paddlex 2.1.0__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1340) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -19
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/deploy/__init__.py +0 -1
  649. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  650. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  651. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  652. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  653. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  654. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  655. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  656. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  657. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  658. PaddleClas/deploy/python/__init__.py +0 -0
  659. PaddleClas/deploy/python/build_gallery.py +0 -214
  660. PaddleClas/deploy/python/det_preprocess.py +0 -205
  661. PaddleClas/deploy/python/postprocess.py +0 -161
  662. PaddleClas/deploy/python/predict_cls.py +0 -142
  663. PaddleClas/deploy/python/predict_det.py +0 -158
  664. PaddleClas/deploy/python/predict_rec.py +0 -138
  665. PaddleClas/deploy/python/predict_system.py +0 -144
  666. PaddleClas/deploy/python/preprocess.py +0 -337
  667. PaddleClas/deploy/utils/__init__.py +0 -5
  668. PaddleClas/deploy/utils/config.py +0 -197
  669. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  670. PaddleClas/deploy/utils/encode_decode.py +0 -31
  671. PaddleClas/deploy/utils/get_image_list.py +0 -49
  672. PaddleClas/deploy/utils/logger.py +0 -120
  673. PaddleClas/deploy/utils/predictor.py +0 -71
  674. PaddleClas/deploy/vector_search/__init__.py +0 -1
  675. PaddleClas/deploy/vector_search/interface.py +0 -272
  676. PaddleClas/deploy/vector_search/test.py +0 -34
  677. PaddleClas/hubconf.py +0 -788
  678. PaddleClas/paddleclas.py +0 -552
  679. PaddleClas/ppcls/__init__.py +0 -20
  680. PaddleClas/ppcls/arch/__init__.py +0 -127
  681. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  682. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  683. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  684. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  685. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  686. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  687. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  688. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  689. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  690. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  691. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  692. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  693. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  694. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  695. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  696. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  697. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  698. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  699. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  700. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  701. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  702. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  703. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  704. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  705. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  706. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  707. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  708. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  709. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  710. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  711. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  712. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  713. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  714. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  715. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  716. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  717. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  718. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  719. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  720. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  721. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  722. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  723. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  724. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  725. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  726. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  727. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  728. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  729. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  730. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  731. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  732. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  733. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  734. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  735. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  736. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  737. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  738. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  739. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  740. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  741. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  742. PaddleClas/ppcls/arch/utils.py +0 -53
  743. PaddleClas/ppcls/data/__init__.py +0 -144
  744. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  745. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  746. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  747. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  748. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  749. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  750. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  751. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  752. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  753. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  754. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  755. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  756. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  757. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  758. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  759. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  760. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  761. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  762. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  763. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  764. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  765. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  766. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  767. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  768. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  769. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  770. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  771. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  772. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  773. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  774. PaddleClas/ppcls/engine/__init__.py +0 -0
  775. PaddleClas/ppcls/engine/engine.py +0 -436
  776. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  777. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  778. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  779. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  780. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  781. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  782. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  783. PaddleClas/ppcls/engine/train/train.py +0 -79
  784. PaddleClas/ppcls/engine/train/utils.py +0 -72
  785. PaddleClas/ppcls/loss/__init__.py +0 -65
  786. PaddleClas/ppcls/loss/celoss.py +0 -67
  787. PaddleClas/ppcls/loss/centerloss.py +0 -54
  788. PaddleClas/ppcls/loss/comfunc.py +0 -45
  789. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  790. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  791. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  792. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  793. PaddleClas/ppcls/loss/emlloss.py +0 -97
  794. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  795. PaddleClas/ppcls/loss/msmloss.py +0 -78
  796. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  797. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  798. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  799. PaddleClas/ppcls/loss/supconloss.py +0 -108
  800. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  801. PaddleClas/ppcls/loss/triplet.py +0 -137
  802. PaddleClas/ppcls/metric/__init__.py +0 -51
  803. PaddleClas/ppcls/metric/metrics.py +0 -308
  804. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  805. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  806. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  807. PaddleClas/ppcls/utils/__init__.py +0 -27
  808. PaddleClas/ppcls/utils/check.py +0 -151
  809. PaddleClas/ppcls/utils/config.py +0 -210
  810. PaddleClas/ppcls/utils/download.py +0 -319
  811. PaddleClas/ppcls/utils/ema.py +0 -63
  812. PaddleClas/ppcls/utils/logger.py +0 -137
  813. PaddleClas/ppcls/utils/metrics.py +0 -107
  814. PaddleClas/ppcls/utils/misc.py +0 -63
  815. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  816. PaddleClas/ppcls/utils/profiler.py +0 -111
  817. PaddleClas/ppcls/utils/save_load.py +0 -136
  818. PaddleClas/setup.py +0 -58
  819. PaddleClas/tools/__init__.py +0 -15
  820. PaddleClas/tools/eval.py +0 -31
  821. PaddleClas/tools/export_model.py +0 -34
  822. PaddleClas/tools/infer.py +0 -31
  823. PaddleClas/tools/train.py +0 -32
  824. paddlex/cls.py +0 -82
  825. paddlex/command.py +0 -215
  826. paddlex/cv/__init__.py +0 -17
  827. paddlex/cv/datasets/__init__.py +0 -18
  828. paddlex/cv/datasets/coco.py +0 -208
  829. paddlex/cv/datasets/imagenet.py +0 -88
  830. paddlex/cv/datasets/seg_dataset.py +0 -91
  831. paddlex/cv/datasets/voc.py +0 -445
  832. paddlex/cv/models/__init__.py +0 -18
  833. paddlex/cv/models/base.py +0 -631
  834. paddlex/cv/models/classifier.py +0 -989
  835. paddlex/cv/models/detector.py +0 -2292
  836. paddlex/cv/models/load_model.py +0 -148
  837. paddlex/cv/models/segmenter.py +0 -768
  838. paddlex/cv/models/slim/__init__.py +0 -13
  839. paddlex/cv/models/slim/prune.py +0 -55
  840. paddlex/cv/models/utils/__init__.py +0 -13
  841. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  842. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  843. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  844. paddlex/cv/models/utils/infer_nets.py +0 -45
  845. paddlex/cv/models/utils/seg_metrics.py +0 -62
  846. paddlex/cv/models/utils/visualize.py +0 -399
  847. paddlex/cv/transforms/__init__.py +0 -46
  848. paddlex/cv/transforms/batch_operators.py +0 -286
  849. paddlex/cv/transforms/box_utils.py +0 -41
  850. paddlex/cv/transforms/functions.py +0 -193
  851. paddlex/cv/transforms/operators.py +0 -1402
  852. paddlex/deploy.py +0 -268
  853. paddlex/det.py +0 -49
  854. paddlex/paddleseg/__init__.py +0 -17
  855. paddlex/paddleseg/core/__init__.py +0 -20
  856. paddlex/paddleseg/core/infer.py +0 -289
  857. paddlex/paddleseg/core/predict.py +0 -145
  858. paddlex/paddleseg/core/train.py +0 -258
  859. paddlex/paddleseg/core/val.py +0 -172
  860. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  861. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  862. paddlex/paddleseg/cvlibs/config.py +0 -359
  863. paddlex/paddleseg/cvlibs/manager.py +0 -142
  864. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  865. paddlex/paddleseg/datasets/__init__.py +0 -21
  866. paddlex/paddleseg/datasets/ade.py +0 -112
  867. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  868. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  869. paddlex/paddleseg/datasets/dataset.py +0 -164
  870. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  871. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  872. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  873. paddlex/paddleseg/datasets/voc.py +0 -113
  874. paddlex/paddleseg/models/__init__.py +0 -39
  875. paddlex/paddleseg/models/ann.py +0 -436
  876. paddlex/paddleseg/models/attention_unet.py +0 -189
  877. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  878. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  879. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  880. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  881. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  882. paddlex/paddleseg/models/bisenet.py +0 -311
  883. paddlex/paddleseg/models/danet.py +0 -220
  884. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  885. paddlex/paddleseg/models/deeplab.py +0 -258
  886. paddlex/paddleseg/models/dnlnet.py +0 -231
  887. paddlex/paddleseg/models/emanet.py +0 -219
  888. paddlex/paddleseg/models/fast_scnn.py +0 -318
  889. paddlex/paddleseg/models/fcn.py +0 -135
  890. paddlex/paddleseg/models/gcnet.py +0 -223
  891. paddlex/paddleseg/models/gscnn.py +0 -357
  892. paddlex/paddleseg/models/hardnet.py +0 -309
  893. paddlex/paddleseg/models/isanet.py +0 -202
  894. paddlex/paddleseg/models/layers/__init__.py +0 -19
  895. paddlex/paddleseg/models/layers/activation.py +0 -73
  896. paddlex/paddleseg/models/layers/attention.py +0 -146
  897. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  898. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  899. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  900. paddlex/paddleseg/models/losses/__init__.py +0 -27
  901. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  902. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  903. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  904. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  905. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  906. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  907. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  908. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  909. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  910. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  911. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  912. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  913. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  914. paddlex/paddleseg/models/ocrnet.py +0 -248
  915. paddlex/paddleseg/models/pspnet.py +0 -147
  916. paddlex/paddleseg/models/sfnet.py +0 -236
  917. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  918. paddlex/paddleseg/models/u2net.py +0 -574
  919. paddlex/paddleseg/models/unet.py +0 -155
  920. paddlex/paddleseg/models/unet_3plus.py +0 -316
  921. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  922. paddlex/paddleseg/transforms/__init__.py +0 -16
  923. paddlex/paddleseg/transforms/functional.py +0 -161
  924. paddlex/paddleseg/transforms/transforms.py +0 -937
  925. paddlex/paddleseg/utils/__init__.py +0 -22
  926. paddlex/paddleseg/utils/config_check.py +0 -60
  927. paddlex/paddleseg/utils/download.py +0 -163
  928. paddlex/paddleseg/utils/env/__init__.py +0 -16
  929. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  930. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  931. paddlex/paddleseg/utils/logger.py +0 -48
  932. paddlex/paddleseg/utils/metrics.py +0 -146
  933. paddlex/paddleseg/utils/progbar.py +0 -212
  934. paddlex/paddleseg/utils/timer.py +0 -53
  935. paddlex/paddleseg/utils/utils.py +0 -120
  936. paddlex/paddleseg/utils/visualize.py +0 -90
  937. paddlex/ppcls/__init__.py +0 -20
  938. paddlex/ppcls/arch/__init__.py +0 -127
  939. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  940. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  941. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  942. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  943. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  944. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  945. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  946. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  947. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  948. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  949. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  950. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  951. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  952. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  953. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  954. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  955. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  956. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  957. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  958. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  959. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  960. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  961. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  962. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  963. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  964. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  965. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  966. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  967. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  968. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  969. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  970. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  971. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  972. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  973. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  974. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  975. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  976. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  977. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  978. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  979. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  980. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  981. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  982. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  983. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  984. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  985. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  986. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  987. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  988. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  989. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  990. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  991. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  992. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  993. paddlex/ppcls/arch/gears/__init__.py +0 -32
  994. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  995. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  996. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  997. paddlex/ppcls/arch/gears/fc.py +0 -35
  998. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  999. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1000. paddlex/ppcls/arch/utils.py +0 -53
  1001. paddlex/ppcls/data/__init__.py +0 -144
  1002. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1003. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1004. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1005. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1006. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1007. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1008. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1009. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1010. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1011. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1012. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1013. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1014. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1015. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1016. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1017. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1018. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1019. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1020. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1021. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1022. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1023. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1024. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1025. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1026. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1027. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1028. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1029. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1030. paddlex/ppcls/data/utils/__init__.py +0 -13
  1031. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1032. paddlex/ppcls/engine/__init__.py +0 -0
  1033. paddlex/ppcls/engine/engine.py +0 -436
  1034. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1035. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1036. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1037. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1038. paddlex/ppcls/engine/slim/prune.py +0 -66
  1039. paddlex/ppcls/engine/slim/quant.py +0 -55
  1040. paddlex/ppcls/engine/train/__init__.py +0 -14
  1041. paddlex/ppcls/engine/train/train.py +0 -79
  1042. paddlex/ppcls/engine/train/utils.py +0 -72
  1043. paddlex/ppcls/loss/__init__.py +0 -65
  1044. paddlex/ppcls/loss/celoss.py +0 -67
  1045. paddlex/ppcls/loss/centerloss.py +0 -54
  1046. paddlex/ppcls/loss/comfunc.py +0 -45
  1047. paddlex/ppcls/loss/deephashloss.py +0 -96
  1048. paddlex/ppcls/loss/distanceloss.py +0 -43
  1049. paddlex/ppcls/loss/distillationloss.py +0 -141
  1050. paddlex/ppcls/loss/dmlloss.py +0 -46
  1051. paddlex/ppcls/loss/emlloss.py +0 -97
  1052. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1053. paddlex/ppcls/loss/msmloss.py +0 -78
  1054. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1055. paddlex/ppcls/loss/npairsloss.py +0 -38
  1056. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1057. paddlex/ppcls/loss/supconloss.py +0 -108
  1058. paddlex/ppcls/loss/trihardloss.py +0 -82
  1059. paddlex/ppcls/loss/triplet.py +0 -137
  1060. paddlex/ppcls/metric/__init__.py +0 -51
  1061. paddlex/ppcls/metric/metrics.py +0 -308
  1062. paddlex/ppcls/optimizer/__init__.py +0 -72
  1063. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1064. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1065. paddlex/ppcls/utils/__init__.py +0 -27
  1066. paddlex/ppcls/utils/check.py +0 -151
  1067. paddlex/ppcls/utils/config.py +0 -210
  1068. paddlex/ppcls/utils/download.py +0 -319
  1069. paddlex/ppcls/utils/ema.py +0 -63
  1070. paddlex/ppcls/utils/logger.py +0 -137
  1071. paddlex/ppcls/utils/metrics.py +0 -112
  1072. paddlex/ppcls/utils/misc.py +0 -63
  1073. paddlex/ppcls/utils/model_zoo.py +0 -213
  1074. paddlex/ppcls/utils/profiler.py +0 -111
  1075. paddlex/ppcls/utils/save_load.py +0 -136
  1076. paddlex/ppdet/__init__.py +0 -16
  1077. paddlex/ppdet/core/__init__.py +0 -15
  1078. paddlex/ppdet/core/config/__init__.py +0 -13
  1079. paddlex/ppdet/core/config/schema.py +0 -248
  1080. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1081. paddlex/ppdet/core/workspace.py +0 -278
  1082. paddlex/ppdet/data/__init__.py +0 -21
  1083. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1084. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1085. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1086. paddlex/ppdet/data/reader.py +0 -302
  1087. paddlex/ppdet/data/shm_utils.py +0 -67
  1088. paddlex/ppdet/data/source/__init__.py +0 -29
  1089. paddlex/ppdet/data/source/category.py +0 -904
  1090. paddlex/ppdet/data/source/coco.py +0 -251
  1091. paddlex/ppdet/data/source/dataset.py +0 -197
  1092. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1093. paddlex/ppdet/data/source/mot.py +0 -636
  1094. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1095. paddlex/ppdet/data/source/voc.py +0 -231
  1096. paddlex/ppdet/data/source/widerface.py +0 -180
  1097. paddlex/ppdet/data/transform/__init__.py +0 -28
  1098. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1099. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1100. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1101. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1102. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1103. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1104. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1105. paddlex/ppdet/data/transform/operators.py +0 -3025
  1106. paddlex/ppdet/engine/__init__.py +0 -30
  1107. paddlex/ppdet/engine/callbacks.py +0 -340
  1108. paddlex/ppdet/engine/env.py +0 -50
  1109. paddlex/ppdet/engine/export_utils.py +0 -177
  1110. paddlex/ppdet/engine/tracker.py +0 -538
  1111. paddlex/ppdet/engine/trainer.py +0 -723
  1112. paddlex/ppdet/metrics/__init__.py +0 -29
  1113. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1114. paddlex/ppdet/metrics/json_results.py +0 -149
  1115. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1116. paddlex/ppdet/metrics/map_utils.py +0 -444
  1117. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1118. paddlex/ppdet/metrics/metrics.py +0 -434
  1119. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1120. paddlex/ppdet/metrics/munkres.py +0 -428
  1121. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1122. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1123. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1124. paddlex/ppdet/modeling/__init__.py +0 -45
  1125. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1126. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1127. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1128. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1129. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1130. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1131. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1132. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1133. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1134. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1135. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1136. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1137. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1138. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1139. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1140. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1141. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1142. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1143. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1144. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1145. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1146. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1147. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1148. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1149. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1150. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1151. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1152. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1153. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1154. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1155. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1156. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1157. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1158. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1159. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1160. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1161. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1162. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1163. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1164. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1165. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1166. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1167. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1168. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1169. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1170. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1171. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1172. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1173. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1174. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1175. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1176. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1177. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1178. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1179. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1180. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1181. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1182. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1183. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1184. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1185. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1186. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1187. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1188. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1189. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1190. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1191. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1192. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1193. paddlex/ppdet/modeling/initializer.py +0 -317
  1194. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1195. paddlex/ppdet/modeling/layers.py +0 -1430
  1196. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1197. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1198. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1199. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1200. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1201. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1202. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1203. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1204. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1205. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1206. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1207. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1208. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1209. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1210. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1211. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1212. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1213. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1214. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1215. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1216. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1217. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1218. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1219. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1220. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1221. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1222. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1223. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1224. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1225. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1226. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1227. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1228. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1229. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1230. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1231. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1232. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1233. paddlex/ppdet/modeling/ops.py +0 -1611
  1234. paddlex/ppdet/modeling/post_process.py +0 -731
  1235. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1236. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1237. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1238. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1239. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1240. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1241. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1242. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1243. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1244. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1245. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1246. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1247. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1248. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1249. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1250. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1251. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1252. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1253. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1254. paddlex/ppdet/optimizer.py +0 -335
  1255. paddlex/ppdet/slim/__init__.py +0 -82
  1256. paddlex/ppdet/slim/distill.py +0 -110
  1257. paddlex/ppdet/slim/prune.py +0 -85
  1258. paddlex/ppdet/slim/quant.py +0 -84
  1259. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1260. paddlex/ppdet/utils/__init__.py +0 -13
  1261. paddlex/ppdet/utils/check.py +0 -112
  1262. paddlex/ppdet/utils/checkpoint.py +0 -226
  1263. paddlex/ppdet/utils/cli.py +0 -151
  1264. paddlex/ppdet/utils/colormap.py +0 -58
  1265. paddlex/ppdet/utils/download.py +0 -558
  1266. paddlex/ppdet/utils/logger.py +0 -70
  1267. paddlex/ppdet/utils/profiler.py +0 -111
  1268. paddlex/ppdet/utils/stats.py +0 -94
  1269. paddlex/ppdet/utils/visualizer.py +0 -321
  1270. paddlex/ppdet/utils/voc_utils.py +0 -86
  1271. paddlex/seg.py +0 -41
  1272. paddlex/tools/__init__.py +0 -17
  1273. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1274. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1275. paddlex/tools/convert.py +0 -52
  1276. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1277. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1278. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1279. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1280. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1281. paddlex/tools/dataset_split/__init__.py +0 -23
  1282. paddlex/tools/dataset_split/coco_split.py +0 -69
  1283. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1284. paddlex/tools/dataset_split/seg_split.py +0 -96
  1285. paddlex/tools/dataset_split/utils.py +0 -75
  1286. paddlex/tools/dataset_split/voc_split.py +0 -91
  1287. paddlex/tools/split.py +0 -41
  1288. paddlex/utils/checkpoint.py +0 -492
  1289. paddlex/utils/env.py +0 -67
  1290. paddlex/utils/shm.py +0 -67
  1291. paddlex/utils/stats.py +0 -68
  1292. paddlex/utils/utils.py +0 -229
  1293. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1294. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1295. paddlex-2.1.0.dist-info/METADATA +0 -32
  1296. paddlex-2.1.0.dist-info/RECORD +0 -698
  1297. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1298. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1299. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1300. paddlex_restful/__init__.py +0 -15
  1301. paddlex_restful/command.py +0 -63
  1302. paddlex_restful/restful/__init__.py +0 -15
  1303. paddlex_restful/restful/app.py +0 -969
  1304. paddlex_restful/restful/dataset/__init__.py +0 -13
  1305. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1306. paddlex_restful/restful/dataset/dataset.py +0 -266
  1307. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1308. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1309. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1310. paddlex_restful/restful/dataset/operate.py +0 -155
  1311. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1312. paddlex_restful/restful/dataset/utils.py +0 -267
  1313. paddlex_restful/restful/demo.py +0 -202
  1314. paddlex_restful/restful/dir.py +0 -45
  1315. paddlex_restful/restful/model.py +0 -312
  1316. paddlex_restful/restful/project/__init__.py +0 -13
  1317. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1318. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1319. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1320. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1321. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1322. paddlex_restful/restful/project/operate.py +0 -931
  1323. paddlex_restful/restful/project/project.py +0 -143
  1324. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1325. paddlex_restful/restful/project/prune/classification.py +0 -32
  1326. paddlex_restful/restful/project/prune/detection.py +0 -48
  1327. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1328. paddlex_restful/restful/project/task.py +0 -884
  1329. paddlex_restful/restful/project/train/__init__.py +0 -13
  1330. paddlex_restful/restful/project/train/classification.py +0 -141
  1331. paddlex_restful/restful/project/train/detection.py +0 -263
  1332. paddlex_restful/restful/project/train/params.py +0 -432
  1333. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1334. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1335. paddlex_restful/restful/project/visualize.py +0 -244
  1336. paddlex_restful/restful/system.py +0 -102
  1337. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1338. paddlex_restful/restful/utils.py +0 -841
  1339. paddlex_restful/restful/workspace.py +0 -343
  1340. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,1402 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import numpy as np
16
- import cv2
17
- import copy
18
- import random
19
- from PIL import Image
20
- import paddlex
21
-
22
- try:
23
- from collections.abc import Sequence
24
- except Exception:
25
- from collections import Sequence
26
- from numbers import Number
27
- from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
28
- horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
29
- crop_rle, expand_poly, expand_rle, resize_poly, resize_rle
30
-
31
- __all__ = [
32
- "Compose", "Decode", "Resize", "RandomResize", "ResizeByShort",
33
- "RandomResizeByShort", "ResizeByLong", "RandomHorizontalFlip",
34
- "RandomVerticalFlip", "Normalize", "CenterCrop", "RandomCrop",
35
- "RandomScaleAspect", "RandomExpand", "Padding", "MixupImage",
36
- "RandomDistort", "RandomBlur", "ArrangeSegmenter", "ArrangeClassifier",
37
- "ArrangeDetector"
38
- ]
39
-
40
- interp_dict = {
41
- 'NEAREST': cv2.INTER_NEAREST,
42
- 'LINEAR': cv2.INTER_LINEAR,
43
- 'CUBIC': cv2.INTER_CUBIC,
44
- 'AREA': cv2.INTER_AREA,
45
- 'LANCZOS4': cv2.INTER_LANCZOS4
46
- }
47
-
48
-
49
- class Transform(object):
50
- """
51
- Parent class of all data augmentation operations
52
- """
53
-
54
- def __init__(self):
55
- pass
56
-
57
- def apply_im(self, image):
58
- pass
59
-
60
- def apply_mask(self, mask):
61
- pass
62
-
63
- def apply_bbox(self, bbox):
64
- pass
65
-
66
- def apply_segm(self, segms):
67
- pass
68
-
69
- def apply(self, sample):
70
- sample['image'] = self.apply_im(sample['image'])
71
- if 'mask' in sample:
72
- sample['mask'] = self.apply_mask(sample['mask'])
73
- if 'gt_bbox' in sample:
74
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
75
-
76
- return sample
77
-
78
- def __call__(self, sample):
79
- if isinstance(sample, Sequence):
80
- sample = [self.apply(s) for s in sample]
81
- else:
82
- sample = self.apply(sample)
83
-
84
- return sample
85
-
86
-
87
- class Compose(Transform):
88
- """
89
- Apply a series of data augmentation to the input.
90
- All input images are in Height-Width-Channel ([H, W, C]) format.
91
-
92
- Args:
93
- transforms (List[paddlex.transforms.Transform]): List of data preprocess or augmentations.
94
- Raises:
95
- TypeError: Invalid type of transforms.
96
- ValueError: Invalid length of transforms.
97
- """
98
-
99
- def __init__(self, transforms):
100
- super(Compose, self).__init__()
101
- if not isinstance(transforms, list):
102
- raise TypeError(
103
- 'Type of transforms is invalid. Must be List, but received is {}'
104
- .format(type(transforms)))
105
- if len(transforms) < 1:
106
- raise ValueError(
107
- 'Length of transforms must not be less than 1, but received is {}'
108
- .format(len(transforms)))
109
- self.transforms = transforms
110
- self.decode_image = Decode()
111
- self.arrange_outputs = None
112
- self.apply_im_only = False
113
-
114
- def __call__(self, sample):
115
- if self.apply_im_only and 'mask' in sample:
116
- mask_backup = copy.deepcopy(sample['mask'])
117
- del sample['mask']
118
-
119
- sample = self.decode_image(sample)
120
-
121
- for op in self.transforms:
122
- # skip batch transforms amd mixup
123
- if isinstance(op, (paddlex.transforms.BatchRandomResize,
124
- paddlex.transforms.BatchRandomResizeByShort,
125
- MixupImage)):
126
- continue
127
- sample = op(sample)
128
-
129
- if self.arrange_outputs is not None:
130
- if self.apply_im_only:
131
- sample['mask'] = mask_backup
132
- sample = self.arrange_outputs(sample)
133
-
134
- return sample
135
-
136
-
137
- class Decode(Transform):
138
- """
139
- Decode image(s) in input.
140
-
141
- Args:
142
- to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True.
143
- """
144
-
145
- def __init__(self, to_rgb=True):
146
- super(Decode, self).__init__()
147
- self.to_rgb = to_rgb
148
-
149
- def read_img(self, img_path):
150
- return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR |
151
- cv2.IMREAD_COLOR)
152
-
153
- def apply_im(self, im_path):
154
- if isinstance(im_path, str):
155
- try:
156
- image = self.read_img(im_path)
157
- except:
158
- raise ValueError('Cannot read the image file {}!'.format(
159
- im_path))
160
- else:
161
- image = im_path
162
-
163
- if self.to_rgb:
164
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
165
-
166
- return image
167
-
168
- def apply_mask(self, mask):
169
- try:
170
- mask = np.asarray(Image.open(mask))
171
- except:
172
- raise ValueError("Cannot read the mask file {}!".format(mask))
173
- if len(mask.shape) != 2:
174
- raise Exception(
175
- "Mask should be a 1-channel image, but recevied is a {}-channel image.".
176
- format(mask.shape[2]))
177
- return mask
178
-
179
- def apply(self, sample):
180
- """
181
-
182
- Args:
183
- sample (dict): Input sample, containing 'image' at least.
184
-
185
- Returns:
186
- dict: Decoded sample.
187
-
188
- """
189
- sample['image'] = self.apply_im(sample['image'])
190
- if 'mask' in sample:
191
- sample['mask'] = self.apply_mask(sample['mask'])
192
- im_height, im_width, _ = sample['image'].shape
193
- se_height, se_width = sample['mask'].shape
194
- if im_height != se_height or im_width != se_width:
195
- raise Exception(
196
- "The height or width of the im is not same as the mask")
197
- sample['im_shape'] = np.array(
198
- sample['image'].shape[:2], dtype=np.float32)
199
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
200
- return sample
201
-
202
-
203
- class Resize(Transform):
204
- """
205
- Resize input.
206
-
207
- - If target_size is an int,resize the image(s) to (target_size, target_size).
208
- - If target_size is a list or tuple, resize the image(s) to target_size.
209
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
210
-
211
- Args:
212
- target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
213
- Otherwise, target_size represents [target height, target width].
214
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
215
- Interpolation method of resize. Defaults to 'LINEAR'.
216
- keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater
217
- than target width/height. Defaults to False.
218
-
219
- Raises:
220
- TypeError: Invalid type of target_size.
221
- ValueError: Invalid interpolation method.
222
- """
223
-
224
- def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
225
- super(Resize, self).__init__()
226
- if not (interp == "RANDOM" or interp in interp_dict):
227
- raise ValueError("interp should be one of {}".format(
228
- interp_dict.keys()))
229
- if isinstance(target_size, int):
230
- target_size = (target_size, target_size)
231
- else:
232
- if not (isinstance(target_size,
233
- (list, tuple)) and len(target_size) == 2):
234
- raise TypeError(
235
- "target_size should be an int or a list of length 2, but received {}".
236
- format(target_size))
237
- # (height, width)
238
- self.target_size = target_size
239
- self.interp = interp
240
- self.keep_ratio = keep_ratio
241
-
242
- def apply_im(self, image, interp, target_size):
243
- image = cv2.resize(image, target_size, interpolation=interp)
244
- return image
245
-
246
- def apply_mask(self, mask, target_size):
247
- mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
248
- return mask
249
-
250
- def apply_bbox(self, bbox, scale, target_size):
251
- im_scale_x, im_scale_y = scale
252
- bbox[:, 0::2] *= im_scale_x
253
- bbox[:, 1::2] *= im_scale_y
254
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0])
255
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1])
256
- return bbox
257
-
258
- def apply_segm(self, segms, im_size, scale):
259
- im_h, im_w = im_size
260
- im_scale_x, im_scale_y = scale
261
- resized_segms = []
262
- for segm in segms:
263
- if is_poly(segm):
264
- # Polygon format
265
- resized_segms.append([
266
- resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
267
- ])
268
- else:
269
- # RLE format
270
- resized_segms.append(
271
- resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
272
-
273
- return resized_segms
274
-
275
- def apply(self, sample):
276
- if self.interp == "RANDOM":
277
- interp = random.choice(list(interp_dict.values()))
278
- else:
279
- interp = interp_dict[self.interp]
280
- im_h, im_w = sample['image'].shape[:2]
281
-
282
- im_scale_y = self.target_size[0] / im_h
283
- im_scale_x = self.target_size[1] / im_w
284
- target_size = (self.target_size[1], self.target_size[0])
285
- if self.keep_ratio:
286
- scale = min(im_scale_y, im_scale_x)
287
- target_w = int(round(im_w * scale))
288
- target_h = int(round(im_h * scale))
289
- target_size = (target_w, target_h)
290
- im_scale_y = target_h / im_h
291
- im_scale_x = target_w / im_w
292
-
293
- sample['image'] = self.apply_im(sample['image'], interp, target_size)
294
-
295
- if 'mask' in sample:
296
- sample['mask'] = self.apply_mask(sample['mask'], target_size)
297
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
298
- sample['gt_bbox'] = self.apply_bbox(
299
- sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
300
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
301
- sample['gt_poly'] = self.apply_segm(
302
- sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
303
- sample['im_shape'] = np.asarray(
304
- sample['image'].shape[:2], dtype=np.float32)
305
- if 'scale_factor' in sample:
306
- scale_factor = sample['scale_factor']
307
- sample['scale_factor'] = np.asarray(
308
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
309
- dtype=np.float32)
310
-
311
- return sample
312
-
313
-
314
- class RandomResize(Transform):
315
- """
316
- Resize input to random sizes.
317
-
318
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
319
-
320
- Args:
321
- target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
322
- Multiple target sizes, each target size is an int or list/tuple.
323
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
324
- Interpolation method of resize. Defaults to 'LINEAR'.
325
-
326
- Raises:
327
- TypeError: Invalid type of target_size.
328
- ValueError: Invalid interpolation method.
329
-
330
- See Also:
331
- Resize input to a specific size.
332
- """
333
-
334
- def __init__(self, target_sizes, interp='LINEAR'):
335
- super(RandomResize, self).__init__()
336
- if not (interp == "RANDOM" or interp in interp_dict):
337
- raise ValueError("interp should be one of {}".format(
338
- interp_dict.keys()))
339
- self.interp = interp
340
- assert isinstance(target_sizes, list), \
341
- "target_size must be List"
342
- for i, item in enumerate(target_sizes):
343
- if isinstance(item, int):
344
- target_sizes[i] = (item, item)
345
- self.target_size = target_sizes
346
-
347
- def apply(self, sample):
348
- height, width = random.choice(self.target_size)
349
- resizer = Resize((height, width), interp=self.interp)
350
- sample = resizer(sample)
351
-
352
- return sample
353
-
354
-
355
- class ResizeByShort(Transform):
356
- """
357
- Resize input with keeping the aspect ratio.
358
-
359
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
360
-
361
- Args:
362
- short_size (int): Target size of the shorter side of the image(s).
363
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
364
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
365
-
366
- Raises:
367
- ValueError: Invalid interpolation method.
368
- """
369
-
370
- def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
371
- if not (interp == "RANDOM" or interp in interp_dict):
372
- raise ValueError("interp should be one of {}".format(
373
- interp_dict.keys()))
374
- super(ResizeByShort, self).__init__()
375
- self.short_size = short_size
376
- self.max_size = max_size
377
- self.interp = interp
378
-
379
- def apply(self, sample):
380
- im_h, im_w = sample['image'].shape[:2]
381
- im_short_size = min(im_h, im_w)
382
- im_long_size = max(im_h, im_w)
383
- scale = float(self.short_size) / float(im_short_size)
384
- if 0 < self.max_size < np.round(scale * im_long_size):
385
- scale = float(self.max_size) / float(im_long_size)
386
- target_w = int(round(im_w * scale))
387
- target_h = int(round(im_h * scale))
388
- sample = Resize(
389
- target_size=(target_h, target_w), interp=self.interp)(sample)
390
-
391
- return sample
392
-
393
-
394
- class RandomResizeByShort(Transform):
395
- """
396
- Resize input to random sizes with keeping the aspect ratio.
397
-
398
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
399
-
400
- Args:
401
- short_sizes (List[int]): Target size of the shorter side of the image(s).
402
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
403
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
404
-
405
- Raises:
406
- TypeError: Invalid type of target_size.
407
- ValueError: Invalid interpolation method.
408
-
409
- See Also:
410
- ResizeByShort: Resize image(s) in input with keeping the aspect ratio.
411
- """
412
-
413
- def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
414
- super(RandomResizeByShort, self).__init__()
415
- if not (interp == "RANDOM" or interp in interp_dict):
416
- raise ValueError("interp should be one of {}".format(
417
- interp_dict.keys()))
418
- self.interp = interp
419
- assert isinstance(short_sizes, list), \
420
- "short_sizes must be List"
421
-
422
- self.short_sizes = short_sizes
423
- self.max_size = max_size
424
-
425
- def apply(self, sample):
426
- short_size = random.choice(self.short_sizes)
427
- resizer = ResizeByShort(
428
- short_size=short_size, max_size=self.max_size, interp=self.interp)
429
- sample = resizer(sample)
430
- return sample
431
-
432
-
433
- class ResizeByLong(Transform):
434
- def __init__(self, long_size=256, interp='LINEAR'):
435
- super(ResizeByLong, self).__init__()
436
- self.long_size = long_size
437
- self.interp = interp
438
-
439
- def apply(self, sample):
440
- im_h, im_w = sample['image'].shape[:2]
441
- im_long_size = max(im_h, im_w)
442
- scale = float(self.long_size) / float(im_long_size)
443
- target_h = int(round(im_h * scale))
444
- target_w = int(round(im_w * scale))
445
- sample = Resize(
446
- target_size=(target_h, target_w), interp=self.interp)(sample)
447
-
448
- return sample
449
-
450
-
451
- class RandomHorizontalFlip(Transform):
452
- """
453
- Randomly flip the input horizontally.
454
-
455
- Args:
456
- prob(float, optional): Probability of flipping the input. Defaults to .5.
457
- """
458
-
459
- def __init__(self, prob=0.5):
460
- super(RandomHorizontalFlip, self).__init__()
461
- self.prob = prob
462
-
463
- def apply_im(self, image):
464
- image = horizontal_flip(image)
465
- return image
466
-
467
- def apply_mask(self, mask):
468
- mask = horizontal_flip(mask)
469
- return mask
470
-
471
- def apply_bbox(self, bbox, width):
472
- oldx1 = bbox[:, 0].copy()
473
- oldx2 = bbox[:, 2].copy()
474
- bbox[:, 0] = width - oldx2
475
- bbox[:, 2] = width - oldx1
476
- return bbox
477
-
478
- def apply_segm(self, segms, height, width):
479
- flipped_segms = []
480
- for segm in segms:
481
- if is_poly(segm):
482
- # Polygon format
483
- flipped_segms.append(
484
- [horizontal_flip_poly(poly, width) for poly in segm])
485
- else:
486
- # RLE format
487
- flipped_segms.append(horizontal_flip_rle(segm, height, width))
488
- return flipped_segms
489
-
490
- def apply(self, sample):
491
- if random.random() < self.prob:
492
- im_h, im_w = sample['image'].shape[:2]
493
- sample['image'] = self.apply_im(sample['image'])
494
- if 'mask' in sample:
495
- sample['mask'] = self.apply_mask(sample['mask'])
496
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
497
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
498
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
499
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
500
- im_w)
501
- return sample
502
-
503
-
504
- class RandomVerticalFlip(Transform):
505
- """
506
- Randomly flip the input vertically.
507
-
508
- Args:
509
- prob(float, optional): Probability of flipping the input. Defaults to .5.
510
- """
511
-
512
- def __init__(self, prob=0.5):
513
- super(RandomVerticalFlip, self).__init__()
514
- self.prob = prob
515
-
516
- def apply_im(self, image):
517
- image = vertical_flip(image)
518
- return image
519
-
520
- def apply_mask(self, mask):
521
- mask = vertical_flip(mask)
522
- return mask
523
-
524
- def apply_bbox(self, bbox, height):
525
- oldy1 = bbox[:, 1].copy()
526
- oldy2 = bbox[:, 3].copy()
527
- bbox[:, 0] = height - oldy2
528
- bbox[:, 2] = height - oldy1
529
- return bbox
530
-
531
- def apply_segm(self, segms, height, width):
532
- flipped_segms = []
533
- for segm in segms:
534
- if is_poly(segm):
535
- # Polygon format
536
- flipped_segms.append(
537
- [vertical_flip_poly(poly, height) for poly in segm])
538
- else:
539
- # RLE format
540
- flipped_segms.append(vertical_flip_rle(segm, height, width))
541
- return flipped_segms
542
-
543
- def apply(self, sample):
544
- if random.random() < self.prob:
545
- im_h, im_w = sample['image'].shape[:2]
546
- sample['image'] = self.apply_im(sample['image'])
547
- if 'mask' in sample:
548
- sample['mask'] = self.apply_mask(sample['mask'])
549
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
550
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
551
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
552
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
553
- im_w)
554
- return sample
555
-
556
-
557
- class Normalize(Transform):
558
- """
559
- Apply min-max normalization to the image(s) in input.
560
- 1. im = (im - min_value) * 1 / (max_value - min_value)
561
- 2. im = im - mean
562
- 3. im = im / std
563
-
564
- Args:
565
- mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
566
- std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
567
- min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
568
- max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
569
- is_scale(bool, optional): If True, the image pixel values will be divided by 255.
570
- """
571
-
572
- def __init__(self,
573
- mean=[0.485, 0.456, 0.406],
574
- std=[0.229, 0.224, 0.225],
575
- min_val=[0, 0, 0],
576
- max_val=[255., 255., 255.],
577
- is_scale=True):
578
- super(Normalize, self).__init__()
579
- from functools import reduce
580
- if reduce(lambda x, y: x * y, std) == 0:
581
- raise ValueError(
582
- 'Std should not have 0, but received is {}'.format(std))
583
- if is_scale:
584
- if reduce(lambda x, y: x * y,
585
- [a - b for a, b in zip(max_val, min_val)]) == 0:
586
- raise ValueError(
587
- '(max_val - min_val) should not have 0, but received is {}'.
588
- format((np.asarray(max_val) - np.asarray(min_val)).tolist(
589
- )))
590
-
591
- self.mean = mean
592
- self.std = std
593
- self.min_val = min_val
594
- self.max_val = max_val
595
- self.is_scale = is_scale
596
-
597
- def apply_im(self, image):
598
- image = image.astype(np.float32)
599
- mean = np.asarray(
600
- self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
601
- std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
602
- image = normalize(image, mean, std, self.min_val, self.max_val)
603
- return image
604
-
605
- def apply(self, sample):
606
- sample['image'] = self.apply_im(sample['image'])
607
-
608
- return sample
609
-
610
-
611
- class CenterCrop(Transform):
612
- """
613
- Crop the input at the center.
614
- 1. Locate the center of the image.
615
- 2. Crop the sample.
616
-
617
- Args:
618
- crop_size(int, optional): target size of the cropped image(s). Defaults to 224.
619
- """
620
-
621
- def __init__(self, crop_size=224):
622
- super(CenterCrop, self).__init__()
623
- self.crop_size = crop_size
624
-
625
- def apply_im(self, image):
626
- image = center_crop(image, self.crop_size)
627
-
628
- return image
629
-
630
- def apply_mask(self, mask):
631
- mask = center_crop(mask, self.crop_size)
632
- return mask
633
-
634
- def apply(self, sample):
635
- sample['image'] = self.apply_im(sample['image'])
636
- if 'mask' in sample:
637
- sample['mask'] = self.apply_mask(sample['mask'])
638
- return sample
639
-
640
-
641
- class RandomCrop(Transform):
642
- """
643
- Randomly crop the input.
644
- 1. Compute the height and width of cropped area according to aspect_ratio and scaling.
645
- 2. Locate the upper left corner of cropped area randomly.
646
- 3. Crop the image(s).
647
- 4. Resize the cropped area to crop_size by crop_size.
648
-
649
- Args:
650
- crop_size(int, List[int] or Tuple[int]): Target size of the cropped area. If None, the cropped area will not be
651
- resized. Defaults to None.
652
- aspect_ratio (List[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.].
653
- thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop.
654
- Defaults to [.0, .1, .3, .5, .7, .9].
655
- scaling (List[float], optional): Ratio between the cropped region and the original image in [min, max] format.
656
- Defaults to [.3, 1.].
657
- num_attempts (int, optional): The number of tries before giving up. Defaults to 50.
658
- allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True.
659
- cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False.
660
- """
661
-
662
- def __init__(self,
663
- crop_size=None,
664
- aspect_ratio=[.5, 2.],
665
- thresholds=[.0, .1, .3, .5, .7, .9],
666
- scaling=[.3, 1.],
667
- num_attempts=50,
668
- allow_no_crop=True,
669
- cover_all_box=False):
670
- super(RandomCrop, self).__init__()
671
- self.crop_size = crop_size
672
- self.aspect_ratio = aspect_ratio
673
- self.thresholds = thresholds
674
- self.scaling = scaling
675
- self.num_attempts = num_attempts
676
- self.allow_no_crop = allow_no_crop
677
- self.cover_all_box = cover_all_box
678
-
679
- def _generate_crop_info(self, sample):
680
- im_h, im_w = sample['image'].shape[:2]
681
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
682
- thresholds = self.thresholds
683
- if self.allow_no_crop:
684
- thresholds.append('no_crop')
685
- np.random.shuffle(thresholds)
686
- for thresh in thresholds:
687
- if thresh == 'no_crop':
688
- return None
689
- for i in range(self.num_attempts):
690
- crop_box = self._get_crop_box(im_h, im_w)
691
- if crop_box is None:
692
- continue
693
- iou = self._iou_matrix(
694
- sample['gt_bbox'],
695
- np.array(
696
- [crop_box], dtype=np.float32))
697
- if iou.max() < thresh:
698
- continue
699
- if self.cover_all_box and iou.min() < thresh:
700
- continue
701
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
702
- sample['gt_bbox'],
703
- np.array(
704
- crop_box, dtype=np.float32))
705
- if valid_ids.size > 0:
706
- return crop_box, cropped_box, valid_ids
707
- else:
708
- for i in range(self.num_attempts):
709
- crop_box = self._get_crop_box(im_h, im_w)
710
- if crop_box is None:
711
- continue
712
- return crop_box, None, None
713
- return None
714
-
715
- def _get_crop_box(self, im_h, im_w):
716
- scale = np.random.uniform(*self.scaling)
717
- if self.aspect_ratio is not None:
718
- min_ar, max_ar = self.aspect_ratio
719
- aspect_ratio = np.random.uniform(
720
- max(min_ar, scale**2), min(max_ar, scale**-2))
721
- h_scale = scale / np.sqrt(aspect_ratio)
722
- w_scale = scale * np.sqrt(aspect_ratio)
723
- else:
724
- h_scale = np.random.uniform(*self.scaling)
725
- w_scale = np.random.uniform(*self.scaling)
726
- crop_h = im_h * h_scale
727
- crop_w = im_w * w_scale
728
- if self.aspect_ratio is None:
729
- if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
730
- return None
731
- crop_h = int(crop_h)
732
- crop_w = int(crop_w)
733
- crop_y = np.random.randint(0, im_h - crop_h)
734
- crop_x = np.random.randint(0, im_w - crop_w)
735
- return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
736
-
737
- def _iou_matrix(self, a, b):
738
- tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
739
- br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
740
-
741
- area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
742
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
743
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
744
- area_o = (area_a[:, np.newaxis] + area_b - area_i)
745
- return area_i / (area_o + 1e-10)
746
-
747
- def _crop_box_with_center_constraint(self, box, crop):
748
- cropped_box = box.copy()
749
-
750
- cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
751
- cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
752
- cropped_box[:, :2] -= crop[:2]
753
- cropped_box[:, 2:] -= crop[:2]
754
-
755
- centers = (box[:, :2] + box[:, 2:]) / 2
756
- valid = np.logical_and(crop[:2] <= centers,
757
- centers < crop[2:]).all(axis=1)
758
- valid = np.logical_and(
759
- valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
760
-
761
- return cropped_box, np.where(valid)[0]
762
-
763
- def _crop_segm(self, segms, valid_ids, crop, height, width):
764
- crop_segms = []
765
- for id in valid_ids:
766
- segm = segms[id]
767
- if is_poly(segm):
768
- # Polygon format
769
- crop_segms.append(crop_poly(segm, crop))
770
- else:
771
- # RLE format
772
- crop_segms.append(crop_rle(segm, crop, height, width))
773
-
774
- return crop_segms
775
-
776
- def apply_im(self, image, crop):
777
- x1, y1, x2, y2 = crop
778
- return image[y1:y2, x1:x2, :]
779
-
780
- def apply_mask(self, mask, crop):
781
- x1, y1, x2, y2 = crop
782
- return mask[y1:y2, x1:x2, ...]
783
-
784
- def apply(self, sample):
785
- crop_info = self._generate_crop_info(sample)
786
- if crop_info is not None:
787
- crop_box, cropped_box, valid_ids = crop_info
788
- im_h, im_w = sample['image'].shape[:2]
789
- sample['image'] = self.apply_im(sample['image'], crop_box)
790
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
791
- crop_polys = self._crop_segm(
792
- sample['gt_poly'],
793
- valid_ids,
794
- np.array(
795
- crop_box, dtype=np.int64),
796
- im_h,
797
- im_w)
798
- if [] in crop_polys:
799
- delete_id = list()
800
- valid_polys = list()
801
- for idx, poly in enumerate(crop_polys):
802
- if not crop_poly:
803
- delete_id.append(idx)
804
- else:
805
- valid_polys.append(poly)
806
- valid_ids = np.delete(valid_ids, delete_id)
807
- if not valid_polys:
808
- return sample
809
- sample['gt_poly'] = valid_polys
810
- else:
811
- sample['gt_poly'] = crop_polys
812
-
813
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
814
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
815
- sample['gt_class'] = np.take(
816
- sample['gt_class'], valid_ids, axis=0)
817
- if 'gt_score' in sample:
818
- sample['gt_score'] = np.take(
819
- sample['gt_score'], valid_ids, axis=0)
820
- if 'is_crowd' in sample:
821
- sample['is_crowd'] = np.take(
822
- sample['is_crowd'], valid_ids, axis=0)
823
-
824
- if 'mask' in sample:
825
- sample['mask'] = self.apply_mask(sample['mask'], crop_box)
826
-
827
- if self.crop_size is not None:
828
- sample = Resize(self.crop_size)(sample)
829
-
830
- return sample
831
-
832
-
833
- class RandomScaleAspect(Transform):
834
- """
835
- Crop input image(s) and resize back to original sizes.
836
- Args:
837
- min_scale (float):Minimum ratio between the cropped region and the original image.
838
- If 0, image(s) will not be cropped. Defaults to .5.
839
- aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
840
- """
841
-
842
- def __init__(self, min_scale=0.5, aspect_ratio=0.33):
843
- super(RandomScaleAspect, self).__init__()
844
- self.min_scale = min_scale
845
- self.aspect_ratio = aspect_ratio
846
-
847
- def apply(self, sample):
848
- if self.min_scale != 0 and self.aspect_ratio != 0:
849
- img_height, img_width = sample['image'].shape[:2]
850
- sample = RandomCrop(
851
- crop_size=(img_height, img_width),
852
- aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio],
853
- scaling=[self.min_scale, 1.],
854
- num_attempts=10,
855
- allow_no_crop=False)(sample)
856
- return sample
857
-
858
-
859
- class RandomExpand(Transform):
860
- """
861
- Randomly expand the input by padding according to random offsets.
862
-
863
- Args:
864
- upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4..
865
- prob(float, optional): The probability of apply expanding. Defaults to .5.
866
- im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
867
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
868
-
869
- See Also:
870
- paddlex.transforms.Padding
871
- """
872
-
873
- def __init__(self,
874
- upper_ratio=4.,
875
- prob=.5,
876
- im_padding_value=(127.5, 127.5, 127.5),
877
- label_padding_value=255):
878
- super(RandomExpand, self).__init__()
879
- assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
880
- self.upper_ratio = upper_ratio
881
- self.prob = prob
882
- assert isinstance(im_padding_value, (Number, Sequence)), \
883
- "fill value must be either float or sequence"
884
- if isinstance(im_padding_value, Number):
885
- im_padding_value = (im_padding_value, ) * 3
886
- if not isinstance(im_padding_value, tuple):
887
- im_padding_value = tuple(im_padding_value)
888
- self.im_padding_value = im_padding_value
889
- self.label_padding_value = label_padding_value
890
-
891
- def apply(self, sample):
892
- if random.random() < self.prob:
893
- im_h, im_w = sample['image'].shape[:2]
894
- ratio = np.random.uniform(1., self.upper_ratio)
895
- h = int(im_h * ratio)
896
- w = int(im_w * ratio)
897
- if h > im_h and w > im_w:
898
- y = np.random.randint(0, h - im_h)
899
- x = np.random.randint(0, w - im_w)
900
- target_size = (h, w)
901
- offsets = (x, y)
902
- sample = Padding(
903
- target_size=target_size,
904
- pad_mode=-1,
905
- offsets=offsets,
906
- im_padding_value=self.im_padding_value,
907
- label_padding_value=self.label_padding_value)(sample)
908
- return sample
909
-
910
-
911
- class Padding(Transform):
912
- def __init__(self,
913
- target_size=None,
914
- pad_mode=0,
915
- offsets=None,
916
- im_padding_value=(127.5, 127.5, 127.5),
917
- label_padding_value=255,
918
- size_divisor=32):
919
- """
920
- Pad image to a specified size or multiple of size_divisor.
921
-
922
- Args:
923
- target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None.
924
- pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
925
- if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
926
- im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5).
927
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
928
- size_divisor(int): Image width and height after padding is a multiple of coarsest_stride.
929
- """
930
- super(Padding, self).__init__()
931
- if isinstance(target_size, (list, tuple)):
932
- if len(target_size) != 2:
933
- raise ValueError(
934
- '`target_size` should include 2 elements, but it is {}'.
935
- format(target_size))
936
- if isinstance(target_size, int):
937
- target_size = [target_size] * 2
938
-
939
- assert pad_mode in [
940
- -1, 0, 1, 2
941
- ], 'currently only supports four modes [-1, 0, 1, 2]'
942
- if pad_mode == -1:
943
- assert offsets, 'if pad_mode is -1, offsets should not be None'
944
-
945
- self.target_size = target_size
946
- self.size_divisor = size_divisor
947
- self.pad_mode = pad_mode
948
- self.offsets = offsets
949
- self.im_padding_value = im_padding_value
950
- self.label_padding_value = label_padding_value
951
-
952
- def apply_im(self, image, offsets, target_size):
953
- x, y = offsets
954
- im_h, im_w = image.shape[:2]
955
- h, w = target_size
956
- canvas = np.ones((h, w, 3), dtype=np.float32)
957
- canvas *= np.array(self.im_padding_value, dtype=np.float32)
958
- canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
959
- return canvas
960
-
961
- def apply_mask(self, mask, offsets, target_size):
962
- x, y = offsets
963
- im_h, im_w = mask.shape[:2]
964
- h, w = target_size
965
- canvas = np.ones((h, w), dtype=np.float32)
966
- canvas *= np.array(self.label_padding_value, dtype=np.float32)
967
- canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
968
- return canvas
969
-
970
- def apply_bbox(self, bbox, offsets):
971
- return bbox + np.array(offsets * 2, dtype=np.float32)
972
-
973
- def apply_segm(self, segms, offsets, im_size, size):
974
- x, y = offsets
975
- height, width = im_size
976
- h, w = size
977
- expanded_segms = []
978
- for segm in segms:
979
- if is_poly(segm):
980
- # Polygon format
981
- expanded_segms.append(
982
- [expand_poly(poly, x, y) for poly in segm])
983
- else:
984
- # RLE format
985
- expanded_segms.append(
986
- expand_rle(segm, x, y, height, width, h, w))
987
- return expanded_segms
988
-
989
- def apply(self, sample):
990
- im_h, im_w = sample['image'].shape[:2]
991
- if self.target_size:
992
- h, w = self.target_size
993
- assert (
994
- im_h <= h and im_w <= w
995
- ), 'target size ({}, {}) cannot be less than image size ({}, {})'\
996
- .format(h, w, im_h, im_w)
997
- else:
998
- h = (np.ceil(im_h / self.size_divisor) *
999
- self.size_divisor).astype(int)
1000
- w = (np.ceil(im_w / self.size_divisor) *
1001
- self.size_divisor).astype(int)
1002
-
1003
- if h == im_h and w == im_w:
1004
- return sample
1005
-
1006
- if self.pad_mode == -1:
1007
- offsets = self.offsets
1008
- elif self.pad_mode == 0:
1009
- offsets = [0, 0]
1010
- elif self.pad_mode == 1:
1011
- offsets = [(w - im_w) // 2, (h - im_h) // 2]
1012
- else:
1013
- offsets = [w - im_w, h - im_h]
1014
-
1015
- sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
1016
- if 'mask' in sample:
1017
- sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
1018
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
1019
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
1020
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
1021
- sample['gt_poly'] = self.apply_segm(
1022
- sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
1023
- return sample
1024
-
1025
-
1026
- class MixupImage(Transform):
1027
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
1028
- """
1029
- Mixup two images and their gt_bbbox/gt_score.
1030
-
1031
- Args:
1032
- alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5.
1033
- beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5.
1034
- """
1035
- super(MixupImage, self).__init__()
1036
- if alpha <= 0.0:
1037
- raise ValueError("alpha should be positive in {}".format(self))
1038
- if beta <= 0.0:
1039
- raise ValueError("beta should be positive in {}".format(self))
1040
- self.alpha = alpha
1041
- self.beta = beta
1042
- self.mixup_epoch = mixup_epoch
1043
-
1044
- def apply_im(self, image1, image2, factor):
1045
- h = max(image1.shape[0], image2.shape[0])
1046
- w = max(image1.shape[1], image2.shape[1])
1047
- img = np.zeros((h, w, image1.shape[2]), 'float32')
1048
- img[:image1.shape[0], :image1.shape[1], :] = \
1049
- image1.astype('float32') * factor
1050
- img[:image2.shape[0], :image2.shape[1], :] += \
1051
- image2.astype('float32') * (1.0 - factor)
1052
- return img.astype('uint8')
1053
-
1054
- def __call__(self, sample):
1055
- if not isinstance(sample, Sequence):
1056
- return sample
1057
-
1058
- assert len(sample) == 2, 'mixup need two samples'
1059
-
1060
- factor = np.random.beta(self.alpha, self.beta)
1061
- factor = max(0.0, min(1.0, factor))
1062
- if factor >= 1.0:
1063
- return sample[0]
1064
- if factor <= 0.0:
1065
- return sample[1]
1066
- image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
1067
- result = copy.deepcopy(sample[0])
1068
- result['image'] = image
1069
- # apply bbox and score
1070
- if 'gt_bbox' in sample[0]:
1071
- gt_bbox1 = sample[0]['gt_bbox']
1072
- gt_bbox2 = sample[1]['gt_bbox']
1073
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
1074
- result['gt_bbox'] = gt_bbox
1075
- if 'gt_poly' in sample[0]:
1076
- gt_poly1 = sample[0]['gt_poly']
1077
- gt_poly2 = sample[1]['gt_poly']
1078
- gt_poly = gt_poly1 + gt_poly2
1079
- result['gt_poly'] = gt_poly
1080
- if 'gt_class' in sample[0]:
1081
- gt_class1 = sample[0]['gt_class']
1082
- gt_class2 = sample[1]['gt_class']
1083
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
1084
- result['gt_class'] = gt_class
1085
-
1086
- gt_score1 = np.ones_like(sample[0]['gt_class'])
1087
- gt_score2 = np.ones_like(sample[1]['gt_class'])
1088
- gt_score = np.concatenate(
1089
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
1090
- result['gt_score'] = gt_score
1091
- if 'is_crowd' in sample[0]:
1092
- is_crowd1 = sample[0]['is_crowd']
1093
- is_crowd2 = sample[1]['is_crowd']
1094
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
1095
- result['is_crowd'] = is_crowd
1096
- if 'difficult' in sample[0]:
1097
- is_difficult1 = sample[0]['difficult']
1098
- is_difficult2 = sample[1]['difficult']
1099
- is_difficult = np.concatenate(
1100
- (is_difficult1, is_difficult2), axis=0)
1101
- result['difficult'] = is_difficult
1102
-
1103
- return result
1104
-
1105
-
1106
- class RandomDistort(Transform):
1107
- """
1108
- Random color distortion.
1109
-
1110
- Args:
1111
- brightness_range(float, optional): Range of brightness distortion. Defaults to .5.
1112
- brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5.
1113
- contrast_range(float, optional): Range of contrast distortion. Defaults to .5.
1114
- contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5.
1115
- saturation_range(float, optional): Range of saturation distortion. Defaults to .5.
1116
- saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5.
1117
- hue_range(float, optional): Range of hue distortion. Defaults to .5.
1118
- hue_prob(float, optional): Probability of hue distortion. Defaults to .5.
1119
- random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD)
1120
- order. Defaults to True.
1121
- count (int, optional): the number of doing distortion. Defaults to 4.
1122
- shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False.
1123
- """
1124
-
1125
- def __init__(self,
1126
- brightness_range=0.5,
1127
- brightness_prob=0.5,
1128
- contrast_range=0.5,
1129
- contrast_prob=0.5,
1130
- saturation_range=0.5,
1131
- saturation_prob=0.5,
1132
- hue_range=18,
1133
- hue_prob=0.5,
1134
- random_apply=True,
1135
- count=4,
1136
- shuffle_channel=False):
1137
- super(RandomDistort, self).__init__()
1138
- self.brightness_range = [1 - brightness_range, 1 + brightness_range]
1139
- self.brightness_prob = brightness_prob
1140
- self.contrast_range = [1 - contrast_range, 1 + contrast_range]
1141
- self.contrast_prob = contrast_prob
1142
- self.saturation_range = [1 - saturation_range, 1 + saturation_range]
1143
- self.saturation_prob = saturation_prob
1144
- self.hue_range = [1 - hue_range, 1 + hue_range]
1145
- self.hue_prob = hue_prob
1146
- self.random_apply = random_apply
1147
- self.count = count
1148
- self.shuffle_channel = shuffle_channel
1149
-
1150
- def apply_hue(self, image):
1151
- low, high = self.hue_range
1152
- if np.random.uniform(0., 1.) < self.hue_prob:
1153
- return image
1154
-
1155
- image = image.astype(np.float32)
1156
- # it works, but result differ from HSV version
1157
- delta = np.random.uniform(low, high)
1158
- u = np.cos(delta * np.pi)
1159
- w = np.sin(delta * np.pi)
1160
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
1161
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
1162
- [0.211, -0.523, 0.311]])
1163
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
1164
- [1.0, -1.107, 1.705]])
1165
- t = np.dot(np.dot(ityiq, bt), tyiq).T
1166
- image = np.dot(image, t)
1167
- return image
1168
-
1169
- def apply_saturation(self, image):
1170
- low, high = self.saturation_range
1171
- if np.random.uniform(0., 1.) < self.saturation_prob:
1172
- return image
1173
- delta = np.random.uniform(low, high)
1174
- image = image.astype(np.float32)
1175
- # it works, but result differ from HSV version
1176
- gray = image * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
1177
- gray = gray.sum(axis=2, keepdims=True)
1178
- gray *= (1.0 - delta)
1179
- image *= delta
1180
- image += gray
1181
- return image
1182
-
1183
- def apply_contrast(self, image):
1184
- low, high = self.contrast_range
1185
- if np.random.uniform(0., 1.) < self.contrast_prob:
1186
- return image
1187
- delta = np.random.uniform(low, high)
1188
- image = image.astype(np.float32)
1189
- image *= delta
1190
- return image
1191
-
1192
- def apply_brightness(self, image):
1193
- low, high = self.brightness_range
1194
- if np.random.uniform(0., 1.) < self.brightness_prob:
1195
- return image
1196
- delta = np.random.uniform(low, high)
1197
- image = image.astype(np.float32)
1198
- image += delta
1199
- return image
1200
-
1201
- def apply(self, sample):
1202
- if self.random_apply:
1203
- functions = [
1204
- self.apply_brightness, self.apply_contrast,
1205
- self.apply_saturation, self.apply_hue
1206
- ]
1207
- distortions = np.random.permutation(functions)[:self.count]
1208
- for func in distortions:
1209
- sample['image'] = func(sample['image'])
1210
- return sample
1211
-
1212
- sample['image'] = self.apply_brightness(sample['image'])
1213
- mode = np.random.randint(0, 2)
1214
- if mode:
1215
- sample['image'] = self.apply_contrast(sample['image'])
1216
- sample['image'] = self.apply_saturation(sample['image'])
1217
- sample['image'] = self.apply_hue(sample['image'])
1218
- if not mode:
1219
- sample['image'] = self.apply_contrast(sample['image'])
1220
-
1221
- if self.shuffle_channel:
1222
- if np.random.randint(0, 2):
1223
- sample['image'] = sample['image'][..., np.random.permutation(
1224
- 3)]
1225
-
1226
- return sample
1227
-
1228
-
1229
- class RandomBlur(Transform):
1230
- """
1231
- Randomly blur input image(s).
1232
-
1233
- Args:
1234
- prob (float): Probability of blurring.
1235
- """
1236
-
1237
- def __init__(self, prob=0.1):
1238
- super(RandomBlur, self).__init__()
1239
- self.prob = prob
1240
-
1241
- def apply_im(self, image, radius):
1242
- image = cv2.GaussianBlur(image, (radius, radius), 0, 0)
1243
- return image
1244
-
1245
- def apply(self, sample):
1246
- if self.prob <= 0:
1247
- n = 0
1248
- elif self.prob >= 1:
1249
- n = 1
1250
- else:
1251
- n = int(1.0 / self.prob)
1252
- if n > 0:
1253
- if np.random.randint(0, n) == 0:
1254
- radius = np.random.randint(3, 10)
1255
- if radius % 2 != 1:
1256
- radius = radius + 1
1257
- if radius > 9:
1258
- radius = 9
1259
- sample['image'] = self.apply_im(sample['image'], radius)
1260
-
1261
- return sample
1262
-
1263
-
1264
- class _PadBox(Transform):
1265
- def __init__(self, num_max_boxes=50):
1266
- """
1267
- Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
1268
-
1269
- Args:
1270
- num_max_boxes (int, optional): the max number of bboxes. Defaults to 50.
1271
- """
1272
- self.num_max_boxes = num_max_boxes
1273
- super(_PadBox, self).__init__()
1274
-
1275
- def apply(self, sample):
1276
- gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
1277
- num_max = self.num_max_boxes
1278
- pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
1279
- if gt_num > 0:
1280
- pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
1281
- sample['gt_bbox'] = pad_bbox
1282
- if 'gt_class' in sample:
1283
- pad_class = np.zeros((num_max, ), dtype=np.int32)
1284
- if gt_num > 0:
1285
- pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
1286
- sample['gt_class'] = pad_class
1287
- if 'gt_score' in sample:
1288
- pad_score = np.zeros((num_max, ), dtype=np.float32)
1289
- if gt_num > 0:
1290
- pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
1291
- sample['gt_score'] = pad_score
1292
- # in training, for example in op ExpandImage,
1293
- # the bbox and gt_class is expanded, but the difficult is not,
1294
- # so, judging by it's length
1295
- if 'difficult' in sample:
1296
- pad_diff = np.zeros((num_max, ), dtype=np.int32)
1297
- if gt_num > 0:
1298
- pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
1299
- sample['difficult'] = pad_diff
1300
- if 'is_crowd' in sample:
1301
- pad_crowd = np.zeros((num_max, ), dtype=np.int32)
1302
- if gt_num > 0:
1303
- pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
1304
- sample['is_crowd'] = pad_crowd
1305
- return sample
1306
-
1307
-
1308
- class _NormalizeBox(Transform):
1309
- def __init__(self):
1310
- super(_NormalizeBox, self).__init__()
1311
-
1312
- def apply(self, sample):
1313
- height, width = sample['image'].shape[:2]
1314
- for i in range(sample['gt_bbox'].shape[0]):
1315
- sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
1316
- sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
1317
- sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
1318
- sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
1319
-
1320
- return sample
1321
-
1322
-
1323
- class _BboxXYXY2XYWH(Transform):
1324
- """
1325
- Convert bbox XYXY format to XYWH format.
1326
- """
1327
-
1328
- def __init__(self):
1329
- super(_BboxXYXY2XYWH, self).__init__()
1330
-
1331
- def apply(self, sample):
1332
- bbox = sample['gt_bbox']
1333
- bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
1334
- bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
1335
- sample['gt_bbox'] = bbox
1336
- return sample
1337
-
1338
-
1339
- class _Permute(Transform):
1340
- def __init__(self):
1341
- super(_Permute, self).__init__()
1342
-
1343
- def apply(self, sample):
1344
- sample['image'] = permute(sample['image'], False)
1345
- return sample
1346
-
1347
-
1348
- class ArrangeSegmenter(Transform):
1349
- def __init__(self, mode):
1350
- super(ArrangeSegmenter, self).__init__()
1351
- if mode not in ['train', 'eval', 'test', 'quant']:
1352
- raise ValueError(
1353
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1354
- )
1355
- self.mode = mode
1356
-
1357
- def apply(self, sample):
1358
- if 'mask' in sample:
1359
- mask = sample['mask']
1360
-
1361
- image = permute(sample['image'], False)
1362
- if self.mode == 'train':
1363
- mask = mask.astype('int64')
1364
- return image, mask
1365
- if self.mode == 'eval':
1366
- mask = np.asarray(Image.open(mask))
1367
- mask = mask[np.newaxis, :, :].astype('int64')
1368
- return image, mask
1369
- if self.mode == 'test':
1370
- return image,
1371
-
1372
-
1373
- class ArrangeClassifier(Transform):
1374
- def __init__(self, mode):
1375
- super(ArrangeClassifier, self).__init__()
1376
- if mode not in ['train', 'eval', 'test', 'quant']:
1377
- raise ValueError(
1378
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1379
- )
1380
- self.mode = mode
1381
-
1382
- def apply(self, sample):
1383
- image = permute(sample['image'], False)
1384
- if self.mode in ['train', 'eval']:
1385
- return image, sample['label']
1386
- else:
1387
- return image
1388
-
1389
-
1390
- class ArrangeDetector(Transform):
1391
- def __init__(self, mode):
1392
- super(ArrangeDetector, self).__init__()
1393
- if mode not in ['train', 'eval', 'test', 'quant']:
1394
- raise ValueError(
1395
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1396
- )
1397
- self.mode = mode
1398
-
1399
- def apply(self, sample):
1400
- if self.mode == 'eval' and 'gt_poly' in sample:
1401
- del sample['gt_poly']
1402
- return sample