.py +0 -96
- paddlex/tools/dataset_split/utils.py +0 -75
- paddlex/tools/dataset_split/voc_split.py +0 -91
- paddlex/tools/split.py +0 -41
- paddlex/utils/checkpoint.py +0 -492
- paddlex/utils/env.py +0 -67
- paddlex/utils/shm.py +0 -67
- paddlex/utils/stats.py +0 -68
- paddlex/utils/utils.py +0 -229
- paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
- paddlex-2.1.0.dist-info/LICENSE +0 -201
- paddlex-2.1.0.dist-info/METADATA +0 -32
- paddlex-2.1.0.dist-info/RECORD +0 -698
- paddlex-2.1.0.dist-info/WHEEL +0 -5
- paddlex-2.1.0.dist-info/entry_points.txt +0 -4
- paddlex-2.1.0.dist-info/top_level.txt +0 -3
- paddlex_restful/__init__.py +0 -15
- paddlex_restful/command.py +0 -63
- paddlex_restful/restful/__init__.py +0 -15
- paddlex_restful/restful/app.py +0 -969
- paddlex_restful/restful/dataset/__init__.py +0 -13
- paddlex_restful/restful/dataset/cls_dataset.py +0 -159
- paddlex_restful/restful/dataset/dataset.py +0 -266
- paddlex_restful/restful/dataset/datasetbase.py +0 -86
- paddlex_restful/restful/dataset/det_dataset.py +0 -190
- paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
- paddlex_restful/restful/dataset/operate.py +0 -155
- paddlex_restful/restful/dataset/seg_dataset.py +0 -222
- paddlex_restful/restful/dataset/utils.py +0 -267
- paddlex_restful/restful/demo.py +0 -202
- paddlex_restful/restful/dir.py +0 -45
- paddlex_restful/restful/model.py +0 -312
- paddlex_restful/restful/project/__init__.py +0 -13
- paddlex_restful/restful/project/evaluate/__init__.py +0 -13
- paddlex_restful/restful/project/evaluate/classification.py +0 -126
- paddlex_restful/restful/project/evaluate/detection.py +0 -789
- paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
- paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
- paddlex_restful/restful/project/operate.py +0 -931
- paddlex_restful/restful/project/project.py +0 -143
- paddlex_restful/restful/project/prune/__init__.py +0 -13
- paddlex_restful/restful/project/prune/classification.py +0 -32
- paddlex_restful/restful/project/prune/detection.py +0 -48
- paddlex_restful/restful/project/prune/segmentation.py +0 -34
- paddlex_restful/restful/project/task.py +0 -884
- paddlex_restful/restful/project/train/__init__.py +0 -13
- paddlex_restful/restful/project/train/classification.py +0 -141
- paddlex_restful/restful/project/train/detection.py +0 -263
- paddlex_restful/restful/project/train/params.py +0 -432
- paddlex_restful/restful/project/train/params_v2.py +0 -326
- paddlex_restful/restful/project/train/segmentation.py +0 -191
- paddlex_restful/restful/project/visualize.py +0 -244
- paddlex_restful/restful/system.py +0 -102
- paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
- paddlex_restful/restful/utils.py +0 -841
- paddlex_restful/restful/workspace.py +0 -343
- paddlex_restful/restful/workspace_pb2.py +0 -1411
paddlex/cv/models/detector.py
DELETED
@@ -1,2292 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
|
17
|
-
import collections
|
18
|
-
import copy
|
19
|
-
import os
|
20
|
-
import os.path as osp
|
21
|
-
import numpy as np
|
22
|
-
import paddle
|
23
|
-
from paddle.static import InputSpec
|
24
|
-
import paddlex.ppdet as ppdet
|
25
|
-
from paddlex.ppdet.modeling.proposal_generator.target_layer import BBoxAssigner, MaskAssigner
|
26
|
-
import paddlex
|
27
|
-
import paddlex.utils.logging as logging
|
28
|
-
from paddlex.cv.transforms.operators import _NormalizeBox, _PadBox, _BboxXYXY2XYWH, Resize, Padding
|
29
|
-
from paddlex.cv.transforms.batch_operators import BatchCompose, BatchRandomResize, BatchRandomResizeByShort, \
|
30
|
-
_BatchPadding, _Gt2YoloTarget
|
31
|
-
from paddlex.cv.transforms import arrange_transforms
|
32
|
-
from .base import BaseModel
|
33
|
-
from .utils.det_metrics import VOCMetric, COCOMetric
|
34
|
-
from paddlex.ppdet.optimizer import ModelEMA
|
35
|
-
from paddlex.utils.checkpoint import det_pretrain_weights_dict
|
36
|
-
|
37
|
-
__all__ = [
|
38
|
-
"YOLOv3", "FasterRCNN", "PPYOLO", "PPYOLOTiny", "PPYOLOv2", "MaskRCNN",
|
39
|
-
"PicoDet"
|
40
|
-
]
|
41
|
-
|
42
|
-
|
43
|
-
class BaseDetector(BaseModel):
|
44
|
-
def __init__(self, model_name, num_classes=80, **params):
|
45
|
-
self.init_params.update(locals())
|
46
|
-
if 'with_net' in self.init_params:
|
47
|
-
del self.init_params['with_net']
|
48
|
-
super(BaseDetector, self).__init__('detector')
|
49
|
-
if not hasattr(ppdet.modeling, model_name):
|
50
|
-
raise Exception("ERROR: There's no model named {}.".format(
|
51
|
-
model_name))
|
52
|
-
|
53
|
-
self.model_name = model_name
|
54
|
-
self.num_classes = num_classes
|
55
|
-
self.labels = None
|
56
|
-
if params.get('with_net', True):
|
57
|
-
params.pop('with_net', None)
|
58
|
-
self.net = self.build_net(**params)
|
59
|
-
|
60
|
-
def build_net(self, **params):
|
61
|
-
with paddle.utils.unique_name.guard():
|
62
|
-
net = ppdet.modeling.__dict__[self.model_name](**params)
|
63
|
-
return net
|
64
|
-
|
65
|
-
def _fix_transforms_shape(self, image_shape):
|
66
|
-
raise NotImplementedError("_fix_transforms_shape: not implemented!")
|
67
|
-
|
68
|
-
def _define_input_spec(self, image_shape):
|
69
|
-
input_spec = [{
|
70
|
-
"image": InputSpec(
|
71
|
-
shape=image_shape, name='image', dtype='float32'),
|
72
|
-
"im_shape": InputSpec(
|
73
|
-
shape=[image_shape[0], 2], name='im_shape', dtype='float32'),
|
74
|
-
"scale_factor": InputSpec(
|
75
|
-
shape=[image_shape[0], 2],
|
76
|
-
name='scale_factor',
|
77
|
-
dtype='float32')
|
78
|
-
}]
|
79
|
-
return input_spec
|
80
|
-
|
81
|
-
def _check_image_shape(self, image_shape):
|
82
|
-
if len(image_shape) == 2:
|
83
|
-
image_shape = [1, 3] + image_shape
|
84
|
-
if image_shape[-2] % 32 > 0 or image_shape[-1] % 32 > 0:
|
85
|
-
raise Exception(
|
86
|
-
"Height and width in fixed_input_shape must be a multiple of 32, but received {}.".
|
87
|
-
format(image_shape[-2:]))
|
88
|
-
return image_shape
|
89
|
-
|
90
|
-
def _get_test_inputs(self, image_shape):
|
91
|
-
if image_shape is not None:
|
92
|
-
image_shape = self._check_image_shape(image_shape)
|
93
|
-
self._fix_transforms_shape(image_shape[-2:])
|
94
|
-
else:
|
95
|
-
image_shape = [None, 3, -1, -1]
|
96
|
-
self.fixed_input_shape = image_shape
|
97
|
-
|
98
|
-
return self._define_input_spec(image_shape)
|
99
|
-
|
100
|
-
def _get_backbone(self, backbone_name, **params):
|
101
|
-
backbone = getattr(ppdet.modeling, backbone_name)(**params)
|
102
|
-
return backbone
|
103
|
-
|
104
|
-
def run(self, net, inputs, mode):
|
105
|
-
net_out = net(inputs)
|
106
|
-
if mode in ['train', 'eval']:
|
107
|
-
outputs = net_out
|
108
|
-
else:
|
109
|
-
outputs = dict()
|
110
|
-
for key in net_out:
|
111
|
-
outputs[key] = net_out[key].numpy()
|
112
|
-
|
113
|
-
return outputs
|
114
|
-
|
115
|
-
def default_optimizer(self,
|
116
|
-
parameters,
|
117
|
-
learning_rate,
|
118
|
-
warmup_steps,
|
119
|
-
warmup_start_lr,
|
120
|
-
lr_decay_epochs,
|
121
|
-
lr_decay_gamma,
|
122
|
-
num_steps_each_epoch,
|
123
|
-
reg_coeff=1e-04,
|
124
|
-
scheduler='Piecewise',
|
125
|
-
num_epochs=None):
|
126
|
-
if scheduler.lower() == 'piecewise':
|
127
|
-
if warmup_steps > 0 and warmup_steps > lr_decay_epochs[
|
128
|
-
0] * num_steps_each_epoch:
|
129
|
-
logging.error(
|
130
|
-
"In function train(), parameters must satisfy: "
|
131
|
-
"warmup_steps <= lr_decay_epochs[0] * num_samples_in_train_dataset. "
|
132
|
-
"See this doc for more information: "
|
133
|
-
"https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md",
|
134
|
-
exit=False)
|
135
|
-
logging.error(
|
136
|
-
"Either `warmup_steps` be less than {} or lr_decay_epochs[0] be greater than {} "
|
137
|
-
"must be satisfied, please modify 'warmup_steps' or 'lr_decay_epochs' in train function".
|
138
|
-
format(lr_decay_epochs[0] * num_steps_each_epoch,
|
139
|
-
warmup_steps // num_steps_each_epoch),
|
140
|
-
exit=True)
|
141
|
-
boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
|
142
|
-
values = [(lr_decay_gamma**i) * learning_rate
|
143
|
-
for i in range(len(lr_decay_epochs) + 1)]
|
144
|
-
scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
|
145
|
-
elif scheduler.lower() == 'cosine':
|
146
|
-
if num_epochs is None:
|
147
|
-
logging.error(
|
148
|
-
"`num_epochs` must be set while using cosine annealing decay scheduler, but received {}".
|
149
|
-
format(num_epochs),
|
150
|
-
exit=False)
|
151
|
-
if warmup_steps > 0 and warmup_steps > num_epochs * num_steps_each_epoch:
|
152
|
-
logging.error(
|
153
|
-
"In function train(), parameters must satisfy: "
|
154
|
-
"warmup_steps <= num_epochs * num_samples_in_train_dataset. "
|
155
|
-
"See this doc for more information: "
|
156
|
-
"https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md",
|
157
|
-
exit=False)
|
158
|
-
logging.error(
|
159
|
-
"`warmup_steps` must be less than the total number of steps({}), "
|
160
|
-
"please modify 'num_epochs' or 'warmup_steps' in train function".
|
161
|
-
format(num_epochs * num_steps_each_epoch),
|
162
|
-
exit=True)
|
163
|
-
T_max = num_epochs * num_steps_each_epoch - warmup_steps
|
164
|
-
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
|
165
|
-
learning_rate=learning_rate,
|
166
|
-
T_max=T_max,
|
167
|
-
eta_min=0.0,
|
168
|
-
last_epoch=-1)
|
169
|
-
else:
|
170
|
-
logging.error(
|
171
|
-
"Invalid learning rate scheduler: {}!".format(scheduler),
|
172
|
-
exit=True)
|
173
|
-
|
174
|
-
if warmup_steps > 0:
|
175
|
-
scheduler = paddle.optimizer.lr.LinearWarmup(
|
176
|
-
learning_rate=scheduler,
|
177
|
-
warmup_steps=warmup_steps,
|
178
|
-
start_lr=warmup_start_lr,
|
179
|
-
end_lr=learning_rate)
|
180
|
-
optimizer = paddle.optimizer.Momentum(
|
181
|
-
scheduler,
|
182
|
-
momentum=.9,
|
183
|
-
weight_decay=paddle.regularizer.L2Decay(coeff=reg_coeff),
|
184
|
-
parameters=parameters)
|
185
|
-
return optimizer
|
186
|
-
|
187
|
-
def train(self,
|
188
|
-
num_epochs,
|
189
|
-
train_dataset,
|
190
|
-
train_batch_size=64,
|
191
|
-
eval_dataset=None,
|
192
|
-
optimizer=None,
|
193
|
-
save_interval_epochs=1,
|
194
|
-
log_interval_steps=10,
|
195
|
-
save_dir='output',
|
196
|
-
pretrain_weights='IMAGENET',
|
197
|
-
learning_rate=.001,
|
198
|
-
warmup_steps=0,
|
199
|
-
warmup_start_lr=0.0,
|
200
|
-
lr_decay_epochs=(216, 243),
|
201
|
-
lr_decay_gamma=0.1,
|
202
|
-
metric=None,
|
203
|
-
use_ema=False,
|
204
|
-
early_stop=False,
|
205
|
-
early_stop_patience=5,
|
206
|
-
use_vdl=True,
|
207
|
-
resume_checkpoint=None):
|
208
|
-
"""
|
209
|
-
Train the model.
|
210
|
-
Args:
|
211
|
-
num_epochs(int): The number of epochs.
|
212
|
-
train_dataset(paddlex.dataset): Training dataset.
|
213
|
-
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
|
214
|
-
eval_dataset(paddlex.dataset, optional):
|
215
|
-
Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
|
216
|
-
optimizer(paddle.optimizer.Optimizer or None, optional):
|
217
|
-
Optimizer used for training. If None, a default optimizer is used. Defaults to None.
|
218
|
-
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
219
|
-
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
220
|
-
save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
221
|
-
pretrain_weights(str or None, optional):
|
222
|
-
None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
|
223
|
-
learning_rate(float, optional): Learning rate for training. Defaults to .001.
|
224
|
-
warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
|
225
|
-
warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
|
226
|
-
lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
|
227
|
-
lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
|
228
|
-
metric({'VOC', 'COCO', None}, optional):
|
229
|
-
Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
|
230
|
-
use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
|
231
|
-
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
232
|
-
early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
233
|
-
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
234
|
-
resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
|
235
|
-
If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
|
236
|
-
`pretrain_weights` can be set simultaneously. Defaults to None.
|
237
|
-
"""
|
238
|
-
if self.status == 'Infer':
|
239
|
-
logging.error(
|
240
|
-
"Exported inference model does not support training.",
|
241
|
-
exit=True)
|
242
|
-
if pretrain_weights is not None and resume_checkpoint is not None:
|
243
|
-
logging.error(
|
244
|
-
"pretrain_weights and resume_checkpoint cannot be set simultaneously.",
|
245
|
-
exit=True)
|
246
|
-
if train_dataset.__class__.__name__ == 'VOCDetection':
|
247
|
-
train_dataset.data_fields = {
|
248
|
-
'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
|
249
|
-
'difficult'
|
250
|
-
}
|
251
|
-
elif train_dataset.__class__.__name__ == 'CocoDetection':
|
252
|
-
if self.__class__.__name__ == 'MaskRCNN':
|
253
|
-
train_dataset.data_fields = {
|
254
|
-
'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
|
255
|
-
'gt_poly', 'is_crowd'
|
256
|
-
}
|
257
|
-
else:
|
258
|
-
train_dataset.data_fields = {
|
259
|
-
'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
|
260
|
-
'is_crowd'
|
261
|
-
}
|
262
|
-
|
263
|
-
if metric is None:
|
264
|
-
if eval_dataset.__class__.__name__ == 'VOCDetection':
|
265
|
-
self.metric = 'voc'
|
266
|
-
elif eval_dataset.__class__.__name__ == 'CocoDetection':
|
267
|
-
self.metric = 'coco'
|
268
|
-
else:
|
269
|
-
assert metric.lower() in ['coco', 'voc'], \
|
270
|
-
"Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
|
271
|
-
self.metric = metric.lower()
|
272
|
-
|
273
|
-
self.labels = train_dataset.labels
|
274
|
-
self.num_max_boxes = train_dataset.num_max_boxes
|
275
|
-
train_dataset.batch_transforms = self._compose_batch_transform(
|
276
|
-
train_dataset.transforms, mode='train')
|
277
|
-
|
278
|
-
# build optimizer if not defined
|
279
|
-
if optimizer is None:
|
280
|
-
num_steps_each_epoch = len(train_dataset) // train_batch_size
|
281
|
-
self.optimizer = self.default_optimizer(
|
282
|
-
parameters=self.net.parameters(),
|
283
|
-
learning_rate=learning_rate,
|
284
|
-
warmup_steps=warmup_steps,
|
285
|
-
warmup_start_lr=warmup_start_lr,
|
286
|
-
lr_decay_epochs=lr_decay_epochs,
|
287
|
-
lr_decay_gamma=lr_decay_gamma,
|
288
|
-
num_steps_each_epoch=num_steps_each_epoch)
|
289
|
-
else:
|
290
|
-
self.optimizer = optimizer
|
291
|
-
|
292
|
-
# initiate weights
|
293
|
-
if pretrain_weights is not None and not osp.exists(pretrain_weights):
|
294
|
-
if pretrain_weights not in det_pretrain_weights_dict['_'.join(
|
295
|
-
[self.model_name, self.backbone_name])]:
|
296
|
-
logging.warning(
|
297
|
-
"Path of pretrain_weights('{}') does not exist!".format(
|
298
|
-
pretrain_weights))
|
299
|
-
pretrain_weights = det_pretrain_weights_dict['_'.join(
|
300
|
-
[self.model_name, self.backbone_name])][0]
|
301
|
-
logging.warning("Pretrain_weights is forcibly set to '{}'. "
|
302
|
-
"If you don't want to use pretrain weights, "
|
303
|
-
"set pretrain_weights to be None.".format(
|
304
|
-
pretrain_weights))
|
305
|
-
elif pretrain_weights is not None and osp.exists(pretrain_weights):
|
306
|
-
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
307
|
-
logging.error(
|
308
|
-
"Invalid pretrain weights. Please specify a '.pdparams' file.",
|
309
|
-
exit=True)
|
310
|
-
pretrained_dir = osp.join(save_dir, 'pretrain')
|
311
|
-
self.net_initialize(
|
312
|
-
pretrain_weights=pretrain_weights,
|
313
|
-
save_dir=pretrained_dir,
|
314
|
-
resume_checkpoint=resume_checkpoint,
|
315
|
-
is_backbone_weights=(pretrain_weights == 'IMAGENET' and
|
316
|
-
'ESNet_' in self.backbone_name))
|
317
|
-
|
318
|
-
if use_ema:
|
319
|
-
ema = ModelEMA(model=self.net, decay=.9998, use_thres_step=True)
|
320
|
-
else:
|
321
|
-
ema = None
|
322
|
-
# start train loop
|
323
|
-
self.train_loop(
|
324
|
-
num_epochs=num_epochs,
|
325
|
-
train_dataset=train_dataset,
|
326
|
-
train_batch_size=train_batch_size,
|
327
|
-
eval_dataset=eval_dataset,
|
328
|
-
save_interval_epochs=save_interval_epochs,
|
329
|
-
log_interval_steps=log_interval_steps,
|
330
|
-
save_dir=save_dir,
|
331
|
-
ema=ema,
|
332
|
-
early_stop=early_stop,
|
333
|
-
early_stop_patience=early_stop_patience,
|
334
|
-
use_vdl=use_vdl)
|
335
|
-
|
336
|
-
def quant_aware_train(self,
|
337
|
-
num_epochs,
|
338
|
-
train_dataset,
|
339
|
-
train_batch_size=64,
|
340
|
-
eval_dataset=None,
|
341
|
-
optimizer=None,
|
342
|
-
save_interval_epochs=1,
|
343
|
-
log_interval_steps=10,
|
344
|
-
save_dir='output',
|
345
|
-
learning_rate=.00001,
|
346
|
-
warmup_steps=0,
|
347
|
-
warmup_start_lr=0.0,
|
348
|
-
lr_decay_epochs=(216, 243),
|
349
|
-
lr_decay_gamma=0.1,
|
350
|
-
metric=None,
|
351
|
-
use_ema=False,
|
352
|
-
early_stop=False,
|
353
|
-
early_stop_patience=5,
|
354
|
-
use_vdl=True,
|
355
|
-
resume_checkpoint=None,
|
356
|
-
quant_config=None):
|
357
|
-
"""
|
358
|
-
Quantization-aware training.
|
359
|
-
Args:
|
360
|
-
num_epochs(int): The number of epochs.
|
361
|
-
train_dataset(paddlex.dataset): Training dataset.
|
362
|
-
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
|
363
|
-
eval_dataset(paddlex.dataset, optional):
|
364
|
-
Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
|
365
|
-
optimizer(paddle.optimizer.Optimizer or None, optional):
|
366
|
-
Optimizer used for training. If None, a default optimizer is used. Defaults to None.
|
367
|
-
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
368
|
-
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
369
|
-
save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
370
|
-
learning_rate(float, optional): Learning rate for training. Defaults to .001.
|
371
|
-
warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
|
372
|
-
warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
|
373
|
-
lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
|
374
|
-
lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
|
375
|
-
metric({'VOC', 'COCO', None}, optional):
|
376
|
-
Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
|
377
|
-
use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
|
378
|
-
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
379
|
-
early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
380
|
-
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
381
|
-
quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
|
382
|
-
configuration will be used. Defaults to None.
|
383
|
-
resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
|
384
|
-
from. If None, no training checkpoint will be resumed. Defaults to None.
|
385
|
-
"""
|
386
|
-
self._prepare_qat(quant_config)
|
387
|
-
self.train(
|
388
|
-
num_epochs=num_epochs,
|
389
|
-
train_dataset=train_dataset,
|
390
|
-
train_batch_size=train_batch_size,
|
391
|
-
eval_dataset=eval_dataset,
|
392
|
-
optimizer=optimizer,
|
393
|
-
save_interval_epochs=save_interval_epochs,
|
394
|
-
log_interval_steps=log_interval_steps,
|
395
|
-
save_dir=save_dir,
|
396
|
-
pretrain_weights=None,
|
397
|
-
learning_rate=learning_rate,
|
398
|
-
warmup_steps=warmup_steps,
|
399
|
-
warmup_start_lr=warmup_start_lr,
|
400
|
-
lr_decay_epochs=lr_decay_epochs,
|
401
|
-
lr_decay_gamma=lr_decay_gamma,
|
402
|
-
metric=metric,
|
403
|
-
use_ema=use_ema,
|
404
|
-
early_stop=early_stop,
|
405
|
-
early_stop_patience=early_stop_patience,
|
406
|
-
use_vdl=use_vdl,
|
407
|
-
resume_checkpoint=resume_checkpoint)
|
408
|
-
|
409
|
-
def evaluate(self,
|
410
|
-
eval_dataset,
|
411
|
-
batch_size=1,
|
412
|
-
metric=None,
|
413
|
-
return_details=False):
|
414
|
-
"""
|
415
|
-
Evaluate the model.
|
416
|
-
Args:
|
417
|
-
eval_dataset(paddlex.dataset): Evaluation dataset.
|
418
|
-
batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
|
419
|
-
metric({'VOC', 'COCO', None}, optional):
|
420
|
-
Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
|
421
|
-
return_details(bool, optional): Whether to return evaluation details. Defaults to False.
|
422
|
-
Returns:
|
423
|
-
collections.OrderedDict with key-value pairs: {"mAP(0.50, 11point)":`mean average precision`}.
|
424
|
-
"""
|
425
|
-
|
426
|
-
if metric is None:
|
427
|
-
if not hasattr(self, 'metric'):
|
428
|
-
if eval_dataset.__class__.__name__ == 'VOCDetection':
|
429
|
-
self.metric = 'voc'
|
430
|
-
elif eval_dataset.__class__.__name__ == 'CocoDetection':
|
431
|
-
self.metric = 'coco'
|
432
|
-
else:
|
433
|
-
assert metric.lower() in ['coco', 'voc'], \
|
434
|
-
"Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
|
435
|
-
self.metric = metric.lower()
|
436
|
-
|
437
|
-
if self.metric == 'voc':
|
438
|
-
eval_dataset.data_fields = {
|
439
|
-
'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
|
440
|
-
'difficult'
|
441
|
-
}
|
442
|
-
elif self.metric == 'coco':
|
443
|
-
if self.__class__.__name__ == 'MaskRCNN':
|
444
|
-
eval_dataset.data_fields = {
|
445
|
-
'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
|
446
|
-
'gt_poly', 'is_crowd'
|
447
|
-
}
|
448
|
-
else:
|
449
|
-
eval_dataset.data_fields = {
|
450
|
-
'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
|
451
|
-
'is_crowd'
|
452
|
-
}
|
453
|
-
eval_dataset.batch_transforms = self._compose_batch_transform(
|
454
|
-
eval_dataset.transforms, mode='eval')
|
455
|
-
arrange_transforms(
|
456
|
-
model_type=self.model_type,
|
457
|
-
transforms=eval_dataset.transforms,
|
458
|
-
mode='eval')
|
459
|
-
|
460
|
-
self.net.eval()
|
461
|
-
nranks = paddle.distributed.get_world_size()
|
462
|
-
local_rank = paddle.distributed.get_rank()
|
463
|
-
if nranks > 1:
|
464
|
-
# Initialize parallel environment if not done.
|
465
|
-
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
466
|
-
):
|
467
|
-
paddle.distributed.init_parallel_env()
|
468
|
-
|
469
|
-
if batch_size > 1:
|
470
|
-
logging.warning(
|
471
|
-
"Detector only supports single card evaluation with batch_size=1 "
|
472
|
-
"during evaluation, so batch_size is forcibly set to 1.")
|
473
|
-
batch_size = 1
|
474
|
-
|
475
|
-
if nranks < 2 or local_rank == 0:
|
476
|
-
self.eval_data_loader = self.build_data_loader(
|
477
|
-
eval_dataset, batch_size=batch_size, mode='eval')
|
478
|
-
is_bbox_normalized = False
|
479
|
-
if eval_dataset.batch_transforms is not None:
|
480
|
-
is_bbox_normalized = any(
|
481
|
-
isinstance(t, _NormalizeBox)
|
482
|
-
for t in eval_dataset.batch_transforms.batch_transforms)
|
483
|
-
if self.metric == 'voc':
|
484
|
-
eval_metric = VOCMetric(
|
485
|
-
labels=eval_dataset.labels,
|
486
|
-
coco_gt=copy.deepcopy(eval_dataset.coco_gt),
|
487
|
-
is_bbox_normalized=is_bbox_normalized,
|
488
|
-
classwise=False)
|
489
|
-
else:
|
490
|
-
eval_metric = COCOMetric(
|
491
|
-
coco_gt=copy.deepcopy(eval_dataset.coco_gt),
|
492
|
-
classwise=False)
|
493
|
-
scores = collections.OrderedDict()
|
494
|
-
logging.info(
|
495
|
-
"Start to evaluate(total_samples={}, total_steps={})...".
|
496
|
-
format(eval_dataset.num_samples, eval_dataset.num_samples))
|
497
|
-
with paddle.no_grad():
|
498
|
-
for step, data in enumerate(self.eval_data_loader):
|
499
|
-
outputs = self.run(self.net, data, 'eval')
|
500
|
-
eval_metric.update(data, outputs)
|
501
|
-
eval_metric.accumulate()
|
502
|
-
self.eval_details = eval_metric.details
|
503
|
-
scores.update(eval_metric.get())
|
504
|
-
eval_metric.reset()
|
505
|
-
|
506
|
-
if return_details:
|
507
|
-
return scores, self.eval_details
|
508
|
-
return scores
|
509
|
-
|
510
|
-
def predict(self, img_file, transforms=None):
|
511
|
-
"""
|
512
|
-
Do inference.
|
513
|
-
Args:
|
514
|
-
img_file(List[np.ndarray or str], str or np.ndarray):
|
515
|
-
Image path or decoded image data in a BGR format, which also could constitute a list,
|
516
|
-
meaning all images to be predicted as a mini-batch.
|
517
|
-
transforms(paddlex.transforms.Compose or None, optional):
|
518
|
-
Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
|
519
|
-
Returns:
|
520
|
-
If img_file is a string or np.array, the result is a list of dict with key-value pairs:
|
521
|
-
{"category_id": `category_id`, "category": `category`, "bbox": `[x, y, w, h]`, "score": `score`}.
|
522
|
-
If img_file is a list, the result is a list composed of dicts with the corresponding fields:
|
523
|
-
category_id(int): the predicted category ID. 0 represents the first category in the dataset, and so on.
|
524
|
-
category(str): category name
|
525
|
-
bbox(list): bounding box in [x, y, w, h] format
|
526
|
-
score(str): confidence
|
527
|
-
mask(dict): Only for instance segmentation task. Mask of the object in RLE format
|
528
|
-
"""
|
529
|
-
if transforms is None and not hasattr(self, 'test_transforms'):
|
530
|
-
raise Exception("transforms need to be defined, now is None.")
|
531
|
-
if transforms is None:
|
532
|
-
transforms = self.test_transforms
|
533
|
-
if isinstance(img_file, (str, np.ndarray)):
|
534
|
-
images = [img_file]
|
535
|
-
else:
|
536
|
-
images = img_file
|
537
|
-
|
538
|
-
batch_samples = self._preprocess(images, transforms)
|
539
|
-
self.net.eval()
|
540
|
-
outputs = self.run(self.net, batch_samples, 'test')
|
541
|
-
prediction = self._postprocess(outputs)
|
542
|
-
|
543
|
-
if isinstance(img_file, (str, np.ndarray)):
|
544
|
-
prediction = prediction[0]
|
545
|
-
return prediction
|
546
|
-
|
547
|
-
def _preprocess(self, images, transforms, to_tensor=True):
|
548
|
-
arrange_transforms(
|
549
|
-
model_type=self.model_type, transforms=transforms, mode='test')
|
550
|
-
batch_samples = list()
|
551
|
-
for im in images:
|
552
|
-
sample = {'image': im}
|
553
|
-
batch_samples.append(transforms(sample))
|
554
|
-
batch_transforms = self._compose_batch_transform(transforms, 'test')
|
555
|
-
batch_samples = batch_transforms(batch_samples)
|
556
|
-
if to_tensor:
|
557
|
-
for k in batch_samples:
|
558
|
-
batch_samples[k] = paddle.to_tensor(batch_samples[k])
|
559
|
-
|
560
|
-
return batch_samples
|
561
|
-
|
562
|
-
def _postprocess(self, batch_pred):
|
563
|
-
infer_result = {}
|
564
|
-
if 'bbox' in batch_pred:
|
565
|
-
bboxes = batch_pred['bbox']
|
566
|
-
bbox_nums = batch_pred['bbox_num']
|
567
|
-
det_res = []
|
568
|
-
k = 0
|
569
|
-
for i in range(len(bbox_nums)):
|
570
|
-
det_nums = bbox_nums[i]
|
571
|
-
for j in range(det_nums):
|
572
|
-
dt = bboxes[k]
|
573
|
-
k = k + 1
|
574
|
-
num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
|
575
|
-
if int(num_id) < 0:
|
576
|
-
continue
|
577
|
-
category = self.labels[int(num_id)]
|
578
|
-
w = xmax - xmin
|
579
|
-
h = ymax - ymin
|
580
|
-
bbox = [xmin, ymin, w, h]
|
581
|
-
dt_res = {
|
582
|
-
'category_id': int(num_id),
|
583
|
-
'category': category,
|
584
|
-
'bbox': bbox,
|
585
|
-
'score': score
|
586
|
-
}
|
587
|
-
det_res.append(dt_res)
|
588
|
-
infer_result['bbox'] = det_res
|
589
|
-
|
590
|
-
if 'mask' in batch_pred:
|
591
|
-
masks = batch_pred['mask']
|
592
|
-
bboxes = batch_pred['bbox']
|
593
|
-
mask_nums = batch_pred['bbox_num']
|
594
|
-
seg_res = []
|
595
|
-
k = 0
|
596
|
-
for i in range(len(mask_nums)):
|
597
|
-
det_nums = mask_nums[i]
|
598
|
-
for j in range(det_nums):
|
599
|
-
mask = masks[k].astype(np.uint8)
|
600
|
-
score = float(bboxes[k][1])
|
601
|
-
label = int(bboxes[k][0])
|
602
|
-
k = k + 1
|
603
|
-
if label == -1:
|
604
|
-
continue
|
605
|
-
category = self.labels[int(label)]
|
606
|
-
sg_res = {
|
607
|
-
'category_id': int(label),
|
608
|
-
'category': category,
|
609
|
-
'mask': mask.astype('uint8'),
|
610
|
-
'score': score
|
611
|
-
}
|
612
|
-
seg_res.append(sg_res)
|
613
|
-
infer_result['mask'] = seg_res
|
614
|
-
|
615
|
-
bbox_num = batch_pred['bbox_num']
|
616
|
-
results = []
|
617
|
-
start = 0
|
618
|
-
for num in bbox_num:
|
619
|
-
end = start + num
|
620
|
-
curr_res = infer_result['bbox'][start:end]
|
621
|
-
if 'mask' in infer_result:
|
622
|
-
mask_res = infer_result['mask'][start:end]
|
623
|
-
for box, mask in zip(curr_res, mask_res):
|
624
|
-
box.update(mask)
|
625
|
-
results.append(curr_res)
|
626
|
-
start = end
|
627
|
-
|
628
|
-
return results
|
629
|
-
|
630
|
-
|
631
|
-
class PicoDet(BaseDetector):
|
632
|
-
def __init__(self,
|
633
|
-
num_classes=80,
|
634
|
-
backbone='ESNet_m',
|
635
|
-
nms_score_threshold=.025,
|
636
|
-
nms_topk=1000,
|
637
|
-
nms_keep_topk=100,
|
638
|
-
nms_iou_threshold=.6,
|
639
|
-
**params):
|
640
|
-
self.init_params = locals()
|
641
|
-
if backbone not in {
|
642
|
-
'ESNet_s', 'ESNet_m', 'ESNet_l', 'LCNet', 'MobileNetV3',
|
643
|
-
'ResNet18_vd'
|
644
|
-
}:
|
645
|
-
raise ValueError(
|
646
|
-
"backbone: {} is not supported. Please choose one of "
|
647
|
-
"('ESNet_s', 'ESNet_m', 'ESNet_l', 'LCNet', 'MobileNetV3', 'ResNet18_vd')".
|
648
|
-
format(backbone))
|
649
|
-
self.backbone_name = backbone
|
650
|
-
if params.get('with_net', True):
|
651
|
-
if backbone == 'ESNet_s':
|
652
|
-
backbone = self._get_backbone(
|
653
|
-
'ESNet',
|
654
|
-
scale=.75,
|
655
|
-
feature_maps=[4, 11, 14],
|
656
|
-
act="hard_swish",
|
657
|
-
channel_ratio=[
|
658
|
-
0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5,
|
659
|
-
0.5, 0.5, 0.5
|
660
|
-
])
|
661
|
-
neck_out_channels = 96
|
662
|
-
head_num_convs = 2
|
663
|
-
elif backbone == 'ESNet_m':
|
664
|
-
backbone = self._get_backbone(
|
665
|
-
'ESNet',
|
666
|
-
scale=1.0,
|
667
|
-
feature_maps=[4, 11, 14],
|
668
|
-
act="hard_swish",
|
669
|
-
channel_ratio=[
|
670
|
-
0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5,
|
671
|
-
0.625, 1.0, 0.625, 0.75
|
672
|
-
])
|
673
|
-
neck_out_channels = 128
|
674
|
-
head_num_convs = 4
|
675
|
-
elif backbone == 'ESNet_l':
|
676
|
-
backbone = self._get_backbone(
|
677
|
-
'ESNet',
|
678
|
-
scale=1.25,
|
679
|
-
feature_maps=[4, 11, 14],
|
680
|
-
act="hard_swish",
|
681
|
-
channel_ratio=[
|
682
|
-
0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5,
|
683
|
-
0.625, 1.0, 0.625, 0.75
|
684
|
-
])
|
685
|
-
neck_out_channels = 160
|
686
|
-
head_num_convs = 4
|
687
|
-
elif backbone == 'LCNet':
|
688
|
-
backbone = self._get_backbone(
|
689
|
-
'LCNet', scale=1.5, feature_maps=[3, 4, 5])
|
690
|
-
neck_out_channels = 128
|
691
|
-
head_num_convs = 4
|
692
|
-
elif backbone == 'MobileNetV3':
|
693
|
-
backbone = self._get_backbone(
|
694
|
-
'MobileNetV3',
|
695
|
-
scale=1.0,
|
696
|
-
with_extra_blocks=False,
|
697
|
-
extra_block_filters=[],
|
698
|
-
feature_maps=[7, 13, 16])
|
699
|
-
neck_out_channels = 128
|
700
|
-
head_num_convs = 4
|
701
|
-
else:
|
702
|
-
backbone = self._get_backbone(
|
703
|
-
'ResNet',
|
704
|
-
depth=18,
|
705
|
-
variant='d',
|
706
|
-
return_idx=[1, 2, 3],
|
707
|
-
freeze_at=-1,
|
708
|
-
freeze_norm=False,
|
709
|
-
norm_decay=0.)
|
710
|
-
neck_out_channels = 128
|
711
|
-
head_num_convs = 4
|
712
|
-
|
713
|
-
neck = ppdet.modeling.CSPPAN(
|
714
|
-
in_channels=[i.channels for i in backbone.out_shape],
|
715
|
-
out_channels=neck_out_channels,
|
716
|
-
num_features=4,
|
717
|
-
num_csp_blocks=1,
|
718
|
-
use_depthwise=True)
|
719
|
-
|
720
|
-
head_conv_feat = ppdet.modeling.PicoFeat(
|
721
|
-
feat_in=neck_out_channels,
|
722
|
-
feat_out=neck_out_channels,
|
723
|
-
num_fpn_stride=4,
|
724
|
-
num_convs=head_num_convs,
|
725
|
-
norm_type='bn',
|
726
|
-
share_cls_reg=True, )
|
727
|
-
loss_class = ppdet.modeling.VarifocalLoss(
|
728
|
-
use_sigmoid=True, iou_weighted=True, loss_weight=1.0)
|
729
|
-
loss_dfl = ppdet.modeling.DistributionFocalLoss(loss_weight=.25)
|
730
|
-
loss_bbox = ppdet.modeling.GIoULoss(loss_weight=2.0)
|
731
|
-
assigner = ppdet.modeling.SimOTAAssigner(
|
732
|
-
candidate_topk=10, iou_weight=6, num_classes=num_classes)
|
733
|
-
nms = ppdet.modeling.MultiClassNMS(
|
734
|
-
nms_top_k=nms_topk,
|
735
|
-
keep_top_k=nms_keep_topk,
|
736
|
-
score_threshold=nms_score_threshold,
|
737
|
-
nms_threshold=nms_iou_threshold)
|
738
|
-
head = ppdet.modeling.PicoHead(
|
739
|
-
conv_feat=head_conv_feat,
|
740
|
-
num_classes=num_classes,
|
741
|
-
fpn_stride=[8, 16, 32, 64],
|
742
|
-
prior_prob=0.01,
|
743
|
-
reg_max=7,
|
744
|
-
cell_offset=.5,
|
745
|
-
loss_class=loss_class,
|
746
|
-
loss_dfl=loss_dfl,
|
747
|
-
loss_bbox=loss_bbox,
|
748
|
-
assigner=assigner,
|
749
|
-
feat_in_chan=neck_out_channels,
|
750
|
-
nms=nms)
|
751
|
-
params.update({
|
752
|
-
'backbone': backbone,
|
753
|
-
'neck': neck,
|
754
|
-
'head': head,
|
755
|
-
})
|
756
|
-
super(PicoDet, self).__init__(
|
757
|
-
model_name='PicoDet', num_classes=num_classes, **params)
|
758
|
-
|
759
|
-
def _compose_batch_transform(self, transforms, mode='train'):
|
760
|
-
default_batch_transforms = [_BatchPadding(pad_to_stride=32)]
|
761
|
-
if mode == 'eval':
|
762
|
-
collate_batch = True
|
763
|
-
else:
|
764
|
-
collate_batch = False
|
765
|
-
|
766
|
-
custom_batch_transforms = []
|
767
|
-
for i, op in enumerate(transforms.transforms):
|
768
|
-
if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
|
769
|
-
if mode != 'train':
|
770
|
-
raise Exception(
|
771
|
-
"{} cannot be present in the {} transforms. ".format(
|
772
|
-
op.__class__.__name__, mode) +
|
773
|
-
"Please check the {} transforms.".format(mode))
|
774
|
-
custom_batch_transforms.insert(0, copy.deepcopy(op))
|
775
|
-
|
776
|
-
batch_transforms = BatchCompose(
|
777
|
-
custom_batch_transforms + default_batch_transforms,
|
778
|
-
collate_batch=collate_batch)
|
779
|
-
|
780
|
-
return batch_transforms
|
781
|
-
|
782
|
-
def _fix_transforms_shape(self, image_shape):
|
783
|
-
if getattr(self, 'test_transforms', None):
|
784
|
-
has_resize_op = False
|
785
|
-
resize_op_idx = -1
|
786
|
-
normalize_op_idx = len(self.test_transforms.transforms)
|
787
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
788
|
-
name = op.__class__.__name__
|
789
|
-
if name == 'Resize':
|
790
|
-
has_resize_op = True
|
791
|
-
resize_op_idx = idx
|
792
|
-
if name == 'Normalize':
|
793
|
-
normalize_op_idx = idx
|
794
|
-
|
795
|
-
if not has_resize_op:
|
796
|
-
self.test_transforms.transforms.insert(
|
797
|
-
normalize_op_idx,
|
798
|
-
Resize(
|
799
|
-
target_size=image_shape, interp='CUBIC'))
|
800
|
-
else:
|
801
|
-
self.test_transforms.transforms[
|
802
|
-
resize_op_idx].target_size = image_shape
|
803
|
-
|
804
|
-
def _get_test_inputs(self, image_shape):
|
805
|
-
if image_shape is not None:
|
806
|
-
image_shape = self._check_image_shape(image_shape)
|
807
|
-
self._fix_transforms_shape(image_shape[-2:])
|
808
|
-
else:
|
809
|
-
image_shape = [None, 3, 320, 320]
|
810
|
-
if getattr(self, 'test_transforms', None):
|
811
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
812
|
-
name = op.__class__.__name__
|
813
|
-
if name == 'Resize':
|
814
|
-
image_shape = [None, 3] + list(
|
815
|
-
self.test_transforms.transforms[idx].target_size)
|
816
|
-
logging.warning(
|
817
|
-
'[Important!!!] When exporting inference model for {}, '
|
818
|
-
'if fixed_input_shape is not set, it will be forcibly set to {}. '
|
819
|
-
'Please ensure image shape after transforms is {}, if not, '
|
820
|
-
'fixed_input_shape should be specified manually.'
|
821
|
-
.format(self.__class__.__name__, image_shape, image_shape[1:]))
|
822
|
-
|
823
|
-
self.fixed_input_shape = image_shape
|
824
|
-
return self._define_input_spec(image_shape)
|
825
|
-
|
826
|
-
def train(self,
|
827
|
-
num_epochs,
|
828
|
-
train_dataset,
|
829
|
-
train_batch_size=64,
|
830
|
-
eval_dataset=None,
|
831
|
-
optimizer=None,
|
832
|
-
save_interval_epochs=1,
|
833
|
-
log_interval_steps=10,
|
834
|
-
save_dir='output',
|
835
|
-
pretrain_weights='IMAGENET',
|
836
|
-
learning_rate=.001,
|
837
|
-
warmup_steps=0,
|
838
|
-
warmup_start_lr=0.0,
|
839
|
-
lr_decay_epochs=(216, 243),
|
840
|
-
lr_decay_gamma=0.1,
|
841
|
-
metric=None,
|
842
|
-
use_ema=False,
|
843
|
-
early_stop=False,
|
844
|
-
early_stop_patience=5,
|
845
|
-
use_vdl=True,
|
846
|
-
resume_checkpoint=None):
|
847
|
-
"""
|
848
|
-
Train the model.
|
849
|
-
Args:
|
850
|
-
num_epochs(int): The number of epochs.
|
851
|
-
train_dataset(paddlex.dataset): Training dataset.
|
852
|
-
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
|
853
|
-
eval_dataset(paddlex.dataset, optional):
|
854
|
-
Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
|
855
|
-
optimizer(paddle.optimizer.Optimizer or None, optional):
|
856
|
-
Optimizer used for training. If None, a default optimizer is used. Defaults to None.
|
857
|
-
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
858
|
-
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
859
|
-
save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
860
|
-
pretrain_weights(str or None, optional):
|
861
|
-
None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
|
862
|
-
learning_rate(float, optional): Learning rate for training. Defaults to .001.
|
863
|
-
warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
|
864
|
-
warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
|
865
|
-
lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
|
866
|
-
lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
|
867
|
-
metric({'VOC', 'COCO', None}, optional):
|
868
|
-
Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
|
869
|
-
use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
|
870
|
-
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
871
|
-
early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
872
|
-
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
873
|
-
resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
|
874
|
-
If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
|
875
|
-
`pretrain_weights` can be set simultaneously. Defaults to None.
|
876
|
-
"""
|
877
|
-
if optimizer is None:
|
878
|
-
num_steps_each_epoch = len(train_dataset) // train_batch_size
|
879
|
-
optimizer = self.default_optimizer(
|
880
|
-
parameters=self.net.parameters(),
|
881
|
-
learning_rate=learning_rate,
|
882
|
-
warmup_steps=warmup_steps,
|
883
|
-
warmup_start_lr=warmup_start_lr,
|
884
|
-
lr_decay_epochs=lr_decay_epochs,
|
885
|
-
lr_decay_gamma=lr_decay_gamma,
|
886
|
-
num_steps_each_epoch=num_steps_each_epoch,
|
887
|
-
reg_coeff=4e-05,
|
888
|
-
scheduler='Cosine',
|
889
|
-
num_epochs=num_epochs)
|
890
|
-
super(PicoDet, self).train(
|
891
|
-
num_epochs=num_epochs,
|
892
|
-
train_dataset=train_dataset,
|
893
|
-
train_batch_size=train_batch_size,
|
894
|
-
eval_dataset=eval_dataset,
|
895
|
-
optimizer=optimizer,
|
896
|
-
save_interval_epochs=save_interval_epochs,
|
897
|
-
log_interval_steps=log_interval_steps,
|
898
|
-
save_dir=save_dir,
|
899
|
-
pretrain_weights=pretrain_weights,
|
900
|
-
learning_rate=learning_rate,
|
901
|
-
warmup_steps=warmup_steps,
|
902
|
-
warmup_start_lr=warmup_start_lr,
|
903
|
-
lr_decay_epochs=lr_decay_epochs,
|
904
|
-
lr_decay_gamma=lr_decay_gamma,
|
905
|
-
metric=metric,
|
906
|
-
use_ema=use_ema,
|
907
|
-
early_stop=early_stop,
|
908
|
-
early_stop_patience=early_stop_patience,
|
909
|
-
use_vdl=use_vdl,
|
910
|
-
resume_checkpoint=resume_checkpoint)
|
911
|
-
|
912
|
-
|
913
|
-
class YOLOv3(BaseDetector):
|
914
|
-
def __init__(self,
|
915
|
-
num_classes=80,
|
916
|
-
backbone='MobileNetV1',
|
917
|
-
anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
|
918
|
-
[59, 119], [116, 90], [156, 198], [373, 326]],
|
919
|
-
anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
|
920
|
-
ignore_threshold=0.7,
|
921
|
-
nms_score_threshold=0.01,
|
922
|
-
nms_topk=1000,
|
923
|
-
nms_keep_topk=100,
|
924
|
-
nms_iou_threshold=0.45,
|
925
|
-
label_smooth=False,
|
926
|
-
**params):
|
927
|
-
self.init_params = locals()
|
928
|
-
if backbone not in {
|
929
|
-
'MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3',
|
930
|
-
'MobileNetV3_ssld', 'DarkNet53', 'ResNet50_vd_dcn', 'ResNet34'
|
931
|
-
}:
|
932
|
-
raise ValueError(
|
933
|
-
"backbone: {} is not supported. Please choose one of "
|
934
|
-
"('MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3', 'MobileNetV3_ssld', 'DarkNet53', "
|
935
|
-
"'ResNet50_vd_dcn', 'ResNet34')".format(backbone))
|
936
|
-
|
937
|
-
self.backbone_name = backbone
|
938
|
-
if params.get('with_net', True):
|
939
|
-
if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
|
940
|
-
'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
|
941
|
-
norm_type = 'sync_bn'
|
942
|
-
else:
|
943
|
-
norm_type = 'bn'
|
944
|
-
|
945
|
-
if 'MobileNetV1' in backbone:
|
946
|
-
norm_type = 'bn'
|
947
|
-
backbone = self._get_backbone('MobileNet', norm_type=norm_type)
|
948
|
-
elif 'MobileNetV3' in backbone:
|
949
|
-
backbone = self._get_backbone(
|
950
|
-
'MobileNetV3',
|
951
|
-
norm_type=norm_type,
|
952
|
-
feature_maps=[7, 13, 16])
|
953
|
-
elif backbone == 'ResNet50_vd_dcn':
|
954
|
-
backbone = self._get_backbone(
|
955
|
-
'ResNet',
|
956
|
-
norm_type=norm_type,
|
957
|
-
variant='d',
|
958
|
-
return_idx=[1, 2, 3],
|
959
|
-
dcn_v2_stages=[3],
|
960
|
-
freeze_at=-1,
|
961
|
-
freeze_norm=False)
|
962
|
-
elif backbone == 'ResNet34':
|
963
|
-
backbone = self._get_backbone(
|
964
|
-
'ResNet',
|
965
|
-
depth=34,
|
966
|
-
norm_type=norm_type,
|
967
|
-
return_idx=[1, 2, 3],
|
968
|
-
freeze_at=-1,
|
969
|
-
freeze_norm=False,
|
970
|
-
norm_decay=0.)
|
971
|
-
else:
|
972
|
-
backbone = self._get_backbone('DarkNet', norm_type=norm_type)
|
973
|
-
|
974
|
-
neck = ppdet.modeling.YOLOv3FPN(
|
975
|
-
norm_type=norm_type,
|
976
|
-
in_channels=[i.channels for i in backbone.out_shape])
|
977
|
-
loss = ppdet.modeling.YOLOv3Loss(
|
978
|
-
num_classes=num_classes,
|
979
|
-
ignore_thresh=ignore_threshold,
|
980
|
-
label_smooth=label_smooth)
|
981
|
-
yolo_head = ppdet.modeling.YOLOv3Head(
|
982
|
-
in_channels=[i.channels for i in neck.out_shape],
|
983
|
-
anchors=anchors,
|
984
|
-
anchor_masks=anchor_masks,
|
985
|
-
num_classes=num_classes,
|
986
|
-
loss=loss)
|
987
|
-
post_process = ppdet.modeling.BBoxPostProcess(
|
988
|
-
decode=ppdet.modeling.YOLOBox(num_classes=num_classes),
|
989
|
-
nms=ppdet.modeling.MultiClassNMS(
|
990
|
-
score_threshold=nms_score_threshold,
|
991
|
-
nms_top_k=nms_topk,
|
992
|
-
keep_top_k=nms_keep_topk,
|
993
|
-
nms_threshold=nms_iou_threshold))
|
994
|
-
params.update({
|
995
|
-
'backbone': backbone,
|
996
|
-
'neck': neck,
|
997
|
-
'yolo_head': yolo_head,
|
998
|
-
'post_process': post_process
|
999
|
-
})
|
1000
|
-
super(YOLOv3, self).__init__(
|
1001
|
-
model_name='YOLOv3', num_classes=num_classes, **params)
|
1002
|
-
self.anchors = anchors
|
1003
|
-
self.anchor_masks = anchor_masks
|
1004
|
-
|
1005
|
-
def _compose_batch_transform(self, transforms, mode='train'):
|
1006
|
-
if mode == 'train':
|
1007
|
-
default_batch_transforms = [
|
1008
|
-
_BatchPadding(pad_to_stride=-1), _NormalizeBox(),
|
1009
|
-
_PadBox(getattr(self, 'num_max_boxes', 50)), _BboxXYXY2XYWH(),
|
1010
|
-
_Gt2YoloTarget(
|
1011
|
-
anchor_masks=self.anchor_masks,
|
1012
|
-
anchors=self.anchors,
|
1013
|
-
downsample_ratios=getattr(self, 'downsample_ratios',
|
1014
|
-
[32, 16, 8]),
|
1015
|
-
num_classes=self.num_classes)
|
1016
|
-
]
|
1017
|
-
else:
|
1018
|
-
default_batch_transforms = [_BatchPadding(pad_to_stride=-1)]
|
1019
|
-
if mode == 'eval' and self.metric == 'voc':
|
1020
|
-
collate_batch = False
|
1021
|
-
else:
|
1022
|
-
collate_batch = True
|
1023
|
-
|
1024
|
-
custom_batch_transforms = []
|
1025
|
-
for i, op in enumerate(transforms.transforms):
|
1026
|
-
if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
|
1027
|
-
if mode != 'train':
|
1028
|
-
raise Exception(
|
1029
|
-
"{} cannot be present in the {} transforms. ".format(
|
1030
|
-
op.__class__.__name__, mode) +
|
1031
|
-
"Please check the {} transforms.".format(mode))
|
1032
|
-
custom_batch_transforms.insert(0, copy.deepcopy(op))
|
1033
|
-
|
1034
|
-
batch_transforms = BatchCompose(
|
1035
|
-
custom_batch_transforms + default_batch_transforms,
|
1036
|
-
collate_batch=collate_batch)
|
1037
|
-
|
1038
|
-
return batch_transforms
|
1039
|
-
|
1040
|
-
def _fix_transforms_shape(self, image_shape):
|
1041
|
-
if getattr(self, 'test_transforms', None):
|
1042
|
-
has_resize_op = False
|
1043
|
-
resize_op_idx = -1
|
1044
|
-
normalize_op_idx = len(self.test_transforms.transforms)
|
1045
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
1046
|
-
name = op.__class__.__name__
|
1047
|
-
if name == 'Resize':
|
1048
|
-
has_resize_op = True
|
1049
|
-
resize_op_idx = idx
|
1050
|
-
if name == 'Normalize':
|
1051
|
-
normalize_op_idx = idx
|
1052
|
-
|
1053
|
-
if not has_resize_op:
|
1054
|
-
self.test_transforms.transforms.insert(
|
1055
|
-
normalize_op_idx,
|
1056
|
-
Resize(
|
1057
|
-
target_size=image_shape, interp='CUBIC'))
|
1058
|
-
else:
|
1059
|
-
self.test_transforms.transforms[
|
1060
|
-
resize_op_idx].target_size = image_shape
|
1061
|
-
|
1062
|
-
|
1063
|
-
class FasterRCNN(BaseDetector):
|
1064
|
-
def __init__(self,
|
1065
|
-
num_classes=80,
|
1066
|
-
backbone='ResNet50',
|
1067
|
-
with_fpn=True,
|
1068
|
-
with_dcn=False,
|
1069
|
-
aspect_ratios=[0.5, 1.0, 2.0],
|
1070
|
-
anchor_sizes=[[32], [64], [128], [256], [512]],
|
1071
|
-
keep_top_k=100,
|
1072
|
-
nms_threshold=0.5,
|
1073
|
-
score_threshold=0.05,
|
1074
|
-
fpn_num_channels=256,
|
1075
|
-
rpn_batch_size_per_im=256,
|
1076
|
-
rpn_fg_fraction=0.5,
|
1077
|
-
test_pre_nms_top_n=None,
|
1078
|
-
test_post_nms_top_n=1000,
|
1079
|
-
**params):
|
1080
|
-
self.init_params = locals()
|
1081
|
-
if backbone not in {
|
1082
|
-
'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34',
|
1083
|
-
'ResNet34_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18'
|
1084
|
-
}:
|
1085
|
-
raise ValueError(
|
1086
|
-
"backbone: {} is not supported. Please choose one of "
|
1087
|
-
"('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34', 'ResNet34_vd', "
|
1088
|
-
"'ResNet101', 'ResNet101_vd', 'HRNet_W18')".format(backbone))
|
1089
|
-
self.backbone_name = backbone
|
1090
|
-
|
1091
|
-
if params.get('with_net', True):
|
1092
|
-
dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
|
1093
|
-
if backbone == 'HRNet_W18':
|
1094
|
-
if not with_fpn:
|
1095
|
-
logging.warning(
|
1096
|
-
"Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
|
1097
|
-
format(backbone))
|
1098
|
-
with_fpn = True
|
1099
|
-
if with_dcn:
|
1100
|
-
logging.warning(
|
1101
|
-
"Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
|
1102
|
-
format(backbone))
|
1103
|
-
backbone = self._get_backbone(
|
1104
|
-
'HRNet', width=18, freeze_at=0, return_idx=[0, 1, 2, 3])
|
1105
|
-
elif backbone == 'ResNet50_vd_ssld':
|
1106
|
-
if not with_fpn:
|
1107
|
-
logging.warning(
|
1108
|
-
"Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
|
1109
|
-
format(backbone))
|
1110
|
-
with_fpn = True
|
1111
|
-
backbone = self._get_backbone(
|
1112
|
-
'ResNet',
|
1113
|
-
variant='d',
|
1114
|
-
norm_type='bn',
|
1115
|
-
freeze_at=0,
|
1116
|
-
return_idx=[0, 1, 2, 3],
|
1117
|
-
num_stages=4,
|
1118
|
-
lr_mult_list=[0.05, 0.05, 0.1, 0.15],
|
1119
|
-
dcn_v2_stages=dcn_v2_stages)
|
1120
|
-
elif 'ResNet50' in backbone:
|
1121
|
-
if with_fpn:
|
1122
|
-
backbone = self._get_backbone(
|
1123
|
-
'ResNet',
|
1124
|
-
variant='d' if '_vd' in backbone else 'b',
|
1125
|
-
norm_type='bn',
|
1126
|
-
freeze_at=0,
|
1127
|
-
return_idx=[0, 1, 2, 3],
|
1128
|
-
num_stages=4,
|
1129
|
-
dcn_v2_stages=dcn_v2_stages)
|
1130
|
-
else:
|
1131
|
-
if with_dcn:
|
1132
|
-
logging.warning(
|
1133
|
-
"Backbone {} without fpn should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
|
1134
|
-
format(backbone))
|
1135
|
-
backbone = self._get_backbone(
|
1136
|
-
'ResNet',
|
1137
|
-
variant='d' if '_vd' in backbone else 'b',
|
1138
|
-
norm_type='bn',
|
1139
|
-
freeze_at=0,
|
1140
|
-
return_idx=[2],
|
1141
|
-
num_stages=3)
|
1142
|
-
elif 'ResNet34' in backbone:
|
1143
|
-
if not with_fpn:
|
1144
|
-
logging.warning(
|
1145
|
-
"Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
|
1146
|
-
format(backbone))
|
1147
|
-
with_fpn = True
|
1148
|
-
backbone = self._get_backbone(
|
1149
|
-
'ResNet',
|
1150
|
-
depth=34,
|
1151
|
-
variant='d' if 'vd' in backbone else 'b',
|
1152
|
-
norm_type='bn',
|
1153
|
-
freeze_at=0,
|
1154
|
-
return_idx=[0, 1, 2, 3],
|
1155
|
-
num_stages=4,
|
1156
|
-
dcn_v2_stages=dcn_v2_stages)
|
1157
|
-
else:
|
1158
|
-
if not with_fpn:
|
1159
|
-
logging.warning(
|
1160
|
-
"Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
|
1161
|
-
format(backbone))
|
1162
|
-
with_fpn = True
|
1163
|
-
backbone = self._get_backbone(
|
1164
|
-
'ResNet',
|
1165
|
-
depth=101,
|
1166
|
-
variant='d' if 'vd' in backbone else 'b',
|
1167
|
-
norm_type='bn',
|
1168
|
-
freeze_at=0,
|
1169
|
-
return_idx=[0, 1, 2, 3],
|
1170
|
-
num_stages=4,
|
1171
|
-
dcn_v2_stages=dcn_v2_stages)
|
1172
|
-
|
1173
|
-
rpn_in_channel = backbone.out_shape[0].channels
|
1174
|
-
|
1175
|
-
if with_fpn:
|
1176
|
-
self.backbone_name = self.backbone_name + '_fpn'
|
1177
|
-
|
1178
|
-
if 'HRNet' in self.backbone_name:
|
1179
|
-
neck = ppdet.modeling.HRFPN(
|
1180
|
-
in_channels=[i.channels for i in backbone.out_shape],
|
1181
|
-
out_channel=fpn_num_channels,
|
1182
|
-
spatial_scales=[
|
1183
|
-
1.0 / i.stride for i in backbone.out_shape
|
1184
|
-
],
|
1185
|
-
share_conv=False)
|
1186
|
-
else:
|
1187
|
-
neck = ppdet.modeling.FPN(
|
1188
|
-
in_channels=[i.channels for i in backbone.out_shape],
|
1189
|
-
out_channel=fpn_num_channels,
|
1190
|
-
spatial_scales=[
|
1191
|
-
1.0 / i.stride for i in backbone.out_shape
|
1192
|
-
])
|
1193
|
-
rpn_in_channel = neck.out_shape[0].channels
|
1194
|
-
anchor_generator_cfg = {
|
1195
|
-
'aspect_ratios': aspect_ratios,
|
1196
|
-
'anchor_sizes': anchor_sizes,
|
1197
|
-
'strides': [4, 8, 16, 32, 64]
|
1198
|
-
}
|
1199
|
-
train_proposal_cfg = {
|
1200
|
-
'min_size': 0.0,
|
1201
|
-
'nms_thresh': .7,
|
1202
|
-
'pre_nms_top_n': 2000,
|
1203
|
-
'post_nms_top_n': 1000,
|
1204
|
-
'topk_after_collect': True
|
1205
|
-
}
|
1206
|
-
test_proposal_cfg = {
|
1207
|
-
'min_size': 0.0,
|
1208
|
-
'nms_thresh': .7,
|
1209
|
-
'pre_nms_top_n': 1000
|
1210
|
-
if test_pre_nms_top_n is None else test_pre_nms_top_n,
|
1211
|
-
'post_nms_top_n': test_post_nms_top_n
|
1212
|
-
}
|
1213
|
-
head = ppdet.modeling.TwoFCHead(
|
1214
|
-
in_channel=neck.out_shape[0].channels, out_channel=1024)
|
1215
|
-
roi_extractor_cfg = {
|
1216
|
-
'resolution': 7,
|
1217
|
-
'spatial_scale': [1. / i.stride for i in neck.out_shape],
|
1218
|
-
'sampling_ratio': 0,
|
1219
|
-
'aligned': True
|
1220
|
-
}
|
1221
|
-
with_pool = False
|
1222
|
-
|
1223
|
-
else:
|
1224
|
-
neck = None
|
1225
|
-
anchor_generator_cfg = {
|
1226
|
-
'aspect_ratios': aspect_ratios,
|
1227
|
-
'anchor_sizes': anchor_sizes,
|
1228
|
-
'strides': [16]
|
1229
|
-
}
|
1230
|
-
train_proposal_cfg = {
|
1231
|
-
'min_size': 0.0,
|
1232
|
-
'nms_thresh': .7,
|
1233
|
-
'pre_nms_top_n': 12000,
|
1234
|
-
'post_nms_top_n': 2000,
|
1235
|
-
'topk_after_collect': False
|
1236
|
-
}
|
1237
|
-
test_proposal_cfg = {
|
1238
|
-
'min_size': 0.0,
|
1239
|
-
'nms_thresh': .7,
|
1240
|
-
'pre_nms_top_n': 6000
|
1241
|
-
if test_pre_nms_top_n is None else test_pre_nms_top_n,
|
1242
|
-
'post_nms_top_n': test_post_nms_top_n
|
1243
|
-
}
|
1244
|
-
head = ppdet.modeling.Res5Head()
|
1245
|
-
roi_extractor_cfg = {
|
1246
|
-
'resolution': 14,
|
1247
|
-
'spatial_scale':
|
1248
|
-
[1. / i.stride for i in backbone.out_shape],
|
1249
|
-
'sampling_ratio': 0,
|
1250
|
-
'aligned': True
|
1251
|
-
}
|
1252
|
-
with_pool = True
|
1253
|
-
|
1254
|
-
rpn_target_assign_cfg = {
|
1255
|
-
'batch_size_per_im': rpn_batch_size_per_im,
|
1256
|
-
'fg_fraction': rpn_fg_fraction,
|
1257
|
-
'negative_overlap': .3,
|
1258
|
-
'positive_overlap': .7,
|
1259
|
-
'use_random': True
|
1260
|
-
}
|
1261
|
-
|
1262
|
-
rpn_head = ppdet.modeling.RPNHead(
|
1263
|
-
anchor_generator=anchor_generator_cfg,
|
1264
|
-
rpn_target_assign=rpn_target_assign_cfg,
|
1265
|
-
train_proposal=train_proposal_cfg,
|
1266
|
-
test_proposal=test_proposal_cfg,
|
1267
|
-
in_channel=rpn_in_channel)
|
1268
|
-
|
1269
|
-
bbox_assigner = BBoxAssigner(num_classes=num_classes)
|
1270
|
-
|
1271
|
-
bbox_head = ppdet.modeling.BBoxHead(
|
1272
|
-
head=head,
|
1273
|
-
in_channel=head.out_shape[0].channels,
|
1274
|
-
roi_extractor=roi_extractor_cfg,
|
1275
|
-
with_pool=with_pool,
|
1276
|
-
bbox_assigner=bbox_assigner,
|
1277
|
-
num_classes=num_classes)
|
1278
|
-
|
1279
|
-
bbox_post_process = ppdet.modeling.BBoxPostProcess(
|
1280
|
-
num_classes=num_classes,
|
1281
|
-
decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
|
1282
|
-
nms=ppdet.modeling.MultiClassNMS(
|
1283
|
-
score_threshold=score_threshold,
|
1284
|
-
keep_top_k=keep_top_k,
|
1285
|
-
nms_threshold=nms_threshold))
|
1286
|
-
|
1287
|
-
params.update({
|
1288
|
-
'backbone': backbone,
|
1289
|
-
'neck': neck,
|
1290
|
-
'rpn_head': rpn_head,
|
1291
|
-
'bbox_head': bbox_head,
|
1292
|
-
'bbox_post_process': bbox_post_process
|
1293
|
-
})
|
1294
|
-
else:
|
1295
|
-
if backbone not in {'ResNet50', 'ResNet50_vd'}:
|
1296
|
-
with_fpn = True
|
1297
|
-
|
1298
|
-
self.with_fpn = with_fpn
|
1299
|
-
super(FasterRCNN, self).__init__(
|
1300
|
-
model_name='FasterRCNN', num_classes=num_classes, **params)
|
1301
|
-
|
1302
|
-
def train(self,
|
1303
|
-
num_epochs,
|
1304
|
-
train_dataset,
|
1305
|
-
train_batch_size=64,
|
1306
|
-
eval_dataset=None,
|
1307
|
-
optimizer=None,
|
1308
|
-
save_interval_epochs=1,
|
1309
|
-
log_interval_steps=10,
|
1310
|
-
save_dir='output',
|
1311
|
-
pretrain_weights='IMAGENET',
|
1312
|
-
learning_rate=.001,
|
1313
|
-
warmup_steps=0,
|
1314
|
-
warmup_start_lr=0.0,
|
1315
|
-
lr_decay_epochs=(216, 243),
|
1316
|
-
lr_decay_gamma=0.1,
|
1317
|
-
metric=None,
|
1318
|
-
use_ema=False,
|
1319
|
-
early_stop=False,
|
1320
|
-
early_stop_patience=5,
|
1321
|
-
use_vdl=True,
|
1322
|
-
resume_checkpoint=None):
|
1323
|
-
"""
|
1324
|
-
Train the model.
|
1325
|
-
Args:
|
1326
|
-
num_epochs(int): The number of epochs.
|
1327
|
-
train_dataset(paddlex.dataset): Training dataset.
|
1328
|
-
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
|
1329
|
-
eval_dataset(paddlex.dataset, optional):
|
1330
|
-
Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
|
1331
|
-
optimizer(paddle.optimizer.Optimizer or None, optional):
|
1332
|
-
Optimizer used for training. If None, a default optimizer is used. Defaults to None.
|
1333
|
-
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
1334
|
-
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
1335
|
-
save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
1336
|
-
pretrain_weights(str or None, optional):
|
1337
|
-
None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
|
1338
|
-
learning_rate(float, optional): Learning rate for training. Defaults to .001.
|
1339
|
-
warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
|
1340
|
-
warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
|
1341
|
-
lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
|
1342
|
-
lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
|
1343
|
-
metric({'VOC', 'COCO', None}, optional):
|
1344
|
-
Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
|
1345
|
-
use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
|
1346
|
-
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
1347
|
-
early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
1348
|
-
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
1349
|
-
resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
|
1350
|
-
If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
|
1351
|
-
`pretrain_weights` can be set simultaneously. Defaults to None.
|
1352
|
-
"""
|
1353
|
-
if train_dataset.pos_num < len(train_dataset.file_list):
|
1354
|
-
train_dataset.num_workers = 0
|
1355
|
-
if train_batch_size != 1:
|
1356
|
-
train_batch_size = 1
|
1357
|
-
logging.warning(
|
1358
|
-
"Training RCNN models with negative samples only support batch size equals to 1 "
|
1359
|
-
"on a single gpu/cpu card, `train_batch_size` is forcibly set to 1."
|
1360
|
-
)
|
1361
|
-
nranks = paddle.distributed.get_world_size()
|
1362
|
-
local_rank = paddle.distributed.get_rank()
|
1363
|
-
# single card training
|
1364
|
-
if nranks < 2 or local_rank == 0:
|
1365
|
-
super(FasterRCNN, self).train(
|
1366
|
-
num_epochs, train_dataset, train_batch_size, eval_dataset,
|
1367
|
-
optimizer, save_interval_epochs, log_interval_steps,
|
1368
|
-
save_dir, pretrain_weights, learning_rate, warmup_steps,
|
1369
|
-
warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric,
|
1370
|
-
use_ema, early_stop, early_stop_patience, use_vdl,
|
1371
|
-
resume_checkpoint)
|
1372
|
-
else:
|
1373
|
-
super(FasterRCNN, self).train(
|
1374
|
-
num_epochs, train_dataset, train_batch_size, eval_dataset,
|
1375
|
-
optimizer, save_interval_epochs, log_interval_steps, save_dir,
|
1376
|
-
pretrain_weights, learning_rate, warmup_steps, warmup_start_lr,
|
1377
|
-
lr_decay_epochs, lr_decay_gamma, metric, use_ema, early_stop,
|
1378
|
-
early_stop_patience, use_vdl, resume_checkpoint)
|
1379
|
-
|
1380
|
-
def _compose_batch_transform(self, transforms, mode='train'):
|
1381
|
-
if mode == 'train':
|
1382
|
-
default_batch_transforms = [
|
1383
|
-
_BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
|
1384
|
-
]
|
1385
|
-
collate_batch = False
|
1386
|
-
else:
|
1387
|
-
default_batch_transforms = [
|
1388
|
-
_BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
|
1389
|
-
]
|
1390
|
-
collate_batch = True
|
1391
|
-
custom_batch_transforms = []
|
1392
|
-
for i, op in enumerate(transforms.transforms):
|
1393
|
-
if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
|
1394
|
-
if mode != 'train':
|
1395
|
-
raise Exception(
|
1396
|
-
"{} cannot be present in the {} transforms. ".format(
|
1397
|
-
op.__class__.__name__, mode) +
|
1398
|
-
"Please check the {} transforms.".format(mode))
|
1399
|
-
custom_batch_transforms.insert(0, copy.deepcopy(op))
|
1400
|
-
|
1401
|
-
batch_transforms = BatchCompose(
|
1402
|
-
custom_batch_transforms + default_batch_transforms,
|
1403
|
-
collate_batch=collate_batch)
|
1404
|
-
|
1405
|
-
return batch_transforms
|
1406
|
-
|
1407
|
-
def _fix_transforms_shape(self, image_shape):
|
1408
|
-
if getattr(self, 'test_transforms', None):
|
1409
|
-
has_resize_op = False
|
1410
|
-
resize_op_idx = -1
|
1411
|
-
normalize_op_idx = len(self.test_transforms.transforms)
|
1412
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
1413
|
-
name = op.__class__.__name__
|
1414
|
-
if name == 'ResizeByShort':
|
1415
|
-
has_resize_op = True
|
1416
|
-
resize_op_idx = idx
|
1417
|
-
if name == 'Normalize':
|
1418
|
-
normalize_op_idx = idx
|
1419
|
-
|
1420
|
-
if not has_resize_op:
|
1421
|
-
self.test_transforms.transforms.insert(
|
1422
|
-
normalize_op_idx,
|
1423
|
-
Resize(
|
1424
|
-
target_size=image_shape,
|
1425
|
-
keep_ratio=True,
|
1426
|
-
interp='CUBIC'))
|
1427
|
-
else:
|
1428
|
-
self.test_transforms.transforms[resize_op_idx] = Resize(
|
1429
|
-
target_size=image_shape, keep_ratio=True, interp='CUBIC')
|
1430
|
-
self.test_transforms.transforms.append(
|
1431
|
-
Padding(im_padding_value=[0., 0., 0.]))
|
1432
|
-
|
1433
|
-
def _get_test_inputs(self, image_shape):
|
1434
|
-
if image_shape is not None:
|
1435
|
-
image_shape = self._check_image_shape(image_shape)
|
1436
|
-
self._fix_transforms_shape(image_shape[-2:])
|
1437
|
-
else:
|
1438
|
-
image_shape = [None, 3, -1, -1]
|
1439
|
-
if self.with_fpn:
|
1440
|
-
self.test_transforms.transforms.append(
|
1441
|
-
Padding(im_padding_value=[0., 0., 0.]))
|
1442
|
-
|
1443
|
-
self.fixed_input_shape = image_shape
|
1444
|
-
return self._define_input_spec(image_shape)
|
1445
|
-
|
1446
|
-
|
1447
|
-
class PPYOLO(YOLOv3):
|
1448
|
-
def __init__(self,
|
1449
|
-
num_classes=80,
|
1450
|
-
backbone='ResNet50_vd_dcn',
|
1451
|
-
anchors=None,
|
1452
|
-
anchor_masks=None,
|
1453
|
-
use_coord_conv=True,
|
1454
|
-
use_iou_aware=True,
|
1455
|
-
use_spp=True,
|
1456
|
-
use_drop_block=True,
|
1457
|
-
scale_x_y=1.05,
|
1458
|
-
ignore_threshold=0.7,
|
1459
|
-
label_smooth=False,
|
1460
|
-
use_iou_loss=True,
|
1461
|
-
use_matrix_nms=True,
|
1462
|
-
nms_score_threshold=0.01,
|
1463
|
-
nms_topk=-1,
|
1464
|
-
nms_keep_topk=100,
|
1465
|
-
nms_iou_threshold=0.45,
|
1466
|
-
**params):
|
1467
|
-
self.init_params = locals()
|
1468
|
-
if backbone not in {
|
1469
|
-
'ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large',
|
1470
|
-
'MobileNetV3_small'
|
1471
|
-
}:
|
1472
|
-
raise ValueError(
|
1473
|
-
"backbone: {} is not supported. Please choose one of "
|
1474
|
-
"('ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large', 'MobileNetV3_small')".
|
1475
|
-
format(backbone))
|
1476
|
-
self.backbone_name = backbone
|
1477
|
-
self.downsample_ratios = [
|
1478
|
-
32, 16, 8
|
1479
|
-
] if backbone == 'ResNet50_vd_dcn' else [32, 16]
|
1480
|
-
|
1481
|
-
if params.get('with_net', True):
|
1482
|
-
if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
|
1483
|
-
'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
|
1484
|
-
norm_type = 'sync_bn'
|
1485
|
-
else:
|
1486
|
-
norm_type = 'bn'
|
1487
|
-
if anchors is None and anchor_masks is None:
|
1488
|
-
if 'MobileNetV3' in backbone:
|
1489
|
-
anchors = [[11, 18], [34, 47], [51, 126], [115, 71],
|
1490
|
-
[120, 195], [254, 235]]
|
1491
|
-
anchor_masks = [[3, 4, 5], [0, 1, 2]]
|
1492
|
-
elif backbone == 'ResNet50_vd_dcn':
|
1493
|
-
anchors = [[10, 13], [16, 30], [33, 23], [30, 61],
|
1494
|
-
[62, 45], [59, 119], [116, 90], [156, 198],
|
1495
|
-
[373, 326]]
|
1496
|
-
anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
|
1497
|
-
else:
|
1498
|
-
anchors = [[10, 14], [23, 27], [37, 58], [81, 82],
|
1499
|
-
[135, 169], [344, 319]]
|
1500
|
-
anchor_masks = [[3, 4, 5], [0, 1, 2]]
|
1501
|
-
elif anchors is None or anchor_masks is None:
|
1502
|
-
raise ValueError(
|
1503
|
-
"Please define both anchors and anchor_masks.")
|
1504
|
-
|
1505
|
-
if backbone == 'ResNet50_vd_dcn':
|
1506
|
-
backbone = self._get_backbone(
|
1507
|
-
'ResNet',
|
1508
|
-
variant='d',
|
1509
|
-
norm_type=norm_type,
|
1510
|
-
return_idx=[1, 2, 3],
|
1511
|
-
dcn_v2_stages=[3],
|
1512
|
-
freeze_at=-1,
|
1513
|
-
freeze_norm=False,
|
1514
|
-
norm_decay=0.)
|
1515
|
-
|
1516
|
-
elif backbone == 'ResNet18_vd':
|
1517
|
-
backbone = self._get_backbone(
|
1518
|
-
'ResNet',
|
1519
|
-
depth=18,
|
1520
|
-
variant='d',
|
1521
|
-
norm_type=norm_type,
|
1522
|
-
return_idx=[2, 3],
|
1523
|
-
freeze_at=-1,
|
1524
|
-
freeze_norm=False,
|
1525
|
-
norm_decay=0.)
|
1526
|
-
|
1527
|
-
elif backbone == 'MobileNetV3_large':
|
1528
|
-
backbone = self._get_backbone(
|
1529
|
-
'MobileNetV3',
|
1530
|
-
model_name='large',
|
1531
|
-
norm_type=norm_type,
|
1532
|
-
scale=1,
|
1533
|
-
with_extra_blocks=False,
|
1534
|
-
extra_block_filters=[],
|
1535
|
-
feature_maps=[13, 16])
|
1536
|
-
|
1537
|
-
elif backbone == 'MobileNetV3_small':
|
1538
|
-
backbone = self._get_backbone(
|
1539
|
-
'MobileNetV3',
|
1540
|
-
model_name='small',
|
1541
|
-
norm_type=norm_type,
|
1542
|
-
scale=1,
|
1543
|
-
with_extra_blocks=False,
|
1544
|
-
extra_block_filters=[],
|
1545
|
-
feature_maps=[9, 12])
|
1546
|
-
|
1547
|
-
neck = ppdet.modeling.PPYOLOFPN(
|
1548
|
-
norm_type=norm_type,
|
1549
|
-
in_channels=[i.channels for i in backbone.out_shape],
|
1550
|
-
coord_conv=use_coord_conv,
|
1551
|
-
drop_block=use_drop_block,
|
1552
|
-
spp=use_spp,
|
1553
|
-
conv_block_num=0
|
1554
|
-
if ('MobileNetV3' in self.backbone_name or
|
1555
|
-
self.backbone_name == 'ResNet18_vd') else 2)
|
1556
|
-
|
1557
|
-
loss = ppdet.modeling.YOLOv3Loss(
|
1558
|
-
num_classes=num_classes,
|
1559
|
-
ignore_thresh=ignore_threshold,
|
1560
|
-
downsample=self.downsample_ratios,
|
1561
|
-
label_smooth=label_smooth,
|
1562
|
-
scale_x_y=scale_x_y,
|
1563
|
-
iou_loss=ppdet.modeling.IouLoss(
|
1564
|
-
loss_weight=2.5, loss_square=True)
|
1565
|
-
if use_iou_loss else None,
|
1566
|
-
iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
|
1567
|
-
if use_iou_aware else None)
|
1568
|
-
|
1569
|
-
yolo_head = ppdet.modeling.YOLOv3Head(
|
1570
|
-
in_channels=[i.channels for i in neck.out_shape],
|
1571
|
-
anchors=anchors,
|
1572
|
-
anchor_masks=anchor_masks,
|
1573
|
-
num_classes=num_classes,
|
1574
|
-
loss=loss,
|
1575
|
-
iou_aware=use_iou_aware)
|
1576
|
-
|
1577
|
-
if use_matrix_nms:
|
1578
|
-
nms = ppdet.modeling.MatrixNMS(
|
1579
|
-
keep_top_k=nms_keep_topk,
|
1580
|
-
score_threshold=nms_score_threshold,
|
1581
|
-
post_threshold=.05
|
1582
|
-
if 'MobileNetV3' in self.backbone_name else .01,
|
1583
|
-
nms_top_k=nms_topk,
|
1584
|
-
background_label=-1)
|
1585
|
-
else:
|
1586
|
-
nms = ppdet.modeling.MultiClassNMS(
|
1587
|
-
score_threshold=nms_score_threshold,
|
1588
|
-
nms_top_k=nms_topk,
|
1589
|
-
keep_top_k=nms_keep_topk,
|
1590
|
-
nms_threshold=nms_iou_threshold)
|
1591
|
-
|
1592
|
-
post_process = ppdet.modeling.BBoxPostProcess(
|
1593
|
-
decode=ppdet.modeling.YOLOBox(
|
1594
|
-
num_classes=num_classes,
|
1595
|
-
conf_thresh=.005
|
1596
|
-
if 'MobileNetV3' in self.backbone_name else .01,
|
1597
|
-
scale_x_y=scale_x_y),
|
1598
|
-
nms=nms)
|
1599
|
-
|
1600
|
-
params.update({
|
1601
|
-
'backbone': backbone,
|
1602
|
-
'neck': neck,
|
1603
|
-
'yolo_head': yolo_head,
|
1604
|
-
'post_process': post_process
|
1605
|
-
})
|
1606
|
-
|
1607
|
-
super(YOLOv3, self).__init__(
|
1608
|
-
model_name='YOLOv3', num_classes=num_classes, **params)
|
1609
|
-
self.anchors = anchors
|
1610
|
-
self.anchor_masks = anchor_masks
|
1611
|
-
self.model_name = 'PPYOLO'
|
1612
|
-
|
1613
|
-
def _get_test_inputs(self, image_shape):
|
1614
|
-
if image_shape is not None:
|
1615
|
-
image_shape = self._check_image_shape(image_shape)
|
1616
|
-
self._fix_transforms_shape(image_shape[-2:])
|
1617
|
-
else:
|
1618
|
-
image_shape = [None, 3, 608, 608]
|
1619
|
-
if getattr(self, 'test_transforms', None):
|
1620
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
1621
|
-
name = op.__class__.__name__
|
1622
|
-
if name == 'Resize':
|
1623
|
-
image_shape = [None, 3] + list(
|
1624
|
-
self.test_transforms.transforms[idx].target_size)
|
1625
|
-
logging.warning(
|
1626
|
-
'[Important!!!] When exporting inference model for {}, '
|
1627
|
-
'if fixed_input_shape is not set, it will be forcibly set to {}. '
|
1628
|
-
'Please ensure image shape after transforms is {}, if not, '
|
1629
|
-
'fixed_input_shape should be specified manually.'
|
1630
|
-
.format(self.__class__.__name__, image_shape, image_shape[1:]))
|
1631
|
-
|
1632
|
-
self.fixed_input_shape = image_shape
|
1633
|
-
return self._define_input_spec(image_shape)
|
1634
|
-
|
1635
|
-
|
1636
|
-
class PPYOLOTiny(YOLOv3):
|
1637
|
-
def __init__(self,
|
1638
|
-
num_classes=80,
|
1639
|
-
backbone='MobileNetV3',
|
1640
|
-
anchors=[[10, 15], [24, 36], [72, 42], [35, 87], [102, 96],
|
1641
|
-
[60, 170], [220, 125], [128, 222], [264, 266]],
|
1642
|
-
anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
|
1643
|
-
use_iou_aware=False,
|
1644
|
-
use_spp=True,
|
1645
|
-
use_drop_block=True,
|
1646
|
-
scale_x_y=1.05,
|
1647
|
-
ignore_threshold=0.5,
|
1648
|
-
label_smooth=False,
|
1649
|
-
use_iou_loss=True,
|
1650
|
-
use_matrix_nms=False,
|
1651
|
-
nms_score_threshold=0.005,
|
1652
|
-
nms_topk=1000,
|
1653
|
-
nms_keep_topk=100,
|
1654
|
-
nms_iou_threshold=0.45,
|
1655
|
-
**params):
|
1656
|
-
self.init_params = locals()
|
1657
|
-
if backbone != 'MobileNetV3':
|
1658
|
-
logging.warning(
|
1659
|
-
"PPYOLOTiny only supports MobileNetV3 as backbone. "
|
1660
|
-
"Backbone is forcibly set to MobileNetV3.")
|
1661
|
-
self.backbone_name = 'MobileNetV3'
|
1662
|
-
self.downsample_ratios = [32, 16, 8]
|
1663
|
-
if params.get('with_net', True):
|
1664
|
-
if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
|
1665
|
-
'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
|
1666
|
-
norm_type = 'sync_bn'
|
1667
|
-
else:
|
1668
|
-
norm_type = 'bn'
|
1669
|
-
|
1670
|
-
backbone = self._get_backbone(
|
1671
|
-
'MobileNetV3',
|
1672
|
-
model_name='large',
|
1673
|
-
norm_type=norm_type,
|
1674
|
-
scale=.5,
|
1675
|
-
with_extra_blocks=False,
|
1676
|
-
extra_block_filters=[],
|
1677
|
-
feature_maps=[7, 13, 16])
|
1678
|
-
|
1679
|
-
neck = ppdet.modeling.PPYOLOTinyFPN(
|
1680
|
-
detection_block_channels=[160, 128, 96],
|
1681
|
-
in_channels=[i.channels for i in backbone.out_shape],
|
1682
|
-
spp=use_spp,
|
1683
|
-
drop_block=use_drop_block)
|
1684
|
-
|
1685
|
-
loss = ppdet.modeling.YOLOv3Loss(
|
1686
|
-
num_classes=num_classes,
|
1687
|
-
ignore_thresh=ignore_threshold,
|
1688
|
-
downsample=self.downsample_ratios,
|
1689
|
-
label_smooth=label_smooth,
|
1690
|
-
scale_x_y=scale_x_y,
|
1691
|
-
iou_loss=ppdet.modeling.IouLoss(
|
1692
|
-
loss_weight=2.5, loss_square=True)
|
1693
|
-
if use_iou_loss else None,
|
1694
|
-
iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
|
1695
|
-
if use_iou_aware else None)
|
1696
|
-
|
1697
|
-
yolo_head = ppdet.modeling.YOLOv3Head(
|
1698
|
-
in_channels=[i.channels for i in neck.out_shape],
|
1699
|
-
anchors=anchors,
|
1700
|
-
anchor_masks=anchor_masks,
|
1701
|
-
num_classes=num_classes,
|
1702
|
-
loss=loss,
|
1703
|
-
iou_aware=use_iou_aware)
|
1704
|
-
|
1705
|
-
if use_matrix_nms:
|
1706
|
-
nms = ppdet.modeling.MatrixNMS(
|
1707
|
-
keep_top_k=nms_keep_topk,
|
1708
|
-
score_threshold=nms_score_threshold,
|
1709
|
-
post_threshold=.05,
|
1710
|
-
nms_top_k=nms_topk,
|
1711
|
-
background_label=-1)
|
1712
|
-
else:
|
1713
|
-
nms = ppdet.modeling.MultiClassNMS(
|
1714
|
-
score_threshold=nms_score_threshold,
|
1715
|
-
nms_top_k=nms_topk,
|
1716
|
-
keep_top_k=nms_keep_topk,
|
1717
|
-
nms_threshold=nms_iou_threshold)
|
1718
|
-
|
1719
|
-
post_process = ppdet.modeling.BBoxPostProcess(
|
1720
|
-
decode=ppdet.modeling.YOLOBox(
|
1721
|
-
num_classes=num_classes,
|
1722
|
-
conf_thresh=.005,
|
1723
|
-
downsample_ratio=32,
|
1724
|
-
clip_bbox=True,
|
1725
|
-
scale_x_y=scale_x_y),
|
1726
|
-
nms=nms)
|
1727
|
-
|
1728
|
-
params.update({
|
1729
|
-
'backbone': backbone,
|
1730
|
-
'neck': neck,
|
1731
|
-
'yolo_head': yolo_head,
|
1732
|
-
'post_process': post_process
|
1733
|
-
})
|
1734
|
-
|
1735
|
-
super(YOLOv3, self).__init__(
|
1736
|
-
model_name='YOLOv3', num_classes=num_classes, **params)
|
1737
|
-
self.anchors = anchors
|
1738
|
-
self.anchor_masks = anchor_masks
|
1739
|
-
self.model_name = 'PPYOLOTiny'
|
1740
|
-
|
1741
|
-
def _get_test_inputs(self, image_shape):
|
1742
|
-
if image_shape is not None:
|
1743
|
-
image_shape = self._check_image_shape(image_shape)
|
1744
|
-
self._fix_transforms_shape(image_shape[-2:])
|
1745
|
-
else:
|
1746
|
-
image_shape = [None, 3, 320, 320]
|
1747
|
-
if getattr(self, 'test_transforms', None):
|
1748
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
1749
|
-
name = op.__class__.__name__
|
1750
|
-
if name == 'Resize':
|
1751
|
-
image_shape = [None, 3] + list(
|
1752
|
-
self.test_transforms.transforms[idx].target_size)
|
1753
|
-
logging.warning(
|
1754
|
-
'[Important!!!] When exporting inference model for {},'.format(
|
1755
|
-
self.__class__.__name__) +
|
1756
|
-
' if fixed_input_shape is not set, it will be forcibly set to {}. '.
|
1757
|
-
format(image_shape) +
|
1758
|
-
'Please check image shape after transforms is {}, if not, fixed_input_shape '.
|
1759
|
-
format(image_shape[1:]) + 'should be specified manually.')
|
1760
|
-
|
1761
|
-
self.fixed_input_shape = image_shape
|
1762
|
-
return self._define_input_spec(image_shape)
|
1763
|
-
|
1764
|
-
|
1765
|
-
class PPYOLOv2(YOLOv3):
|
1766
|
-
def __init__(self,
|
1767
|
-
num_classes=80,
|
1768
|
-
backbone='ResNet50_vd_dcn',
|
1769
|
-
anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
|
1770
|
-
[59, 119], [116, 90], [156, 198], [373, 326]],
|
1771
|
-
anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
|
1772
|
-
use_iou_aware=True,
|
1773
|
-
use_spp=True,
|
1774
|
-
use_drop_block=True,
|
1775
|
-
scale_x_y=1.05,
|
1776
|
-
ignore_threshold=0.7,
|
1777
|
-
label_smooth=False,
|
1778
|
-
use_iou_loss=True,
|
1779
|
-
use_matrix_nms=True,
|
1780
|
-
nms_score_threshold=0.01,
|
1781
|
-
nms_topk=-1,
|
1782
|
-
nms_keep_topk=100,
|
1783
|
-
nms_iou_threshold=0.45,
|
1784
|
-
**params):
|
1785
|
-
self.init_params = locals()
|
1786
|
-
if backbone not in {'ResNet50_vd_dcn', 'ResNet101_vd_dcn'}:
|
1787
|
-
raise ValueError(
|
1788
|
-
"backbone: {} is not supported. Please choose one of "
|
1789
|
-
"('ResNet50_vd_dcn', 'ResNet101_vd_dcn')".format(backbone))
|
1790
|
-
self.backbone_name = backbone
|
1791
|
-
self.downsample_ratios = [32, 16, 8]
|
1792
|
-
|
1793
|
-
if params.get('with_net', True):
|
1794
|
-
if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
|
1795
|
-
'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
|
1796
|
-
norm_type = 'sync_bn'
|
1797
|
-
else:
|
1798
|
-
norm_type = 'bn'
|
1799
|
-
|
1800
|
-
if backbone == 'ResNet50_vd_dcn':
|
1801
|
-
backbone = self._get_backbone(
|
1802
|
-
'ResNet',
|
1803
|
-
variant='d',
|
1804
|
-
norm_type=norm_type,
|
1805
|
-
return_idx=[1, 2, 3],
|
1806
|
-
dcn_v2_stages=[3],
|
1807
|
-
freeze_at=-1,
|
1808
|
-
freeze_norm=False,
|
1809
|
-
norm_decay=0.)
|
1810
|
-
|
1811
|
-
elif backbone == 'ResNet101_vd_dcn':
|
1812
|
-
backbone = self._get_backbone(
|
1813
|
-
'ResNet',
|
1814
|
-
depth=101,
|
1815
|
-
variant='d',
|
1816
|
-
norm_type=norm_type,
|
1817
|
-
return_idx=[1, 2, 3],
|
1818
|
-
dcn_v2_stages=[3],
|
1819
|
-
freeze_at=-1,
|
1820
|
-
freeze_norm=False,
|
1821
|
-
norm_decay=0.)
|
1822
|
-
|
1823
|
-
neck = ppdet.modeling.PPYOLOPAN(
|
1824
|
-
norm_type=norm_type,
|
1825
|
-
in_channels=[i.channels for i in backbone.out_shape],
|
1826
|
-
drop_block=use_drop_block,
|
1827
|
-
block_size=3,
|
1828
|
-
keep_prob=.9,
|
1829
|
-
spp=use_spp)
|
1830
|
-
|
1831
|
-
loss = ppdet.modeling.YOLOv3Loss(
|
1832
|
-
num_classes=num_classes,
|
1833
|
-
ignore_thresh=ignore_threshold,
|
1834
|
-
downsample=self.downsample_ratios,
|
1835
|
-
label_smooth=label_smooth,
|
1836
|
-
scale_x_y=scale_x_y,
|
1837
|
-
iou_loss=ppdet.modeling.IouLoss(
|
1838
|
-
loss_weight=2.5, loss_square=True)
|
1839
|
-
if use_iou_loss else None,
|
1840
|
-
iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
|
1841
|
-
if use_iou_aware else None)
|
1842
|
-
|
1843
|
-
yolo_head = ppdet.modeling.YOLOv3Head(
|
1844
|
-
in_channels=[i.channels for i in neck.out_shape],
|
1845
|
-
anchors=anchors,
|
1846
|
-
anchor_masks=anchor_masks,
|
1847
|
-
num_classes=num_classes,
|
1848
|
-
loss=loss,
|
1849
|
-
iou_aware=use_iou_aware,
|
1850
|
-
iou_aware_factor=.5)
|
1851
|
-
|
1852
|
-
if use_matrix_nms:
|
1853
|
-
nms = ppdet.modeling.MatrixNMS(
|
1854
|
-
keep_top_k=nms_keep_topk,
|
1855
|
-
score_threshold=nms_score_threshold,
|
1856
|
-
post_threshold=.01,
|
1857
|
-
nms_top_k=nms_topk,
|
1858
|
-
background_label=-1)
|
1859
|
-
else:
|
1860
|
-
nms = ppdet.modeling.MultiClassNMS(
|
1861
|
-
score_threshold=nms_score_threshold,
|
1862
|
-
nms_top_k=nms_topk,
|
1863
|
-
keep_top_k=nms_keep_topk,
|
1864
|
-
nms_threshold=nms_iou_threshold)
|
1865
|
-
|
1866
|
-
post_process = ppdet.modeling.BBoxPostProcess(
|
1867
|
-
decode=ppdet.modeling.YOLOBox(
|
1868
|
-
num_classes=num_classes,
|
1869
|
-
conf_thresh=.01,
|
1870
|
-
downsample_ratio=32,
|
1871
|
-
clip_bbox=True,
|
1872
|
-
scale_x_y=scale_x_y),
|
1873
|
-
nms=nms)
|
1874
|
-
|
1875
|
-
params.update({
|
1876
|
-
'backbone': backbone,
|
1877
|
-
'neck': neck,
|
1878
|
-
'yolo_head': yolo_head,
|
1879
|
-
'post_process': post_process
|
1880
|
-
})
|
1881
|
-
|
1882
|
-
super(YOLOv3, self).__init__(
|
1883
|
-
model_name='YOLOv3', num_classes=num_classes, **params)
|
1884
|
-
self.anchors = anchors
|
1885
|
-
self.anchor_masks = anchor_masks
|
1886
|
-
self.model_name = 'PPYOLOv2'
|
1887
|
-
|
1888
|
-
def _get_test_inputs(self, image_shape):
|
1889
|
-
if image_shape is not None:
|
1890
|
-
image_shape = self._check_image_shape(image_shape)
|
1891
|
-
self._fix_transforms_shape(image_shape[-2:])
|
1892
|
-
else:
|
1893
|
-
image_shape = [None, 3, 640, 640]
|
1894
|
-
if getattr(self, 'test_transforms', None):
|
1895
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
1896
|
-
name = op.__class__.__name__
|
1897
|
-
if name == 'Resize':
|
1898
|
-
image_shape = [None, 3] + list(
|
1899
|
-
self.test_transforms.transforms[idx].target_size)
|
1900
|
-
logging.warning(
|
1901
|
-
'[Important!!!] When exporting inference model for {},'.format(
|
1902
|
-
self.__class__.__name__) +
|
1903
|
-
' if fixed_input_shape is not set, it will be forcibly set to {}. '.
|
1904
|
-
format(image_shape) +
|
1905
|
-
'Please check image shape after transforms is {}, if not, fixed_input_shape '.
|
1906
|
-
format(image_shape[1:]) + 'should be specified manually.')
|
1907
|
-
|
1908
|
-
self.fixed_input_shape = image_shape
|
1909
|
-
return self._define_input_spec(image_shape)
|
1910
|
-
|
1911
|
-
|
1912
|
-
class MaskRCNN(BaseDetector):
|
1913
|
-
def __init__(self,
|
1914
|
-
num_classes=80,
|
1915
|
-
backbone='ResNet50_vd',
|
1916
|
-
with_fpn=True,
|
1917
|
-
with_dcn=False,
|
1918
|
-
aspect_ratios=[0.5, 1.0, 2.0],
|
1919
|
-
anchor_sizes=[[32], [64], [128], [256], [512]],
|
1920
|
-
keep_top_k=100,
|
1921
|
-
nms_threshold=0.5,
|
1922
|
-
score_threshold=0.05,
|
1923
|
-
fpn_num_channels=256,
|
1924
|
-
rpn_batch_size_per_im=256,
|
1925
|
-
rpn_fg_fraction=0.5,
|
1926
|
-
test_pre_nms_top_n=None,
|
1927
|
-
test_post_nms_top_n=1000,
|
1928
|
-
**params):
|
1929
|
-
self.init_params = locals()
|
1930
|
-
if backbone not in {
|
1931
|
-
'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101',
|
1932
|
-
'ResNet101_vd'
|
1933
|
-
}:
|
1934
|
-
raise ValueError(
|
1935
|
-
"backbone: {} is not supported. Please choose one of "
|
1936
|
-
"('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101', 'ResNet101_vd')".
|
1937
|
-
format(backbone))
|
1938
|
-
|
1939
|
-
self.backbone_name = backbone + '_fpn' if with_fpn else backbone
|
1940
|
-
dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
|
1941
|
-
|
1942
|
-
if params.get('with_net', True):
|
1943
|
-
if backbone == 'ResNet50':
|
1944
|
-
if with_fpn:
|
1945
|
-
backbone = self._get_backbone(
|
1946
|
-
'ResNet',
|
1947
|
-
norm_type='bn',
|
1948
|
-
freeze_at=0,
|
1949
|
-
return_idx=[0, 1, 2, 3],
|
1950
|
-
num_stages=4,
|
1951
|
-
dcn_v2_stages=dcn_v2_stages)
|
1952
|
-
else:
|
1953
|
-
if with_dcn:
|
1954
|
-
logging.warning(
|
1955
|
-
"Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
|
1956
|
-
format(backbone))
|
1957
|
-
backbone = self._get_backbone(
|
1958
|
-
'ResNet',
|
1959
|
-
norm_type='bn',
|
1960
|
-
freeze_at=0,
|
1961
|
-
return_idx=[2],
|
1962
|
-
num_stages=3)
|
1963
|
-
|
1964
|
-
elif 'ResNet50_vd' in backbone:
|
1965
|
-
if not with_fpn:
|
1966
|
-
logging.warning(
|
1967
|
-
"Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
|
1968
|
-
format(backbone))
|
1969
|
-
with_fpn = True
|
1970
|
-
backbone = self._get_backbone(
|
1971
|
-
'ResNet',
|
1972
|
-
variant='d',
|
1973
|
-
norm_type='bn',
|
1974
|
-
freeze_at=0,
|
1975
|
-
return_idx=[0, 1, 2, 3],
|
1976
|
-
num_stages=4,
|
1977
|
-
lr_mult_list=[0.05, 0.05, 0.1, 0.15]
|
1978
|
-
if '_ssld' in backbone else [1.0, 1.0, 1.0, 1.0],
|
1979
|
-
dcn_v2_stages=dcn_v2_stages)
|
1980
|
-
|
1981
|
-
else:
|
1982
|
-
if not with_fpn:
|
1983
|
-
logging.warning(
|
1984
|
-
"Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
|
1985
|
-
format(backbone))
|
1986
|
-
with_fpn = True
|
1987
|
-
backbone = self._get_backbone(
|
1988
|
-
'ResNet',
|
1989
|
-
variant='d' if '_vd' in backbone else 'b',
|
1990
|
-
depth=101,
|
1991
|
-
norm_type='bn',
|
1992
|
-
freeze_at=0,
|
1993
|
-
return_idx=[0, 1, 2, 3],
|
1994
|
-
num_stages=4,
|
1995
|
-
dcn_v2_stages=dcn_v2_stages)
|
1996
|
-
|
1997
|
-
rpn_in_channel = backbone.out_shape[0].channels
|
1998
|
-
|
1999
|
-
if with_fpn:
|
2000
|
-
neck = ppdet.modeling.FPN(
|
2001
|
-
in_channels=[i.channels for i in backbone.out_shape],
|
2002
|
-
out_channel=fpn_num_channels,
|
2003
|
-
spatial_scales=[
|
2004
|
-
1.0 / i.stride for i in backbone.out_shape
|
2005
|
-
])
|
2006
|
-
rpn_in_channel = neck.out_shape[0].channels
|
2007
|
-
anchor_generator_cfg = {
|
2008
|
-
'aspect_ratios': aspect_ratios,
|
2009
|
-
'anchor_sizes': anchor_sizes,
|
2010
|
-
'strides': [4, 8, 16, 32, 64]
|
2011
|
-
}
|
2012
|
-
train_proposal_cfg = {
|
2013
|
-
'min_size': 0.0,
|
2014
|
-
'nms_thresh': .7,
|
2015
|
-
'pre_nms_top_n': 2000,
|
2016
|
-
'post_nms_top_n': 1000,
|
2017
|
-
'topk_after_collect': True
|
2018
|
-
}
|
2019
|
-
test_proposal_cfg = {
|
2020
|
-
'min_size': 0.0,
|
2021
|
-
'nms_thresh': .7,
|
2022
|
-
'pre_nms_top_n': 1000
|
2023
|
-
if test_pre_nms_top_n is None else test_pre_nms_top_n,
|
2024
|
-
'post_nms_top_n': test_post_nms_top_n
|
2025
|
-
}
|
2026
|
-
bb_head = ppdet.modeling.TwoFCHead(
|
2027
|
-
in_channel=neck.out_shape[0].channels, out_channel=1024)
|
2028
|
-
bb_roi_extractor_cfg = {
|
2029
|
-
'resolution': 7,
|
2030
|
-
'spatial_scale': [1. / i.stride for i in neck.out_shape],
|
2031
|
-
'sampling_ratio': 0,
|
2032
|
-
'aligned': True
|
2033
|
-
}
|
2034
|
-
with_pool = False
|
2035
|
-
m_head = ppdet.modeling.MaskFeat(
|
2036
|
-
in_channel=neck.out_shape[0].channels,
|
2037
|
-
out_channel=256,
|
2038
|
-
num_convs=4)
|
2039
|
-
m_roi_extractor_cfg = {
|
2040
|
-
'resolution': 14,
|
2041
|
-
'spatial_scale': [1. / i.stride for i in neck.out_shape],
|
2042
|
-
'sampling_ratio': 0,
|
2043
|
-
'aligned': True
|
2044
|
-
}
|
2045
|
-
mask_assigner = MaskAssigner(
|
2046
|
-
num_classes=num_classes, mask_resolution=28)
|
2047
|
-
share_bbox_feat = False
|
2048
|
-
|
2049
|
-
else:
|
2050
|
-
neck = None
|
2051
|
-
anchor_generator_cfg = {
|
2052
|
-
'aspect_ratios': aspect_ratios,
|
2053
|
-
'anchor_sizes': anchor_sizes,
|
2054
|
-
'strides': [16]
|
2055
|
-
}
|
2056
|
-
train_proposal_cfg = {
|
2057
|
-
'min_size': 0.0,
|
2058
|
-
'nms_thresh': .7,
|
2059
|
-
'pre_nms_top_n': 12000,
|
2060
|
-
'post_nms_top_n': 2000,
|
2061
|
-
'topk_after_collect': False
|
2062
|
-
}
|
2063
|
-
test_proposal_cfg = {
|
2064
|
-
'min_size': 0.0,
|
2065
|
-
'nms_thresh': .7,
|
2066
|
-
'pre_nms_top_n': 6000
|
2067
|
-
if test_pre_nms_top_n is None else test_pre_nms_top_n,
|
2068
|
-
'post_nms_top_n': test_post_nms_top_n
|
2069
|
-
}
|
2070
|
-
bb_head = ppdet.modeling.Res5Head()
|
2071
|
-
bb_roi_extractor_cfg = {
|
2072
|
-
'resolution': 14,
|
2073
|
-
'spatial_scale':
|
2074
|
-
[1. / i.stride for i in backbone.out_shape],
|
2075
|
-
'sampling_ratio': 0,
|
2076
|
-
'aligned': True
|
2077
|
-
}
|
2078
|
-
with_pool = True
|
2079
|
-
m_head = ppdet.modeling.MaskFeat(
|
2080
|
-
in_channel=bb_head.out_shape[0].channels,
|
2081
|
-
out_channel=256,
|
2082
|
-
num_convs=0)
|
2083
|
-
m_roi_extractor_cfg = {
|
2084
|
-
'resolution': 14,
|
2085
|
-
'spatial_scale':
|
2086
|
-
[1. / i.stride for i in backbone.out_shape],
|
2087
|
-
'sampling_ratio': 0,
|
2088
|
-
'aligned': True
|
2089
|
-
}
|
2090
|
-
mask_assigner = MaskAssigner(
|
2091
|
-
num_classes=num_classes, mask_resolution=14)
|
2092
|
-
share_bbox_feat = True
|
2093
|
-
|
2094
|
-
rpn_target_assign_cfg = {
|
2095
|
-
'batch_size_per_im': rpn_batch_size_per_im,
|
2096
|
-
'fg_fraction': rpn_fg_fraction,
|
2097
|
-
'negative_overlap': .3,
|
2098
|
-
'positive_overlap': .7,
|
2099
|
-
'use_random': True
|
2100
|
-
}
|
2101
|
-
|
2102
|
-
rpn_head = ppdet.modeling.RPNHead(
|
2103
|
-
anchor_generator=anchor_generator_cfg,
|
2104
|
-
rpn_target_assign=rpn_target_assign_cfg,
|
2105
|
-
train_proposal=train_proposal_cfg,
|
2106
|
-
test_proposal=test_proposal_cfg,
|
2107
|
-
in_channel=rpn_in_channel)
|
2108
|
-
|
2109
|
-
bbox_assigner = BBoxAssigner(num_classes=num_classes)
|
2110
|
-
|
2111
|
-
bbox_head = ppdet.modeling.BBoxHead(
|
2112
|
-
head=bb_head,
|
2113
|
-
in_channel=bb_head.out_shape[0].channels,
|
2114
|
-
roi_extractor=bb_roi_extractor_cfg,
|
2115
|
-
with_pool=with_pool,
|
2116
|
-
bbox_assigner=bbox_assigner,
|
2117
|
-
num_classes=num_classes)
|
2118
|
-
|
2119
|
-
mask_head = ppdet.modeling.MaskHead(
|
2120
|
-
head=m_head,
|
2121
|
-
roi_extractor=m_roi_extractor_cfg,
|
2122
|
-
mask_assigner=mask_assigner,
|
2123
|
-
share_bbox_feat=share_bbox_feat,
|
2124
|
-
num_classes=num_classes)
|
2125
|
-
|
2126
|
-
bbox_post_process = ppdet.modeling.BBoxPostProcess(
|
2127
|
-
num_classes=num_classes,
|
2128
|
-
decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
|
2129
|
-
nms=ppdet.modeling.MultiClassNMS(
|
2130
|
-
score_threshold=score_threshold,
|
2131
|
-
keep_top_k=keep_top_k,
|
2132
|
-
nms_threshold=nms_threshold))
|
2133
|
-
|
2134
|
-
mask_post_process = ppdet.modeling.MaskPostProcess(
|
2135
|
-
binary_thresh=.5)
|
2136
|
-
|
2137
|
-
params.update({
|
2138
|
-
'backbone': backbone,
|
2139
|
-
'neck': neck,
|
2140
|
-
'rpn_head': rpn_head,
|
2141
|
-
'bbox_head': bbox_head,
|
2142
|
-
'mask_head': mask_head,
|
2143
|
-
'bbox_post_process': bbox_post_process,
|
2144
|
-
'mask_post_process': mask_post_process
|
2145
|
-
})
|
2146
|
-
self.with_fpn = with_fpn
|
2147
|
-
super(MaskRCNN, self).__init__(
|
2148
|
-
model_name='MaskRCNN', num_classes=num_classes, **params)
|
2149
|
-
|
2150
|
-
def train(self,
|
2151
|
-
num_epochs,
|
2152
|
-
train_dataset,
|
2153
|
-
train_batch_size=64,
|
2154
|
-
eval_dataset=None,
|
2155
|
-
optimizer=None,
|
2156
|
-
save_interval_epochs=1,
|
2157
|
-
log_interval_steps=10,
|
2158
|
-
save_dir='output',
|
2159
|
-
pretrain_weights='IMAGENET',
|
2160
|
-
learning_rate=.001,
|
2161
|
-
warmup_steps=0,
|
2162
|
-
warmup_start_lr=0.0,
|
2163
|
-
lr_decay_epochs=(216, 243),
|
2164
|
-
lr_decay_gamma=0.1,
|
2165
|
-
metric=None,
|
2166
|
-
use_ema=False,
|
2167
|
-
early_stop=False,
|
2168
|
-
early_stop_patience=5,
|
2169
|
-
use_vdl=True,
|
2170
|
-
resume_checkpoint=None):
|
2171
|
-
"""
|
2172
|
-
Train the model.
|
2173
|
-
Args:
|
2174
|
-
num_epochs(int): The number of epochs.
|
2175
|
-
train_dataset(paddlex.dataset): Training dataset.
|
2176
|
-
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
|
2177
|
-
eval_dataset(paddlex.dataset, optional):
|
2178
|
-
Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
|
2179
|
-
optimizer(paddle.optimizer.Optimizer or None, optional):
|
2180
|
-
Optimizer used for training. If None, a default optimizer is used. Defaults to None.
|
2181
|
-
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
2182
|
-
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
2183
|
-
save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
2184
|
-
pretrain_weights(str or None, optional):
|
2185
|
-
None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
|
2186
|
-
learning_rate(float, optional): Learning rate for training. Defaults to .001.
|
2187
|
-
warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
|
2188
|
-
warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
|
2189
|
-
lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
|
2190
|
-
lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
|
2191
|
-
metric({'VOC', 'COCO', None}, optional):
|
2192
|
-
Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
|
2193
|
-
use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
|
2194
|
-
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
2195
|
-
early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
2196
|
-
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
2197
|
-
resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
|
2198
|
-
If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
|
2199
|
-
`pretrain_weights` can be set simultaneously. Defaults to None.
|
2200
|
-
"""
|
2201
|
-
if train_dataset.pos_num < len(train_dataset.file_list):
|
2202
|
-
train_dataset.num_workers = 0
|
2203
|
-
if train_batch_size != 1:
|
2204
|
-
train_batch_size = 1
|
2205
|
-
logging.warning(
|
2206
|
-
"Training RCNN models with negative samples only support batch size equals to 1 "
|
2207
|
-
"on a single gpu/cpu card, `train_batch_size` is forcibly set to 1."
|
2208
|
-
)
|
2209
|
-
nranks = paddle.distributed.get_world_size()
|
2210
|
-
local_rank = paddle.distributed.get_rank()
|
2211
|
-
# single card training
|
2212
|
-
if nranks < 2 or local_rank == 0:
|
2213
|
-
super(MaskRCNN, self).train(
|
2214
|
-
num_epochs, train_dataset, train_batch_size, eval_dataset,
|
2215
|
-
optimizer, save_interval_epochs, log_interval_steps,
|
2216
|
-
save_dir, pretrain_weights, learning_rate, warmup_steps,
|
2217
|
-
warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric,
|
2218
|
-
use_ema, early_stop, early_stop_patience, use_vdl,
|
2219
|
-
resume_checkpoint)
|
2220
|
-
else:
|
2221
|
-
super(MaskRCNN, self).train(
|
2222
|
-
num_epochs, train_dataset, train_batch_size, eval_dataset,
|
2223
|
-
optimizer, save_interval_epochs, log_interval_steps, save_dir,
|
2224
|
-
pretrain_weights, learning_rate, warmup_steps, warmup_start_lr,
|
2225
|
-
lr_decay_epochs, lr_decay_gamma, metric, use_ema, early_stop,
|
2226
|
-
early_stop_patience, use_vdl, resume_checkpoint)
|
2227
|
-
|
2228
|
-
def _compose_batch_transform(self, transforms, mode='train'):
|
2229
|
-
if mode == 'train':
|
2230
|
-
default_batch_transforms = [
|
2231
|
-
_BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
|
2232
|
-
]
|
2233
|
-
collate_batch = False
|
2234
|
-
else:
|
2235
|
-
default_batch_transforms = [
|
2236
|
-
_BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
|
2237
|
-
]
|
2238
|
-
collate_batch = True
|
2239
|
-
custom_batch_transforms = []
|
2240
|
-
for i, op in enumerate(transforms.transforms):
|
2241
|
-
if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
|
2242
|
-
if mode != 'train':
|
2243
|
-
raise Exception(
|
2244
|
-
"{} cannot be present in the {} transforms. ".format(
|
2245
|
-
op.__class__.__name__, mode) +
|
2246
|
-
"Please check the {} transforms.".format(mode))
|
2247
|
-
custom_batch_transforms.insert(0, copy.deepcopy(op))
|
2248
|
-
|
2249
|
-
batch_transforms = BatchCompose(
|
2250
|
-
custom_batch_transforms + default_batch_transforms,
|
2251
|
-
collate_batch=collate_batch)
|
2252
|
-
|
2253
|
-
return batch_transforms
|
2254
|
-
|
2255
|
-
def _fix_transforms_shape(self, image_shape):
|
2256
|
-
if getattr(self, 'test_transforms', None):
|
2257
|
-
has_resize_op = False
|
2258
|
-
resize_op_idx = -1
|
2259
|
-
normalize_op_idx = len(self.test_transforms.transforms)
|
2260
|
-
for idx, op in enumerate(self.test_transforms.transforms):
|
2261
|
-
name = op.__class__.__name__
|
2262
|
-
if name == 'ResizeByShort':
|
2263
|
-
has_resize_op = True
|
2264
|
-
resize_op_idx = idx
|
2265
|
-
if name == 'Normalize':
|
2266
|
-
normalize_op_idx = idx
|
2267
|
-
|
2268
|
-
if not has_resize_op:
|
2269
|
-
self.test_transforms.transforms.insert(
|
2270
|
-
normalize_op_idx,
|
2271
|
-
Resize(
|
2272
|
-
target_size=image_shape,
|
2273
|
-
keep_ratio=True,
|
2274
|
-
interp='CUBIC'))
|
2275
|
-
else:
|
2276
|
-
self.test_transforms.transforms[resize_op_idx] = Resize(
|
2277
|
-
target_size=image_shape, keep_ratio=True, interp='CUBIC')
|
2278
|
-
self.test_transforms.transforms.append(
|
2279
|
-
Padding(im_padding_value=[0., 0., 0.]))
|
2280
|
-
|
2281
|
-
def _get_test_inputs(self, image_shape):
|
2282
|
-
if image_shape is not None:
|
2283
|
-
image_shape = self._check_image_shape(image_shape)
|
2284
|
-
self._fix_transforms_shape(image_shape[-2:])
|
2285
|
-
else:
|
2286
|
-
image_shape = [None, 3, -1, -1]
|
2287
|
-
if self.with_fpn:
|
2288
|
-
self.test_transforms.transforms.append(
|
2289
|
-
Padding(im_padding_value=[0., 0., 0.]))
|
2290
|
-
self.fixed_input_shape = image_shape
|
2291
|
-
|
2292
|
-
return self._define_input_spec(image_shape)
|