paddlex 2.1.0__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1340) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -19
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/deploy/__init__.py +0 -1
  649. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  650. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  651. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  652. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  653. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  654. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  655. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  656. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  657. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  658. PaddleClas/deploy/python/__init__.py +0 -0
  659. PaddleClas/deploy/python/build_gallery.py +0 -214
  660. PaddleClas/deploy/python/det_preprocess.py +0 -205
  661. PaddleClas/deploy/python/postprocess.py +0 -161
  662. PaddleClas/deploy/python/predict_cls.py +0 -142
  663. PaddleClas/deploy/python/predict_det.py +0 -158
  664. PaddleClas/deploy/python/predict_rec.py +0 -138
  665. PaddleClas/deploy/python/predict_system.py +0 -144
  666. PaddleClas/deploy/python/preprocess.py +0 -337
  667. PaddleClas/deploy/utils/__init__.py +0 -5
  668. PaddleClas/deploy/utils/config.py +0 -197
  669. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  670. PaddleClas/deploy/utils/encode_decode.py +0 -31
  671. PaddleClas/deploy/utils/get_image_list.py +0 -49
  672. PaddleClas/deploy/utils/logger.py +0 -120
  673. PaddleClas/deploy/utils/predictor.py +0 -71
  674. PaddleClas/deploy/vector_search/__init__.py +0 -1
  675. PaddleClas/deploy/vector_search/interface.py +0 -272
  676. PaddleClas/deploy/vector_search/test.py +0 -34
  677. PaddleClas/hubconf.py +0 -788
  678. PaddleClas/paddleclas.py +0 -552
  679. PaddleClas/ppcls/__init__.py +0 -20
  680. PaddleClas/ppcls/arch/__init__.py +0 -127
  681. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  682. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  683. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  684. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  685. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  686. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  687. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  688. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  689. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  690. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  691. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  692. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  693. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  694. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  695. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  696. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  697. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  698. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  699. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  700. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  701. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  702. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  703. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  704. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  705. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  706. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  707. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  708. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  709. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  710. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  711. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  712. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  713. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  714. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  715. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  716. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  717. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  718. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  719. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  720. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  721. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  722. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  723. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  724. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  725. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  726. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  727. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  728. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  729. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  730. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  731. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  732. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  733. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  734. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  735. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  736. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  737. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  738. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  739. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  740. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  741. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  742. PaddleClas/ppcls/arch/utils.py +0 -53
  743. PaddleClas/ppcls/data/__init__.py +0 -144
  744. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  745. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  746. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  747. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  748. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  749. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  750. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  751. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  752. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  753. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  754. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  755. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  756. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  757. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  758. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  759. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  760. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  761. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  762. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  763. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  764. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  765. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  766. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  767. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  768. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  769. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  770. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  771. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  772. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  773. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  774. PaddleClas/ppcls/engine/__init__.py +0 -0
  775. PaddleClas/ppcls/engine/engine.py +0 -436
  776. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  777. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  778. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  779. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  780. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  781. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  782. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  783. PaddleClas/ppcls/engine/train/train.py +0 -79
  784. PaddleClas/ppcls/engine/train/utils.py +0 -72
  785. PaddleClas/ppcls/loss/__init__.py +0 -65
  786. PaddleClas/ppcls/loss/celoss.py +0 -67
  787. PaddleClas/ppcls/loss/centerloss.py +0 -54
  788. PaddleClas/ppcls/loss/comfunc.py +0 -45
  789. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  790. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  791. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  792. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  793. PaddleClas/ppcls/loss/emlloss.py +0 -97
  794. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  795. PaddleClas/ppcls/loss/msmloss.py +0 -78
  796. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  797. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  798. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  799. PaddleClas/ppcls/loss/supconloss.py +0 -108
  800. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  801. PaddleClas/ppcls/loss/triplet.py +0 -137
  802. PaddleClas/ppcls/metric/__init__.py +0 -51
  803. PaddleClas/ppcls/metric/metrics.py +0 -308
  804. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  805. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  806. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  807. PaddleClas/ppcls/utils/__init__.py +0 -27
  808. PaddleClas/ppcls/utils/check.py +0 -151
  809. PaddleClas/ppcls/utils/config.py +0 -210
  810. PaddleClas/ppcls/utils/download.py +0 -319
  811. PaddleClas/ppcls/utils/ema.py +0 -63
  812. PaddleClas/ppcls/utils/logger.py +0 -137
  813. PaddleClas/ppcls/utils/metrics.py +0 -107
  814. PaddleClas/ppcls/utils/misc.py +0 -63
  815. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  816. PaddleClas/ppcls/utils/profiler.py +0 -111
  817. PaddleClas/ppcls/utils/save_load.py +0 -136
  818. PaddleClas/setup.py +0 -58
  819. PaddleClas/tools/__init__.py +0 -15
  820. PaddleClas/tools/eval.py +0 -31
  821. PaddleClas/tools/export_model.py +0 -34
  822. PaddleClas/tools/infer.py +0 -31
  823. PaddleClas/tools/train.py +0 -32
  824. paddlex/cls.py +0 -82
  825. paddlex/command.py +0 -215
  826. paddlex/cv/__init__.py +0 -17
  827. paddlex/cv/datasets/__init__.py +0 -18
  828. paddlex/cv/datasets/coco.py +0 -208
  829. paddlex/cv/datasets/imagenet.py +0 -88
  830. paddlex/cv/datasets/seg_dataset.py +0 -91
  831. paddlex/cv/datasets/voc.py +0 -445
  832. paddlex/cv/models/__init__.py +0 -18
  833. paddlex/cv/models/base.py +0 -631
  834. paddlex/cv/models/classifier.py +0 -989
  835. paddlex/cv/models/detector.py +0 -2292
  836. paddlex/cv/models/load_model.py +0 -148
  837. paddlex/cv/models/segmenter.py +0 -768
  838. paddlex/cv/models/slim/__init__.py +0 -13
  839. paddlex/cv/models/slim/prune.py +0 -55
  840. paddlex/cv/models/utils/__init__.py +0 -13
  841. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  842. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  843. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  844. paddlex/cv/models/utils/infer_nets.py +0 -45
  845. paddlex/cv/models/utils/seg_metrics.py +0 -62
  846. paddlex/cv/models/utils/visualize.py +0 -399
  847. paddlex/cv/transforms/__init__.py +0 -46
  848. paddlex/cv/transforms/batch_operators.py +0 -286
  849. paddlex/cv/transforms/box_utils.py +0 -41
  850. paddlex/cv/transforms/functions.py +0 -193
  851. paddlex/cv/transforms/operators.py +0 -1402
  852. paddlex/deploy.py +0 -268
  853. paddlex/det.py +0 -49
  854. paddlex/paddleseg/__init__.py +0 -17
  855. paddlex/paddleseg/core/__init__.py +0 -20
  856. paddlex/paddleseg/core/infer.py +0 -289
  857. paddlex/paddleseg/core/predict.py +0 -145
  858. paddlex/paddleseg/core/train.py +0 -258
  859. paddlex/paddleseg/core/val.py +0 -172
  860. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  861. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  862. paddlex/paddleseg/cvlibs/config.py +0 -359
  863. paddlex/paddleseg/cvlibs/manager.py +0 -142
  864. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  865. paddlex/paddleseg/datasets/__init__.py +0 -21
  866. paddlex/paddleseg/datasets/ade.py +0 -112
  867. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  868. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  869. paddlex/paddleseg/datasets/dataset.py +0 -164
  870. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  871. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  872. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  873. paddlex/paddleseg/datasets/voc.py +0 -113
  874. paddlex/paddleseg/models/__init__.py +0 -39
  875. paddlex/paddleseg/models/ann.py +0 -436
  876. paddlex/paddleseg/models/attention_unet.py +0 -189
  877. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  878. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  879. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  880. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  881. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  882. paddlex/paddleseg/models/bisenet.py +0 -311
  883. paddlex/paddleseg/models/danet.py +0 -220
  884. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  885. paddlex/paddleseg/models/deeplab.py +0 -258
  886. paddlex/paddleseg/models/dnlnet.py +0 -231
  887. paddlex/paddleseg/models/emanet.py +0 -219
  888. paddlex/paddleseg/models/fast_scnn.py +0 -318
  889. paddlex/paddleseg/models/fcn.py +0 -135
  890. paddlex/paddleseg/models/gcnet.py +0 -223
  891. paddlex/paddleseg/models/gscnn.py +0 -357
  892. paddlex/paddleseg/models/hardnet.py +0 -309
  893. paddlex/paddleseg/models/isanet.py +0 -202
  894. paddlex/paddleseg/models/layers/__init__.py +0 -19
  895. paddlex/paddleseg/models/layers/activation.py +0 -73
  896. paddlex/paddleseg/models/layers/attention.py +0 -146
  897. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  898. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  899. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  900. paddlex/paddleseg/models/losses/__init__.py +0 -27
  901. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  902. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  903. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  904. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  905. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  906. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  907. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  908. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  909. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  910. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  911. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  912. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  913. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  914. paddlex/paddleseg/models/ocrnet.py +0 -248
  915. paddlex/paddleseg/models/pspnet.py +0 -147
  916. paddlex/paddleseg/models/sfnet.py +0 -236
  917. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  918. paddlex/paddleseg/models/u2net.py +0 -574
  919. paddlex/paddleseg/models/unet.py +0 -155
  920. paddlex/paddleseg/models/unet_3plus.py +0 -316
  921. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  922. paddlex/paddleseg/transforms/__init__.py +0 -16
  923. paddlex/paddleseg/transforms/functional.py +0 -161
  924. paddlex/paddleseg/transforms/transforms.py +0 -937
  925. paddlex/paddleseg/utils/__init__.py +0 -22
  926. paddlex/paddleseg/utils/config_check.py +0 -60
  927. paddlex/paddleseg/utils/download.py +0 -163
  928. paddlex/paddleseg/utils/env/__init__.py +0 -16
  929. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  930. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  931. paddlex/paddleseg/utils/logger.py +0 -48
  932. paddlex/paddleseg/utils/metrics.py +0 -146
  933. paddlex/paddleseg/utils/progbar.py +0 -212
  934. paddlex/paddleseg/utils/timer.py +0 -53
  935. paddlex/paddleseg/utils/utils.py +0 -120
  936. paddlex/paddleseg/utils/visualize.py +0 -90
  937. paddlex/ppcls/__init__.py +0 -20
  938. paddlex/ppcls/arch/__init__.py +0 -127
  939. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  940. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  941. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  942. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  943. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  944. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  945. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  946. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  947. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  948. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  949. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  950. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  951. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  952. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  953. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  954. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  955. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  956. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  957. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  958. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  959. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  960. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  961. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  962. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  963. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  964. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  965. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  966. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  967. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  968. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  969. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  970. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  971. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  972. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  973. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  974. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  975. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  976. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  977. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  978. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  979. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  980. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  981. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  982. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  983. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  984. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  985. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  986. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  987. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  988. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  989. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  990. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  991. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  992. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  993. paddlex/ppcls/arch/gears/__init__.py +0 -32
  994. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  995. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  996. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  997. paddlex/ppcls/arch/gears/fc.py +0 -35
  998. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  999. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1000. paddlex/ppcls/arch/utils.py +0 -53
  1001. paddlex/ppcls/data/__init__.py +0 -144
  1002. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1003. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1004. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1005. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1006. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1007. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1008. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1009. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1010. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1011. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1012. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1013. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1014. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1015. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1016. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1017. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1018. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1019. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1020. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1021. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1022. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1023. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1024. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1025. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1026. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1027. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1028. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1029. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1030. paddlex/ppcls/data/utils/__init__.py +0 -13
  1031. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1032. paddlex/ppcls/engine/__init__.py +0 -0
  1033. paddlex/ppcls/engine/engine.py +0 -436
  1034. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1035. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1036. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1037. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1038. paddlex/ppcls/engine/slim/prune.py +0 -66
  1039. paddlex/ppcls/engine/slim/quant.py +0 -55
  1040. paddlex/ppcls/engine/train/__init__.py +0 -14
  1041. paddlex/ppcls/engine/train/train.py +0 -79
  1042. paddlex/ppcls/engine/train/utils.py +0 -72
  1043. paddlex/ppcls/loss/__init__.py +0 -65
  1044. paddlex/ppcls/loss/celoss.py +0 -67
  1045. paddlex/ppcls/loss/centerloss.py +0 -54
  1046. paddlex/ppcls/loss/comfunc.py +0 -45
  1047. paddlex/ppcls/loss/deephashloss.py +0 -96
  1048. paddlex/ppcls/loss/distanceloss.py +0 -43
  1049. paddlex/ppcls/loss/distillationloss.py +0 -141
  1050. paddlex/ppcls/loss/dmlloss.py +0 -46
  1051. paddlex/ppcls/loss/emlloss.py +0 -97
  1052. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1053. paddlex/ppcls/loss/msmloss.py +0 -78
  1054. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1055. paddlex/ppcls/loss/npairsloss.py +0 -38
  1056. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1057. paddlex/ppcls/loss/supconloss.py +0 -108
  1058. paddlex/ppcls/loss/trihardloss.py +0 -82
  1059. paddlex/ppcls/loss/triplet.py +0 -137
  1060. paddlex/ppcls/metric/__init__.py +0 -51
  1061. paddlex/ppcls/metric/metrics.py +0 -308
  1062. paddlex/ppcls/optimizer/__init__.py +0 -72
  1063. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1064. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1065. paddlex/ppcls/utils/__init__.py +0 -27
  1066. paddlex/ppcls/utils/check.py +0 -151
  1067. paddlex/ppcls/utils/config.py +0 -210
  1068. paddlex/ppcls/utils/download.py +0 -319
  1069. paddlex/ppcls/utils/ema.py +0 -63
  1070. paddlex/ppcls/utils/logger.py +0 -137
  1071. paddlex/ppcls/utils/metrics.py +0 -112
  1072. paddlex/ppcls/utils/misc.py +0 -63
  1073. paddlex/ppcls/utils/model_zoo.py +0 -213
  1074. paddlex/ppcls/utils/profiler.py +0 -111
  1075. paddlex/ppcls/utils/save_load.py +0 -136
  1076. paddlex/ppdet/__init__.py +0 -16
  1077. paddlex/ppdet/core/__init__.py +0 -15
  1078. paddlex/ppdet/core/config/__init__.py +0 -13
  1079. paddlex/ppdet/core/config/schema.py +0 -248
  1080. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1081. paddlex/ppdet/core/workspace.py +0 -278
  1082. paddlex/ppdet/data/__init__.py +0 -21
  1083. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1084. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1085. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1086. paddlex/ppdet/data/reader.py +0 -302
  1087. paddlex/ppdet/data/shm_utils.py +0 -67
  1088. paddlex/ppdet/data/source/__init__.py +0 -29
  1089. paddlex/ppdet/data/source/category.py +0 -904
  1090. paddlex/ppdet/data/source/coco.py +0 -251
  1091. paddlex/ppdet/data/source/dataset.py +0 -197
  1092. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1093. paddlex/ppdet/data/source/mot.py +0 -636
  1094. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1095. paddlex/ppdet/data/source/voc.py +0 -231
  1096. paddlex/ppdet/data/source/widerface.py +0 -180
  1097. paddlex/ppdet/data/transform/__init__.py +0 -28
  1098. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1099. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1100. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1101. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1102. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1103. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1104. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1105. paddlex/ppdet/data/transform/operators.py +0 -3025
  1106. paddlex/ppdet/engine/__init__.py +0 -30
  1107. paddlex/ppdet/engine/callbacks.py +0 -340
  1108. paddlex/ppdet/engine/env.py +0 -50
  1109. paddlex/ppdet/engine/export_utils.py +0 -177
  1110. paddlex/ppdet/engine/tracker.py +0 -538
  1111. paddlex/ppdet/engine/trainer.py +0 -723
  1112. paddlex/ppdet/metrics/__init__.py +0 -29
  1113. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1114. paddlex/ppdet/metrics/json_results.py +0 -149
  1115. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1116. paddlex/ppdet/metrics/map_utils.py +0 -444
  1117. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1118. paddlex/ppdet/metrics/metrics.py +0 -434
  1119. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1120. paddlex/ppdet/metrics/munkres.py +0 -428
  1121. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1122. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1123. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1124. paddlex/ppdet/modeling/__init__.py +0 -45
  1125. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1126. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1127. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1128. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1129. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1130. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1131. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1132. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1133. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1134. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1135. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1136. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1137. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1138. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1139. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1140. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1141. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1142. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1143. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1144. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1145. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1146. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1147. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1148. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1149. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1150. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1151. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1152. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1153. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1154. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1155. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1156. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1157. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1158. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1159. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1160. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1161. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1162. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1163. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1164. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1165. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1166. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1167. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1168. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1169. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1170. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1171. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1172. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1173. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1174. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1175. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1176. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1177. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1178. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1179. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1180. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1181. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1182. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1183. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1184. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1185. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1186. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1187. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1188. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1189. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1190. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1191. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1192. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1193. paddlex/ppdet/modeling/initializer.py +0 -317
  1194. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1195. paddlex/ppdet/modeling/layers.py +0 -1430
  1196. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1197. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1198. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1199. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1200. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1201. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1202. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1203. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1204. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1205. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1206. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1207. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1208. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1209. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1210. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1211. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1212. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1213. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1214. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1215. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1216. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1217. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1218. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1219. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1220. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1221. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1222. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1223. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1224. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1225. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1226. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1227. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1228. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1229. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1230. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1231. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1232. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1233. paddlex/ppdet/modeling/ops.py +0 -1611
  1234. paddlex/ppdet/modeling/post_process.py +0 -731
  1235. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1236. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1237. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1238. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1239. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1240. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1241. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1242. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1243. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1244. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1245. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1246. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1247. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1248. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1249. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1250. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1251. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1252. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1253. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1254. paddlex/ppdet/optimizer.py +0 -335
  1255. paddlex/ppdet/slim/__init__.py +0 -82
  1256. paddlex/ppdet/slim/distill.py +0 -110
  1257. paddlex/ppdet/slim/prune.py +0 -85
  1258. paddlex/ppdet/slim/quant.py +0 -84
  1259. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1260. paddlex/ppdet/utils/__init__.py +0 -13
  1261. paddlex/ppdet/utils/check.py +0 -112
  1262. paddlex/ppdet/utils/checkpoint.py +0 -226
  1263. paddlex/ppdet/utils/cli.py +0 -151
  1264. paddlex/ppdet/utils/colormap.py +0 -58
  1265. paddlex/ppdet/utils/download.py +0 -558
  1266. paddlex/ppdet/utils/logger.py +0 -70
  1267. paddlex/ppdet/utils/profiler.py +0 -111
  1268. paddlex/ppdet/utils/stats.py +0 -94
  1269. paddlex/ppdet/utils/visualizer.py +0 -321
  1270. paddlex/ppdet/utils/voc_utils.py +0 -86
  1271. paddlex/seg.py +0 -41
  1272. paddlex/tools/__init__.py +0 -17
  1273. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1274. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1275. paddlex/tools/convert.py +0 -52
  1276. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1277. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1278. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1279. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1280. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1281. paddlex/tools/dataset_split/__init__.py +0 -23
  1282. paddlex/tools/dataset_split/coco_split.py +0 -69
  1283. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1284. paddlex/tools/dataset_split/seg_split.py +0 -96
  1285. paddlex/tools/dataset_split/utils.py +0 -75
  1286. paddlex/tools/dataset_split/voc_split.py +0 -91
  1287. paddlex/tools/split.py +0 -41
  1288. paddlex/utils/checkpoint.py +0 -492
  1289. paddlex/utils/env.py +0 -67
  1290. paddlex/utils/shm.py +0 -67
  1291. paddlex/utils/stats.py +0 -68
  1292. paddlex/utils/utils.py +0 -229
  1293. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1294. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1295. paddlex-2.1.0.dist-info/METADATA +0 -32
  1296. paddlex-2.1.0.dist-info/RECORD +0 -698
  1297. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1298. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1299. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1300. paddlex_restful/__init__.py +0 -15
  1301. paddlex_restful/command.py +0 -63
  1302. paddlex_restful/restful/__init__.py +0 -15
  1303. paddlex_restful/restful/app.py +0 -969
  1304. paddlex_restful/restful/dataset/__init__.py +0 -13
  1305. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1306. paddlex_restful/restful/dataset/dataset.py +0 -266
  1307. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1308. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1309. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1310. paddlex_restful/restful/dataset/operate.py +0 -155
  1311. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1312. paddlex_restful/restful/dataset/utils.py +0 -267
  1313. paddlex_restful/restful/demo.py +0 -202
  1314. paddlex_restful/restful/dir.py +0 -45
  1315. paddlex_restful/restful/model.py +0 -312
  1316. paddlex_restful/restful/project/__init__.py +0 -13
  1317. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1318. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1319. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1320. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1321. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1322. paddlex_restful/restful/project/operate.py +0 -931
  1323. paddlex_restful/restful/project/project.py +0 -143
  1324. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1325. paddlex_restful/restful/project/prune/classification.py +0 -32
  1326. paddlex_restful/restful/project/prune/detection.py +0 -48
  1327. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1328. paddlex_restful/restful/project/task.py +0 -884
  1329. paddlex_restful/restful/project/train/__init__.py +0 -13
  1330. paddlex_restful/restful/project/train/classification.py +0 -141
  1331. paddlex_restful/restful/project/train/detection.py +0 -263
  1332. paddlex_restful/restful/project/train/params.py +0 -432
  1333. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1334. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1335. paddlex_restful/restful/project/visualize.py +0 -244
  1336. paddlex_restful/restful/system.py +0 -102
  1337. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1338. paddlex_restful/restful/utils.py +0 -841
  1339. paddlex_restful/restful/workspace.py +0 -343
  1340. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,1430 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
- import six
17
- import numpy as np
18
- from numbers import Integral
19
-
20
- import paddle
21
- import paddle.nn as nn
22
- from paddle import ParamAttr
23
- from paddle import to_tensor
24
- import paddle.nn.functional as F
25
- from paddle.nn.initializer import Normal, Constant, XavierUniform
26
- from paddle.regularizer import L2Decay
27
-
28
- from paddlex.ppdet.core.workspace import register, serializable
29
- from paddlex.ppdet.modeling.bbox_utils import delta2bbox
30
- from . import ops
31
- from .initializer import xavier_uniform_, constant_
32
-
33
- from paddle.vision.ops import DeformConv2D
34
-
35
-
36
- def _to_list(l):
37
- if isinstance(l, (list, tuple)):
38
- return list(l)
39
- return [l]
40
-
41
-
42
- class DeformableConvV2(nn.Layer):
43
- def __init__(self,
44
- in_channels,
45
- out_channels,
46
- kernel_size,
47
- stride=1,
48
- padding=0,
49
- dilation=1,
50
- groups=1,
51
- weight_attr=None,
52
- bias_attr=None,
53
- lr_scale=1,
54
- regularizer=None,
55
- skip_quant=False,
56
- dcn_bias_regularizer=L2Decay(0.),
57
- dcn_bias_lr_scale=2.):
58
- super(DeformableConvV2, self).__init__()
59
- self.offset_channel = 2 * kernel_size**2
60
- self.mask_channel = kernel_size**2
61
-
62
- if lr_scale == 1 and regularizer is None:
63
- offset_bias_attr = ParamAttr(initializer=Constant(0.))
64
- else:
65
- offset_bias_attr = ParamAttr(
66
- initializer=Constant(0.),
67
- learning_rate=lr_scale,
68
- regularizer=regularizer)
69
- self.conv_offset = nn.Conv2D(
70
- in_channels,
71
- 3 * kernel_size**2,
72
- kernel_size,
73
- stride=stride,
74
- padding=(kernel_size - 1) // 2,
75
- weight_attr=ParamAttr(initializer=Constant(0.0)),
76
- bias_attr=offset_bias_attr)
77
- if skip_quant:
78
- self.conv_offset.skip_quant = True
79
-
80
- if bias_attr:
81
- # in FCOS-DCN head, specifically need learning_rate and regularizer
82
- dcn_bias_attr = ParamAttr(
83
- initializer=Constant(value=0),
84
- regularizer=dcn_bias_regularizer,
85
- learning_rate=dcn_bias_lr_scale)
86
- else:
87
- # in ResNet backbone, do not need bias
88
- dcn_bias_attr = False
89
- self.conv_dcn = DeformConv2D(
90
- in_channels,
91
- out_channels,
92
- kernel_size,
93
- stride=stride,
94
- padding=(kernel_size - 1) // 2 * dilation,
95
- dilation=dilation,
96
- groups=groups,
97
- weight_attr=weight_attr,
98
- bias_attr=dcn_bias_attr)
99
-
100
- def forward(self, x):
101
- offset_mask = self.conv_offset(x)
102
- offset, mask = paddle.split(
103
- offset_mask,
104
- num_or_sections=[self.offset_channel, self.mask_channel],
105
- axis=1)
106
- mask = F.sigmoid(mask)
107
- y = self.conv_dcn(x, offset, mask=mask)
108
- return y
109
-
110
-
111
- class ConvNormLayer(nn.Layer):
112
- def __init__(self,
113
- ch_in,
114
- ch_out,
115
- filter_size,
116
- stride,
117
- groups=1,
118
- norm_type='bn',
119
- norm_decay=0.,
120
- norm_groups=32,
121
- use_dcn=False,
122
- bias_on=False,
123
- lr_scale=1.,
124
- freeze_norm=False,
125
- initializer=Normal(
126
- mean=0., std=0.01),
127
- skip_quant=False,
128
- dcn_lr_scale=2.,
129
- dcn_regularizer=L2Decay(0.)):
130
- super(ConvNormLayer, self).__init__()
131
- assert norm_type in ['bn', 'sync_bn', 'gn']
132
-
133
- if bias_on:
134
- bias_attr = ParamAttr(
135
- initializer=Constant(value=0.), learning_rate=lr_scale)
136
- else:
137
- bias_attr = False
138
-
139
- if not use_dcn:
140
- self.conv = nn.Conv2D(
141
- in_channels=ch_in,
142
- out_channels=ch_out,
143
- kernel_size=filter_size,
144
- stride=stride,
145
- padding=(filter_size - 1) // 2,
146
- groups=groups,
147
- weight_attr=ParamAttr(
148
- initializer=initializer, learning_rate=1.),
149
- bias_attr=bias_attr)
150
- if skip_quant:
151
- self.conv.skip_quant = True
152
- else:
153
- # in FCOS-DCN head, specifically need learning_rate and regularizer
154
- self.conv = DeformableConvV2(
155
- in_channels=ch_in,
156
- out_channels=ch_out,
157
- kernel_size=filter_size,
158
- stride=stride,
159
- padding=(filter_size - 1) // 2,
160
- groups=groups,
161
- weight_attr=ParamAttr(
162
- initializer=initializer, learning_rate=1.),
163
- bias_attr=True,
164
- lr_scale=dcn_lr_scale,
165
- regularizer=dcn_regularizer,
166
- dcn_bias_regularizer=dcn_regularizer,
167
- dcn_bias_lr_scale=dcn_lr_scale,
168
- skip_quant=skip_quant)
169
-
170
- norm_lr = 0. if freeze_norm else 1.
171
- param_attr = ParamAttr(
172
- learning_rate=norm_lr,
173
- regularizer=L2Decay(norm_decay)
174
- if norm_decay is not None else None)
175
- bias_attr = ParamAttr(
176
- learning_rate=norm_lr,
177
- regularizer=L2Decay(norm_decay)
178
- if norm_decay is not None else None)
179
- if norm_type == 'bn':
180
- self.norm = nn.BatchNorm2D(
181
- ch_out, weight_attr=param_attr, bias_attr=bias_attr)
182
- elif norm_type == 'sync_bn':
183
- self.norm = nn.SyncBatchNorm(
184
- ch_out, weight_attr=param_attr, bias_attr=bias_attr)
185
- elif norm_type == 'gn':
186
- self.norm = nn.GroupNorm(
187
- num_groups=norm_groups,
188
- num_channels=ch_out,
189
- weight_attr=param_attr,
190
- bias_attr=bias_attr)
191
-
192
- def forward(self, inputs):
193
- out = self.conv(inputs)
194
- out = self.norm(out)
195
- return out
196
-
197
-
198
- class LiteConv(nn.Layer):
199
- def __init__(self,
200
- in_channels,
201
- out_channels,
202
- stride=1,
203
- with_act=True,
204
- norm_type='sync_bn',
205
- name=None):
206
- super(LiteConv, self).__init__()
207
- self.lite_conv = nn.Sequential()
208
- conv1 = ConvNormLayer(
209
- in_channels,
210
- in_channels,
211
- filter_size=5,
212
- stride=stride,
213
- groups=in_channels,
214
- norm_type=norm_type,
215
- initializer=XavierUniform())
216
- conv2 = ConvNormLayer(
217
- in_channels,
218
- out_channels,
219
- filter_size=1,
220
- stride=stride,
221
- norm_type=norm_type,
222
- initializer=XavierUniform())
223
- conv3 = ConvNormLayer(
224
- out_channels,
225
- out_channels,
226
- filter_size=1,
227
- stride=stride,
228
- norm_type=norm_type,
229
- initializer=XavierUniform())
230
- conv4 = ConvNormLayer(
231
- out_channels,
232
- out_channels,
233
- filter_size=5,
234
- stride=stride,
235
- groups=out_channels,
236
- norm_type=norm_type,
237
- initializer=XavierUniform())
238
- conv_list = [conv1, conv2, conv3, conv4]
239
- self.lite_conv.add_sublayer('conv1', conv1)
240
- self.lite_conv.add_sublayer('relu6_1', nn.ReLU6())
241
- self.lite_conv.add_sublayer('conv2', conv2)
242
- if with_act:
243
- self.lite_conv.add_sublayer('relu6_2', nn.ReLU6())
244
- self.lite_conv.add_sublayer('conv3', conv3)
245
- self.lite_conv.add_sublayer('relu6_3', nn.ReLU6())
246
- self.lite_conv.add_sublayer('conv4', conv4)
247
- if with_act:
248
- self.lite_conv.add_sublayer('relu6_4', nn.ReLU6())
249
-
250
- def forward(self, inputs):
251
- out = self.lite_conv(inputs)
252
- return out
253
-
254
-
255
- class DropBlock(nn.Layer):
256
- def __init__(self, block_size, keep_prob, name, data_format='NCHW'):
257
- """
258
- DropBlock layer, see https://arxiv.org/abs/1810.12890
259
-
260
- Args:
261
- block_size (int): block size
262
- keep_prob (int): keep probability
263
- name (str): layer name
264
- data_format (str): data format, NCHW or NHWC
265
- """
266
- super(DropBlock, self).__init__()
267
- self.block_size = block_size
268
- self.keep_prob = keep_prob
269
- self.name = name
270
- self.data_format = data_format
271
-
272
- def forward(self, x):
273
- if not self.training or self.keep_prob == 1:
274
- return x
275
- else:
276
- gamma = (1. - self.keep_prob) / (self.block_size**2)
277
- if self.data_format == 'NCHW':
278
- shape = x.shape[2:]
279
- else:
280
- shape = x.shape[1:3]
281
- for s in shape:
282
- gamma *= s / (s - self.block_size + 1)
283
-
284
- matrix = paddle.cast(paddle.rand(x.shape) < gamma, x.dtype)
285
- mask_inv = F.max_pool2d(
286
- matrix,
287
- self.block_size,
288
- stride=1,
289
- padding=self.block_size // 2,
290
- data_format=self.data_format)
291
- mask = 1. - mask_inv
292
- y = x * mask * (mask.numel() / mask.sum())
293
- return y
294
-
295
-
296
- @register
297
- @serializable
298
- class AnchorGeneratorSSD(object):
299
- def __init__(
300
- self,
301
- steps=[8, 16, 32, 64, 100, 300],
302
- aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
303
- min_ratio=15,
304
- max_ratio=90,
305
- base_size=300,
306
- min_sizes=[30.0, 60.0, 111.0, 162.0, 213.0, 264.0],
307
- max_sizes=[60.0, 111.0, 162.0, 213.0, 264.0, 315.0],
308
- offset=0.5,
309
- flip=True,
310
- clip=False,
311
- min_max_aspect_ratios_order=False):
312
- self.steps = steps
313
- self.aspect_ratios = aspect_ratios
314
- self.min_ratio = min_ratio
315
- self.max_ratio = max_ratio
316
- self.base_size = base_size
317
- self.min_sizes = min_sizes
318
- self.max_sizes = max_sizes
319
- self.offset = offset
320
- self.flip = flip
321
- self.clip = clip
322
- self.min_max_aspect_ratios_order = min_max_aspect_ratios_order
323
-
324
- if self.min_sizes == [] and self.max_sizes == []:
325
- num_layer = len(aspect_ratios)
326
- step = int(
327
- math.floor(((self.max_ratio - self.min_ratio)) / (num_layer - 2
328
- )))
329
- for ratio in six.moves.range(self.min_ratio, self.max_ratio + 1,
330
- step):
331
- self.min_sizes.append(self.base_size * ratio / 100.)
332
- self.max_sizes.append(self.base_size * (ratio + step) / 100.)
333
- self.min_sizes = [self.base_size * .10] + self.min_sizes
334
- self.max_sizes = [self.base_size * .20] + self.max_sizes
335
-
336
- self.num_priors = []
337
- for aspect_ratio, min_size, max_size in zip(
338
- aspect_ratios, self.min_sizes, self.max_sizes):
339
- if isinstance(min_size, (list, tuple)):
340
- self.num_priors.append(
341
- len(_to_list(min_size)) + len(_to_list(max_size)))
342
- else:
343
- self.num_priors.append((len(aspect_ratio) * 2 + 1) * len(
344
- _to_list(min_size)) + len(_to_list(max_size)))
345
-
346
- def __call__(self, inputs, image):
347
- boxes = []
348
- for input, min_size, max_size, aspect_ratio, step in zip(
349
- inputs, self.min_sizes, self.max_sizes, self.aspect_ratios,
350
- self.steps):
351
- box, _ = ops.prior_box(
352
- input=input,
353
- image=image,
354
- min_sizes=_to_list(min_size),
355
- max_sizes=_to_list(max_size),
356
- aspect_ratios=aspect_ratio,
357
- flip=self.flip,
358
- clip=self.clip,
359
- steps=[step, step],
360
- offset=self.offset,
361
- min_max_aspect_ratios_order=self.min_max_aspect_ratios_order)
362
- boxes.append(paddle.reshape(box, [-1, 4]))
363
- return boxes
364
-
365
-
366
- @register
367
- @serializable
368
- class RCNNBox(object):
369
- __shared__ = ['num_classes']
370
-
371
- def __init__(self,
372
- prior_box_var=[10., 10., 5., 5.],
373
- code_type="decode_center_size",
374
- box_normalized=False,
375
- num_classes=80):
376
- super(RCNNBox, self).__init__()
377
- self.prior_box_var = prior_box_var
378
- self.code_type = code_type
379
- self.box_normalized = box_normalized
380
- self.num_classes = num_classes
381
-
382
- def __call__(self, bbox_head_out, rois, im_shape, scale_factor):
383
- bbox_pred = bbox_head_out[0]
384
- cls_prob = bbox_head_out[1]
385
- roi = rois[0]
386
- rois_num = rois[1]
387
-
388
- origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
389
- scale_list = []
390
- origin_shape_list = []
391
-
392
- batch_size = 1
393
- if isinstance(roi, list):
394
- batch_size = len(roi)
395
- else:
396
- batch_size = paddle.slice(paddle.shape(im_shape), [0], [0], [1])
397
- # bbox_pred.shape: [N, C*4]
398
- for idx in range(batch_size):
399
- roi_per_im = roi[idx]
400
- rois_num_per_im = rois_num[idx]
401
- expand_im_shape = paddle.expand(im_shape[idx, :],
402
- [rois_num_per_im, 2])
403
- origin_shape_list.append(expand_im_shape)
404
-
405
- origin_shape = paddle.concat(origin_shape_list)
406
-
407
- # bbox_pred.shape: [N, C*4]
408
- # C=num_classes in faster/mask rcnn(bbox_head), C=1 in cascade rcnn(cascade_head)
409
- bbox = paddle.concat(roi)
410
- if bbox.shape[0] == 0:
411
- bbox = paddle.zeros([0, bbox_pred.shape[1]], dtype='float32')
412
- else:
413
- bbox = delta2bbox(bbox_pred, bbox, self.prior_box_var)
414
- scores = cls_prob[:, :-1]
415
-
416
- # bbox.shape: [N, C, 4]
417
- # bbox.shape[1] must be equal to scores.shape[1]
418
- bbox_num_class = bbox.shape[1]
419
- if bbox_num_class == 1:
420
- bbox = paddle.tile(bbox, [1, self.num_classes, 1])
421
-
422
- origin_h = paddle.unsqueeze(origin_shape[:, 0], axis=1)
423
- origin_w = paddle.unsqueeze(origin_shape[:, 1], axis=1)
424
- zeros = paddle.zeros_like(origin_h)
425
- x1 = paddle.maximum(paddle.minimum(bbox[:, :, 0], origin_w), zeros)
426
- y1 = paddle.maximum(paddle.minimum(bbox[:, :, 1], origin_h), zeros)
427
- x2 = paddle.maximum(paddle.minimum(bbox[:, :, 2], origin_w), zeros)
428
- y2 = paddle.maximum(paddle.minimum(bbox[:, :, 3], origin_h), zeros)
429
- bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
430
- bboxes = (bbox, rois_num)
431
- return bboxes, scores
432
-
433
-
434
- @register
435
- @serializable
436
- class MultiClassNMS(object):
437
- def __init__(self,
438
- score_threshold=.05,
439
- nms_top_k=-1,
440
- keep_top_k=100,
441
- nms_threshold=.5,
442
- normalized=True,
443
- nms_eta=1.0,
444
- return_index=False,
445
- return_rois_num=True):
446
- super(MultiClassNMS, self).__init__()
447
- self.score_threshold = score_threshold
448
- self.nms_top_k = nms_top_k
449
- self.keep_top_k = keep_top_k
450
- self.nms_threshold = nms_threshold
451
- self.normalized = normalized
452
- self.nms_eta = nms_eta
453
- self.return_index = return_index
454
- self.return_rois_num = return_rois_num
455
-
456
- def __call__(self, bboxes, score, background_label=-1):
457
- """
458
- bboxes (Tensor|List[Tensor]): 1. (Tensor) Predicted bboxes with shape
459
- [N, M, 4], N is the batch size and M
460
- is the number of bboxes
461
- 2. (List[Tensor]) bboxes and bbox_num,
462
- bboxes have shape of [M, C, 4], C
463
- is the class number and bbox_num means
464
- the number of bboxes of each batch with
465
- shape [N,]
466
- score (Tensor): Predicted scores with shape [N, C, M] or [M, C]
467
- background_label (int): Ignore the background label; For example, RCNN
468
- is num_classes and YOLO is -1.
469
- """
470
- kwargs = self.__dict__.copy()
471
- if isinstance(bboxes, tuple):
472
- bboxes, bbox_num = bboxes
473
- kwargs.update({'rois_num': bbox_num})
474
- if background_label > -1:
475
- kwargs.update({'background_label': background_label})
476
- return ops.multiclass_nms(bboxes, score, **kwargs)
477
-
478
-
479
- @register
480
- @serializable
481
- class MatrixNMS(object):
482
- __append_doc__ = True
483
-
484
- def __init__(self,
485
- score_threshold=.05,
486
- post_threshold=.05,
487
- nms_top_k=-1,
488
- keep_top_k=100,
489
- use_gaussian=False,
490
- gaussian_sigma=2.,
491
- normalized=False,
492
- background_label=0):
493
- super(MatrixNMS, self).__init__()
494
- self.score_threshold = score_threshold
495
- self.post_threshold = post_threshold
496
- self.nms_top_k = nms_top_k
497
- self.keep_top_k = keep_top_k
498
- self.normalized = normalized
499
- self.use_gaussian = use_gaussian
500
- self.gaussian_sigma = gaussian_sigma
501
- self.background_label = background_label
502
-
503
- def __call__(self, bbox, score, *args):
504
- return ops.matrix_nms(
505
- bboxes=bbox,
506
- scores=score,
507
- score_threshold=self.score_threshold,
508
- post_threshold=self.post_threshold,
509
- nms_top_k=self.nms_top_k,
510
- keep_top_k=self.keep_top_k,
511
- use_gaussian=self.use_gaussian,
512
- gaussian_sigma=self.gaussian_sigma,
513
- background_label=self.background_label,
514
- normalized=self.normalized)
515
-
516
-
517
- @register
518
- @serializable
519
- class YOLOBox(object):
520
- __shared__ = ['num_classes']
521
-
522
- def __init__(self,
523
- num_classes=80,
524
- conf_thresh=0.005,
525
- downsample_ratio=32,
526
- clip_bbox=True,
527
- scale_x_y=1.):
528
- self.num_classes = num_classes
529
- self.conf_thresh = conf_thresh
530
- self.downsample_ratio = downsample_ratio
531
- self.clip_bbox = clip_bbox
532
- self.scale_x_y = scale_x_y
533
-
534
- def __call__(self,
535
- yolo_head_out,
536
- anchors,
537
- im_shape,
538
- scale_factor,
539
- var_weight=None):
540
- boxes_list = []
541
- scores_list = []
542
- origin_shape = im_shape / scale_factor
543
- origin_shape = paddle.cast(origin_shape, 'int32')
544
- for i, head_out in enumerate(yolo_head_out):
545
- boxes, scores = ops.yolo_box(head_out, origin_shape, anchors[i],
546
- self.num_classes, self.conf_thresh,
547
- self.downsample_ratio // 2**i,
548
- self.clip_bbox, self.scale_x_y)
549
- boxes_list.append(boxes)
550
- scores_list.append(paddle.transpose(scores, perm=[0, 2, 1]))
551
- yolo_boxes = paddle.concat(boxes_list, axis=1)
552
- yolo_scores = paddle.concat(scores_list, axis=2)
553
- return yolo_boxes, yolo_scores
554
-
555
-
556
- @register
557
- @serializable
558
- class SSDBox(object):
559
- def __init__(self, is_normalized=True):
560
- self.is_normalized = is_normalized
561
- self.norm_delta = float(not self.is_normalized)
562
-
563
- def __call__(self,
564
- preds,
565
- prior_boxes,
566
- im_shape,
567
- scale_factor,
568
- var_weight=None):
569
- boxes, scores = preds
570
- outputs = []
571
- for box, score, prior_box in zip(boxes, scores, prior_boxes):
572
- pb_w = prior_box[:, 2] - prior_box[:, 0] + self.norm_delta
573
- pb_h = prior_box[:, 3] - prior_box[:, 1] + self.norm_delta
574
- pb_x = prior_box[:, 0] + pb_w * 0.5
575
- pb_y = prior_box[:, 1] + pb_h * 0.5
576
- out_x = pb_x + box[:, :, 0] * pb_w * 0.1
577
- out_y = pb_y + box[:, :, 1] * pb_h * 0.1
578
- out_w = paddle.exp(box[:, :, 2] * 0.2) * pb_w
579
- out_h = paddle.exp(box[:, :, 3] * 0.2) * pb_h
580
-
581
- if self.is_normalized:
582
- h = paddle.unsqueeze(
583
- im_shape[:, 0] / scale_factor[:, 0], axis=-1)
584
- w = paddle.unsqueeze(
585
- im_shape[:, 1] / scale_factor[:, 1], axis=-1)
586
- output = paddle.stack(
587
- [(out_x - out_w / 2.) * w, (out_y - out_h / 2.) * h,
588
- (out_x + out_w / 2.) * w, (out_y + out_h / 2.) * h],
589
- axis=-1)
590
- else:
591
- output = paddle.stack(
592
- [
593
- out_x - out_w / 2., out_y - out_h / 2.,
594
- out_x + out_w / 2. - 1., out_y + out_h / 2. - 1.
595
- ],
596
- axis=-1)
597
- outputs.append(output)
598
- boxes = paddle.concat(outputs, axis=1)
599
-
600
- scores = F.softmax(paddle.concat(scores, axis=1))
601
- scores = paddle.transpose(scores, [0, 2, 1])
602
-
603
- return boxes, scores
604
-
605
-
606
- @register
607
- @serializable
608
- class AnchorGrid(object):
609
- """Generate anchor grid
610
-
611
- Args:
612
- image_size (int or list): input image size, may be a single integer or
613
- list of [h, w]. Default: 512
614
- min_level (int): min level of the feature pyramid. Default: 3
615
- max_level (int): max level of the feature pyramid. Default: 7
616
- anchor_base_scale: base anchor scale. Default: 4
617
- num_scales: number of anchor scales. Default: 3
618
- aspect_ratios: aspect ratios. default: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
619
- """
620
-
621
- def __init__(self,
622
- image_size=512,
623
- min_level=3,
624
- max_level=7,
625
- anchor_base_scale=4,
626
- num_scales=3,
627
- aspect_ratios=[[1, 1], [1.4, 0.7], [0.7, 1.4]]):
628
- super(AnchorGrid, self).__init__()
629
- if isinstance(image_size, Integral):
630
- self.image_size = [image_size, image_size]
631
- else:
632
- self.image_size = image_size
633
- for dim in self.image_size:
634
- assert dim % 2 ** max_level == 0, \
635
- "image size should be multiple of the max level stride"
636
- self.min_level = min_level
637
- self.max_level = max_level
638
- self.anchor_base_scale = anchor_base_scale
639
- self.num_scales = num_scales
640
- self.aspect_ratios = aspect_ratios
641
-
642
- @property
643
- def base_cell(self):
644
- if not hasattr(self, '_base_cell'):
645
- self._base_cell = self.make_cell()
646
- return self._base_cell
647
-
648
- def make_cell(self):
649
- scales = [2**(i / self.num_scales) for i in range(self.num_scales)]
650
- scales = np.array(scales)
651
- ratios = np.array(self.aspect_ratios)
652
- ws = np.outer(scales, ratios[:, 0]).reshape(-1, 1)
653
- hs = np.outer(scales, ratios[:, 1]).reshape(-1, 1)
654
- anchors = np.hstack((-0.5 * ws, -0.5 * hs, 0.5 * ws, 0.5 * hs))
655
- return anchors
656
-
657
- def make_grid(self, stride):
658
- cell = self.base_cell * stride * self.anchor_base_scale
659
- x_steps = np.arange(stride // 2, self.image_size[1], stride)
660
- y_steps = np.arange(stride // 2, self.image_size[0], stride)
661
- offset_x, offset_y = np.meshgrid(x_steps, y_steps)
662
- offset_x = offset_x.flatten()
663
- offset_y = offset_y.flatten()
664
- offsets = np.stack((offset_x, offset_y, offset_x, offset_y), axis=-1)
665
- offsets = offsets[:, np.newaxis, :]
666
- return (cell + offsets).reshape(-1, 4)
667
-
668
- def generate(self):
669
- return [
670
- self.make_grid(2**l)
671
- for l in range(self.min_level, self.max_level + 1)
672
- ]
673
-
674
- def __call__(self):
675
- if not hasattr(self, '_anchor_vars'):
676
- anchor_vars = []
677
- helper = LayerHelper('anchor_grid')
678
- for idx, l in enumerate(range(self.min_level, self.max_level + 1)):
679
- stride = 2**l
680
- anchors = self.make_grid(stride)
681
- var = helper.create_parameter(
682
- attr=ParamAttr(name='anchors_{}'.format(idx)),
683
- shape=anchors.shape,
684
- dtype='float32',
685
- stop_gradient=True,
686
- default_initializer=NumpyArrayInitializer(anchors))
687
- anchor_vars.append(var)
688
- var.persistable = True
689
- self._anchor_vars = anchor_vars
690
-
691
- return self._anchor_vars
692
-
693
-
694
- @register
695
- @serializable
696
- class FCOSBox(object):
697
- __shared__ = ['num_classes']
698
-
699
- def __init__(self, num_classes=80):
700
- super(FCOSBox, self).__init__()
701
- self.num_classes = num_classes
702
-
703
- def _merge_hw(self, inputs, ch_type="channel_first"):
704
- """
705
- Merge h and w of the feature map into one dimension.
706
- Args:
707
- inputs (Tensor): Tensor of the input feature map
708
- ch_type (str): "channel_first" or "channel_last" style
709
- Return:
710
- new_shape (Tensor): The new shape after h and w merged
711
- """
712
- shape_ = paddle.shape(inputs)
713
- bs, ch, hi, wi = shape_[0], shape_[1], shape_[2], shape_[3]
714
- img_size = hi * wi
715
- img_size.stop_gradient = True
716
- if ch_type == "channel_first":
717
- new_shape = paddle.concat([bs, ch, img_size])
718
- elif ch_type == "channel_last":
719
- new_shape = paddle.concat([bs, img_size, ch])
720
- else:
721
- raise KeyError("Wrong ch_type %s" % ch_type)
722
- new_shape.stop_gradient = True
723
- return new_shape
724
-
725
- def _postprocessing_by_level(self, locations, box_cls, box_reg, box_ctn,
726
- scale_factor):
727
- """
728
- Postprocess each layer of the output with corresponding locations.
729
- Args:
730
- locations (Tensor): anchor points for current layer, [H*W, 2]
731
- box_cls (Tensor): categories prediction, [N, C, H, W],
732
- C is the number of classes
733
- box_reg (Tensor): bounding box prediction, [N, 4, H, W]
734
- box_ctn (Tensor): centerness prediction, [N, 1, H, W]
735
- scale_factor (Tensor): [h_scale, w_scale] for input images
736
- Return:
737
- box_cls_ch_last (Tensor): score for each category, in [N, C, M]
738
- C is the number of classes and M is the number of anchor points
739
- box_reg_decoding (Tensor): decoded bounding box, in [N, M, 4]
740
- last dimension is [x1, y1, x2, y2]
741
- """
742
- act_shape_cls = self._merge_hw(box_cls)
743
- box_cls_ch_last = paddle.reshape(x=box_cls, shape=act_shape_cls)
744
- box_cls_ch_last = F.sigmoid(box_cls_ch_last)
745
-
746
- act_shape_reg = self._merge_hw(box_reg)
747
- box_reg_ch_last = paddle.reshape(x=box_reg, shape=act_shape_reg)
748
- box_reg_ch_last = paddle.transpose(box_reg_ch_last, perm=[0, 2, 1])
749
- box_reg_decoding = paddle.stack(
750
- [
751
- locations[:, 0] - box_reg_ch_last[:, :, 0],
752
- locations[:, 1] - box_reg_ch_last[:, :, 1],
753
- locations[:, 0] + box_reg_ch_last[:, :, 2],
754
- locations[:, 1] + box_reg_ch_last[:, :, 3]
755
- ],
756
- axis=1)
757
- box_reg_decoding = paddle.transpose(box_reg_decoding, perm=[0, 2, 1])
758
-
759
- act_shape_ctn = self._merge_hw(box_ctn)
760
- box_ctn_ch_last = paddle.reshape(x=box_ctn, shape=act_shape_ctn)
761
- box_ctn_ch_last = F.sigmoid(box_ctn_ch_last)
762
-
763
- # recover the location to original image
764
- im_scale = paddle.concat([scale_factor, scale_factor], axis=1)
765
- im_scale = paddle.expand(im_scale, [box_reg_decoding.shape[0], 4])
766
- im_scale = paddle.reshape(im_scale, [box_reg_decoding.shape[0], -1, 4])
767
- box_reg_decoding = box_reg_decoding / im_scale
768
- box_cls_ch_last = box_cls_ch_last * box_ctn_ch_last
769
- return box_cls_ch_last, box_reg_decoding
770
-
771
- def __call__(self, locations, cls_logits, bboxes_reg, centerness,
772
- scale_factor):
773
- pred_boxes_ = []
774
- pred_scores_ = []
775
- for pts, cls, box, ctn in zip(locations, cls_logits, bboxes_reg,
776
- centerness):
777
- pred_scores_lvl, pred_boxes_lvl = self._postprocessing_by_level(
778
- pts, cls, box, ctn, scale_factor)
779
- pred_boxes_.append(pred_boxes_lvl)
780
- pred_scores_.append(pred_scores_lvl)
781
- pred_boxes = paddle.concat(pred_boxes_, axis=1)
782
- pred_scores = paddle.concat(pred_scores_, axis=2)
783
- return pred_boxes, pred_scores
784
-
785
-
786
- @register
787
- class TTFBox(object):
788
- __shared__ = ['down_ratio']
789
-
790
- def __init__(self, max_per_img=100, score_thresh=0.01, down_ratio=4):
791
- super(TTFBox, self).__init__()
792
- self.max_per_img = max_per_img
793
- self.score_thresh = score_thresh
794
- self.down_ratio = down_ratio
795
-
796
- def _simple_nms(self, heat, kernel=3):
797
- """
798
- Use maxpool to filter the max score, get local peaks.
799
- """
800
- pad = (kernel - 1) // 2
801
- hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
802
- keep = paddle.cast(hmax == heat, 'float32')
803
- return heat * keep
804
-
805
- def _topk(self, scores):
806
- """
807
- Select top k scores and decode to get xy coordinates.
808
- """
809
- k = self.max_per_img
810
- shape_fm = paddle.shape(scores)
811
- shape_fm.stop_gradient = True
812
- cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
813
- # batch size is 1
814
- scores_r = paddle.reshape(scores, [cat, -1])
815
- topk_scores, topk_inds = paddle.topk(scores_r, k)
816
- topk_scores, topk_inds = paddle.topk(scores_r, k)
817
- topk_ys = topk_inds // width
818
- topk_xs = topk_inds % width
819
-
820
- topk_score_r = paddle.reshape(topk_scores, [-1])
821
- topk_score, topk_ind = paddle.topk(topk_score_r, k)
822
- k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
823
- topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')
824
-
825
- topk_inds = paddle.reshape(topk_inds, [-1])
826
- topk_ys = paddle.reshape(topk_ys, [-1, 1])
827
- topk_xs = paddle.reshape(topk_xs, [-1, 1])
828
- topk_inds = paddle.gather(topk_inds, topk_ind)
829
- topk_ys = paddle.gather(topk_ys, topk_ind)
830
- topk_xs = paddle.gather(topk_xs, topk_ind)
831
-
832
- return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
833
-
834
- def _decode(self, hm, wh, im_shape, scale_factor):
835
- heatmap = F.sigmoid(hm)
836
- heat = self._simple_nms(heatmap)
837
- scores, inds, clses, ys, xs = self._topk(heat)
838
- ys = paddle.cast(ys, 'float32') * self.down_ratio
839
- xs = paddle.cast(xs, 'float32') * self.down_ratio
840
- scores = paddle.tensor.unsqueeze(scores, [1])
841
- clses = paddle.tensor.unsqueeze(clses, [1])
842
-
843
- wh_t = paddle.transpose(wh, [0, 2, 3, 1])
844
- wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
845
- wh = paddle.gather(wh, inds)
846
-
847
- x1 = xs - wh[:, 0:1]
848
- y1 = ys - wh[:, 1:2]
849
- x2 = xs + wh[:, 2:3]
850
- y2 = ys + wh[:, 3:4]
851
-
852
- bboxes = paddle.concat([x1, y1, x2, y2], axis=1)
853
-
854
- scale_y = scale_factor[:, 0:1]
855
- scale_x = scale_factor[:, 1:2]
856
- scale_expand = paddle.concat(
857
- [scale_x, scale_y, scale_x, scale_y], axis=1)
858
- boxes_shape = paddle.shape(bboxes)
859
- boxes_shape.stop_gradient = True
860
- scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
861
- bboxes = paddle.divide(bboxes, scale_expand)
862
- results = paddle.concat([clses, scores, bboxes], axis=1)
863
- # hack: append result with cls=-1 and score=1. to avoid all scores
864
- # are less than score_thresh which may cause error in gather.
865
- fill_r = paddle.to_tensor(np.array([[-1, 1, 0, 0, 0, 0]]))
866
- fill_r = paddle.cast(fill_r, results.dtype)
867
- results = paddle.concat([results, fill_r])
868
- scores = results[:, 1]
869
- valid_ind = paddle.nonzero(scores > self.score_thresh)
870
- results = paddle.gather(results, valid_ind)
871
- return results, paddle.shape(results)[0:1]
872
-
873
- def __call__(self, hm, wh, im_shape, scale_factor):
874
- results = []
875
- results_num = []
876
- for i in range(scale_factor.shape[0]):
877
- result, num = self._decode(hm[i:i + 1, ], wh[i:i + 1, ],
878
- im_shape[i:i + 1, ],
879
- scale_factor[i:i + 1, ])
880
- results.append(result)
881
- results_num.append(num)
882
- results = paddle.concat(results, axis=0)
883
- results_num = paddle.concat(results_num, axis=0)
884
- return results, results_num
885
-
886
-
887
- @register
888
- @serializable
889
- class JDEBox(object):
890
- __shared__ = ['num_classes']
891
-
892
- def __init__(self, num_classes=1, conf_thresh=0.3, downsample_ratio=32):
893
- self.num_classes = num_classes
894
- self.conf_thresh = conf_thresh
895
- self.downsample_ratio = downsample_ratio
896
-
897
- def generate_anchor(self, nGh, nGw, anchor_wh):
898
- nA = len(anchor_wh)
899
- yv, xv = paddle.meshgrid([paddle.arange(nGh), paddle.arange(nGw)])
900
- mesh = paddle.stack(
901
- (xv, yv), axis=0).cast(dtype='float32') # 2 x nGh x nGw
902
- meshs = paddle.tile(mesh, [nA, 1, 1, 1])
903
-
904
- anchor_offset_mesh = anchor_wh[:, :, None][:, :, :, None].repeat(
905
- int(nGh), axis=-2).repeat(
906
- int(nGw), axis=-1)
907
- anchor_offset_mesh = paddle.to_tensor(
908
- anchor_offset_mesh.astype(np.float32))
909
- # nA x 2 x nGh x nGw
910
-
911
- anchor_mesh = paddle.concat([meshs, anchor_offset_mesh], axis=1)
912
- anchor_mesh = paddle.transpose(anchor_mesh,
913
- [0, 2, 3, 1]) # (nA x nGh x nGw) x 4
914
- return anchor_mesh
915
-
916
- def decode_delta(self, delta, fg_anchor_list):
917
- px, py, pw, ph = fg_anchor_list[:, 0], fg_anchor_list[:,1], \
918
- fg_anchor_list[:, 2], fg_anchor_list[:,3]
919
- dx, dy, dw, dh = delta[:, 0], delta[:, 1], delta[:, 2], delta[:, 3]
920
- gx = pw * dx + px
921
- gy = ph * dy + py
922
- gw = pw * paddle.exp(dw)
923
- gh = ph * paddle.exp(dh)
924
- gx1 = gx - gw * 0.5
925
- gy1 = gy - gh * 0.5
926
- gx2 = gx + gw * 0.5
927
- gy2 = gy + gh * 0.5
928
- return paddle.stack([gx1, gy1, gx2, gy2], axis=1)
929
-
930
- def decode_delta_map(self, nA, nGh, nGw, delta_map, anchor_vec):
931
- anchor_mesh = self.generate_anchor(nGh, nGw, anchor_vec)
932
- anchor_mesh = paddle.unsqueeze(anchor_mesh, 0)
933
- pred_list = self.decode_delta(
934
- paddle.reshape(
935
- delta_map, shape=[-1, 4]),
936
- paddle.reshape(
937
- anchor_mesh, shape=[-1, 4]))
938
- pred_map = paddle.reshape(pred_list, shape=[nA * nGh * nGw, 4])
939
- return pred_map
940
-
941
- def _postprocessing_by_level(self, nA, stride, head_out, anchor_vec):
942
- boxes_shape = head_out.shape # [nB, nA*6, nGh, nGw]
943
- nGh, nGw = boxes_shape[-2], boxes_shape[-1]
944
- nB = 1 # TODO: only support bs=1 now
945
- boxes_list, scores_list = [], []
946
- for idx in range(nB):
947
- p = paddle.reshape(
948
- head_out[idx], shape=[nA, self.num_classes + 5, nGh, nGw])
949
- p = paddle.transpose(p, perm=[0, 2, 3, 1]) # [nA, nGh, nGw, 6]
950
- delta_map = p[:, :, :, :4]
951
- boxes = self.decode_delta_map(nA, nGh, nGw, delta_map, anchor_vec)
952
- # [nA * nGh * nGw, 4]
953
- boxes_list.append(boxes * stride)
954
-
955
- p_conf = paddle.transpose(
956
- p[:, :, :, 4:6], perm=[3, 0, 1, 2]) # [2, nA, nGh, nGw]
957
- p_conf = F.softmax(
958
- p_conf, axis=0)[1, :, :, :].unsqueeze(-1) # [nA, nGh, nGw, 1]
959
- scores = paddle.reshape(p_conf, shape=[nA * nGh * nGw, 1])
960
- scores_list.append(scores)
961
-
962
- boxes_results = paddle.stack(boxes_list)
963
- scores_results = paddle.stack(scores_list)
964
- return boxes_results, scores_results
965
-
966
- def __call__(self, yolo_head_out, anchors):
967
- bbox_pred_list = []
968
- for i, head_out in enumerate(yolo_head_out):
969
- stride = self.downsample_ratio // 2**i
970
- anc_w, anc_h = anchors[i][0::2], anchors[i][1::2]
971
- anchor_vec = np.stack((anc_w, anc_h), axis=1) / stride
972
- nA = len(anc_w)
973
- boxes, scores = self._postprocessing_by_level(nA, stride, head_out,
974
- anchor_vec)
975
- bbox_pred_list.append(paddle.concat([boxes, scores], axis=-1))
976
-
977
- yolo_boxes_scores = paddle.concat(bbox_pred_list, axis=1)
978
- boxes_idx_over_conf_thr = paddle.nonzero(
979
- yolo_boxes_scores[:, :, -1] > self.conf_thresh)
980
- boxes_idx_over_conf_thr.stop_gradient = True
981
-
982
- return boxes_idx_over_conf_thr, yolo_boxes_scores
983
-
984
-
985
- @register
986
- @serializable
987
- class MaskMatrixNMS(object):
988
- """
989
- Matrix NMS for multi-class masks.
990
- Args:
991
- update_threshold (float): Updated threshold of categroy score in second time.
992
- pre_nms_top_n (int): Number of total instance to be kept per image before NMS
993
- post_nms_top_n (int): Number of total instance to be kept per image after NMS.
994
- kernel (str): 'linear' or 'gaussian'.
995
- sigma (float): std in gaussian method.
996
- Input:
997
- seg_preds (Variable): shape (n, h, w), segmentation feature maps
998
- seg_masks (Variable): shape (n, h, w), segmentation feature maps
999
- cate_labels (Variable): shape (n), mask labels in descending order
1000
- cate_scores (Variable): shape (n), mask scores in descending order
1001
- sum_masks (Variable): a float tensor of the sum of seg_masks
1002
- Returns:
1003
- Variable: cate_scores, tensors of shape (n)
1004
- """
1005
-
1006
- def __init__(self,
1007
- update_threshold=0.05,
1008
- pre_nms_top_n=500,
1009
- post_nms_top_n=100,
1010
- kernel='gaussian',
1011
- sigma=2.0):
1012
- super(MaskMatrixNMS, self).__init__()
1013
- self.update_threshold = update_threshold
1014
- self.pre_nms_top_n = pre_nms_top_n
1015
- self.post_nms_top_n = post_nms_top_n
1016
- self.kernel = kernel
1017
- self.sigma = sigma
1018
-
1019
- def _sort_score(self, scores, top_num):
1020
- if paddle.shape(scores)[0] > top_num:
1021
- return paddle.topk(scores, top_num)[1]
1022
- else:
1023
- return paddle.argsort(scores, descending=True)
1024
-
1025
- def __call__(self,
1026
- seg_preds,
1027
- seg_masks,
1028
- cate_labels,
1029
- cate_scores,
1030
- sum_masks=None):
1031
- # sort and keep top nms_pre
1032
- sort_inds = self._sort_score(cate_scores, self.pre_nms_top_n)
1033
- seg_masks = paddle.gather(seg_masks, index=sort_inds)
1034
- seg_preds = paddle.gather(seg_preds, index=sort_inds)
1035
- sum_masks = paddle.gather(sum_masks, index=sort_inds)
1036
- cate_scores = paddle.gather(cate_scores, index=sort_inds)
1037
- cate_labels = paddle.gather(cate_labels, index=sort_inds)
1038
-
1039
- seg_masks = paddle.flatten(seg_masks, start_axis=1, stop_axis=-1)
1040
- # inter.
1041
- inter_matrix = paddle.mm(seg_masks,
1042
- paddle.transpose(seg_masks, [1, 0]))
1043
- n_samples = paddle.shape(cate_labels)
1044
- # union.
1045
- sum_masks_x = paddle.expand(sum_masks, shape=[n_samples, n_samples])
1046
- # iou.
1047
- iou_matrix = (inter_matrix / (
1048
- sum_masks_x + paddle.transpose(sum_masks_x, [1, 0]) - inter_matrix)
1049
- )
1050
- iou_matrix = paddle.triu(iou_matrix, diagonal=1)
1051
- # label_specific matrix.
1052
- cate_labels_x = paddle.expand(
1053
- cate_labels, shape=[n_samples, n_samples])
1054
- label_matrix = paddle.cast(
1055
- (cate_labels_x == paddle.transpose(cate_labels_x, [1, 0])),
1056
- 'float32')
1057
- label_matrix = paddle.triu(label_matrix, diagonal=1)
1058
-
1059
- # IoU compensation
1060
- compensate_iou = paddle.max((iou_matrix * label_matrix), axis=0)
1061
- compensate_iou = paddle.expand(
1062
- compensate_iou, shape=[n_samples, n_samples])
1063
- compensate_iou = paddle.transpose(compensate_iou, [1, 0])
1064
-
1065
- # IoU decay
1066
- decay_iou = iou_matrix * label_matrix
1067
-
1068
- # matrix nms
1069
- if self.kernel == 'gaussian':
1070
- decay_matrix = paddle.exp(-1 * self.sigma * (decay_iou**2))
1071
- compensate_matrix = paddle.exp(-1 * self.sigma *
1072
- (compensate_iou**2))
1073
- decay_coefficient = paddle.min(decay_matrix / compensate_matrix,
1074
- axis=0)
1075
- elif self.kernel == 'linear':
1076
- decay_matrix = (1 - decay_iou) / (1 - compensate_iou)
1077
- decay_coefficient = paddle.min(decay_matrix, axis=0)
1078
- else:
1079
- raise NotImplementedError
1080
-
1081
- # update the score.
1082
- cate_scores = cate_scores * decay_coefficient
1083
- y = paddle.zeros(shape=paddle.shape(cate_scores), dtype='float32')
1084
- keep = paddle.where(cate_scores >= self.update_threshold, cate_scores,
1085
- y)
1086
- keep = paddle.nonzero(keep)
1087
- keep = paddle.squeeze(keep, axis=[1])
1088
- # Prevent empty and increase fake data
1089
- keep = paddle.concat(
1090
- [keep, paddle.cast(paddle.shape(cate_scores)[0] - 1, 'int64')])
1091
-
1092
- seg_preds = paddle.gather(seg_preds, index=keep)
1093
- cate_scores = paddle.gather(cate_scores, index=keep)
1094
- cate_labels = paddle.gather(cate_labels, index=keep)
1095
-
1096
- # sort and keep top_k
1097
- sort_inds = self._sort_score(cate_scores, self.post_nms_top_n)
1098
- seg_preds = paddle.gather(seg_preds, index=sort_inds)
1099
- cate_scores = paddle.gather(cate_scores, index=sort_inds)
1100
- cate_labels = paddle.gather(cate_labels, index=sort_inds)
1101
- return seg_preds, cate_scores, cate_labels
1102
-
1103
-
1104
- def Conv2d(in_channels,
1105
- out_channels,
1106
- kernel_size,
1107
- stride=1,
1108
- padding=0,
1109
- dilation=1,
1110
- groups=1,
1111
- bias=True,
1112
- weight_init=Normal(std=0.001),
1113
- bias_init=Constant(0.)):
1114
- weight_attr = paddle.framework.ParamAttr(initializer=weight_init)
1115
- if bias:
1116
- bias_attr = paddle.framework.ParamAttr(initializer=bias_init)
1117
- else:
1118
- bias_attr = False
1119
- conv = nn.Conv2D(
1120
- in_channels,
1121
- out_channels,
1122
- kernel_size,
1123
- stride,
1124
- padding,
1125
- dilation,
1126
- groups,
1127
- weight_attr=weight_attr,
1128
- bias_attr=bias_attr)
1129
- return conv
1130
-
1131
-
1132
- def ConvTranspose2d(in_channels,
1133
- out_channels,
1134
- kernel_size,
1135
- stride=1,
1136
- padding=0,
1137
- output_padding=0,
1138
- groups=1,
1139
- bias=True,
1140
- dilation=1,
1141
- weight_init=Normal(std=0.001),
1142
- bias_init=Constant(0.)):
1143
- weight_attr = paddle.framework.ParamAttr(initializer=weight_init)
1144
- if bias:
1145
- bias_attr = paddle.framework.ParamAttr(initializer=bias_init)
1146
- else:
1147
- bias_attr = False
1148
- conv = nn.Conv2DTranspose(
1149
- in_channels,
1150
- out_channels,
1151
- kernel_size,
1152
- stride,
1153
- padding,
1154
- output_padding,
1155
- dilation,
1156
- groups,
1157
- weight_attr=weight_attr,
1158
- bias_attr=bias_attr)
1159
- return conv
1160
-
1161
-
1162
- def BatchNorm2d(num_features, eps=1e-05, momentum=0.9, affine=True):
1163
- if not affine:
1164
- weight_attr = False
1165
- bias_attr = False
1166
- else:
1167
- weight_attr = None
1168
- bias_attr = None
1169
- batchnorm = nn.BatchNorm2D(
1170
- num_features,
1171
- momentum,
1172
- eps,
1173
- weight_attr=weight_attr,
1174
- bias_attr=bias_attr)
1175
- return batchnorm
1176
-
1177
-
1178
- def ReLU():
1179
- return nn.ReLU()
1180
-
1181
-
1182
- def Upsample(scale_factor=None, mode='nearest', align_corners=False):
1183
- return nn.Upsample(None, scale_factor, mode, align_corners)
1184
-
1185
-
1186
- def MaxPool(kernel_size, stride, padding, ceil_mode=False):
1187
- return nn.MaxPool2D(kernel_size, stride, padding, ceil_mode=ceil_mode)
1188
-
1189
-
1190
- class Concat(nn.Layer):
1191
- def __init__(self, dim=0):
1192
- super(Concat, self).__init__()
1193
- self.dim = dim
1194
-
1195
- def forward(self, inputs):
1196
- return paddle.concat(inputs, axis=self.dim)
1197
-
1198
- def extra_repr(self):
1199
- return 'dim={}'.format(self.dim)
1200
-
1201
-
1202
- def _convert_attention_mask(attn_mask, dtype):
1203
- """
1204
- Convert the attention mask to the target dtype we expect.
1205
- Parameters:
1206
- attn_mask (Tensor, optional): A tensor used in multi-head attention
1207
- to prevents attention to some unwanted positions, usually the
1208
- paddings or the subsequent positions. It is a tensor with shape
1209
- broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
1210
- When the data type is bool, the unwanted positions have `False`
1211
- values and the others have `True` values. When the data type is
1212
- int, the unwanted positions have 0 values and the others have 1
1213
- values. When the data type is float, the unwanted positions have
1214
- `-INF` values and the others have 0 values. It can be None when
1215
- nothing wanted or needed to be prevented attention to. Default None.
1216
- dtype (VarType): The target type of `attn_mask` we expect.
1217
- Returns:
1218
- Tensor: A Tensor with shape same as input `attn_mask`, with data type `dtype`.
1219
- """
1220
- return nn.layer.transformer._convert_attention_mask(attn_mask, dtype)
1221
-
1222
-
1223
- class MultiHeadAttention(nn.Layer):
1224
- """
1225
- Attention mapps queries and a set of key-value pairs to outputs, and
1226
- Multi-Head Attention performs multiple parallel attention to jointly attending
1227
- to information from different representation subspaces.
1228
-
1229
- Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
1230
- for more details.
1231
-
1232
- Parameters:
1233
- embed_dim (int): The expected feature size in the input and output.
1234
- num_heads (int): The number of heads in multi-head attention.
1235
- dropout (float, optional): The dropout probability used on attention
1236
- weights to drop some attention targets. 0 for no dropout. Default 0
1237
- kdim (int, optional): The feature size in key. If None, assumed equal to
1238
- `embed_dim`. Default None.
1239
- vdim (int, optional): The feature size in value. If None, assumed equal to
1240
- `embed_dim`. Default None.
1241
- need_weights (bool, optional): Indicate whether to return the attention
1242
- weights. Default False.
1243
-
1244
- Examples:
1245
-
1246
- .. code-block:: python
1247
-
1248
- import paddle
1249
-
1250
- # encoder input: [batch_size, sequence_length, d_model]
1251
- query = paddle.rand((2, 4, 128))
1252
- # self attention mask: [batch_size, num_heads, query_len, query_len]
1253
- attn_mask = paddle.rand((2, 2, 4, 4))
1254
- multi_head_attn = paddle.nn.MultiHeadAttention(128, 2)
1255
- output = multi_head_attn(query, None, None, attn_mask=attn_mask) # [2, 4, 128]
1256
- """
1257
-
1258
- def __init__(self,
1259
- embed_dim,
1260
- num_heads,
1261
- dropout=0.,
1262
- kdim=None,
1263
- vdim=None,
1264
- need_weights=False):
1265
- super(MultiHeadAttention, self).__init__()
1266
- self.embed_dim = embed_dim
1267
- self.kdim = kdim if kdim is not None else embed_dim
1268
- self.vdim = vdim if vdim is not None else embed_dim
1269
- self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
1270
-
1271
- self.num_heads = num_heads
1272
- self.dropout = dropout
1273
- self.need_weights = need_weights
1274
-
1275
- self.head_dim = embed_dim // num_heads
1276
- assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
1277
-
1278
- if self._qkv_same_embed_dim:
1279
- self.in_proj_weight = self.create_parameter(
1280
- shape=[embed_dim, 3 * embed_dim],
1281
- attr=None,
1282
- dtype=self._dtype,
1283
- is_bias=False)
1284
- self.in_proj_bias = self.create_parameter(
1285
- shape=[3 * embed_dim],
1286
- attr=None,
1287
- dtype=self._dtype,
1288
- is_bias=True)
1289
- else:
1290
- self.q_proj = nn.Linear(embed_dim, embed_dim)
1291
- self.k_proj = nn.Linear(self.kdim, embed_dim)
1292
- self.v_proj = nn.Linear(self.vdim, embed_dim)
1293
-
1294
- self.out_proj = nn.Linear(embed_dim, embed_dim)
1295
- self._type_list = ('q_proj', 'k_proj', 'v_proj')
1296
-
1297
- self._reset_parameters()
1298
-
1299
- def _reset_parameters(self):
1300
- for p in self.parameters():
1301
- if p.dim() > 1:
1302
- xavier_uniform_(p)
1303
- else:
1304
- constant_(p)
1305
-
1306
- def compute_qkv(self, tensor, index):
1307
- if self._qkv_same_embed_dim:
1308
- tensor = F.linear(
1309
- x=tensor,
1310
- weight=self.in_proj_weight[:, index * self.embed_dim:(
1311
- index + 1) * self.embed_dim],
1312
- bias=self.in_proj_bias[index * self.embed_dim:(index + 1) *
1313
- self.embed_dim]
1314
- if self.in_proj_bias is not None else None)
1315
- else:
1316
- tensor = getattr(self, self._type_list[index])(tensor)
1317
- tensor = tensor.reshape(
1318
- [0, 0, self.num_heads, self.head_dim]).transpose([0, 2, 1, 3])
1319
- return tensor
1320
-
1321
- def forward(self, query, key=None, value=None, attn_mask=None):
1322
- r"""
1323
- Applies multi-head attention to map queries and a set of key-value pairs
1324
- to outputs.
1325
-
1326
- Parameters:
1327
- query (Tensor): The queries for multi-head attention. It is a
1328
- tensor with shape `[batch_size, query_length, embed_dim]`. The
1329
- data type should be float32 or float64.
1330
- key (Tensor, optional): The keys for multi-head attention. It is
1331
- a tensor with shape `[batch_size, key_length, kdim]`. The
1332
- data type should be float32 or float64. If None, use `query` as
1333
- `key`. Default None.
1334
- value (Tensor, optional): The values for multi-head attention. It
1335
- is a tensor with shape `[batch_size, value_length, vdim]`.
1336
- The data type should be float32 or float64. If None, use `query` as
1337
- `value`. Default None.
1338
- attn_mask (Tensor, optional): A tensor used in multi-head attention
1339
- to prevents attention to some unwanted positions, usually the
1340
- paddings or the subsequent positions. It is a tensor with shape
1341
- broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
1342
- When the data type is bool, the unwanted positions have `False`
1343
- values and the others have `True` values. When the data type is
1344
- int, the unwanted positions have 0 values and the others have 1
1345
- values. When the data type is float, the unwanted positions have
1346
- `-INF` values and the others have 0 values. It can be None when
1347
- nothing wanted or needed to be prevented attention to. Default None.
1348
-
1349
- Returns:
1350
- Tensor|tuple: It is a tensor that has the same shape and data type \
1351
- as `query`, representing attention output. Or a tuple if \
1352
- `need_weights` is True or `cache` is not None. If `need_weights` \
1353
- is True, except for attention output, the tuple also includes \
1354
- the attention weights tensor shaped `[batch_size, num_heads, query_length, key_length]`. \
1355
- If `cache` is not None, the tuple then includes the new cache \
1356
- having the same type as `cache`, and if it is `StaticCache`, it \
1357
- is same as the input `cache`, if it is `Cache`, the new cache \
1358
- reserves tensors concatanating raw tensors with intermediate \
1359
- results of current query.
1360
- """
1361
- key = query if key is None else key
1362
- value = query if value is None else value
1363
- # compute q ,k ,v
1364
- q, k, v = (self.compute_qkv(t, i)
1365
- for i, t in enumerate([query, key, value]))
1366
-
1367
- # scale dot product attention
1368
- product = paddle.matmul(x=q, y=k, transpose_y=True)
1369
- scaling = float(self.head_dim)**-0.5
1370
- product = product * scaling
1371
-
1372
- if attn_mask is not None:
1373
- # Support bool or int mask
1374
- attn_mask = _convert_attention_mask(attn_mask, product.dtype)
1375
- product = product + attn_mask
1376
- weights = F.softmax(product)
1377
- if self.dropout:
1378
- weights = F.dropout(
1379
- weights,
1380
- self.dropout,
1381
- training=self.training,
1382
- mode="upscale_in_train")
1383
-
1384
- out = paddle.matmul(weights, v)
1385
-
1386
- # combine heads
1387
- out = paddle.transpose(out, perm=[0, 2, 1, 3])
1388
- out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
1389
-
1390
- # project to output
1391
- out = self.out_proj(out)
1392
-
1393
- outs = [out]
1394
- if self.need_weights:
1395
- outs.append(weights)
1396
- return out if len(outs) == 1 else tuple(outs)
1397
-
1398
-
1399
- @register
1400
- class ConvMixer(nn.Layer):
1401
- def __init__(
1402
- self,
1403
- dim,
1404
- depth,
1405
- kernel_size=3, ):
1406
- super().__init__()
1407
- self.dim = dim
1408
- self.depth = depth
1409
- self.kernel_size = kernel_size
1410
-
1411
- self.mixer = self.conv_mixer(dim, depth, kernel_size)
1412
-
1413
- def forward(self, x):
1414
- return self.mixer(x)
1415
-
1416
- @staticmethod
1417
- def conv_mixer(
1418
- dim,
1419
- depth,
1420
- kernel_size, ):
1421
- Seq, ActBn = nn.Sequential, lambda x: Seq(x, nn.GELU(), nn.BatchNorm2D(dim))
1422
- Residual = type('Residual', (Seq, ),
1423
- {'forward': lambda self, x: self[0](x) + x})
1424
- return Seq(*[
1425
- Seq(Residual(
1426
- ActBn(
1427
- nn.Conv2D(
1428
- dim, dim, kernel_size, groups=dim, padding="same"))),
1429
- ActBn(nn.Conv2D(dim, dim, 1))) for i in range(depth)
1430
- ])