paddlex 2.1.0__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -0
- paddlex/__init__.py +35 -19
- paddlex/__main__.py +39 -0
- paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
- paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
- paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
- paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
- paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
- paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
- paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
- paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
- paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
- paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
- paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
- paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
- paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
- paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
- paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
- paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
- paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
- paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
- paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
- paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
- paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
- paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
- paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
- paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
- paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
- paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
- paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
- paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
- paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
- paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
- paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
- paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
- paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
- paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
- paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
- paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
- paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
- paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
- paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
- paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
- paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
- paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
- paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
- paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
- paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
- paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
- paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
- paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
- paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
- paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
- paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
- paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
- paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
- paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
- paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
- paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
- paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
- paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
- paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
- paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
- paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
- paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
- paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
- paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
- paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
- paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
- paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
- paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
- paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
- paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
- paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
- paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
- paddlex/configs/pipelines/OCR.yaml +45 -0
- paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +151 -0
- paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +237 -0
- paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
- paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
- paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
- paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
- paddlex/configs/pipelines/doc_understanding.yaml +9 -0
- paddlex/configs/pipelines/face_recognition.yaml +18 -0
- paddlex/configs/pipelines/formula_recognition.yaml +39 -0
- paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
- paddlex/configs/pipelines/image_classification.yaml +10 -0
- paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
- paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
- paddlex/configs/pipelines/layout_parsing.yaml +102 -0
- paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
- paddlex/configs/pipelines/object_detection.yaml +10 -0
- paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
- paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
- paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
- paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
- paddlex/configs/pipelines/seal_recognition.yaml +52 -0
- paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
- paddlex/configs/pipelines/small_object_detection.yaml +10 -0
- paddlex/configs/pipelines/table_recognition.yaml +57 -0
- paddlex/configs/pipelines/table_recognition_v2.yaml +82 -0
- paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
- paddlex/configs/pipelines/ts_classification.yaml +8 -0
- paddlex/configs/pipelines/ts_forecast.yaml +8 -0
- paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
- paddlex/configs/pipelines/video_classification.yaml +9 -0
- paddlex/configs/pipelines/video_detection.yaml +10 -0
- paddlex/constants.py +17 -0
- paddlex/engine.py +56 -0
- paddlex/hpip_links.html +31 -0
- paddlex/inference/__init__.py +19 -0
- paddlex/inference/common/__init__.py +13 -0
- paddlex/inference/common/batch_sampler/__init__.py +21 -0
- paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
- paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
- paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
- paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
- paddlex/inference/common/batch_sampler/image_batch_sampler.py +121 -0
- paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
- paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
- paddlex/inference/common/reader/__init__.py +19 -0
- paddlex/inference/common/reader/audio_reader.py +46 -0
- paddlex/inference/common/reader/det_3d_reader.py +241 -0
- paddlex/inference/common/reader/image_reader.py +73 -0
- paddlex/inference/common/reader/ts_reader.py +46 -0
- paddlex/inference/common/reader/video_reader.py +42 -0
- paddlex/inference/common/result/__init__.py +29 -0
- paddlex/inference/common/result/base_cv_result.py +41 -0
- paddlex/inference/common/result/base_result.py +72 -0
- paddlex/inference/common/result/base_ts_result.py +41 -0
- paddlex/inference/common/result/base_video_result.py +36 -0
- paddlex/inference/common/result/mixin.py +709 -0
- paddlex/inference/models/__init__.py +86 -0
- paddlex/inference/models/anomaly_detection/__init__.py +15 -0
- paddlex/inference/models/anomaly_detection/predictor.py +135 -0
- paddlex/inference/models/anomaly_detection/processors.py +53 -0
- paddlex/inference/models/anomaly_detection/result.py +71 -0
- paddlex/inference/models/base/__init__.py +15 -0
- paddlex/inference/models/base/predictor/__init__.py +15 -0
- paddlex/inference/models/base/predictor/base_predictor.py +414 -0
- paddlex/inference/models/common/__init__.py +26 -0
- paddlex/inference/models/common/static_infer.py +801 -0
- paddlex/inference/models/common/tokenizer/__init__.py +21 -0
- paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
- paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
- paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
- paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
- paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
- paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
- paddlex/inference/models/common/tokenizer/utils.py +66 -0
- paddlex/inference/models/common/tokenizer/vocab.py +647 -0
- paddlex/inference/models/common/ts/__init__.py +15 -0
- paddlex/inference/models/common/ts/funcs.py +540 -0
- paddlex/inference/models/common/ts/processors.py +322 -0
- paddlex/inference/models/common/vision/__init__.py +23 -0
- paddlex/inference/models/common/vision/funcs.py +98 -0
- paddlex/inference/models/common/vision/processors.py +285 -0
- paddlex/inference/models/common/vlm/__init__.py +13 -0
- paddlex/inference/models/common/vlm/activations.py +189 -0
- paddlex/inference/models/common/vlm/bert_padding.py +127 -0
- paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
- paddlex/inference/models/common/vlm/distributed.py +229 -0
- paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
- paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
- paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
- paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
- paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
- paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
- paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
- paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
- paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
- paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
- paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
- paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
- paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
- paddlex/inference/models/common/vlm/utils.py +109 -0
- paddlex/inference/models/doc_vlm/__init__.py +15 -0
- paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
- paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
- paddlex/inference/models/doc_vlm/predictor.py +253 -0
- paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
- paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
- paddlex/inference/models/doc_vlm/processors/common.py +561 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
- paddlex/inference/models/doc_vlm/result.py +21 -0
- paddlex/inference/models/face_feature/__init__.py +15 -0
- paddlex/inference/models/face_feature/predictor.py +66 -0
- paddlex/inference/models/formula_recognition/__init__.py +15 -0
- paddlex/inference/models/formula_recognition/predictor.py +193 -0
- paddlex/inference/models/formula_recognition/processors.py +1015 -0
- paddlex/inference/models/formula_recognition/result.py +411 -0
- paddlex/inference/models/image_classification/__init__.py +15 -0
- paddlex/inference/models/image_classification/predictor.py +172 -0
- paddlex/inference/models/image_classification/processors.py +89 -0
- paddlex/inference/models/image_classification/result.py +93 -0
- paddlex/inference/models/image_feature/__init__.py +15 -0
- paddlex/inference/models/image_feature/predictor.py +146 -0
- paddlex/inference/models/image_feature/processors.py +31 -0
- paddlex/inference/models/image_feature/result.py +32 -0
- paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
- paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
- paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
- paddlex/inference/models/image_multilabel_classification/result.py +96 -0
- paddlex/inference/models/image_unwarping/__init__.py +15 -0
- paddlex/inference/models/image_unwarping/predictor.py +97 -0
- paddlex/inference/models/image_unwarping/processors.py +92 -0
- paddlex/inference/models/image_unwarping/result.py +47 -0
- paddlex/inference/models/instance_segmentation/__init__.py +15 -0
- paddlex/inference/models/instance_segmentation/predictor.py +202 -0
- paddlex/inference/models/instance_segmentation/processors.py +102 -0
- paddlex/inference/models/instance_segmentation/result.py +162 -0
- paddlex/inference/models/keypoint_detection/__init__.py +15 -0
- paddlex/inference/models/keypoint_detection/predictor.py +190 -0
- paddlex/inference/models/keypoint_detection/processors.py +367 -0
- paddlex/inference/models/keypoint_detection/result.py +197 -0
- paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
- paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
- paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
- paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
- paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
- paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
- paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
- paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
- paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
- paddlex/inference/models/object_detection/__init__.py +15 -0
- paddlex/inference/models/object_detection/predictor.py +344 -0
- paddlex/inference/models/object_detection/processors.py +885 -0
- paddlex/inference/models/object_detection/result.py +114 -0
- paddlex/inference/models/object_detection/utils.py +70 -0
- paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
- paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
- paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
- paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
- paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
- paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
- paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
- paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
- paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
- paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
- paddlex/inference/models/semantic_segmentation/processors.py +117 -0
- paddlex/inference/models/semantic_segmentation/result.py +73 -0
- paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
- paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
- paddlex/inference/models/table_structure_recognition/processors.py +229 -0
- paddlex/inference/models/table_structure_recognition/result.py +63 -0
- paddlex/inference/models/text_detection/__init__.py +15 -0
- paddlex/inference/models/text_detection/predictor.py +191 -0
- paddlex/inference/models/text_detection/processors.py +538 -0
- paddlex/inference/models/text_detection/result.py +46 -0
- paddlex/inference/models/text_recognition/__init__.py +15 -0
- paddlex/inference/models/text_recognition/predictor.py +98 -0
- paddlex/inference/models/text_recognition/processors.py +245 -0
- paddlex/inference/models/text_recognition/result.py +76 -0
- paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
- paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
- paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
- paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
- paddlex/inference/models/ts_classification/__init__.py +15 -0
- paddlex/inference/models/ts_classification/predictor.py +122 -0
- paddlex/inference/models/ts_classification/processors.py +122 -0
- paddlex/inference/models/ts_classification/result.py +87 -0
- paddlex/inference/models/ts_forecasting/__init__.py +15 -0
- paddlex/inference/models/ts_forecasting/predictor.py +154 -0
- paddlex/inference/models/ts_forecasting/processors.py +158 -0
- paddlex/inference/models/ts_forecasting/result.py +96 -0
- paddlex/inference/models/video_classification/__init__.py +15 -0
- paddlex/inference/models/video_classification/predictor.py +141 -0
- paddlex/inference/models/video_classification/processors.py +409 -0
- paddlex/inference/models/video_classification/result.py +96 -0
- paddlex/inference/models/video_detection/__init__.py +15 -0
- paddlex/inference/models/video_detection/predictor.py +129 -0
- paddlex/inference/models/video_detection/processors.py +463 -0
- paddlex/inference/models/video_detection/result.py +109 -0
- paddlex/inference/pipelines/__init__.py +239 -0
- paddlex/inference/pipelines/_parallel.py +172 -0
- paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
- paddlex/inference/pipelines/anomaly_detection/pipeline.py +82 -0
- paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/attribute_recognition/pipeline.py +120 -0
- paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
- paddlex/inference/pipelines/base.py +156 -0
- paddlex/inference/pipelines/components/__init__.py +29 -0
- paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
- paddlex/inference/pipelines/components/chat_server/base.py +39 -0
- paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
- paddlex/inference/pipelines/components/common/__init__.py +19 -0
- paddlex/inference/pipelines/components/common/base_operator.py +37 -0
- paddlex/inference/pipelines/components/common/base_result.py +66 -0
- paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
- paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
- paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
- paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
- paddlex/inference/pipelines/components/common/warp_image.py +50 -0
- paddlex/inference/pipelines/components/faisser.py +357 -0
- paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
- paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
- paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
- paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
- paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
- paddlex/inference/pipelines/components/retriever/base.py +228 -0
- paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
- paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
- paddlex/inference/pipelines/components/utils/__init__.py +13 -0
- paddlex/inference/pipelines/components/utils/mixin.py +206 -0
- paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
- paddlex/inference/pipelines/doc_preprocessor/pipeline.py +209 -0
- paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
- paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
- paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
- paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
- paddlex/inference/pipelines/face_recognition/result.py +44 -0
- paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/formula_recognition/pipeline.py +347 -0
- paddlex/inference/pipelines/formula_recognition/result.py +282 -0
- paddlex/inference/pipelines/image_classification/__init__.py +15 -0
- paddlex/inference/pipelines/image_classification/pipeline.py +90 -0
- paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
- paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +97 -0
- paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/instance_segmentation/pipeline.py +91 -0
- paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
- paddlex/inference/pipelines/keypoint_detection/pipeline.py +158 -0
- paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
- paddlex/inference/pipelines/layout_parsing/pipeline.py +568 -0
- paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +1382 -0
- paddlex/inference/pipelines/layout_parsing/result.py +191 -0
- paddlex/inference/pipelines/layout_parsing/result_v2.py +745 -0
- paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
- paddlex/inference/pipelines/layout_parsing/utils.py +951 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1143 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +562 -0
- paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
- paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
- paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
- paddlex/inference/pipelines/object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/object_detection/pipeline.py +115 -0
- paddlex/inference/pipelines/ocr/__init__.py +15 -0
- paddlex/inference/pipelines/ocr/pipeline.py +463 -0
- paddlex/inference/pipelines/ocr/result.py +255 -0
- paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
- paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
- paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
- paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +781 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +992 -0
- paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
- paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
- paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
- paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/rotated_object_detection/pipeline.py +95 -0
- paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/seal_recognition/pipeline.py +335 -0
- paddlex/inference/pipelines/seal_recognition/result.py +89 -0
- paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/semantic_segmentation/pipeline.py +95 -0
- paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/small_object_detection/pipeline.py +95 -0
- paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
- paddlex/inference/pipelines/table_recognition/pipeline.py +486 -0
- paddlex/inference/pipelines/table_recognition/pipeline_v2.py +1395 -0
- paddlex/inference/pipelines/table_recognition/result.py +218 -0
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +488 -0
- paddlex/inference/pipelines/table_recognition/utils.py +44 -0
- paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
- paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
- paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
- paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
- paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
- paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
- paddlex/inference/pipelines/video_classification/__init__.py +15 -0
- paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
- paddlex/inference/pipelines/video_detection/__init__.py +15 -0
- paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
- paddlex/inference/serving/__init__.py +17 -0
- paddlex/inference/serving/basic_serving/__init__.py +18 -0
- paddlex/inference/serving/basic_serving/_app.py +221 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +104 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +117 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +193 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +223 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +143 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +113 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
- paddlex/inference/serving/basic_serving/_server.py +40 -0
- paddlex/inference/serving/infra/__init__.py +13 -0
- paddlex/inference/serving/infra/config.py +36 -0
- paddlex/inference/serving/infra/models.py +79 -0
- paddlex/inference/serving/infra/storage.py +180 -0
- paddlex/inference/serving/infra/utils.py +285 -0
- paddlex/inference/serving/schemas/__init__.py +13 -0
- paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
- paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
- paddlex/inference/serving/schemas/doc_understanding.py +78 -0
- paddlex/inference/serving/schemas/face_recognition.py +124 -0
- paddlex/inference/serving/schemas/formula_recognition.py +56 -0
- paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
- paddlex/inference/serving/schemas/image_classification.py +45 -0
- paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
- paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
- paddlex/inference/serving/schemas/layout_parsing.py +71 -0
- paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
- paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
- paddlex/inference/serving/schemas/object_detection.py +52 -0
- paddlex/inference/serving/schemas/ocr.py +60 -0
- paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
- paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
- paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
- paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +133 -0
- paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +150 -0
- paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
- paddlex/inference/serving/schemas/pp_structurev3.py +88 -0
- paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
- paddlex/inference/serving/schemas/seal_recognition.py +62 -0
- paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
- paddlex/inference/serving/schemas/shared/__init__.py +13 -0
- paddlex/inference/serving/schemas/shared/classification.py +23 -0
- paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
- paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
- paddlex/inference/serving/schemas/shared/ocr.py +25 -0
- paddlex/inference/serving/schemas/small_object_detection.py +52 -0
- paddlex/inference/serving/schemas/table_recognition.py +64 -0
- paddlex/inference/serving/schemas/table_recognition_v2.py +69 -0
- paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
- paddlex/inference/serving/schemas/ts_classification.py +38 -0
- paddlex/inference/serving/schemas/ts_forecast.py +37 -0
- paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
- paddlex/inference/serving/schemas/video_classification.py +44 -0
- paddlex/inference/serving/schemas/video_detection.py +56 -0
- paddlex/inference/utils/__init__.py +13 -0
- paddlex/inference/utils/benchmark.py +379 -0
- paddlex/inference/utils/color_map.py +123 -0
- paddlex/inference/utils/get_pipeline_path.py +27 -0
- paddlex/inference/utils/hpi.py +254 -0
- paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
- paddlex/inference/utils/io/__init__.py +36 -0
- paddlex/inference/utils/io/readers.py +504 -0
- paddlex/inference/utils/io/style.py +381 -0
- paddlex/inference/utils/io/tablepyxl.py +157 -0
- paddlex/inference/utils/io/writers.py +458 -0
- paddlex/inference/utils/model_paths.py +48 -0
- paddlex/inference/utils/new_ir_blocklist.py +27 -0
- paddlex/inference/utils/official_models.py +367 -0
- paddlex/inference/utils/pp_option.py +339 -0
- paddlex/inference/utils/trt_blocklist.py +43 -0
- paddlex/inference/utils/trt_config.py +420 -0
- paddlex/model.py +131 -0
- paddlex/modules/__init__.py +115 -0
- paddlex/modules/anomaly_detection/__init__.py +18 -0
- paddlex/modules/anomaly_detection/dataset_checker/__init__.py +94 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +233 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +76 -0
- paddlex/modules/anomaly_detection/evaluator.py +58 -0
- paddlex/modules/anomaly_detection/exportor.py +22 -0
- paddlex/modules/anomaly_detection/model_list.py +16 -0
- paddlex/modules/anomaly_detection/trainer.py +70 -0
- paddlex/modules/base/__init__.py +18 -0
- paddlex/modules/base/build_model.py +33 -0
- paddlex/modules/base/dataset_checker/__init__.py +16 -0
- paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
- paddlex/modules/base/dataset_checker/utils.py +108 -0
- paddlex/modules/base/evaluator.py +170 -0
- paddlex/modules/base/exportor.py +145 -0
- paddlex/modules/base/trainer.py +144 -0
- paddlex/modules/base/utils/__init__.py +13 -0
- paddlex/modules/base/utils/cinn_setting.py +89 -0
- paddlex/modules/base/utils/coco_eval.py +94 -0
- paddlex/modules/base/utils/topk_eval.py +118 -0
- paddlex/modules/doc_vlm/__init__.py +18 -0
- paddlex/modules/doc_vlm/dataset_checker.py +29 -0
- paddlex/modules/doc_vlm/evaluator.py +29 -0
- paddlex/modules/doc_vlm/exportor.py +29 -0
- paddlex/modules/doc_vlm/model_list.py +16 -0
- paddlex/modules/doc_vlm/trainer.py +41 -0
- paddlex/modules/face_recognition/__init__.py +18 -0
- paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +172 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +153 -0
- paddlex/modules/face_recognition/evaluator.py +52 -0
- paddlex/modules/face_recognition/exportor.py +22 -0
- paddlex/modules/face_recognition/model_list.py +15 -0
- paddlex/modules/face_recognition/trainer.py +75 -0
- paddlex/modules/formula_recognition/__init__.py +18 -0
- paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
- paddlex/modules/formula_recognition/evaluator.py +80 -0
- paddlex/modules/formula_recognition/exportor.py +22 -0
- paddlex/modules/formula_recognition/model_list.py +23 -0
- paddlex/modules/formula_recognition/trainer.py +123 -0
- paddlex/modules/general_recognition/__init__.py +18 -0
- paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +96 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +99 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +100 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +147 -0
- paddlex/modules/general_recognition/evaluator.py +31 -0
- paddlex/modules/general_recognition/exportor.py +22 -0
- paddlex/modules/general_recognition/model_list.py +19 -0
- paddlex/modules/general_recognition/trainer.py +52 -0
- paddlex/modules/image_classification/__init__.py +18 -0
- paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +92 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
- paddlex/modules/image_classification/evaluator.py +43 -0
- paddlex/modules/image_classification/exportor.py +22 -0
- paddlex/modules/image_classification/model_list.py +99 -0
- paddlex/modules/image_classification/trainer.py +82 -0
- paddlex/modules/image_unwarping/__init__.py +13 -0
- paddlex/modules/image_unwarping/model_list.py +17 -0
- paddlex/modules/instance_segmentation/__init__.py +18 -0
- paddlex/modules/instance_segmentation/dataset_checker/__init__.py +107 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +82 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +95 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +122 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +223 -0
- paddlex/modules/instance_segmentation/evaluator.py +32 -0
- paddlex/modules/instance_segmentation/exportor.py +22 -0
- paddlex/modules/instance_segmentation/model_list.py +33 -0
- paddlex/modules/instance_segmentation/trainer.py +31 -0
- paddlex/modules/keypoint_detection/__init__.py +18 -0
- paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
- paddlex/modules/keypoint_detection/evaluator.py +41 -0
- paddlex/modules/keypoint_detection/exportor.py +22 -0
- paddlex/modules/keypoint_detection/model_list.py +16 -0
- paddlex/modules/keypoint_detection/trainer.py +39 -0
- paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
- paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
- paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
- paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
- paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
- paddlex/modules/multilabel_classification/__init__.py +18 -0
- paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +94 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +120 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +149 -0
- paddlex/modules/multilabel_classification/evaluator.py +43 -0
- paddlex/modules/multilabel_classification/exportor.py +22 -0
- paddlex/modules/multilabel_classification/model_list.py +24 -0
- paddlex/modules/multilabel_classification/trainer.py +85 -0
- paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
- paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
- paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
- paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
- paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
- paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
- paddlex/modules/object_detection/__init__.py +18 -0
- paddlex/modules/object_detection/dataset_checker/__init__.py +106 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +438 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +123 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +193 -0
- paddlex/modules/object_detection/evaluator.py +57 -0
- paddlex/modules/object_detection/exportor.py +22 -0
- paddlex/modules/object_detection/model_list.py +86 -0
- paddlex/modules/object_detection/trainer.py +98 -0
- paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
- paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
- paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
- paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
- paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
- paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
- paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
- paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
- paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
- paddlex/modules/semantic_segmentation/__init__.py +18 -0
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +109 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +76 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +165 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +75 -0
- paddlex/modules/semantic_segmentation/evaluator.py +58 -0
- paddlex/modules/semantic_segmentation/exportor.py +31 -0
- paddlex/modules/semantic_segmentation/model_list.py +37 -0
- paddlex/modules/semantic_segmentation/trainer.py +72 -0
- paddlex/modules/table_recognition/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +59 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
- paddlex/modules/table_recognition/evaluator.py +43 -0
- paddlex/modules/table_recognition/exportor.py +22 -0
- paddlex/modules/table_recognition/model_list.py +21 -0
- paddlex/modules/table_recognition/trainer.py +67 -0
- paddlex/modules/text_detection/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/__init__.py +107 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +220 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
- paddlex/modules/text_detection/evaluator.py +41 -0
- paddlex/modules/text_detection/exportor.py +22 -0
- paddlex/modules/text_detection/model_list.py +26 -0
- paddlex/modules/text_detection/trainer.py +65 -0
- paddlex/modules/text_recognition/__init__.py +18 -0
- paddlex/modules/text_recognition/dataset_checker/__init__.py +125 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +162 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +104 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
- paddlex/modules/text_recognition/evaluator.py +64 -0
- paddlex/modules/text_recognition/exportor.py +22 -0
- paddlex/modules/text_recognition/model_list.py +36 -0
- paddlex/modules/text_recognition/trainer.py +105 -0
- paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +111 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +74 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
- paddlex/modules/ts_anomaly_detection/exportor.py +44 -0
- paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
- paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
- paddlex/modules/ts_classification/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/__init__.py +111 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +77 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +74 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
- paddlex/modules/ts_classification/evaluator.py +66 -0
- paddlex/modules/ts_classification/exportor.py +44 -0
- paddlex/modules/ts_classification/model_list.py +18 -0
- paddlex/modules/ts_classification/trainer.py +108 -0
- paddlex/modules/ts_forecast/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/__init__.py +111 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +73 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_forecast/evaluator.py +66 -0
- paddlex/modules/ts_forecast/exportor.py +44 -0
- paddlex/modules/ts_forecast/model_list.py +24 -0
- paddlex/modules/ts_forecast/trainer.py +108 -0
- paddlex/modules/video_classification/__init__.py +18 -0
- paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/video_classification/evaluator.py +44 -0
- paddlex/modules/video_classification/exportor.py +22 -0
- paddlex/modules/video_classification/model_list.py +19 -0
- paddlex/modules/video_classification/trainer.py +88 -0
- paddlex/modules/video_detection/__init__.py +18 -0
- paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
- paddlex/modules/video_detection/evaluator.py +42 -0
- paddlex/modules/video_detection/exportor.py +22 -0
- paddlex/modules/video_detection/model_list.py +15 -0
- paddlex/modules/video_detection/trainer.py +82 -0
- paddlex/ops/__init__.py +152 -0
- paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
- paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
- paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
- paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
- paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
- paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
- paddlex/ops/setup.py +37 -0
- paddlex/ops/voxel/voxelize_op.cc +194 -0
- paddlex/ops/voxel/voxelize_op.cu +346 -0
- paddlex/paddlex_cli.py +476 -0
- paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
- paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
- paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleClas_api/cls/config.py +595 -0
- paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
- paddlex/repo_apis/PaddleClas_api/cls/register.py +907 -0
- paddlex/repo_apis/PaddleClas_api/cls/runner.py +218 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +20 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +50 -0
- paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +457 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +262 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +225 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +540 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +429 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +245 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1135 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +225 -0
- paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
- paddlex/repo_apis/PaddleOCR_api/__init__.py +22 -0
- paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +398 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +99 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +70 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +107 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +564 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +398 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +216 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +239 -0
- paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
- paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/seg/config.py +183 -0
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
- paddlex/repo_apis/PaddleSeg_api/seg/register.py +272 -0
- paddlex/repo_apis/PaddleSeg_api/seg/runner.py +261 -0
- paddlex/repo_apis/PaddleTS_api/__init__.py +20 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +88 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/config.py +244 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +72 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +136 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
- paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
- paddlex/repo_apis/__init__.py +13 -0
- paddlex/repo_apis/base/__init__.py +22 -0
- paddlex/repo_apis/base/config.py +237 -0
- paddlex/repo_apis/base/model.py +563 -0
- paddlex/repo_apis/base/register.py +135 -0
- paddlex/repo_apis/base/runner.py +390 -0
- paddlex/repo_apis/base/utils/__init__.py +13 -0
- paddlex/repo_apis/base/utils/arg.py +64 -0
- paddlex/repo_apis/base/utils/subprocess.py +107 -0
- paddlex/repo_manager/__init__.py +17 -0
- paddlex/repo_manager/core.py +253 -0
- paddlex/repo_manager/meta.py +180 -0
- paddlex/repo_manager/repo.py +425 -0
- paddlex/repo_manager/utils.py +148 -0
- paddlex/utils/__init__.py +1 -12
- paddlex/utils/cache.py +146 -0
- paddlex/utils/config.py +216 -0
- paddlex/utils/custom_device_list.py +311 -0
- paddlex/utils/deps.py +249 -0
- paddlex/utils/device.py +195 -0
- paddlex/utils/download.py +168 -182
- paddlex/utils/env.py +32 -45
- paddlex/utils/errors/__init__.py +17 -0
- paddlex/utils/errors/dataset_checker.py +78 -0
- paddlex/utils/errors/others.py +138 -0
- paddlex/utils/file_interface.py +211 -0
- paddlex/utils/flags.py +70 -0
- paddlex/utils/fonts/__init__.py +97 -0
- paddlex/utils/func_register.py +41 -0
- paddlex/utils/install.py +87 -0
- paddlex/utils/interactive_get_pipeline.py +55 -0
- paddlex/utils/lazy_loader.py +68 -0
- paddlex/utils/logging.py +140 -33
- paddlex/utils/misc.py +201 -0
- paddlex/utils/pipeline_arguments.py +719 -0
- paddlex/utils/result_saver.py +58 -0
- paddlex/utils/subclass_register.py +99 -0
- paddlex/version.py +55 -0
- paddlex-3.0.0.dist-info/METADATA +1168 -0
- paddlex-3.0.0.dist-info/RECORD +1093 -0
- paddlex-3.0.0.dist-info/WHEEL +5 -0
- paddlex-3.0.0.dist-info/entry_points.txt +2 -0
- paddlex-3.0.0.dist-info/licenses/LICENSE +169 -0
- paddlex-3.0.0.dist-info/top_level.txt +1 -0
- PaddleClas/__init__.py +0 -16
- PaddleClas/deploy/__init__.py +0 -1
- PaddleClas/deploy/paddleserving/__init__.py +0 -0
- PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
- PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
- PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
- PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
- PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
- PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
- PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
- PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
- PaddleClas/deploy/python/__init__.py +0 -0
- PaddleClas/deploy/python/build_gallery.py +0 -214
- PaddleClas/deploy/python/det_preprocess.py +0 -205
- PaddleClas/deploy/python/postprocess.py +0 -161
- PaddleClas/deploy/python/predict_cls.py +0 -142
- PaddleClas/deploy/python/predict_det.py +0 -158
- PaddleClas/deploy/python/predict_rec.py +0 -138
- PaddleClas/deploy/python/predict_system.py +0 -144
- PaddleClas/deploy/python/preprocess.py +0 -337
- PaddleClas/deploy/utils/__init__.py +0 -5
- PaddleClas/deploy/utils/config.py +0 -197
- PaddleClas/deploy/utils/draw_bbox.py +0 -61
- PaddleClas/deploy/utils/encode_decode.py +0 -31
- PaddleClas/deploy/utils/get_image_list.py +0 -49
- PaddleClas/deploy/utils/logger.py +0 -120
- PaddleClas/deploy/utils/predictor.py +0 -71
- PaddleClas/deploy/vector_search/__init__.py +0 -1
- PaddleClas/deploy/vector_search/interface.py +0 -272
- PaddleClas/deploy/vector_search/test.py +0 -34
- PaddleClas/hubconf.py +0 -788
- PaddleClas/paddleclas.py +0 -552
- PaddleClas/ppcls/__init__.py +0 -20
- PaddleClas/ppcls/arch/__init__.py +0 -127
- PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
- PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
- PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
- PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
- PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
- PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
- PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
- PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
- PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
- PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
- PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
- PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
- PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
- PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
- PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
- PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
- PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
- PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
- PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
- PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
- PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
- PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
- PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
- PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
- PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
- PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
- PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
- PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
- PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
- PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
- PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
- PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
- PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
- PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
- PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
- PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
- PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
- PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
- PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
- PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
- PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
- PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
- PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
- PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
- PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
- PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
- PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
- PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
- PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
- PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
- PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
- PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
- PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
- PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
- PaddleClas/ppcls/arch/gears/__init__.py +0 -32
- PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
- PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
- PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
- PaddleClas/ppcls/arch/gears/fc.py +0 -35
- PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
- PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
- PaddleClas/ppcls/arch/utils.py +0 -53
- PaddleClas/ppcls/data/__init__.py +0 -144
- PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
- PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
- PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
- PaddleClas/ppcls/data/dataloader/dali.py +0 -319
- PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
- PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
- PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
- PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
- PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
- PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
- PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
- PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
- PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
- PaddleClas/ppcls/data/postprocess/topk.py +0 -85
- PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
- PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
- PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
- PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
- PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
- PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
- PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
- PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
- PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
- PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
- PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
- PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
- PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
- PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
- PaddleClas/ppcls/data/utils/__init__.py +0 -13
- PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
- PaddleClas/ppcls/engine/__init__.py +0 -0
- PaddleClas/ppcls/engine/engine.py +0 -436
- PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
- PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
- PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
- PaddleClas/ppcls/engine/slim/__init__.py +0 -16
- PaddleClas/ppcls/engine/slim/prune.py +0 -66
- PaddleClas/ppcls/engine/slim/quant.py +0 -55
- PaddleClas/ppcls/engine/train/__init__.py +0 -14
- PaddleClas/ppcls/engine/train/train.py +0 -79
- PaddleClas/ppcls/engine/train/utils.py +0 -72
- PaddleClas/ppcls/loss/__init__.py +0 -65
- PaddleClas/ppcls/loss/celoss.py +0 -67
- PaddleClas/ppcls/loss/centerloss.py +0 -54
- PaddleClas/ppcls/loss/comfunc.py +0 -45
- PaddleClas/ppcls/loss/deephashloss.py +0 -92
- PaddleClas/ppcls/loss/distanceloss.py +0 -43
- PaddleClas/ppcls/loss/distillationloss.py +0 -141
- PaddleClas/ppcls/loss/dmlloss.py +0 -46
- PaddleClas/ppcls/loss/emlloss.py +0 -97
- PaddleClas/ppcls/loss/googlenetloss.py +0 -41
- PaddleClas/ppcls/loss/msmloss.py +0 -78
- PaddleClas/ppcls/loss/multilabelloss.py +0 -43
- PaddleClas/ppcls/loss/npairsloss.py +0 -38
- PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
- PaddleClas/ppcls/loss/supconloss.py +0 -108
- PaddleClas/ppcls/loss/trihardloss.py +0 -82
- PaddleClas/ppcls/loss/triplet.py +0 -137
- PaddleClas/ppcls/metric/__init__.py +0 -51
- PaddleClas/ppcls/metric/metrics.py +0 -308
- PaddleClas/ppcls/optimizer/__init__.py +0 -72
- PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
- PaddleClas/ppcls/optimizer/optimizer.py +0 -207
- PaddleClas/ppcls/utils/__init__.py +0 -27
- PaddleClas/ppcls/utils/check.py +0 -151
- PaddleClas/ppcls/utils/config.py +0 -210
- PaddleClas/ppcls/utils/download.py +0 -319
- PaddleClas/ppcls/utils/ema.py +0 -63
- PaddleClas/ppcls/utils/logger.py +0 -137
- PaddleClas/ppcls/utils/metrics.py +0 -107
- PaddleClas/ppcls/utils/misc.py +0 -63
- PaddleClas/ppcls/utils/model_zoo.py +0 -213
- PaddleClas/ppcls/utils/profiler.py +0 -111
- PaddleClas/ppcls/utils/save_load.py +0 -136
- PaddleClas/setup.py +0 -58
- PaddleClas/tools/__init__.py +0 -15
- PaddleClas/tools/eval.py +0 -31
- PaddleClas/tools/export_model.py +0 -34
- PaddleClas/tools/infer.py +0 -31
- PaddleClas/tools/train.py +0 -32
- paddlex/cls.py +0 -82
- paddlex/command.py +0 -215
- paddlex/cv/__init__.py +0 -17
- paddlex/cv/datasets/__init__.py +0 -18
- paddlex/cv/datasets/coco.py +0 -208
- paddlex/cv/datasets/imagenet.py +0 -88
- paddlex/cv/datasets/seg_dataset.py +0 -91
- paddlex/cv/datasets/voc.py +0 -445
- paddlex/cv/models/__init__.py +0 -18
- paddlex/cv/models/base.py +0 -631
- paddlex/cv/models/classifier.py +0 -989
- paddlex/cv/models/detector.py +0 -2292
- paddlex/cv/models/load_model.py +0 -148
- paddlex/cv/models/segmenter.py +0 -768
- paddlex/cv/models/slim/__init__.py +0 -13
- paddlex/cv/models/slim/prune.py +0 -55
- paddlex/cv/models/utils/__init__.py +0 -13
- paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
- paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
- paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
- paddlex/cv/models/utils/infer_nets.py +0 -45
- paddlex/cv/models/utils/seg_metrics.py +0 -62
- paddlex/cv/models/utils/visualize.py +0 -399
- paddlex/cv/transforms/__init__.py +0 -46
- paddlex/cv/transforms/batch_operators.py +0 -286
- paddlex/cv/transforms/box_utils.py +0 -41
- paddlex/cv/transforms/functions.py +0 -193
- paddlex/cv/transforms/operators.py +0 -1402
- paddlex/deploy.py +0 -268
- paddlex/det.py +0 -49
- paddlex/paddleseg/__init__.py +0 -17
- paddlex/paddleseg/core/__init__.py +0 -20
- paddlex/paddleseg/core/infer.py +0 -289
- paddlex/paddleseg/core/predict.py +0 -145
- paddlex/paddleseg/core/train.py +0 -258
- paddlex/paddleseg/core/val.py +0 -172
- paddlex/paddleseg/cvlibs/__init__.py +0 -17
- paddlex/paddleseg/cvlibs/callbacks.py +0 -279
- paddlex/paddleseg/cvlibs/config.py +0 -359
- paddlex/paddleseg/cvlibs/manager.py +0 -142
- paddlex/paddleseg/cvlibs/param_init.py +0 -91
- paddlex/paddleseg/datasets/__init__.py +0 -21
- paddlex/paddleseg/datasets/ade.py +0 -112
- paddlex/paddleseg/datasets/cityscapes.py +0 -86
- paddlex/paddleseg/datasets/cocostuff.py +0 -79
- paddlex/paddleseg/datasets/dataset.py +0 -164
- paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
- paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
- paddlex/paddleseg/datasets/pascal_context.py +0 -80
- paddlex/paddleseg/datasets/voc.py +0 -113
- paddlex/paddleseg/models/__init__.py +0 -39
- paddlex/paddleseg/models/ann.py +0 -436
- paddlex/paddleseg/models/attention_unet.py +0 -189
- paddlex/paddleseg/models/backbones/__init__.py +0 -18
- paddlex/paddleseg/models/backbones/hrnet.py +0 -815
- paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
- paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
- paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
- paddlex/paddleseg/models/bisenet.py +0 -311
- paddlex/paddleseg/models/danet.py +0 -220
- paddlex/paddleseg/models/decoupled_segnet.py +0 -233
- paddlex/paddleseg/models/deeplab.py +0 -258
- paddlex/paddleseg/models/dnlnet.py +0 -231
- paddlex/paddleseg/models/emanet.py +0 -219
- paddlex/paddleseg/models/fast_scnn.py +0 -318
- paddlex/paddleseg/models/fcn.py +0 -135
- paddlex/paddleseg/models/gcnet.py +0 -223
- paddlex/paddleseg/models/gscnn.py +0 -357
- paddlex/paddleseg/models/hardnet.py +0 -309
- paddlex/paddleseg/models/isanet.py +0 -202
- paddlex/paddleseg/models/layers/__init__.py +0 -19
- paddlex/paddleseg/models/layers/activation.py +0 -73
- paddlex/paddleseg/models/layers/attention.py +0 -146
- paddlex/paddleseg/models/layers/layer_libs.py +0 -168
- paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
- paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
- paddlex/paddleseg/models/losses/__init__.py +0 -27
- paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
- paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
- paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
- paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
- paddlex/paddleseg/models/losses/dice_loss.py +0 -61
- paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
- paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
- paddlex/paddleseg/models/losses/l1_loss.py +0 -76
- paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
- paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
- paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
- paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
- paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
- paddlex/paddleseg/models/ocrnet.py +0 -248
- paddlex/paddleseg/models/pspnet.py +0 -147
- paddlex/paddleseg/models/sfnet.py +0 -236
- paddlex/paddleseg/models/shufflenet_slim.py +0 -268
- paddlex/paddleseg/models/u2net.py +0 -574
- paddlex/paddleseg/models/unet.py +0 -155
- paddlex/paddleseg/models/unet_3plus.py +0 -316
- paddlex/paddleseg/models/unet_plusplus.py +0 -237
- paddlex/paddleseg/transforms/__init__.py +0 -16
- paddlex/paddleseg/transforms/functional.py +0 -161
- paddlex/paddleseg/transforms/transforms.py +0 -937
- paddlex/paddleseg/utils/__init__.py +0 -22
- paddlex/paddleseg/utils/config_check.py +0 -60
- paddlex/paddleseg/utils/download.py +0 -163
- paddlex/paddleseg/utils/env/__init__.py +0 -16
- paddlex/paddleseg/utils/env/seg_env.py +0 -56
- paddlex/paddleseg/utils/env/sys_env.py +0 -122
- paddlex/paddleseg/utils/logger.py +0 -48
- paddlex/paddleseg/utils/metrics.py +0 -146
- paddlex/paddleseg/utils/progbar.py +0 -212
- paddlex/paddleseg/utils/timer.py +0 -53
- paddlex/paddleseg/utils/utils.py +0 -120
- paddlex/paddleseg/utils/visualize.py +0 -90
- paddlex/ppcls/__init__.py +0 -20
- paddlex/ppcls/arch/__init__.py +0 -127
- paddlex/ppcls/arch/backbone/__init__.py +0 -80
- paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
- paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
- paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
- paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
- paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
- paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
- paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
- paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
- paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
- paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
- paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
- paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
- paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
- paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
- paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
- paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
- paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
- paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
- paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
- paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
- paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
- paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
- paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
- paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
- paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
- paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
- paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
- paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
- paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
- paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
- paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
- paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
- paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
- paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
- paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
- paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
- paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
- paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
- paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
- paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
- paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
- paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
- paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
- paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
- paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
- paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
- paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
- paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
- paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
- paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
- paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
- paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
- paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
- paddlex/ppcls/arch/gears/__init__.py +0 -32
- paddlex/ppcls/arch/gears/arcmargin.py +0 -72
- paddlex/ppcls/arch/gears/circlemargin.py +0 -59
- paddlex/ppcls/arch/gears/cosmargin.py +0 -55
- paddlex/ppcls/arch/gears/fc.py +0 -35
- paddlex/ppcls/arch/gears/identity_head.py +0 -9
- paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
- paddlex/ppcls/arch/utils.py +0 -53
- paddlex/ppcls/data/__init__.py +0 -144
- paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
- paddlex/ppcls/data/dataloader/__init__.py +0 -9
- paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
- paddlex/ppcls/data/dataloader/dali.py +0 -319
- paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
- paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
- paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
- paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
- paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
- paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
- paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
- paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
- paddlex/ppcls/data/postprocess/__init__.py +0 -41
- paddlex/ppcls/data/postprocess/topk.py +0 -85
- paddlex/ppcls/data/preprocess/__init__.py +0 -100
- paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
- paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
- paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
- paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
- paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
- paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
- paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
- paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
- paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
- paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
- paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
- paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
- paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
- paddlex/ppcls/data/utils/__init__.py +0 -13
- paddlex/ppcls/data/utils/get_image_list.py +0 -49
- paddlex/ppcls/engine/__init__.py +0 -0
- paddlex/ppcls/engine/engine.py +0 -436
- paddlex/ppcls/engine/evaluation/__init__.py +0 -16
- paddlex/ppcls/engine/evaluation/classification.py +0 -143
- paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
- paddlex/ppcls/engine/slim/__init__.py +0 -16
- paddlex/ppcls/engine/slim/prune.py +0 -66
- paddlex/ppcls/engine/slim/quant.py +0 -55
- paddlex/ppcls/engine/train/__init__.py +0 -14
- paddlex/ppcls/engine/train/train.py +0 -79
- paddlex/ppcls/engine/train/utils.py +0 -72
- paddlex/ppcls/loss/__init__.py +0 -65
- paddlex/ppcls/loss/celoss.py +0 -67
- paddlex/ppcls/loss/centerloss.py +0 -54
- paddlex/ppcls/loss/comfunc.py +0 -45
- paddlex/ppcls/loss/deephashloss.py +0 -96
- paddlex/ppcls/loss/distanceloss.py +0 -43
- paddlex/ppcls/loss/distillationloss.py +0 -141
- paddlex/ppcls/loss/dmlloss.py +0 -46
- paddlex/ppcls/loss/emlloss.py +0 -97
- paddlex/ppcls/loss/googlenetloss.py +0 -42
- paddlex/ppcls/loss/msmloss.py +0 -78
- paddlex/ppcls/loss/multilabelloss.py +0 -43
- paddlex/ppcls/loss/npairsloss.py +0 -38
- paddlex/ppcls/loss/pairwisecosface.py +0 -59
- paddlex/ppcls/loss/supconloss.py +0 -108
- paddlex/ppcls/loss/trihardloss.py +0 -82
- paddlex/ppcls/loss/triplet.py +0 -137
- paddlex/ppcls/metric/__init__.py +0 -51
- paddlex/ppcls/metric/metrics.py +0 -308
- paddlex/ppcls/optimizer/__init__.py +0 -72
- paddlex/ppcls/optimizer/learning_rate.py +0 -326
- paddlex/ppcls/optimizer/optimizer.py +0 -208
- paddlex/ppcls/utils/__init__.py +0 -27
- paddlex/ppcls/utils/check.py +0 -151
- paddlex/ppcls/utils/config.py +0 -210
- paddlex/ppcls/utils/download.py +0 -319
- paddlex/ppcls/utils/ema.py +0 -63
- paddlex/ppcls/utils/logger.py +0 -137
- paddlex/ppcls/utils/metrics.py +0 -112
- paddlex/ppcls/utils/misc.py +0 -63
- paddlex/ppcls/utils/model_zoo.py +0 -213
- paddlex/ppcls/utils/profiler.py +0 -111
- paddlex/ppcls/utils/save_load.py +0 -136
- paddlex/ppdet/__init__.py +0 -16
- paddlex/ppdet/core/__init__.py +0 -15
- paddlex/ppdet/core/config/__init__.py +0 -13
- paddlex/ppdet/core/config/schema.py +0 -248
- paddlex/ppdet/core/config/yaml_helpers.py +0 -118
- paddlex/ppdet/core/workspace.py +0 -278
- paddlex/ppdet/data/__init__.py +0 -21
- paddlex/ppdet/data/crop_utils/__init__.py +0 -13
- paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
- paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
- paddlex/ppdet/data/reader.py +0 -302
- paddlex/ppdet/data/shm_utils.py +0 -67
- paddlex/ppdet/data/source/__init__.py +0 -29
- paddlex/ppdet/data/source/category.py +0 -904
- paddlex/ppdet/data/source/coco.py +0 -251
- paddlex/ppdet/data/source/dataset.py +0 -197
- paddlex/ppdet/data/source/keypoint_coco.py +0 -669
- paddlex/ppdet/data/source/mot.py +0 -636
- paddlex/ppdet/data/source/sniper_coco.py +0 -191
- paddlex/ppdet/data/source/voc.py +0 -231
- paddlex/ppdet/data/source/widerface.py +0 -180
- paddlex/ppdet/data/transform/__init__.py +0 -28
- paddlex/ppdet/data/transform/atss_assigner.py +0 -270
- paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
- paddlex/ppdet/data/transform/batch_operators.py +0 -1080
- paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
- paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
- paddlex/ppdet/data/transform/mot_operators.py +0 -628
- paddlex/ppdet/data/transform/op_helper.py +0 -498
- paddlex/ppdet/data/transform/operators.py +0 -3025
- paddlex/ppdet/engine/__init__.py +0 -30
- paddlex/ppdet/engine/callbacks.py +0 -340
- paddlex/ppdet/engine/env.py +0 -50
- paddlex/ppdet/engine/export_utils.py +0 -177
- paddlex/ppdet/engine/tracker.py +0 -538
- paddlex/ppdet/engine/trainer.py +0 -723
- paddlex/ppdet/metrics/__init__.py +0 -29
- paddlex/ppdet/metrics/coco_utils.py +0 -184
- paddlex/ppdet/metrics/json_results.py +0 -149
- paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
- paddlex/ppdet/metrics/map_utils.py +0 -444
- paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
- paddlex/ppdet/metrics/metrics.py +0 -434
- paddlex/ppdet/metrics/mot_metrics.py +0 -1236
- paddlex/ppdet/metrics/munkres.py +0 -428
- paddlex/ppdet/metrics/widerface_utils.py +0 -393
- paddlex/ppdet/model_zoo/__init__.py +0 -18
- paddlex/ppdet/model_zoo/model_zoo.py +0 -84
- paddlex/ppdet/modeling/__init__.py +0 -45
- paddlex/ppdet/modeling/architectures/__init__.py +0 -51
- paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
- paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
- paddlex/ppdet/modeling/architectures/centernet.py +0 -108
- paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
- paddlex/ppdet/modeling/architectures/detr.py +0 -93
- paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
- paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
- paddlex/ppdet/modeling/architectures/fcos.py +0 -105
- paddlex/ppdet/modeling/architectures/gfl.py +0 -87
- paddlex/ppdet/modeling/architectures/jde.py +0 -111
- paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
- paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
- paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
- paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
- paddlex/ppdet/modeling/architectures/picodet.py +0 -91
- paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
- paddlex/ppdet/modeling/architectures/solov2.py +0 -110
- paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
- paddlex/ppdet/modeling/architectures/ssd.py +0 -93
- paddlex/ppdet/modeling/architectures/tood.py +0 -78
- paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
- paddlex/ppdet/modeling/architectures/yolo.py +0 -124
- paddlex/ppdet/modeling/assigners/__init__.py +0 -23
- paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
- paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
- paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
- paddlex/ppdet/modeling/assigners/utils.py +0 -195
- paddlex/ppdet/modeling/backbones/__init__.py +0 -49
- paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
- paddlex/ppdet/modeling/backbones/darknet.py +0 -340
- paddlex/ppdet/modeling/backbones/dla.py +0 -244
- paddlex/ppdet/modeling/backbones/esnet.py +0 -290
- paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
- paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
- paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
- paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
- paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
- paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
- paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
- paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
- paddlex/ppdet/modeling/backbones/res2net.py +0 -358
- paddlex/ppdet/modeling/backbones/resnet.py +0 -613
- paddlex/ppdet/modeling/backbones/senet.py +0 -139
- paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
- paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
- paddlex/ppdet/modeling/backbones/vgg.py +0 -210
- paddlex/ppdet/modeling/bbox_utils.py +0 -778
- paddlex/ppdet/modeling/heads/__init__.py +0 -53
- paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
- paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
- paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
- paddlex/ppdet/modeling/heads/detr_head.py +0 -368
- paddlex/ppdet/modeling/heads/face_head.py +0 -110
- paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
- paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
- paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
- paddlex/ppdet/modeling/heads/mask_head.py +0 -250
- paddlex/ppdet/modeling/heads/pico_head.py +0 -278
- paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
- paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
- paddlex/ppdet/modeling/heads/simota_head.py +0 -506
- paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
- paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
- paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
- paddlex/ppdet/modeling/heads/tood_head.py +0 -366
- paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
- paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
- paddlex/ppdet/modeling/initializer.py +0 -317
- paddlex/ppdet/modeling/keypoint_utils.py +0 -342
- paddlex/ppdet/modeling/layers.py +0 -1430
- paddlex/ppdet/modeling/losses/__init__.py +0 -43
- paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
- paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
- paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
- paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
- paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
- paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
- paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
- paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
- paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
- paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
- paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
- paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
- paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
- paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
- paddlex/ppdet/modeling/mot/__init__.py +0 -25
- paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
- paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
- paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
- paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
- paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
- paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
- paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
- paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
- paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
- paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
- paddlex/ppdet/modeling/mot/utils.py +0 -263
- paddlex/ppdet/modeling/mot/visualization.py +0 -150
- paddlex/ppdet/modeling/necks/__init__.py +0 -30
- paddlex/ppdet/modeling/necks/bifpn.py +0 -302
- paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
- paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
- paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
- paddlex/ppdet/modeling/necks/fpn.py +0 -231
- paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
- paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
- paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
- paddlex/ppdet/modeling/ops.py +0 -1611
- paddlex/ppdet/modeling/post_process.py +0 -731
- paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
- paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
- paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
- paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
- paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
- paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
- paddlex/ppdet/modeling/reid/__init__.py +0 -25
- paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
- paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
- paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
- paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
- paddlex/ppdet/modeling/reid/resnet.py +0 -310
- paddlex/ppdet/modeling/shape_spec.py +0 -25
- paddlex/ppdet/modeling/transformers/__init__.py +0 -25
- paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
- paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
- paddlex/ppdet/modeling/transformers/matchers.py +0 -127
- paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
- paddlex/ppdet/modeling/transformers/utils.py +0 -110
- paddlex/ppdet/optimizer.py +0 -335
- paddlex/ppdet/slim/__init__.py +0 -82
- paddlex/ppdet/slim/distill.py +0 -110
- paddlex/ppdet/slim/prune.py +0 -85
- paddlex/ppdet/slim/quant.py +0 -84
- paddlex/ppdet/slim/unstructured_prune.py +0 -66
- paddlex/ppdet/utils/__init__.py +0 -13
- paddlex/ppdet/utils/check.py +0 -112
- paddlex/ppdet/utils/checkpoint.py +0 -226
- paddlex/ppdet/utils/cli.py +0 -151
- paddlex/ppdet/utils/colormap.py +0 -58
- paddlex/ppdet/utils/download.py +0 -558
- paddlex/ppdet/utils/logger.py +0 -70
- paddlex/ppdet/utils/profiler.py +0 -111
- paddlex/ppdet/utils/stats.py +0 -94
- paddlex/ppdet/utils/visualizer.py +0 -321
- paddlex/ppdet/utils/voc_utils.py +0 -86
- paddlex/seg.py +0 -41
- paddlex/tools/__init__.py +0 -17
- paddlex/tools/anchor_clustering/__init__.py +0 -15
- paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
- paddlex/tools/convert.py +0 -52
- paddlex/tools/dataset_conversion/__init__.py +0 -24
- paddlex/tools/dataset_conversion/x2coco.py +0 -379
- paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
- paddlex/tools/dataset_conversion/x2seg.py +0 -343
- paddlex/tools/dataset_conversion/x2voc.py +0 -230
- paddlex/tools/dataset_split/__init__.py +0 -23
- paddlex/tools/dataset_split/coco_split.py +0 -69
- paddlex/tools/dataset_split/imagenet_split.py +0 -75
- paddlex/tools/dataset_split/seg_split.py +0 -96
- paddlex/tools/dataset_split/utils.py +0 -75
- paddlex/tools/dataset_split/voc_split.py +0 -91
- paddlex/tools/split.py +0 -41
- paddlex/utils/checkpoint.py +0 -492
- paddlex/utils/shm.py +0 -67
- paddlex/utils/stats.py +0 -68
- paddlex/utils/utils.py +0 -229
- paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
- paddlex-2.1.0.dist-info/LICENSE +0 -201
- paddlex-2.1.0.dist-info/METADATA +0 -32
- paddlex-2.1.0.dist-info/RECORD +0 -698
- paddlex-2.1.0.dist-info/WHEEL +0 -5
- paddlex-2.1.0.dist-info/entry_points.txt +0 -4
- paddlex-2.1.0.dist-info/top_level.txt +0 -3
- paddlex_restful/__init__.py +0 -15
- paddlex_restful/command.py +0 -63
- paddlex_restful/restful/__init__.py +0 -15
- paddlex_restful/restful/app.py +0 -969
- paddlex_restful/restful/dataset/__init__.py +0 -13
- paddlex_restful/restful/dataset/cls_dataset.py +0 -159
- paddlex_restful/restful/dataset/dataset.py +0 -266
- paddlex_restful/restful/dataset/datasetbase.py +0 -86
- paddlex_restful/restful/dataset/det_dataset.py +0 -190
- paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
- paddlex_restful/restful/dataset/operate.py +0 -155
- paddlex_restful/restful/dataset/seg_dataset.py +0 -222
- paddlex_restful/restful/dataset/utils.py +0 -267
- paddlex_restful/restful/demo.py +0 -202
- paddlex_restful/restful/dir.py +0 -45
- paddlex_restful/restful/model.py +0 -312
- paddlex_restful/restful/project/__init__.py +0 -13
- paddlex_restful/restful/project/evaluate/__init__.py +0 -13
- paddlex_restful/restful/project/evaluate/classification.py +0 -126
- paddlex_restful/restful/project/evaluate/detection.py +0 -789
- paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
- paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
- paddlex_restful/restful/project/operate.py +0 -931
- paddlex_restful/restful/project/project.py +0 -143
- paddlex_restful/restful/project/prune/__init__.py +0 -13
- paddlex_restful/restful/project/prune/classification.py +0 -32
- paddlex_restful/restful/project/prune/detection.py +0 -48
- paddlex_restful/restful/project/prune/segmentation.py +0 -34
- paddlex_restful/restful/project/task.py +0 -884
- paddlex_restful/restful/project/train/__init__.py +0 -13
- paddlex_restful/restful/project/train/classification.py +0 -141
- paddlex_restful/restful/project/train/detection.py +0 -263
- paddlex_restful/restful/project/train/params.py +0 -432
- paddlex_restful/restful/project/train/params_v2.py +0 -326
- paddlex_restful/restful/project/train/segmentation.py +0 -191
- paddlex_restful/restful/project/visualize.py +0 -244
- paddlex_restful/restful/system.py +0 -102
- paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
- paddlex_restful/restful/utils.py +0 -841
- paddlex_restful/restful/workspace.py +0 -343
- paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -0,0 +1,3006 @@
|
|
1
|
+
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from dataclasses import dataclass
|
17
|
+
from functools import partial
|
18
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
19
|
+
|
20
|
+
import paddle
|
21
|
+
import paddle.distributed.fleet.meta_parallel as mpu
|
22
|
+
import paddle.nn.functional as F
|
23
|
+
from paddle import Tensor, nn
|
24
|
+
from paddle.distributed import fleet
|
25
|
+
from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
|
26
|
+
from paddle.distributed.fleet.utils import recompute
|
27
|
+
|
28
|
+
from .....utils import logging
|
29
|
+
from .....utils.env import get_device_type
|
30
|
+
from ...common.vlm.activations import ACT2FN
|
31
|
+
from ...common.vlm.bert_padding import index_first_axis, pad_input, unpad_input
|
32
|
+
from ...common.vlm.flash_attn_utils import has_flash_attn_func
|
33
|
+
from ...common.vlm.transformers import PretrainedConfig, PretrainedModel
|
34
|
+
from ...common.vlm.transformers.model_outputs import (
|
35
|
+
BaseModelOutputWithPast,
|
36
|
+
ModelOutput,
|
37
|
+
)
|
38
|
+
|
39
|
+
|
40
|
+
class Qwen2_5_VLVisionConfig(PretrainedConfig):
|
41
|
+
model_type = "qwen2_5_vl"
|
42
|
+
base_config_key = "vision_config"
|
43
|
+
|
44
|
+
def __init__(
|
45
|
+
self,
|
46
|
+
depth=32,
|
47
|
+
hidden_size=3584,
|
48
|
+
hidden_act="silu",
|
49
|
+
intermediate_size=3420,
|
50
|
+
num_heads=16,
|
51
|
+
in_channels=3,
|
52
|
+
patch_size=14,
|
53
|
+
spatial_merge_size=2,
|
54
|
+
temporal_patch_size=2,
|
55
|
+
tokens_per_second=4,
|
56
|
+
window_size=112,
|
57
|
+
out_hidden_size=3584,
|
58
|
+
fullatt_block_indexes=[7, 15, 23, 31],
|
59
|
+
**kwargs,
|
60
|
+
):
|
61
|
+
super().__init__(**kwargs)
|
62
|
+
self.depth = depth
|
63
|
+
self.hidden_size = hidden_size
|
64
|
+
self.hidden_act = hidden_act
|
65
|
+
self.intermediate_size = intermediate_size
|
66
|
+
self.num_heads = num_heads
|
67
|
+
self.in_channels = in_channels
|
68
|
+
self.patch_size = patch_size
|
69
|
+
self.spatial_merge_size = spatial_merge_size
|
70
|
+
self.temporal_patch_size = temporal_patch_size
|
71
|
+
self.tokens_per_second = tokens_per_second
|
72
|
+
self.window_size = window_size
|
73
|
+
self.fullatt_block_indexes = fullatt_block_indexes
|
74
|
+
self.out_hidden_size = out_hidden_size
|
75
|
+
|
76
|
+
|
77
|
+
class Qwen2_5_VLConfig(PretrainedConfig):
|
78
|
+
"""
|
79
|
+
This is the configuration class to store the configuration of a [`Qwen2_5_VLModel`]. It is used to instantiate a
|
80
|
+
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
81
|
+
with the defaults will yield a similar configuration to that of
|
82
|
+
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
83
|
+
|
84
|
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
85
|
+
documentation from [`PretrainedConfig`] for more information.
|
86
|
+
|
87
|
+
|
88
|
+
Args:
|
89
|
+
vocab_size (`int`, *optional*, defaults to 152064):
|
90
|
+
Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
|
91
|
+
`inputs_ids` passed when calling [`Qwen2_5_VLModel`]
|
92
|
+
hidden_size (`int`, *optional*, defaults to 8192):
|
93
|
+
Dimension of the hidden representations.
|
94
|
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
95
|
+
Dimension of the MLP representations.
|
96
|
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
97
|
+
Number of hidden layers in the Transformer encoder.
|
98
|
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
99
|
+
Number of attention heads for each attention layer in the Transformer encoder.
|
100
|
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
101
|
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
102
|
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
103
|
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
104
|
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
105
|
+
by meanpooling all the original heads within that group. For more details checkout [this
|
106
|
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
107
|
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
108
|
+
The non-linear activation function (function or string) in the decoder.
|
109
|
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
110
|
+
The maximum sequence length that this model might ever be used with.
|
111
|
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
112
|
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
113
|
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
114
|
+
The epsilon used by the rms normalization layers.
|
115
|
+
use_cache (`bool`, *optional*, defaults to `True`):
|
116
|
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
117
|
+
relevant if `config.is_decoder=True`.
|
118
|
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
119
|
+
Whether the model's input and output word embeddings should be tied.
|
120
|
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
121
|
+
The base period of the RoPE embeddings.
|
122
|
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
123
|
+
Whether to use sliding window attention.
|
124
|
+
sliding_window (`int`, *optional*, defaults to 4096):
|
125
|
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
126
|
+
max_window_layers (`int`, *optional*, defaults to 80):
|
127
|
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
128
|
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
129
|
+
The dropout ratio for the attention probabilities.
|
130
|
+
vision_config (`Dict`, *optional*):
|
131
|
+
The config for the visual encoder initialization.
|
132
|
+
rope_scaling (`Dict`, *optional*):
|
133
|
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
134
|
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
135
|
+
accordingly.
|
136
|
+
Expected contents:
|
137
|
+
`rope_type` (`str`):
|
138
|
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
139
|
+
'llama3'], with 'default' being the original RoPE implementation.
|
140
|
+
`factor` (`float`, *optional*):
|
141
|
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
142
|
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
143
|
+
original maximum pre-trained length.
|
144
|
+
`original_max_position_embeddings` (`int`, *optional*):
|
145
|
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
146
|
+
pretraining.
|
147
|
+
`attention_factor` (`float`, *optional*):
|
148
|
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
149
|
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
150
|
+
`factor` field to infer the suggested value.
|
151
|
+
`beta_fast` (`float`, *optional*):
|
152
|
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
153
|
+
ramp function. If unspecified, it defaults to 32.
|
154
|
+
`beta_slow` (`float`, *optional*):
|
155
|
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
156
|
+
ramp function. If unspecified, it defaults to 1.
|
157
|
+
`short_factor` (`List[float]`, *optional*):
|
158
|
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
159
|
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
160
|
+
size divided by the number of attention heads divided by 2
|
161
|
+
`long_factor` (`List[float]`, *optional*):
|
162
|
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
163
|
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
164
|
+
size divided by the number of attention heads divided by 2
|
165
|
+
`low_freq_factor` (`float`, *optional*):
|
166
|
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
167
|
+
`high_freq_factor` (`float`, *optional*):
|
168
|
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
169
|
+
|
170
|
+
```python
|
171
|
+
>>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
|
172
|
+
|
173
|
+
>>> # Initializing a Qwen2_5_VL style configuration
|
174
|
+
>>> configuration = Qwen2_5_VLConfig()
|
175
|
+
|
176
|
+
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
177
|
+
>>> model = Qwen2_5_VLForConditionalGeneration(configuration)
|
178
|
+
|
179
|
+
>>> # Accessing the model configuration
|
180
|
+
>>> configuration = model.config
|
181
|
+
```"""
|
182
|
+
|
183
|
+
model_type = "qwen2_5_vl"
|
184
|
+
sub_configs = {"vision_config": Qwen2_5_VLVisionConfig}
|
185
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
186
|
+
base_model_tp_plan = {
|
187
|
+
"layers.*.self_attn.q_proj": "colwise",
|
188
|
+
"layers.*.self_attn.k_proj": "colwise",
|
189
|
+
"layers.*.self_attn.v_proj": "colwise",
|
190
|
+
"layers.*.self_attn.o_proj": "rowwise",
|
191
|
+
"layers.*.mlp.gate_proj": "colwise",
|
192
|
+
"layers.*.mlp.up_proj": "colwise",
|
193
|
+
"layers.*.mlp.down_proj": "rowwise",
|
194
|
+
}
|
195
|
+
|
196
|
+
def __init__(
|
197
|
+
self,
|
198
|
+
vocab_size=152064,
|
199
|
+
hidden_size=8192,
|
200
|
+
intermediate_size=29568,
|
201
|
+
num_hidden_layers=80,
|
202
|
+
num_attention_heads=64,
|
203
|
+
num_key_value_heads=8,
|
204
|
+
hidden_act="silu",
|
205
|
+
max_position_embeddings=32768,
|
206
|
+
initializer_range=0.02,
|
207
|
+
rms_norm_eps=1e-05,
|
208
|
+
use_cache=True,
|
209
|
+
tie_word_embeddings=False,
|
210
|
+
rope_theta=1000000.0,
|
211
|
+
use_sliding_window=False,
|
212
|
+
sliding_window=4096,
|
213
|
+
max_window_layers=80,
|
214
|
+
attention_dropout=0.0,
|
215
|
+
vision_config=None,
|
216
|
+
rope_scaling=None,
|
217
|
+
**kwargs,
|
218
|
+
):
|
219
|
+
if isinstance(vision_config, dict):
|
220
|
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
221
|
+
elif vision_config is None:
|
222
|
+
self.vision_config = self.sub_configs["vision_config"]()
|
223
|
+
self.vocab_size = vocab_size
|
224
|
+
self.max_position_embeddings = max_position_embeddings
|
225
|
+
self.hidden_size = hidden_size
|
226
|
+
self.intermediate_size = intermediate_size
|
227
|
+
self.num_hidden_layers = num_hidden_layers
|
228
|
+
self.num_attention_heads = num_attention_heads
|
229
|
+
self.use_sliding_window = use_sliding_window
|
230
|
+
self.sliding_window = sliding_window
|
231
|
+
self.max_window_layers = max_window_layers
|
232
|
+
if num_key_value_heads is None:
|
233
|
+
num_key_value_heads = num_attention_heads
|
234
|
+
self.num_key_value_heads = num_key_value_heads
|
235
|
+
self.hidden_act = hidden_act
|
236
|
+
self.initializer_range = initializer_range
|
237
|
+
self.rms_norm_eps = rms_norm_eps
|
238
|
+
self.use_cache = use_cache
|
239
|
+
self.rope_theta = rope_theta
|
240
|
+
self.attention_dropout = attention_dropout
|
241
|
+
self.rope_scaling = rope_scaling
|
242
|
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
243
|
+
if self.rope_scaling["type"] == "mrope":
|
244
|
+
self.rope_scaling["type"] = "default"
|
245
|
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
246
|
+
|
247
|
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
248
|
+
|
249
|
+
|
250
|
+
flash_attn_func, flash_attn_varlen_func = has_flash_attn_func()
|
251
|
+
|
252
|
+
Linear = nn.Linear
|
253
|
+
ColumnParallelLinear = mpu.ColumnParallelLinear
|
254
|
+
RowParallelLinear = mpu.RowParallelLinear
|
255
|
+
|
256
|
+
|
257
|
+
def get_triangle_upper_mask(x, mask=None):
|
258
|
+
if mask is not None:
|
259
|
+
return mask
|
260
|
+
shape = x.shape
|
261
|
+
shape[1] = 1
|
262
|
+
mask = paddle.full(shape, paddle.finfo(x.dtype).min, dtype=x.dtype)
|
263
|
+
mask = paddle.triu(mask, diagonal=1)
|
264
|
+
mask.stop_gradient = True
|
265
|
+
return mask
|
266
|
+
|
267
|
+
|
268
|
+
def parallel_matmul(
|
269
|
+
x: Tensor, y: Tensor, transpose_y=True, tensor_parallel_output=True
|
270
|
+
):
|
271
|
+
is_fleet_init = True
|
272
|
+
tensor_parallel_degree = 1
|
273
|
+
try:
|
274
|
+
hcg = fleet.get_hybrid_communicate_group()
|
275
|
+
model_parallel_group = hcg.get_model_parallel_group()
|
276
|
+
tensor_parallel_degree = hcg.get_model_parallel_world_size()
|
277
|
+
except:
|
278
|
+
is_fleet_init = False
|
279
|
+
|
280
|
+
if paddle.in_dynamic_mode():
|
281
|
+
y_is_distributed = y.is_distributed
|
282
|
+
else:
|
283
|
+
y_is_distributed = tensor_parallel_degree > 1
|
284
|
+
|
285
|
+
if is_fleet_init and tensor_parallel_degree > 1 and y_is_distributed:
|
286
|
+
|
287
|
+
input_parallel = paddle.distributed.collective._c_identity(
|
288
|
+
x, group=model_parallel_group
|
289
|
+
)
|
290
|
+
logits = paddle.matmul(input_parallel, y, transpose_y=transpose_y)
|
291
|
+
|
292
|
+
if tensor_parallel_output:
|
293
|
+
return logits
|
294
|
+
return paddle.distributed.collective._c_concat(
|
295
|
+
logits, group=model_parallel_group
|
296
|
+
)
|
297
|
+
|
298
|
+
else:
|
299
|
+
logits = paddle.matmul(x, y, transpose_y=transpose_y)
|
300
|
+
return logits
|
301
|
+
|
302
|
+
|
303
|
+
def _compute_default_rope_parameters(
|
304
|
+
config: Optional[PretrainedConfig] = None,
|
305
|
+
device: Optional["paddle.device"] = None,
|
306
|
+
seq_len: Optional[int] = None,
|
307
|
+
**rope_kwargs,
|
308
|
+
) -> Tuple["paddle.Tensor", float]:
|
309
|
+
"""
|
310
|
+
Computes the inverse frequencies according to the original RoPE implementation
|
311
|
+
Args:
|
312
|
+
config ([`~transformers.PretrainedConfig`]):
|
313
|
+
The model configuration.
|
314
|
+
device (`paddle.device`):
|
315
|
+
The device to use for initialization of the inverse frequencies.
|
316
|
+
seq_len (`int`, *optional*):
|
317
|
+
The current sequence length. Unused for this type of RoPE.
|
318
|
+
rope_kwargs (`Dict`, *optional*):
|
319
|
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
320
|
+
Returns:
|
321
|
+
Tuple of (`paddle.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
322
|
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
323
|
+
"""
|
324
|
+
if config is not None and len(rope_kwargs) > 0:
|
325
|
+
raise ValueError(
|
326
|
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
327
|
+
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
328
|
+
)
|
329
|
+
if len(rope_kwargs) > 0:
|
330
|
+
base = rope_kwargs["base"]
|
331
|
+
dim = rope_kwargs["dim"]
|
332
|
+
elif config is not None:
|
333
|
+
base = config.rope_theta
|
334
|
+
partial_rotary_factor = (
|
335
|
+
config.partial_rotary_factor
|
336
|
+
if hasattr(config, "partial_rotary_factor")
|
337
|
+
else 1.0
|
338
|
+
)
|
339
|
+
head_dim = getattr(
|
340
|
+
config, "head_dim", config.hidden_size // config.num_attention_heads
|
341
|
+
)
|
342
|
+
dim = int(head_dim * partial_rotary_factor)
|
343
|
+
|
344
|
+
attention_factor = 1.0 # Unused in this type of RoPE
|
345
|
+
|
346
|
+
# Compute the inverse frequencies
|
347
|
+
inv_freq = 1.0 / (
|
348
|
+
base ** (paddle.arange(0, dim, 2, dtype="int64").astype("float32") / dim)
|
349
|
+
)
|
350
|
+
return inv_freq, attention_factor
|
351
|
+
|
352
|
+
|
353
|
+
ROPE_INIT_FUNCTIONS = {
|
354
|
+
"default": _compute_default_rope_parameters,
|
355
|
+
}
|
356
|
+
|
357
|
+
|
358
|
+
def _get_unpad_data(attention_mask):
|
359
|
+
seqlens_in_batch = attention_mask.sum(axis=-1, dtype="int32")
|
360
|
+
indices = paddle.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
361
|
+
max_seqlen_in_batch = seqlens_in_batch.max().item() # [2, 1, 1323]
|
362
|
+
cu_seqlens = F.pad(
|
363
|
+
paddle.cumsum(seqlens_in_batch, axis=0), (1, 0), data_format="NCL"
|
364
|
+
)
|
365
|
+
return (
|
366
|
+
indices,
|
367
|
+
cu_seqlens,
|
368
|
+
max_seqlen_in_batch,
|
369
|
+
)
|
370
|
+
|
371
|
+
|
372
|
+
def is_casual_mask(attention_mask):
|
373
|
+
"""
|
374
|
+
Upper triangular of attention_mask equals to attention_mask is casual
|
375
|
+
"""
|
376
|
+
return (paddle.triu(attention_mask) == attention_mask).all().item()
|
377
|
+
|
378
|
+
|
379
|
+
def _make_causal_mask(input_ids_shape, past_key_values_length):
|
380
|
+
"""
|
381
|
+
Make causal mask used for self-attention
|
382
|
+
"""
|
383
|
+
batch_size, target_length = input_ids_shape # target_length: seq_len
|
384
|
+
|
385
|
+
mask = paddle.tril(paddle.ones((target_length, target_length), dtype="bool"))
|
386
|
+
|
387
|
+
if past_key_values_length > 0:
|
388
|
+
# [tgt_len, tgt_len + past_len]
|
389
|
+
mask = paddle.concat(
|
390
|
+
[paddle.ones([target_length, past_key_values_length], dtype="bool"), mask],
|
391
|
+
axis=-1,
|
392
|
+
)
|
393
|
+
|
394
|
+
# [bs, 1, tgt_len, tgt_len + past_len]
|
395
|
+
return mask[None, None, :, :].expand(
|
396
|
+
[batch_size, 1, target_length, target_length + past_key_values_length]
|
397
|
+
)
|
398
|
+
|
399
|
+
|
400
|
+
def _expand_2d_mask(mask, dtype, tgt_length):
|
401
|
+
"""
|
402
|
+
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
403
|
+
"""
|
404
|
+
batch_size, src_length = mask.shape[0], mask.shape[-1]
|
405
|
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
406
|
+
|
407
|
+
mask = mask[:, None, None, :].astype("bool")
|
408
|
+
mask.stop_gradient = True
|
409
|
+
expanded_mask = mask.expand([batch_size, 1, tgt_length, src_length])
|
410
|
+
|
411
|
+
return expanded_mask
|
412
|
+
|
413
|
+
|
414
|
+
@dataclass
|
415
|
+
class Qwen2_5_VLCausalLMOutputWithPast(ModelOutput):
|
416
|
+
"""
|
417
|
+
Base class for Qwen2_5_VL causal language model (or autoregressive) outputs.
|
418
|
+
|
419
|
+
Args:
|
420
|
+
loss (`paddle.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
421
|
+
Language modeling loss (for next-token prediction).
|
422
|
+
logits (`paddle.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
423
|
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
424
|
+
past_key_values (`tuple(tuple(paddle.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
425
|
+
Tuple of `tuple(paddle.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
426
|
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
427
|
+
|
428
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
429
|
+
`past_key_values` input) to speed up sequential decoding.
|
430
|
+
hidden_states (`tuple(paddle.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
431
|
+
Tuple of `paddle.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
432
|
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
433
|
+
|
434
|
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
435
|
+
attentions (`tuple(paddle.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
436
|
+
Tuple of `paddle.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
437
|
+
sequence_length)`.
|
438
|
+
|
439
|
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
440
|
+
heads.
|
441
|
+
rope_deltas (`paddle.LongTensor` of shape `(batch_size, )`, *optional*):
|
442
|
+
The rope index difference between sequence length and multimodal rope.
|
443
|
+
"""
|
444
|
+
|
445
|
+
loss: Optional[paddle.Tensor] = None
|
446
|
+
logits: paddle.float32 = None
|
447
|
+
past_key_values: Optional[List[paddle.Tensor]] = None
|
448
|
+
hidden_states: Optional[Tuple[paddle.Tensor]] = None
|
449
|
+
attentions: Optional[Tuple[paddle.Tensor]] = None
|
450
|
+
rope_deltas: Optional[paddle.Tensor] = None
|
451
|
+
|
452
|
+
|
453
|
+
class Qwen2_5_VLRotaryEmbedding(nn.Layer):
|
454
|
+
def __init__(
|
455
|
+
self,
|
456
|
+
dim=None,
|
457
|
+
max_position_embeddings=2048,
|
458
|
+
base=10000,
|
459
|
+
device=None,
|
460
|
+
scaling_factor=1.0,
|
461
|
+
rope_type="default",
|
462
|
+
config: Optional[Qwen2_5_VLConfig] = None,
|
463
|
+
):
|
464
|
+
super().__init__()
|
465
|
+
# TODO (joao): remove the `if` below, only used for BC
|
466
|
+
self.rope_kwargs = {}
|
467
|
+
if config is None:
|
468
|
+
logging.warning_once(
|
469
|
+
"`Qwen2_5_VLRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
470
|
+
"`config` argument. All other arguments will be removed in v4.46"
|
471
|
+
)
|
472
|
+
self.rope_kwargs = {
|
473
|
+
"rope_type": rope_type,
|
474
|
+
"factor": scaling_factor,
|
475
|
+
"dim": dim,
|
476
|
+
"base": base,
|
477
|
+
"max_position_embeddings": max_position_embeddings,
|
478
|
+
}
|
479
|
+
self.rope_type = rope_type
|
480
|
+
self.max_seq_len_cached = max_position_embeddings
|
481
|
+
self.original_max_seq_len = max_position_embeddings
|
482
|
+
else:
|
483
|
+
# BC: "rope_type" was originally "type"
|
484
|
+
if config.rope_scaling is not None:
|
485
|
+
self.rope_type = config.rope_scaling.get(
|
486
|
+
"rope_type", config.rope_scaling.get("type")
|
487
|
+
)
|
488
|
+
else:
|
489
|
+
self.rope_type = "default"
|
490
|
+
self.max_seq_len_cached = config.max_position_embeddings
|
491
|
+
self.original_max_seq_len = config.max_position_embeddings
|
492
|
+
|
493
|
+
self.config = config
|
494
|
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
495
|
+
|
496
|
+
self.inv_freq, self.attention_scaling = self.rope_init_fn(
|
497
|
+
self.config, device, **self.rope_kwargs
|
498
|
+
)
|
499
|
+
self.original_inv_freq = self.inv_freq
|
500
|
+
|
501
|
+
self._set_cos_sin_cache(seq_len=max_position_embeddings)
|
502
|
+
|
503
|
+
def _set_cos_sin_cache(self, seq_len):
|
504
|
+
self.max_seq_len_cached = seq_len
|
505
|
+
# [seq_len]
|
506
|
+
t = paddle.arange(seq_len, dtype="float32")
|
507
|
+
# [seq_len, dim/2]
|
508
|
+
freqs = paddle.einsum("i,j->ij", t, self.inv_freq)
|
509
|
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
510
|
+
# [seq_len, dim]
|
511
|
+
emb = paddle.concat([freqs, freqs], axis=-1)
|
512
|
+
# [1, seqlen, 1, dim]
|
513
|
+
self.cos_cached = emb.cos()
|
514
|
+
self.sin_cached = emb.sin()
|
515
|
+
|
516
|
+
def _dynamic_frequency_update(self, position_ids, device):
|
517
|
+
"""
|
518
|
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
519
|
+
1 - growing beyond the cached sequence length (allow scaling)
|
520
|
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
521
|
+
"""
|
522
|
+
seq_len = paddle.max(position_ids) + 1
|
523
|
+
if seq_len > self.max_seq_len_cached: # growth
|
524
|
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
525
|
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
526
|
+
)
|
527
|
+
self.inv_freq = inv_freq
|
528
|
+
self.max_seq_len_cached = seq_len
|
529
|
+
|
530
|
+
if (
|
531
|
+
seq_len < self.original_max_seq_len
|
532
|
+
and self.max_seq_len_cached > self.original_max_seq_len
|
533
|
+
): # reset
|
534
|
+
self.inv_freq = self.original_inv_freq
|
535
|
+
self.max_seq_len_cached = self.original_max_seq_len
|
536
|
+
|
537
|
+
@paddle.no_grad()
|
538
|
+
def forward(self, x, position_ids):
|
539
|
+
if "dynamic" in self.rope_type:
|
540
|
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
541
|
+
|
542
|
+
# Core RoPE block. In contrast to other models, Qwen2_VL has different position ids for thw grids
|
543
|
+
# So we expand the inv_freq to shape (3, ...)
|
544
|
+
inv_freq_expanded = (
|
545
|
+
self.inv_freq[None, None, :, None]
|
546
|
+
.astype("float32")
|
547
|
+
.expand([3, position_ids.shape[1], -1, 1])
|
548
|
+
)
|
549
|
+
position_ids_expanded = position_ids[:, :, None, :].astype(
|
550
|
+
"float32"
|
551
|
+
) # shape (3, bs, 1, positions)
|
552
|
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
553
|
+
device_type = paddle.get_device()
|
554
|
+
device_type = (
|
555
|
+
device_type
|
556
|
+
if isinstance(device_type, str) and device_type != "mps"
|
557
|
+
else "cpu"
|
558
|
+
)
|
559
|
+
with paddle.amp.auto_cast():
|
560
|
+
# Compute frequencies by matrix multiplication and transpose
|
561
|
+
# inv_freq_expanded shape: [3, bs, dim/2, 1]
|
562
|
+
# position_ids_expanded shape: [3, bs, 1, positions]
|
563
|
+
# Result shape after matmul: [3, bs, dim/2, positions]
|
564
|
+
# After transpose: [3, bs, positions, dim/2]
|
565
|
+
freqs = paddle.matmul(inv_freq_expanded, position_ids_expanded)
|
566
|
+
freqs = freqs.transpose([0, 1, 3, 2])
|
567
|
+
emb = paddle.concat((freqs, freqs), axis=-1)
|
568
|
+
cos = emb.cos()
|
569
|
+
sin = emb.sin()
|
570
|
+
|
571
|
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
572
|
+
cos = cos * self.attention_scaling
|
573
|
+
sin = sin * self.attention_scaling
|
574
|
+
|
575
|
+
return cos.astype(x.dtype), sin.astype(x.dtype)
|
576
|
+
|
577
|
+
|
578
|
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
579
|
+
def rotate_half(x):
|
580
|
+
"""Rotates half the hidden dims of the input."""
|
581
|
+
x1 = x[..., : x.shape[-1] // 2]
|
582
|
+
x2 = x[..., x.shape[-1] // 2 :]
|
583
|
+
return paddle.concat([-x2, x1], axis=-1) # shape is the same as x
|
584
|
+
|
585
|
+
|
586
|
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
587
|
+
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
588
|
+
|
589
|
+
Explanation:
|
590
|
+
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
591
|
+
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
592
|
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
|
593
|
+
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
594
|
+
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
595
|
+
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
596
|
+
difference with modern LLMs.
|
597
|
+
|
598
|
+
Args:
|
599
|
+
q (`paddle.Tensor`): The query tensor.
|
600
|
+
k (`paddle.Tensor`): The key tensor.
|
601
|
+
cos (`paddle.Tensor`): The cosine part of the rotary embedding.
|
602
|
+
sin (`paddle.Tensor`): The sine part of the rotary embedding.
|
603
|
+
position_ids (`paddle.Tensor`):
|
604
|
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
605
|
+
used to pass offsetted position ids when working with a KV-cache.
|
606
|
+
mrope_section(`List(int)`):
|
607
|
+
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
608
|
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
609
|
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
610
|
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
611
|
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
612
|
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
613
|
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
614
|
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
615
|
+
Returns:
|
616
|
+
`tuple(paddle.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
617
|
+
"""
|
618
|
+
|
619
|
+
# cos = cos[position_ids]
|
620
|
+
# sin = sin[position_ids]
|
621
|
+
mrope_section = mrope_section * 2
|
622
|
+
cos = paddle.concat(
|
623
|
+
x=[m[i % 3] for i, m in enumerate(cos.split(mrope_section, axis=-1))], axis=-1
|
624
|
+
).unsqueeze(axis=unsqueeze_dim)
|
625
|
+
sin = paddle.concat(
|
626
|
+
x=[m[i % 3] for i, m in enumerate(sin.split(mrope_section, axis=-1))], axis=-1
|
627
|
+
).unsqueeze(axis=unsqueeze_dim)
|
628
|
+
|
629
|
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
630
|
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
631
|
+
return q_embed, k_embed
|
632
|
+
|
633
|
+
|
634
|
+
def apply_rotary_pos_emb_vision(
|
635
|
+
tensor: paddle.Tensor, freqs: paddle.Tensor
|
636
|
+
) -> paddle.Tensor:
|
637
|
+
orig_dtype = tensor.dtype
|
638
|
+
|
639
|
+
with paddle.amp.auto_cast(False):
|
640
|
+
tensor = tensor.astype(dtype="float32")
|
641
|
+
cos = freqs.cos()
|
642
|
+
sin = freqs.sin()
|
643
|
+
cos = (
|
644
|
+
cos.unsqueeze(1)
|
645
|
+
.tile(repeat_times=[1, 1, 2])
|
646
|
+
.unsqueeze(0)
|
647
|
+
.astype(dtype="float32")
|
648
|
+
)
|
649
|
+
sin = (
|
650
|
+
sin.unsqueeze(1)
|
651
|
+
.tile(repeat_times=[1, 1, 2])
|
652
|
+
.unsqueeze(0)
|
653
|
+
.astype(dtype="float32")
|
654
|
+
)
|
655
|
+
output = tensor * cos + rotate_half(tensor) * sin
|
656
|
+
output = paddle.cast(output, orig_dtype)
|
657
|
+
return output
|
658
|
+
|
659
|
+
|
660
|
+
class Qwen2_5_VisionRotaryEmbedding(nn.Layer):
|
661
|
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
662
|
+
super().__init__()
|
663
|
+
self.inv_freq = 1.0 / theta ** (
|
664
|
+
paddle.arange(start=0, end=dim, step=2, dtype="float32") / dim
|
665
|
+
)
|
666
|
+
|
667
|
+
def forward(self, seqlen: int) -> paddle.Tensor:
|
668
|
+
seq = paddle.arange(seqlen).cast(self.inv_freq.dtype)
|
669
|
+
freqs = paddle.outer(x=seq, y=self.inv_freq)
|
670
|
+
return freqs
|
671
|
+
|
672
|
+
|
673
|
+
class Qwen2_5_VisionPatchEmbed(nn.Layer):
|
674
|
+
def __init__(
|
675
|
+
self,
|
676
|
+
patch_size: int = 14,
|
677
|
+
temporal_patch_size: int = 2,
|
678
|
+
in_channels: int = 3,
|
679
|
+
embed_dim: int = 1152,
|
680
|
+
) -> None:
|
681
|
+
super().__init__()
|
682
|
+
self.patch_size = patch_size
|
683
|
+
self.temporal_patch_size = temporal_patch_size
|
684
|
+
self.in_channels = in_channels
|
685
|
+
self.embed_dim = embed_dim
|
686
|
+
|
687
|
+
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
688
|
+
self.proj = nn.Conv3D(
|
689
|
+
in_channels,
|
690
|
+
embed_dim,
|
691
|
+
kernel_size=kernel_size,
|
692
|
+
stride=kernel_size,
|
693
|
+
bias_attr=False,
|
694
|
+
)
|
695
|
+
|
696
|
+
def forward(self, hidden_states: paddle.Tensor) -> paddle.Tensor:
|
697
|
+
|
698
|
+
target_dtype = self.proj.weight.dtype
|
699
|
+
hidden_states = hidden_states.reshape(
|
700
|
+
[
|
701
|
+
-1,
|
702
|
+
self.in_channels,
|
703
|
+
self.temporal_patch_size,
|
704
|
+
self.patch_size,
|
705
|
+
self.patch_size,
|
706
|
+
]
|
707
|
+
)
|
708
|
+
|
709
|
+
# NOTE(changwenbin): AttributeError: 'Variable' object has no attribute 'to'.
|
710
|
+
# hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).reshape([-1, self.embed_dim])
|
711
|
+
hidden_states = self.proj(
|
712
|
+
paddle.cast(hidden_states, dtype=target_dtype)
|
713
|
+
).reshape([-1, self.embed_dim])
|
714
|
+
return hidden_states
|
715
|
+
|
716
|
+
|
717
|
+
class Qwen2_5_VLPatchMerger(paddle.nn.Layer):
|
718
|
+
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
719
|
+
super().__init__()
|
720
|
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
721
|
+
self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6)
|
722
|
+
self.mlp = nn.Sequential(
|
723
|
+
nn.Linear(self.hidden_size, self.hidden_size),
|
724
|
+
nn.GELU(),
|
725
|
+
nn.Linear(self.hidden_size, dim),
|
726
|
+
)
|
727
|
+
|
728
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
729
|
+
x = self.mlp(self.ln_q(x).reshape([-1, self.hidden_size]))
|
730
|
+
return x
|
731
|
+
|
732
|
+
|
733
|
+
class Qwen2_5_VLMLP(paddle.nn.Layer):
|
734
|
+
def __init__(self, config, bias: bool = False):
|
735
|
+
super().__init__()
|
736
|
+
self.hidden_size = config.hidden_size
|
737
|
+
self.intermediate_size = config.intermediate_size
|
738
|
+
self.gate_proj = paddle.nn.Linear(
|
739
|
+
in_features=self.hidden_size,
|
740
|
+
out_features=self.intermediate_size,
|
741
|
+
bias_attr=bias,
|
742
|
+
)
|
743
|
+
self.up_proj = paddle.nn.Linear(
|
744
|
+
in_features=self.hidden_size,
|
745
|
+
out_features=self.intermediate_size,
|
746
|
+
bias_attr=bias,
|
747
|
+
)
|
748
|
+
self.down_proj = paddle.nn.Linear(
|
749
|
+
in_features=self.intermediate_size,
|
750
|
+
out_features=self.hidden_size,
|
751
|
+
bias_attr=bias,
|
752
|
+
)
|
753
|
+
self.act_fn = ACT2FN[config.hidden_act]
|
754
|
+
|
755
|
+
def forward(self, hidden_state):
|
756
|
+
return self.down_proj(
|
757
|
+
self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)
|
758
|
+
)
|
759
|
+
|
760
|
+
|
761
|
+
class Qwen2_5_VLVisionAttention(nn.Layer):
|
762
|
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
763
|
+
super().__init__()
|
764
|
+
self.num_heads = num_heads
|
765
|
+
self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
|
766
|
+
self.proj = nn.Linear(dim, dim)
|
767
|
+
self.head_dim = dim // num_heads # must added
|
768
|
+
|
769
|
+
def forward(
|
770
|
+
self,
|
771
|
+
hidden_states: paddle.Tensor,
|
772
|
+
cu_seqlens: paddle.Tensor,
|
773
|
+
rotary_pos_emb: paddle.Tensor = None,
|
774
|
+
) -> paddle.Tensor:
|
775
|
+
seq_length = hidden_states.shape[0]
|
776
|
+
q, k, v = (
|
777
|
+
self.qkv(hidden_states)
|
778
|
+
.reshape([seq_length, 3, self.num_heads, -1])
|
779
|
+
.transpose([1, 0, 2, 3])
|
780
|
+
.unbind(0)
|
781
|
+
)
|
782
|
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
783
|
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
784
|
+
|
785
|
+
attention_mask = paddle.zeros([1, seq_length, seq_length], dtype="bool")
|
786
|
+
for i in range(1, len(cu_seqlens)):
|
787
|
+
attention_mask[
|
788
|
+
...,
|
789
|
+
cu_seqlens[i - 1] : cu_seqlens[i],
|
790
|
+
cu_seqlens[i - 1] : cu_seqlens[i],
|
791
|
+
] = True
|
792
|
+
|
793
|
+
zero = paddle.zeros(attention_mask.shape, dtype=hidden_states.dtype)
|
794
|
+
neg_inf = paddle.full_like(
|
795
|
+
attention_mask,
|
796
|
+
paddle.finfo(hidden_states.dtype).min,
|
797
|
+
dtype=hidden_states.dtype,
|
798
|
+
)
|
799
|
+
attention_mask = paddle.where(attention_mask, zero, neg_inf)
|
800
|
+
|
801
|
+
q = q.transpose([1, 0, 2])
|
802
|
+
k = k.transpose([1, 0, 2])
|
803
|
+
v = v.transpose([1, 0, 2])
|
804
|
+
attn_weights = paddle.matmul(q, k.transpose([0, 2, 1])) / math.sqrt(
|
805
|
+
self.head_dim
|
806
|
+
)
|
807
|
+
attn_weights = attn_weights + attention_mask
|
808
|
+
attn_weights = nn.functional.softmax(attn_weights, axis=-1)
|
809
|
+
attn_output = paddle.matmul(attn_weights, v)
|
810
|
+
attn_output = attn_output.transpose([1, 0, 2])
|
811
|
+
attn_output = attn_output.reshape([seq_length, -1])
|
812
|
+
attn_output = self.proj(attn_output)
|
813
|
+
return attn_output
|
814
|
+
|
815
|
+
|
816
|
+
class Qwen2_5_VLVisionFlashAttention2(nn.Layer):
|
817
|
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
818
|
+
super().__init__()
|
819
|
+
self.num_heads = num_heads
|
820
|
+
self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
|
821
|
+
self.proj = nn.Linear(dim, dim)
|
822
|
+
self.head_dim = dim // num_heads # must added
|
823
|
+
|
824
|
+
def forward(
|
825
|
+
self,
|
826
|
+
hidden_states: paddle.Tensor,
|
827
|
+
cu_seqlens: paddle.Tensor,
|
828
|
+
rotary_pos_emb: paddle.Tensor = None,
|
829
|
+
) -> paddle.Tensor:
|
830
|
+
seq_length = tuple(hidden_states.shape)[0]
|
831
|
+
qkv = (
|
832
|
+
self.qkv(hidden_states)
|
833
|
+
.reshape([seq_length, 3, self.num_heads, -1])
|
834
|
+
.transpose(perm=[1, 0, 2, 3])
|
835
|
+
)
|
836
|
+
q, k, v = qkv.unbind(axis=0)
|
837
|
+
q = apply_rotary_pos_emb_flashatt(q.unsqueeze(axis=0), rotary_pos_emb).squeeze(
|
838
|
+
axis=0
|
839
|
+
)
|
840
|
+
k = apply_rotary_pos_emb_flashatt(k.unsqueeze(axis=0), rotary_pos_emb).squeeze(
|
841
|
+
axis=0
|
842
|
+
)
|
843
|
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
844
|
+
softmax_scale = self.head_dim**-0.5 # TODO: 需要手动加上
|
845
|
+
attn_output = (
|
846
|
+
flash_attn_varlen_func( # flash_attn_unpadded
|
847
|
+
q.astype("bfloat16"), # 不支持float32
|
848
|
+
k.astype("bfloat16"),
|
849
|
+
v.astype("bfloat16"),
|
850
|
+
cu_seqlens,
|
851
|
+
cu_seqlens,
|
852
|
+
max_seqlen,
|
853
|
+
max_seqlen,
|
854
|
+
scale=softmax_scale, # TODO: 需要手动加上
|
855
|
+
)[0]
|
856
|
+
.squeeze(0)
|
857
|
+
.reshape([seq_length, -1])
|
858
|
+
)
|
859
|
+
|
860
|
+
attn_output = self.proj(attn_output)
|
861
|
+
return attn_output
|
862
|
+
|
863
|
+
|
864
|
+
class Qwen2_5_VLVisionSdpaAttention(nn.Layer):
|
865
|
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
866
|
+
super().__init__()
|
867
|
+
self.num_heads = num_heads
|
868
|
+
self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
|
869
|
+
self.proj = nn.Linear(dim, dim)
|
870
|
+
|
871
|
+
is_bfloat16_supported = paddle.amp.is_bfloat16_supported()
|
872
|
+
if is_bfloat16_supported:
|
873
|
+
self.compute_dtype = "bfloat16"
|
874
|
+
else:
|
875
|
+
self.compute_dtype = "float16"
|
876
|
+
|
877
|
+
def forward(
|
878
|
+
self,
|
879
|
+
hidden_states: paddle.Tensor,
|
880
|
+
cu_seqlens: paddle.Tensor,
|
881
|
+
rotary_pos_emb: paddle.Tensor = None,
|
882
|
+
) -> paddle.Tensor:
|
883
|
+
seq_length = hidden_states.shape[0]
|
884
|
+
q, k, v = (
|
885
|
+
self.qkv(hidden_states)
|
886
|
+
.reshape([seq_length, 3, self.num_heads, -1])
|
887
|
+
.transpose([1, 0, 2, 3])
|
888
|
+
.unbind(0)
|
889
|
+
)
|
890
|
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb)
|
891
|
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb)
|
892
|
+
attention_mask = paddle.zeros([1, 1, seq_length, seq_length], dtype="bool")
|
893
|
+
for i in range(1, len(cu_seqlens)):
|
894
|
+
attention_mask[
|
895
|
+
...,
|
896
|
+
cu_seqlens[i - 1] : cu_seqlens[i],
|
897
|
+
cu_seqlens[i - 1] : cu_seqlens[i],
|
898
|
+
] = True
|
899
|
+
|
900
|
+
zero = paddle.zeros(attention_mask.shape, dtype=hidden_states.dtype)
|
901
|
+
neg_inf = paddle.full_like(
|
902
|
+
attention_mask,
|
903
|
+
paddle.finfo(hidden_states.dtype).min,
|
904
|
+
dtype=hidden_states.dtype,
|
905
|
+
)
|
906
|
+
attention_mask = paddle.where(attention_mask, zero, neg_inf)
|
907
|
+
v = v.unsqueeze(0)
|
908
|
+
|
909
|
+
attn_output = paddle.nn.functional.scaled_dot_product_attention(
|
910
|
+
query=q.astype(self.compute_dtype),
|
911
|
+
key=k.astype(self.compute_dtype),
|
912
|
+
value=v.astype(self.compute_dtype),
|
913
|
+
attn_mask=attention_mask.astype(self.compute_dtype),
|
914
|
+
dropout_p=0.0,
|
915
|
+
)
|
916
|
+
|
917
|
+
attn_output = attn_output.transpose([1, 0, 2])
|
918
|
+
attn_output = attn_output.reshape([seq_length, -1])
|
919
|
+
attn_output = self.proj(attn_output)
|
920
|
+
|
921
|
+
return attn_output
|
922
|
+
|
923
|
+
|
924
|
+
QWEN2_5_VL_VISION_ATTENTION_CLASSES = {
|
925
|
+
"eager": Qwen2_5_VLVisionAttention,
|
926
|
+
"flash_attention_2": Qwen2_5_VLVisionFlashAttention2,
|
927
|
+
"sdpa": Qwen2_5_VLVisionSdpaAttention,
|
928
|
+
}
|
929
|
+
|
930
|
+
|
931
|
+
class Qwen2_5_VLVisionBlock(paddle.nn.Layer):
|
932
|
+
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
933
|
+
super().__init__()
|
934
|
+
self.norm1 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
|
935
|
+
self.norm2 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
|
936
|
+
self.attn = QWEN2_5_VL_VISION_ATTENTION_CLASSES[attn_implementation](
|
937
|
+
config.hidden_size, num_heads=config.num_heads
|
938
|
+
)
|
939
|
+
|
940
|
+
self.mlp = Qwen2_5_VLMLP(config, bias=True)
|
941
|
+
|
942
|
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> paddle.Tensor:
|
943
|
+
hidden_states = hidden_states + self.attn(
|
944
|
+
self.norm1(hidden_states),
|
945
|
+
cu_seqlens=cu_seqlens,
|
946
|
+
rotary_pos_emb=rotary_pos_emb,
|
947
|
+
)
|
948
|
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
949
|
+
return hidden_states
|
950
|
+
|
951
|
+
|
952
|
+
def apply_rotary_emb(tensor, cos, sin):
|
953
|
+
"""
|
954
|
+
Apply rotary position embedding to the input tensor.
|
955
|
+
Args:
|
956
|
+
tensor (paddle.Tensor): The input tensor of shape [batch_size, seq_len, num_heads, head_dim]
|
957
|
+
cos (paddle.Tensor): The cosine part of the rotary embedding [seq_len, head_dim/2]
|
958
|
+
sin (paddle.Tensor): The sine part of the rotary embedding [seq_len, head_dim/2]
|
959
|
+
Returns:
|
960
|
+
paddle.Tensor: The tensor after applying rotary embedding
|
961
|
+
"""
|
962
|
+
# Split the tensor into two halves along the last dimension
|
963
|
+
dim = tensor.shape[-1]
|
964
|
+
half_dim = dim // 2
|
965
|
+
tensor1 = tensor[..., :half_dim]
|
966
|
+
tensor2 = tensor[..., half_dim:]
|
967
|
+
|
968
|
+
# Reshape cos/sin for broadcasting
|
969
|
+
# From [seq_len, head_dim/2] to [1, seq_len, 1, head_dim/2]
|
970
|
+
cos = cos.unsqueeze(0).unsqueeze(2)
|
971
|
+
sin = sin.unsqueeze(0).unsqueeze(2)
|
972
|
+
|
973
|
+
# Apply rotary embedding
|
974
|
+
# tensor1/tensor2 shape: [batch_size, seq_len, num_heads, head_dim/2]
|
975
|
+
# cos/sin shape: [1, seq_len, 1, head_dim/2]
|
976
|
+
rotated = paddle.concat(
|
977
|
+
[tensor1 * cos - tensor2 * sin, tensor1 * sin + tensor2 * cos], axis=-1
|
978
|
+
)
|
979
|
+
|
980
|
+
return rotated
|
981
|
+
|
982
|
+
|
983
|
+
def apply_rotary_pos_emb_flashatt(
|
984
|
+
tensor: paddle.Tensor, freqs: paddle.Tensor
|
985
|
+
) -> paddle.Tensor:
|
986
|
+
tensor_ = tensor.astype(dtype="float32")
|
987
|
+
cos = freqs.cos()
|
988
|
+
sin = freqs.sin()
|
989
|
+
output = apply_rotary_emb(tensor_, cos, sin).astype(dtype=tensor.dtype)
|
990
|
+
return output
|
991
|
+
|
992
|
+
|
993
|
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RMSNorm
|
994
|
+
class Qwen2RMSNorm(nn.Layer):
|
995
|
+
def __init__(self, hidden_size, eps=1e-6):
|
996
|
+
"""
|
997
|
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
998
|
+
"""
|
999
|
+
super().__init__()
|
1000
|
+
self.weight = paddle.create_parameter(
|
1001
|
+
shape=[hidden_size],
|
1002
|
+
dtype=paddle.get_default_dtype(),
|
1003
|
+
default_initializer=nn.initializer.Constant(1.0),
|
1004
|
+
)
|
1005
|
+
self.variance_epsilon = eps
|
1006
|
+
|
1007
|
+
def forward(self, hidden_states):
|
1008
|
+
if paddle.in_dynamic_mode():
|
1009
|
+
with paddle.amp.auto_cast(False):
|
1010
|
+
variance = hidden_states.astype("float32").pow(2).mean(-1, keepdim=True)
|
1011
|
+
hidden_states = (
|
1012
|
+
paddle.rsqrt(variance + self.variance_epsilon) * hidden_states
|
1013
|
+
)
|
1014
|
+
else:
|
1015
|
+
variance = hidden_states.astype("float32").pow(2).mean(-1, keepdim=True)
|
1016
|
+
hidden_states = (
|
1017
|
+
paddle.rsqrt(variance + self.variance_epsilon) * hidden_states
|
1018
|
+
)
|
1019
|
+
|
1020
|
+
if self.weight.dtype in [paddle.float16, paddle.bfloat16]:
|
1021
|
+
hidden_states = paddle.cast(hidden_states, self.weight.dtype)
|
1022
|
+
return hidden_states * self.weight
|
1023
|
+
|
1024
|
+
|
1025
|
+
class Qwen2MLP(nn.Layer):
|
1026
|
+
def __init__(self, config):
|
1027
|
+
super().__init__()
|
1028
|
+
self.hidden_size = config.hidden_size
|
1029
|
+
self.intermediate_size = config.intermediate_size
|
1030
|
+
self.fuse_attention_ffn = config.fuse_attention_ffn
|
1031
|
+
self.tensor_parallel_degree = config.tensor_parallel_degree
|
1032
|
+
|
1033
|
+
if config.tensor_parallel_degree > 1:
|
1034
|
+
|
1035
|
+
self.gate_proj = ColumnParallelLinear(
|
1036
|
+
self.hidden_size,
|
1037
|
+
self.intermediate_size,
|
1038
|
+
gather_output=False,
|
1039
|
+
has_bias=False,
|
1040
|
+
)
|
1041
|
+
self.up_proj = ColumnParallelLinear(
|
1042
|
+
self.hidden_size,
|
1043
|
+
self.intermediate_size,
|
1044
|
+
gather_output=False,
|
1045
|
+
has_bias=False,
|
1046
|
+
)
|
1047
|
+
self.down_proj = RowParallelLinear(
|
1048
|
+
self.intermediate_size,
|
1049
|
+
self.hidden_size,
|
1050
|
+
input_is_parallel=True,
|
1051
|
+
has_bias=False,
|
1052
|
+
)
|
1053
|
+
else:
|
1054
|
+
if get_device_type() == "xpu":
|
1055
|
+
self.gate_proj = nn.Linear(
|
1056
|
+
self.hidden_size, self.intermediate_size, bias_attr=False
|
1057
|
+
) # w1
|
1058
|
+
self.up_proj = nn.Linear(
|
1059
|
+
self.hidden_size, self.intermediate_size, bias_attr=False
|
1060
|
+
) # w3
|
1061
|
+
self.down_proj = nn.Linear(
|
1062
|
+
self.intermediate_size, self.hidden_size, bias_attr=False
|
1063
|
+
) # w2
|
1064
|
+
else:
|
1065
|
+
self.gate_proj = Linear(
|
1066
|
+
self.hidden_size, self.intermediate_size, bias_attr=False
|
1067
|
+
) # w1
|
1068
|
+
self.up_proj = Linear(
|
1069
|
+
self.hidden_size, self.intermediate_size, bias_attr=False
|
1070
|
+
) # w3
|
1071
|
+
self.down_proj = Linear(
|
1072
|
+
self.intermediate_size, self.hidden_size, bias_attr=False
|
1073
|
+
) # w2
|
1074
|
+
|
1075
|
+
self.act_fn = ACT2FN[config.hidden_act]
|
1076
|
+
self.fuse_swiglu = False
|
1077
|
+
|
1078
|
+
def forward(self, x):
|
1079
|
+
x, y = self.gate_proj(x), self.up_proj(x)
|
1080
|
+
if self.fuse_swiglu:
|
1081
|
+
x = self.act_fn(x, y)
|
1082
|
+
else:
|
1083
|
+
x = self.act_fn(x) * y
|
1084
|
+
|
1085
|
+
return self.down_proj(x)
|
1086
|
+
|
1087
|
+
|
1088
|
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
1089
|
+
def repeat_kv(hidden_states: paddle.Tensor, n_rep: int) -> paddle.Tensor:
|
1090
|
+
"""
|
1091
|
+
This is the equivalent of paddle.repeat_interleave(x, axis=1, repeats=n_rep). The hidden states go from (batch,
|
1092
|
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
1093
|
+
"""
|
1094
|
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
1095
|
+
if n_rep == 1:
|
1096
|
+
return hidden_states
|
1097
|
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
1098
|
+
[batch, num_key_value_heads, n_rep, slen, head_dim]
|
1099
|
+
)
|
1100
|
+
return hidden_states.reshape([batch, num_key_value_heads * n_rep, slen, head_dim])
|
1101
|
+
|
1102
|
+
|
1103
|
+
class Qwen2_5_VLAttention(paddle.nn.Layer):
|
1104
|
+
"""
|
1105
|
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
1106
|
+
and "Generating Long Sequences with Sparse Transformers".
|
1107
|
+
"""
|
1108
|
+
|
1109
|
+
def __init__(self, config: Qwen2_5_VLConfig, layer_idx: Optional[int] = None):
|
1110
|
+
super().__init__()
|
1111
|
+
self.config = config
|
1112
|
+
self.layer_idx = layer_idx
|
1113
|
+
if layer_idx is None:
|
1114
|
+
logging.warning_once(
|
1115
|
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
1116
|
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
1117
|
+
"when creating this class."
|
1118
|
+
)
|
1119
|
+
|
1120
|
+
self.hidden_size = config.hidden_size
|
1121
|
+
self.num_heads = config.num_attention_heads
|
1122
|
+
self.head_dim = self.hidden_size // self.num_heads
|
1123
|
+
self.num_key_value_heads = config.num_key_value_heads
|
1124
|
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
1125
|
+
self.max_position_embeddings = config.max_position_embeddings
|
1126
|
+
self.rope_theta = config.rope_theta
|
1127
|
+
self.is_causal = True
|
1128
|
+
self.attention_dropout = config.attention_dropout
|
1129
|
+
self.rope_scaling = config.rope_scaling
|
1130
|
+
# self.sequence_parallel = config.sequence_parallel
|
1131
|
+
|
1132
|
+
if config.tensor_parallel_degree > 1:
|
1133
|
+
assert (
|
1134
|
+
self.num_heads % config.tensor_parallel_degree == 0
|
1135
|
+
), f"num_heads: {self.num_heads}, tensor_parallel_degree: {config.tensor_parallel_degree}"
|
1136
|
+
self.num_heads = self.num_heads // config.tensor_parallel_degree
|
1137
|
+
|
1138
|
+
assert (
|
1139
|
+
self.num_key_value_heads % config.tensor_parallel_degree == 0
|
1140
|
+
), f"num_key_value_heads: {self.num_key_value_heads}, tensor_parallel_degree: {config.tensor_parallel_degree}"
|
1141
|
+
self.num_key_value_heads = (
|
1142
|
+
self.num_key_value_heads // config.tensor_parallel_degree
|
1143
|
+
)
|
1144
|
+
|
1145
|
+
if config.tensor_parallel_degree > 1:
|
1146
|
+
self.q_proj = ColumnParallelLinear(
|
1147
|
+
self.hidden_size, self.hidden_size, has_bias=True, gather_output=False
|
1148
|
+
)
|
1149
|
+
self.k_proj = ColumnParallelLinear(self.hidden_size, self.config.num_key_value_heads * self.head_dim, has_bias=True, gather_output=False) # fmt:skip
|
1150
|
+
self.v_proj = ColumnParallelLinear(self.hidden_size, self.config.num_key_value_heads * self.head_dim, has_bias=True, gather_output=False) # fmt:skip
|
1151
|
+
self.o_proj = RowParallelLinear(
|
1152
|
+
self.hidden_size,
|
1153
|
+
self.hidden_size,
|
1154
|
+
has_bias=False,
|
1155
|
+
input_is_parallel=True,
|
1156
|
+
)
|
1157
|
+
else:
|
1158
|
+
self.q_proj = Linear(self.hidden_size, self.hidden_size, bias_attr=True)
|
1159
|
+
self.k_proj = Linear(
|
1160
|
+
self.hidden_size,
|
1161
|
+
self.config.num_key_value_heads * self.head_dim,
|
1162
|
+
bias_attr=True,
|
1163
|
+
)
|
1164
|
+
self.v_proj = Linear(
|
1165
|
+
self.hidden_size,
|
1166
|
+
self.config.num_key_value_heads * self.head_dim,
|
1167
|
+
bias_attr=True,
|
1168
|
+
)
|
1169
|
+
self.o_proj = Linear(self.hidden_size, self.hidden_size, bias_attr=False)
|
1170
|
+
|
1171
|
+
self.rotary_emb = Qwen2_5_VLRotaryEmbedding(
|
1172
|
+
self.head_dim,
|
1173
|
+
max_position_embeddings=self.max_position_embeddings,
|
1174
|
+
base=self.rope_theta,
|
1175
|
+
)
|
1176
|
+
|
1177
|
+
def forward(
|
1178
|
+
self,
|
1179
|
+
hidden_states: paddle.Tensor,
|
1180
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1181
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1182
|
+
past_key_value: Optional[Tuple[paddle.Tensor]] = None, # Cache
|
1183
|
+
output_attentions: bool = False,
|
1184
|
+
use_cache: bool = False, # default true
|
1185
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1186
|
+
) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
|
1187
|
+
bsz, q_len, _ = hidden_states.shape
|
1188
|
+
|
1189
|
+
try:
|
1190
|
+
query_states = self.q_proj(hidden_states)
|
1191
|
+
key_states = self.k_proj(hidden_states)
|
1192
|
+
value_states = self.v_proj(hidden_states)
|
1193
|
+
except:
|
1194
|
+
hidden_states = hidden_states.astype(self.config.dtype)
|
1195
|
+
query_states = self.q_proj(hidden_states)
|
1196
|
+
key_states = self.k_proj(hidden_states)
|
1197
|
+
value_states = self.v_proj(hidden_states)
|
1198
|
+
|
1199
|
+
target_query_shape = [0, 0, self.num_heads, self.head_dim]
|
1200
|
+
target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
|
1201
|
+
query_states = query_states.reshape(shape=target_query_shape)
|
1202
|
+
key_states = key_states.reshape(shape=target_key_value_shape)
|
1203
|
+
value_states = value_states.reshape(shape=target_key_value_shape)
|
1204
|
+
|
1205
|
+
new_perm = [0, 2, 1, 3]
|
1206
|
+
query_states = query_states.transpose(new_perm)
|
1207
|
+
key_states = key_states.transpose(new_perm)
|
1208
|
+
value_states = value_states.transpose(new_perm)
|
1209
|
+
|
1210
|
+
kv_seq_len = key_states.shape[
|
1211
|
+
-2
|
1212
|
+
] # q_len ######## [bs, num_head, seq_len, head_dim] # qwen2是 [-3]
|
1213
|
+
if past_key_value is not None:
|
1214
|
+
kv_seq_len += cache_position[0] + 1
|
1215
|
+
# kv_seq_len += past_key_value[0].shape[-2] # qwen2是 [-3]
|
1216
|
+
|
1217
|
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
1218
|
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
1219
|
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
1220
|
+
)
|
1221
|
+
|
1222
|
+
# [bs, num_head, seq_len, head_dim]
|
1223
|
+
if past_key_value is not None:
|
1224
|
+
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
1225
|
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
1226
|
+
key_states = paddle.concat(
|
1227
|
+
[past_key_value[0], key_states], axis=2
|
1228
|
+
) # qwen2是 axis=1, qwen2_vl是 axis=2
|
1229
|
+
value_states = paddle.concat(
|
1230
|
+
[past_key_value[1], value_states], axis=2
|
1231
|
+
) # qwen2是 axis=1
|
1232
|
+
past_key_value = (key_states, value_states) if use_cache else None
|
1233
|
+
|
1234
|
+
# repeat k/v heads if n_kv_heads < n_heads
|
1235
|
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
1236
|
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
1237
|
+
|
1238
|
+
query_states = query_states.astype("float32")
|
1239
|
+
key_states = key_states.astype("float32")
|
1240
|
+
value_states = value_states.astype("float32")
|
1241
|
+
|
1242
|
+
attn_weights = paddle.matmul(
|
1243
|
+
query_states, key_states.transpose([0, 1, 3, 2])
|
1244
|
+
) / math.sqrt(self.head_dim)
|
1245
|
+
|
1246
|
+
if attention_mask is not None:
|
1247
|
+
attn_weights = attn_weights + attention_mask
|
1248
|
+
attn_weights = nn.functional.softmax(attn_weights, axis=-1)
|
1249
|
+
attn_weights = nn.functional.dropout(
|
1250
|
+
x=attn_weights, p=self.attention_dropout, training=self.training
|
1251
|
+
)
|
1252
|
+
attn_output = paddle.matmul(
|
1253
|
+
attn_weights.cast(self.config.dtype), value_states.cast(self.config.dtype)
|
1254
|
+
)
|
1255
|
+
|
1256
|
+
if attn_output.shape != [bsz, self.num_heads, q_len, self.head_dim]:
|
1257
|
+
raise ValueError(
|
1258
|
+
f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
|
1259
|
+
f" {attn_output.shape}"
|
1260
|
+
)
|
1261
|
+
|
1262
|
+
attn_output = attn_output.transpose([0, 2, 1, 3])
|
1263
|
+
attn_output = attn_output.reshape([bsz, q_len, -1])
|
1264
|
+
attn_output = self.o_proj(attn_output)
|
1265
|
+
if not output_attentions:
|
1266
|
+
attn_weights = None
|
1267
|
+
return attn_output, attn_weights, past_key_value
|
1268
|
+
|
1269
|
+
|
1270
|
+
class Qwen2_5_VLFlashAttention2(Qwen2_5_VLAttention):
|
1271
|
+
"""
|
1272
|
+
Qwen2_5_VL flash attention module, following Qwen2_5_VL attention module. This module inherits from `Qwen2_5_VLAttention`
|
1273
|
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
1274
|
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
1275
|
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
1276
|
+
config.max_window_layers layers.
|
1277
|
+
"""
|
1278
|
+
|
1279
|
+
def __init__(self, *args, **kwargs):
|
1280
|
+
super().__init__(*args, **kwargs)
|
1281
|
+
|
1282
|
+
def forward(
|
1283
|
+
self,
|
1284
|
+
hidden_states: paddle.Tensor,
|
1285
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1286
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1287
|
+
past_key_value: Optional[Tuple[paddle.Tensor]] = None, # Cache
|
1288
|
+
output_attentions: bool = False,
|
1289
|
+
use_cache: bool = False, # default true
|
1290
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1291
|
+
) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
|
1292
|
+
bsz, q_len, _ = tuple(hidden_states.shape)
|
1293
|
+
try:
|
1294
|
+
query_states = self.q_proj(hidden_states)
|
1295
|
+
key_states = self.k_proj(hidden_states)
|
1296
|
+
value_states = self.v_proj(hidden_states)
|
1297
|
+
except:
|
1298
|
+
hidden_states = hidden_states.astype("bfloat16")
|
1299
|
+
query_states = self.q_proj(hidden_states)
|
1300
|
+
key_states = self.k_proj(hidden_states)
|
1301
|
+
value_states = self.v_proj(hidden_states)
|
1302
|
+
|
1303
|
+
target_query_shape = [0, 0, self.num_heads, self.head_dim]
|
1304
|
+
target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
|
1305
|
+
query_states = query_states.reshape(shape=target_query_shape)
|
1306
|
+
key_states = key_states.reshape(shape=target_key_value_shape)
|
1307
|
+
value_states = value_states.reshape(shape=target_key_value_shape)
|
1308
|
+
|
1309
|
+
new_perm = [0, 2, 1, 3]
|
1310
|
+
# [1, 3599, 1536] [bsz, q_len, self.num_heads * self.head_dim]
|
1311
|
+
query_states = query_states.transpose(new_perm)
|
1312
|
+
key_states = key_states.transpose(new_perm)
|
1313
|
+
value_states = value_states.transpose(new_perm)
|
1314
|
+
|
1315
|
+
kv_seq_len = key_states.shape[
|
1316
|
+
-2
|
1317
|
+
] # q_len ######## [bs, num_head, seq_len, head_dim] # qwen2是 [-3]
|
1318
|
+
if past_key_value is not None:
|
1319
|
+
kv_seq_len += cache_position[0] + 1
|
1320
|
+
|
1321
|
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
1322
|
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
1323
|
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
1324
|
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
1325
|
+
)
|
1326
|
+
|
1327
|
+
if past_key_value is not None:
|
1328
|
+
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
1329
|
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
1330
|
+
key_states = paddle.concat(
|
1331
|
+
[past_key_value[0], key_states], axis=2
|
1332
|
+
) # qwen2是 axis=1, qwen2_vl是 axis=2
|
1333
|
+
value_states = paddle.concat(
|
1334
|
+
[past_key_value[1], value_states], axis=2
|
1335
|
+
) # qwen2是 axis=1
|
1336
|
+
past_key_value = (key_states, value_states) if use_cache else None
|
1337
|
+
|
1338
|
+
# repeat k/v heads if n_kv_heads < n_heads
|
1339
|
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
1340
|
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
1341
|
+
|
1342
|
+
# Reashape to the expected shape for Flash Attention
|
1343
|
+
# [1, 3599, 12, 128]
|
1344
|
+
query_states = query_states.transpose(perm=[0, 2, 1, 3])
|
1345
|
+
key_states = key_states.transpose(perm=[0, 2, 1, 3])
|
1346
|
+
value_states = value_states.transpose(perm=[0, 2, 1, 3])
|
1347
|
+
|
1348
|
+
attn_output = self._flash_attention_forward(
|
1349
|
+
query_states,
|
1350
|
+
key_states,
|
1351
|
+
value_states,
|
1352
|
+
attention_mask,
|
1353
|
+
q_len,
|
1354
|
+
# dropout=0.0 if not self.training else self.attention_dropout,
|
1355
|
+
# causal=self.is_causal,
|
1356
|
+
)
|
1357
|
+
|
1358
|
+
attn_output = attn_output.reshape([bsz, q_len, -1])
|
1359
|
+
attn_output = self.o_proj(attn_output)
|
1360
|
+
if not output_attentions:
|
1361
|
+
attn_weights = None
|
1362
|
+
return attn_output, attn_weights, past_key_value
|
1363
|
+
|
1364
|
+
def _flash_attention_forward(
|
1365
|
+
self,
|
1366
|
+
query_states,
|
1367
|
+
key_states,
|
1368
|
+
value_states,
|
1369
|
+
attention_mask,
|
1370
|
+
query_length,
|
1371
|
+
dropout=0.0,
|
1372
|
+
softmax_scale=None,
|
1373
|
+
):
|
1374
|
+
"""
|
1375
|
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
1376
|
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
1377
|
+
|
1378
|
+
Args:
|
1379
|
+
query_states (`paddle.Tensor`):
|
1380
|
+
Input query states to be passed to Flash Attention API
|
1381
|
+
key_states (`paddle.Tensor`):
|
1382
|
+
Input key states to be passed to Flash Attention API
|
1383
|
+
value_states (`paddle.Tensor`):
|
1384
|
+
Input value states to be passed to Flash Attention API
|
1385
|
+
attention_mask (`paddle.Tensor`):
|
1386
|
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
1387
|
+
position of padding tokens and 1 for the position of non-padding tokens.
|
1388
|
+
dropout (`int`, *optional*):
|
1389
|
+
Attention dropout
|
1390
|
+
softmax_scale (`float`, *optional*):
|
1391
|
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
1392
|
+
"""
|
1393
|
+
# Contains at least one padding token in the sequence
|
1394
|
+
causal = self.is_causal and query_length != 1
|
1395
|
+
head_dim = query_states.shape[-1]
|
1396
|
+
softmax_scale = head_dim**-0.5 # TODO: 需要手动加上
|
1397
|
+
|
1398
|
+
if attention_mask is not None: # attention_mask.shape # [2, 1, 1323, 1323]
|
1399
|
+
batch_size = query_states.shape[0] # [2, 1323, 12, 128]
|
1400
|
+
(
|
1401
|
+
query_states,
|
1402
|
+
key_states,
|
1403
|
+
value_states,
|
1404
|
+
indices_q,
|
1405
|
+
cu_seq_lens,
|
1406
|
+
max_seq_lens,
|
1407
|
+
) = self._unpad_input(
|
1408
|
+
query_states, key_states, value_states, attention_mask, query_length
|
1409
|
+
)
|
1410
|
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
1411
|
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
1412
|
+
|
1413
|
+
attn_output_unpad = flash_attn_varlen_func( # TODO: flash_attn_unpadded
|
1414
|
+
query_states, # [5998, 16, 128]
|
1415
|
+
key_states, # [5998, 8, 128]
|
1416
|
+
value_states, # [5998, 8, 128]
|
1417
|
+
cu_seqlens_q=cu_seqlens_q,
|
1418
|
+
cu_seqlens_k=cu_seqlens_k,
|
1419
|
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1420
|
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1421
|
+
scale=softmax_scale, # not softmax_scale=
|
1422
|
+
dropout=dropout,
|
1423
|
+
causal=causal,
|
1424
|
+
)[0]
|
1425
|
+
|
1426
|
+
attn_output = pad_input(
|
1427
|
+
attn_output_unpad, indices_q, batch_size, query_length
|
1428
|
+
)
|
1429
|
+
else:
|
1430
|
+
attn_output = flash_attn_func(
|
1431
|
+
query_states,
|
1432
|
+
key_states,
|
1433
|
+
value_states,
|
1434
|
+
dropout,
|
1435
|
+
causal=causal, # no softmax_scale=
|
1436
|
+
)[0]
|
1437
|
+
|
1438
|
+
# # 修改这里的维度转换,考虑并行策略下的维度
|
1439
|
+
# batch_size = query_states.shape[0]
|
1440
|
+
# hidden_size = self.num_heads * self.head_dim # 计算实际的 hidden_size
|
1441
|
+
# attn_output = attn_output.reshape([batch_size, query_length, hidden_size])
|
1442
|
+
|
1443
|
+
return attn_output
|
1444
|
+
|
1445
|
+
def _unpad_input(
|
1446
|
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1447
|
+
):
|
1448
|
+
# Note: This function was named _upad_input() in paddle transformers/modeling_flash_attention_utils.py
|
1449
|
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1450
|
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1451
|
+
|
1452
|
+
# TODO:cuda error
|
1453
|
+
key_layer = index_first_axis(
|
1454
|
+
key_layer.reshape([batch_size * kv_seq_len, num_key_value_heads, head_dim]),
|
1455
|
+
indices_k,
|
1456
|
+
)
|
1457
|
+
value_layer = index_first_axis(
|
1458
|
+
value_layer.reshape(
|
1459
|
+
[batch_size * kv_seq_len, num_key_value_heads, head_dim]
|
1460
|
+
),
|
1461
|
+
indices_k,
|
1462
|
+
)
|
1463
|
+
|
1464
|
+
if query_length == kv_seq_len:
|
1465
|
+
query_layer = index_first_axis(
|
1466
|
+
query_layer.reshape(
|
1467
|
+
[batch_size * kv_seq_len, self.num_heads, head_dim]
|
1468
|
+
),
|
1469
|
+
indices_k,
|
1470
|
+
)
|
1471
|
+
cu_seqlens_q = cu_seqlens_k
|
1472
|
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1473
|
+
indices_q = indices_k
|
1474
|
+
elif query_length == 1:
|
1475
|
+
max_seqlen_in_batch_q = 1
|
1476
|
+
cu_seqlens_q = paddle.arange(
|
1477
|
+
batch_size + 1, dtype=paddle.int32
|
1478
|
+
) # There is a memcpy here, that is very bad.
|
1479
|
+
indices_q = cu_seqlens_q[:-1]
|
1480
|
+
query_layer = query_layer.squeeze(1)
|
1481
|
+
else:
|
1482
|
+
# The -q_len: slice assumes left padding.
|
1483
|
+
attention_mask = attention_mask[:, -query_length:]
|
1484
|
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1485
|
+
query_layer, attention_mask
|
1486
|
+
)
|
1487
|
+
|
1488
|
+
return (
|
1489
|
+
query_layer,
|
1490
|
+
key_layer,
|
1491
|
+
value_layer,
|
1492
|
+
indices_q.to(paddle.int64),
|
1493
|
+
(cu_seqlens_q, cu_seqlens_k),
|
1494
|
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1495
|
+
)
|
1496
|
+
|
1497
|
+
|
1498
|
+
class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention):
|
1499
|
+
"""
|
1500
|
+
Qwen2 attention module using paddle.nn.functional.scaled_dot_product_attention. This module inherits from
|
1501
|
+
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
1502
|
+
SDPA API.
|
1503
|
+
"""
|
1504
|
+
|
1505
|
+
def forward(
|
1506
|
+
self,
|
1507
|
+
hidden_states: paddle.Tensor,
|
1508
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1509
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1510
|
+
past_key_value: Optional[Tuple[paddle.Tensor]] = None,
|
1511
|
+
output_attentions: bool = False,
|
1512
|
+
use_cache: bool = False,
|
1513
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1514
|
+
position_embeddings: Optional[Tuple[paddle.Tensor, paddle.Tensor]] = None,
|
1515
|
+
) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
|
1516
|
+
if output_attentions:
|
1517
|
+
logging.warning_once(
|
1518
|
+
'Qwen2_5_VLModel is using Qwen2_5_VLSdpaAttention, but `paddle.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
1519
|
+
)
|
1520
|
+
return super().forward(
|
1521
|
+
hidden_states=hidden_states,
|
1522
|
+
attention_mask=attention_mask,
|
1523
|
+
position_ids=position_ids,
|
1524
|
+
past_key_value=past_key_value,
|
1525
|
+
output_attentions=output_attentions,
|
1526
|
+
use_cache=use_cache,
|
1527
|
+
cache_position=cache_position,
|
1528
|
+
position_embeddings=position_embeddings,
|
1529
|
+
)
|
1530
|
+
bsz, q_len, _ = hidden_states.shape
|
1531
|
+
|
1532
|
+
try:
|
1533
|
+
query_states = self.q_proj(hidden_states)
|
1534
|
+
key_states = self.k_proj(hidden_states)
|
1535
|
+
value_states = self.v_proj(hidden_states)
|
1536
|
+
except:
|
1537
|
+
hidden_states = hidden_states.astype(self.config.dtype)
|
1538
|
+
query_states = self.q_proj(hidden_states)
|
1539
|
+
key_states = self.k_proj(hidden_states)
|
1540
|
+
value_states = self.v_proj(hidden_states)
|
1541
|
+
|
1542
|
+
target_query_shape = [0, 0, self.num_heads, self.head_dim]
|
1543
|
+
target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
|
1544
|
+
query_states = query_states.reshape(shape=target_query_shape)
|
1545
|
+
key_states = key_states.reshape(shape=target_key_value_shape)
|
1546
|
+
value_states = value_states.reshape(shape=target_key_value_shape)
|
1547
|
+
|
1548
|
+
new_perm = [0, 2, 1, 3]
|
1549
|
+
query_states = query_states.transpose(new_perm)
|
1550
|
+
key_states = key_states.transpose(new_perm)
|
1551
|
+
value_states = value_states.transpose(new_perm)
|
1552
|
+
|
1553
|
+
kv_seq_len = key_states.shape[
|
1554
|
+
-2
|
1555
|
+
] # q_len ######## [bs, num_head, seq_len, head_dim] # qwen2是 [-3]
|
1556
|
+
if past_key_value is not None:
|
1557
|
+
kv_seq_len += cache_position[0] + 1
|
1558
|
+
# kv_seq_len += past_key_value[0].shape[-2] # qwen2是 [-3]
|
1559
|
+
|
1560
|
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
1561
|
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
1562
|
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
1563
|
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
1564
|
+
)
|
1565
|
+
|
1566
|
+
if past_key_value is not None:
|
1567
|
+
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
1568
|
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
1569
|
+
key_states = paddle.concat(
|
1570
|
+
[past_key_value[0], key_states], axis=2
|
1571
|
+
) # qwen2是 axis=1, qwen2_vl是 axis=2
|
1572
|
+
value_states = paddle.concat(
|
1573
|
+
[past_key_value[1], value_states], axis=2
|
1574
|
+
) # qwen2是 axis=1
|
1575
|
+
past_key_value = (key_states, value_states) if use_cache else None
|
1576
|
+
|
1577
|
+
# repeat k/v heads if n_kv_heads < n_heads
|
1578
|
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
1579
|
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
1580
|
+
|
1581
|
+
# Reashape to the expected shape for Flash Attention
|
1582
|
+
# [1, 3599, 12, 128]
|
1583
|
+
query_states = query_states.transpose(perm=[0, 2, 1, 3])
|
1584
|
+
key_states = key_states.transpose(perm=[0, 2, 1, 3])
|
1585
|
+
value_states = value_states.transpose(perm=[0, 2, 1, 3])
|
1586
|
+
|
1587
|
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1588
|
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1589
|
+
# to infer the attention mask.
|
1590
|
+
attention_mask = None
|
1591
|
+
causal_mask = attention_mask
|
1592
|
+
# Convert attention mask slicing
|
1593
|
+
if attention_mask is not None:
|
1594
|
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-3]]
|
1595
|
+
|
1596
|
+
# Ensure contiguous tensors for PaddlePaddle
|
1597
|
+
if query_states.place.is_gpu_place() and attention_mask is not None:
|
1598
|
+
query_states = query_states.contiguous()
|
1599
|
+
key_states = key_states.contiguous()
|
1600
|
+
value_states = value_states.contiguous()
|
1601
|
+
|
1602
|
+
# Determine if the operation is causal
|
1603
|
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
1604
|
+
|
1605
|
+
attn_output = paddle.nn.functional.scaled_dot_product_attention(
|
1606
|
+
query_states,
|
1607
|
+
key_states,
|
1608
|
+
value_states,
|
1609
|
+
attn_mask=causal_mask,
|
1610
|
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
1611
|
+
is_causal=is_causal,
|
1612
|
+
)
|
1613
|
+
|
1614
|
+
attn_output = attn_output.reshape([bsz, q_len, -1])
|
1615
|
+
|
1616
|
+
# Apply the output projection
|
1617
|
+
attn_output = self.o_proj(attn_output)
|
1618
|
+
|
1619
|
+
return attn_output, None, past_key_value
|
1620
|
+
|
1621
|
+
|
1622
|
+
QWEN2_5_VL_ATTENTION_CLASSES = {
|
1623
|
+
"eager": Qwen2_5_VLAttention,
|
1624
|
+
"flash_attention_2": Qwen2_5_VLFlashAttention2,
|
1625
|
+
"sdpa": Qwen2_5_VLSdpaAttention,
|
1626
|
+
}
|
1627
|
+
|
1628
|
+
|
1629
|
+
class Qwen2_5_VLDecoderLayer(nn.Layer):
|
1630
|
+
def __init__(self, config: Qwen2_5_VLConfig, layer_idx: int):
|
1631
|
+
super().__init__()
|
1632
|
+
self.hidden_size = config.hidden_size
|
1633
|
+
# use_sliding_window false
|
1634
|
+
if (
|
1635
|
+
config.use_sliding_window
|
1636
|
+
and config.attn_implementation != "flash_attention_2"
|
1637
|
+
):
|
1638
|
+
logging.warning_once(
|
1639
|
+
f"Sliding Window Attention is enabled but not implemented for `{config.attn_implementation}`; "
|
1640
|
+
"unexpected results may be encountered."
|
1641
|
+
)
|
1642
|
+
self.self_attn = QWEN2_5_VL_ATTENTION_CLASSES[config._attn_implementation](
|
1643
|
+
config, layer_idx
|
1644
|
+
)
|
1645
|
+
self.mlp = Qwen2MLP(config)
|
1646
|
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1647
|
+
self.post_attention_layernorm = Qwen2RMSNorm(
|
1648
|
+
config.hidden_size, eps=config.rms_norm_eps
|
1649
|
+
)
|
1650
|
+
|
1651
|
+
def forward(
|
1652
|
+
self,
|
1653
|
+
hidden_states: paddle.Tensor,
|
1654
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1655
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1656
|
+
past_key_value: Optional[Tuple[paddle.Tensor]] = None,
|
1657
|
+
output_attentions: Optional[bool] = False,
|
1658
|
+
use_cache: Optional[bool] = False,
|
1659
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1660
|
+
**kwargs,
|
1661
|
+
):
|
1662
|
+
"""
|
1663
|
+
Args:
|
1664
|
+
hidden_states (`paddle.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1665
|
+
attention_mask (`paddle.FloatTensor`, *optional*): attention mask of size
|
1666
|
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1667
|
+
output_attentions (`bool`, *optional*):
|
1668
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1669
|
+
returned tensors for more detail.
|
1670
|
+
use_cache (`bool`, *optional*):
|
1671
|
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1672
|
+
(see `past_key_values`).
|
1673
|
+
past_key_value (`Tuple(paddle.FloatTensor)`, *optional*): cached past key and value projection states
|
1674
|
+
cache_position (`paddle.LongTensor` of shape `(sequence_length)`, *optional*):
|
1675
|
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1676
|
+
position_embeddings (`Tuple[paddle.FloatTensor, paddle.FloatTensor]`, *optional*):
|
1677
|
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
1678
|
+
with `head_dim` being the embedding dimension of each attention head.
|
1679
|
+
kwargs (`dict`, *optional*):
|
1680
|
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
1681
|
+
into the model
|
1682
|
+
"""
|
1683
|
+
residual = hidden_states
|
1684
|
+
|
1685
|
+
hidden_states = self.input_layernorm(hidden_states)
|
1686
|
+
# Self Attention
|
1687
|
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1688
|
+
hidden_states=hidden_states,
|
1689
|
+
attention_mask=attention_mask,
|
1690
|
+
position_ids=position_ids,
|
1691
|
+
past_key_value=past_key_value,
|
1692
|
+
output_attentions=output_attentions,
|
1693
|
+
use_cache=use_cache,
|
1694
|
+
cache_position=cache_position,
|
1695
|
+
)
|
1696
|
+
hidden_states = residual + hidden_states
|
1697
|
+
|
1698
|
+
# Fully Connected
|
1699
|
+
residual = hidden_states
|
1700
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1701
|
+
hidden_states = self.mlp(hidden_states)
|
1702
|
+
hidden_states = residual + hidden_states
|
1703
|
+
|
1704
|
+
outputs = (hidden_states,)
|
1705
|
+
|
1706
|
+
if output_attentions:
|
1707
|
+
outputs += (self_attn_weights,)
|
1708
|
+
|
1709
|
+
if use_cache:
|
1710
|
+
outputs += (present_key_value,)
|
1711
|
+
|
1712
|
+
return outputs
|
1713
|
+
|
1714
|
+
|
1715
|
+
class Qwen2_5_VLPreTrainedModel(PretrainedModel):
|
1716
|
+
config_class = Qwen2_5_VLConfig
|
1717
|
+
base_model_prefix = "model"
|
1718
|
+
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
|
1719
|
+
_skip_keys_device_placement = "past_key_values"
|
1720
|
+
|
1721
|
+
def _init_weights(self, layer):
|
1722
|
+
std = 0.2
|
1723
|
+
if isinstance(layer, (nn.Linear, nn.Conv3D)):
|
1724
|
+
nn.initializer.Normal(mean=0.0, std=std)(layer.weight)
|
1725
|
+
if layer.bias is not None:
|
1726
|
+
nn.initializer.Constant(0.0)(layer.bias)
|
1727
|
+
elif isinstance(layer, nn.Embedding):
|
1728
|
+
nn.initializer.Normal(mean=0.0, std=std)(layer.weight)
|
1729
|
+
if layer._padding_idx is not None:
|
1730
|
+
with paddle.no_grad():
|
1731
|
+
layer.weight[layer._padding_idx] = 0.0
|
1732
|
+
|
1733
|
+
|
1734
|
+
class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel):
|
1735
|
+
config_class = Qwen2_5_VLVisionConfig
|
1736
|
+
_no_split_modules = ["Qwen2_5_VLVisionBlock"]
|
1737
|
+
|
1738
|
+
def __init__(self, config, *inputs, **kwargs) -> None:
|
1739
|
+
super().__init__(config, *inputs, **kwargs)
|
1740
|
+
self.spatial_merge_size = config.spatial_merge_size
|
1741
|
+
|
1742
|
+
self.patch_size = config.patch_size
|
1743
|
+
self.fullatt_block_indexes = config.fullatt_block_indexes
|
1744
|
+
self.window_size = config.window_size
|
1745
|
+
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
|
1746
|
+
self.patch_embed = Qwen2_5_VisionPatchEmbed(
|
1747
|
+
patch_size=config.patch_size,
|
1748
|
+
temporal_patch_size=config.temporal_patch_size,
|
1749
|
+
in_channels=config.in_channels,
|
1750
|
+
embed_dim=config.hidden_size,
|
1751
|
+
)
|
1752
|
+
head_dim = config.hidden_size // config.num_heads
|
1753
|
+
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
|
1754
|
+
self.blocks = nn.LayerList(
|
1755
|
+
sublayers=[
|
1756
|
+
Qwen2_5_VLVisionBlock(config, config._attn_implementation)
|
1757
|
+
for _ in range(config.depth)
|
1758
|
+
]
|
1759
|
+
)
|
1760
|
+
self.merger = Qwen2_5_VLPatchMerger(
|
1761
|
+
dim=config.out_hidden_size,
|
1762
|
+
context_dim=config.hidden_size,
|
1763
|
+
spatial_merge_size=config.spatial_merge_size,
|
1764
|
+
)
|
1765
|
+
self.enable_recompute = False
|
1766
|
+
|
1767
|
+
def rot_pos_emb(self, grid_thw):
|
1768
|
+
pos_ids = []
|
1769
|
+
for t, h, w in grid_thw:
|
1770
|
+
hpos_ids = paddle.arange(h).unsqueeze(1).expand([-1, w])
|
1771
|
+
hpos_ids = hpos_ids.reshape(
|
1772
|
+
[
|
1773
|
+
h // self.spatial_merge_size,
|
1774
|
+
self.spatial_merge_size,
|
1775
|
+
w // self.spatial_merge_size,
|
1776
|
+
self.spatial_merge_size,
|
1777
|
+
]
|
1778
|
+
)
|
1779
|
+
hpos_ids = hpos_ids.transpose(perm=[0, 2, 1, 3])
|
1780
|
+
hpos_ids = hpos_ids.flatten()
|
1781
|
+
|
1782
|
+
wpos_ids = paddle.arange(w).unsqueeze(0).expand([h, -1])
|
1783
|
+
wpos_ids = wpos_ids.reshape(
|
1784
|
+
[
|
1785
|
+
h // self.spatial_merge_size,
|
1786
|
+
self.spatial_merge_size,
|
1787
|
+
w // self.spatial_merge_size,
|
1788
|
+
self.spatial_merge_size,
|
1789
|
+
]
|
1790
|
+
)
|
1791
|
+
wpos_ids = wpos_ids.transpose([0, 2, 1, 3])
|
1792
|
+
wpos_ids = wpos_ids.flatten()
|
1793
|
+
pos_ids.append(
|
1794
|
+
paddle.stack(x=[hpos_ids, wpos_ids], axis=-1).tile(repeat_times=[t, 1])
|
1795
|
+
)
|
1796
|
+
pos_ids = paddle.concat(x=pos_ids, axis=0)
|
1797
|
+
max_grid_size = grid_thw[:, 1:].max()
|
1798
|
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
1799
|
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(start_axis=1)
|
1800
|
+
return rotary_pos_emb
|
1801
|
+
|
1802
|
+
def get_window_index(self, grid_thw):
|
1803
|
+
window_index: list = []
|
1804
|
+
cu_window_seqlens: list = [0]
|
1805
|
+
window_index_id = 0
|
1806
|
+
vit_merger_window_size = (
|
1807
|
+
self.window_size // self.spatial_merge_size // self.patch_size
|
1808
|
+
)
|
1809
|
+
for grid_t, grid_h, grid_w in grid_thw:
|
1810
|
+
llm_grid_h, llm_grid_w = (
|
1811
|
+
grid_h // self.spatial_merge_size,
|
1812
|
+
grid_w // self.spatial_merge_size,
|
1813
|
+
)
|
1814
|
+
index = paddle.arange(end=grid_t * llm_grid_h * llm_grid_w).reshape(
|
1815
|
+
[grid_t, llm_grid_h, llm_grid_w]
|
1816
|
+
)
|
1817
|
+
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
|
1818
|
+
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
|
1819
|
+
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
|
1820
|
+
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
|
1821
|
+
index_padded = paddle.nn.functional.pad(
|
1822
|
+
x=index,
|
1823
|
+
pad=(0, pad_w, 0, pad_h),
|
1824
|
+
mode="constant",
|
1825
|
+
value=-100,
|
1826
|
+
pad_from_left_axis=False,
|
1827
|
+
)
|
1828
|
+
index_padded = index_padded.reshape(
|
1829
|
+
[
|
1830
|
+
grid_t,
|
1831
|
+
num_windows_h,
|
1832
|
+
vit_merger_window_size,
|
1833
|
+
num_windows_w,
|
1834
|
+
vit_merger_window_size,
|
1835
|
+
]
|
1836
|
+
)
|
1837
|
+
index_padded = index_padded.transpose(perm=[0, 1, 3, 2, 4]).reshape(
|
1838
|
+
[
|
1839
|
+
grid_t,
|
1840
|
+
num_windows_h * num_windows_w,
|
1841
|
+
vit_merger_window_size,
|
1842
|
+
vit_merger_window_size,
|
1843
|
+
]
|
1844
|
+
)
|
1845
|
+
seqlens = (index_padded != -100).sum(axis=[2, 3]).reshape([-1])
|
1846
|
+
index_padded = index_padded.reshape([-1])
|
1847
|
+
index_new = index_padded[index_padded != -100]
|
1848
|
+
window_index.append(index_new + window_index_id)
|
1849
|
+
cu_seqlens_tmp = (
|
1850
|
+
seqlens.cumsum(axis=0) * self.spatial_merge_unit + cu_window_seqlens[-1]
|
1851
|
+
)
|
1852
|
+
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
|
1853
|
+
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
|
1854
|
+
window_index = paddle.concat(x=window_index, axis=0)
|
1855
|
+
return window_index, cu_window_seqlens
|
1856
|
+
|
1857
|
+
@paddle.jit.not_to_static
|
1858
|
+
def recompute_training_full(
|
1859
|
+
self,
|
1860
|
+
layer_module: nn.Layer,
|
1861
|
+
hidden_states: paddle.Tensor,
|
1862
|
+
cu_seqlens_now: paddle.Tensor,
|
1863
|
+
rotary_pos_emb: paddle.Tensor,
|
1864
|
+
):
|
1865
|
+
def create_custom_forward(module):
|
1866
|
+
def custom_forward(*inputs):
|
1867
|
+
return module(*inputs)
|
1868
|
+
|
1869
|
+
return custom_forward
|
1870
|
+
|
1871
|
+
hidden_states = recompute(
|
1872
|
+
create_custom_forward(layer_module),
|
1873
|
+
hidden_states,
|
1874
|
+
cu_seqlens_now,
|
1875
|
+
rotary_pos_emb,
|
1876
|
+
# use_reentrant=self.config.recompute_use_reentrant,
|
1877
|
+
)
|
1878
|
+
return hidden_states
|
1879
|
+
|
1880
|
+
def forward(
|
1881
|
+
self, hidden_states: paddle.Tensor, grid_thw: paddle.Tensor
|
1882
|
+
) -> paddle.Tensor:
|
1883
|
+
"""
|
1884
|
+
Args:
|
1885
|
+
hidden_states (`paddle.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
|
1886
|
+
The final hidden states of the model.
|
1887
|
+
grid_thw (`paddle.Tensor` of shape `(num_images_or_videos, 3)`):
|
1888
|
+
The temporal, height and width of feature shape of each image in LLM.
|
1889
|
+
|
1890
|
+
Returns:
|
1891
|
+
`paddle.Tensor`: hidden_states.
|
1892
|
+
"""
|
1893
|
+
hidden_states = self.patch_embed(hidden_states)
|
1894
|
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
1895
|
+
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
|
1896
|
+
cu_window_seqlens = paddle.to_tensor(
|
1897
|
+
data=cu_window_seqlens, dtype="int32", place=hidden_states.place
|
1898
|
+
)
|
1899
|
+
cu_window_seqlens = paddle.unique_consecutive(x=cu_window_seqlens)
|
1900
|
+
seq_len, _ = tuple(hidden_states.shape)
|
1901
|
+
hidden_states = hidden_states.reshape(
|
1902
|
+
[seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
|
1903
|
+
)
|
1904
|
+
hidden_states = hidden_states[window_index, :, :]
|
1905
|
+
hidden_states = hidden_states.reshape([seq_len, -1])
|
1906
|
+
rotary_pos_emb = rotary_pos_emb.reshape(
|
1907
|
+
[seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
|
1908
|
+
)
|
1909
|
+
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
1910
|
+
rotary_pos_emb = rotary_pos_emb.reshape([seq_len, -1])
|
1911
|
+
|
1912
|
+
cu_seqlens = paddle.repeat_interleave(
|
1913
|
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
1914
|
+
).cumsum(axis=0, dtype="int32")
|
1915
|
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
1916
|
+
|
1917
|
+
for layer_num, blk in enumerate(self.blocks):
|
1918
|
+
if layer_num in self.fullatt_block_indexes:
|
1919
|
+
cu_seqlens_now = cu_seqlens
|
1920
|
+
else:
|
1921
|
+
cu_seqlens_now = cu_window_seqlens
|
1922
|
+
if self.enable_recompute and self.training:
|
1923
|
+
hidden_states = self.recompute_training_full(
|
1924
|
+
blk, hidden_states, cu_seqlens_now, rotary_pos_emb
|
1925
|
+
)
|
1926
|
+
else:
|
1927
|
+
hidden_states = blk(
|
1928
|
+
hidden_states,
|
1929
|
+
cu_seqlens=cu_seqlens_now,
|
1930
|
+
rotary_pos_emb=rotary_pos_emb,
|
1931
|
+
)
|
1932
|
+
|
1933
|
+
hidden_states = self.merger(hidden_states)
|
1934
|
+
reverse_indices = paddle.argsort(x=window_index)
|
1935
|
+
hidden_states = hidden_states[reverse_indices, :]
|
1936
|
+
|
1937
|
+
return hidden_states
|
1938
|
+
|
1939
|
+
|
1940
|
+
class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
1941
|
+
def __init__(self, config: Qwen2_5_VLConfig):
|
1942
|
+
super().__init__(config)
|
1943
|
+
self.padding_idx = config.pad_token_id
|
1944
|
+
self.vocab_size = config.vocab_size
|
1945
|
+
self.hidden_size = config.hidden_size
|
1946
|
+
self.config = config
|
1947
|
+
# Recompute defaults to False and is controlled by Trainer
|
1948
|
+
|
1949
|
+
if (
|
1950
|
+
config.tensor_parallel_degree > 1
|
1951
|
+
and config.vocab_size % config.tensor_parallel_degree == 0
|
1952
|
+
):
|
1953
|
+
self.embed_tokens = mpu.VocabParallelEmbedding(
|
1954
|
+
self.vocab_size,
|
1955
|
+
self.hidden_size,
|
1956
|
+
weight_attr=paddle.ParamAttr(initializer=nn.initializer.XavierNormal()),
|
1957
|
+
)
|
1958
|
+
else:
|
1959
|
+
self.embed_tokens = nn.Embedding(
|
1960
|
+
self.vocab_size,
|
1961
|
+
self.hidden_size,
|
1962
|
+
)
|
1963
|
+
|
1964
|
+
# self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1965
|
+
self.layers = nn.LayerList(
|
1966
|
+
[
|
1967
|
+
Qwen2_5_VLDecoderLayer(config, layer_idx)
|
1968
|
+
for layer_idx in range(config.num_hidden_layers)
|
1969
|
+
]
|
1970
|
+
)
|
1971
|
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1972
|
+
|
1973
|
+
self.enable_recompute = False
|
1974
|
+
|
1975
|
+
def get_input_embeddings(self):
|
1976
|
+
return self.embed_tokens
|
1977
|
+
|
1978
|
+
def set_input_embeddings(self, value):
|
1979
|
+
self.embed_tokens = value
|
1980
|
+
|
1981
|
+
@staticmethod
|
1982
|
+
def _prepare_decoder_attention_mask(
|
1983
|
+
attention_mask, input_shape, past_key_values_length, dtype
|
1984
|
+
):
|
1985
|
+
if attention_mask is not None:
|
1986
|
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1987
|
+
if len(attention_mask.shape) == 2:
|
1988
|
+
expanded_attn_mask = _expand_2d_mask(
|
1989
|
+
attention_mask, dtype, tgt_length=input_shape[-1]
|
1990
|
+
)
|
1991
|
+
# For decoding phase in generation, seq_length = 1, we don't need to add causal mask
|
1992
|
+
if input_shape[-1] > 1:
|
1993
|
+
combined_attention_mask = _make_causal_mask(
|
1994
|
+
input_shape,
|
1995
|
+
past_key_values_length=past_key_values_length,
|
1996
|
+
)
|
1997
|
+
expanded_attn_mask = expanded_attn_mask & combined_attention_mask
|
1998
|
+
# [bsz, seq_len, seq_len] -> [bsz, 1, seq_len, seq_len]
|
1999
|
+
elif len(attention_mask.shape) == 3:
|
2000
|
+
expanded_attn_mask = attention_mask.unsqueeze(1).astype("bool")
|
2001
|
+
# if attention_mask is already 4-D, do nothing
|
2002
|
+
else:
|
2003
|
+
expanded_attn_mask = attention_mask
|
2004
|
+
else:
|
2005
|
+
expanded_attn_mask = _make_causal_mask(
|
2006
|
+
input_shape,
|
2007
|
+
past_key_values_length=past_key_values_length,
|
2008
|
+
)
|
2009
|
+
# Convert bool attention_mask to float attention mask, which will be added to attention_scores later
|
2010
|
+
expanded_attn_mask = paddle.where(
|
2011
|
+
expanded_attn_mask, 0.0, paddle.finfo(dtype).min
|
2012
|
+
).astype(dtype)
|
2013
|
+
return expanded_attn_mask
|
2014
|
+
|
2015
|
+
@paddle.jit.not_to_static
|
2016
|
+
def recompute_training_full(
|
2017
|
+
self,
|
2018
|
+
layer_module: nn.Layer,
|
2019
|
+
hidden_states: paddle.Tensor,
|
2020
|
+
position_ids: Optional[paddle.Tensor],
|
2021
|
+
attention_mask: paddle.Tensor,
|
2022
|
+
output_attentions: bool,
|
2023
|
+
past_key_value: paddle.Tensor,
|
2024
|
+
use_cache: bool,
|
2025
|
+
cache_position: Optional[paddle.Tensor] = None,
|
2026
|
+
):
|
2027
|
+
def create_custom_forward(module):
|
2028
|
+
def custom_forward(*inputs):
|
2029
|
+
return module(*inputs)
|
2030
|
+
|
2031
|
+
return custom_forward
|
2032
|
+
|
2033
|
+
hidden_states = recompute(
|
2034
|
+
create_custom_forward(layer_module),
|
2035
|
+
hidden_states,
|
2036
|
+
position_ids,
|
2037
|
+
attention_mask,
|
2038
|
+
output_attentions,
|
2039
|
+
past_key_value,
|
2040
|
+
use_cache,
|
2041
|
+
cache_position,
|
2042
|
+
use_reentrant=self.config.recompute_use_reentrant,
|
2043
|
+
)
|
2044
|
+
|
2045
|
+
return hidden_states
|
2046
|
+
|
2047
|
+
def forward(
|
2048
|
+
self,
|
2049
|
+
input_ids: paddle.Tensor = None,
|
2050
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
2051
|
+
position_ids: Optional[paddle.Tensor] = None,
|
2052
|
+
past_key_values: Optional[List[paddle.Tensor]] = None,
|
2053
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
2054
|
+
use_cache: Optional[bool] = None,
|
2055
|
+
output_attentions: Optional[bool] = None,
|
2056
|
+
output_hidden_states: Optional[bool] = None,
|
2057
|
+
return_dict: Optional[bool] = None,
|
2058
|
+
cache_position: Optional[paddle.Tensor] = None,
|
2059
|
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
2060
|
+
output_attentions = (
|
2061
|
+
output_attentions
|
2062
|
+
if output_attentions is not None
|
2063
|
+
else self.config.output_attentions
|
2064
|
+
)
|
2065
|
+
output_hidden_states = (
|
2066
|
+
output_hidden_states
|
2067
|
+
if output_hidden_states is not None
|
2068
|
+
else self.config.output_hidden_states
|
2069
|
+
)
|
2070
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
2071
|
+
|
2072
|
+
return_dict = (
|
2073
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
2074
|
+
)
|
2075
|
+
|
2076
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
2077
|
+
raise ValueError(
|
2078
|
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
2079
|
+
)
|
2080
|
+
elif input_ids is not None:
|
2081
|
+
batch_size, seq_length = input_ids.shape
|
2082
|
+
elif inputs_embeds is not None:
|
2083
|
+
batch_size, seq_length, _ = inputs_embeds.shape
|
2084
|
+
else:
|
2085
|
+
raise ValueError(
|
2086
|
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
2087
|
+
)
|
2088
|
+
|
2089
|
+
if past_key_values is None:
|
2090
|
+
past_key_values = tuple([None] * len(self.layers))
|
2091
|
+
# NOTE: to make cache can be clear in-time
|
2092
|
+
past_key_values = list(past_key_values)
|
2093
|
+
|
2094
|
+
seq_length_with_past = seq_length
|
2095
|
+
cache_length = 0
|
2096
|
+
if past_key_values[0] is not None:
|
2097
|
+
cache_length = past_key_values[0][0].shape[2] # shape[1] in qwen2
|
2098
|
+
seq_length_with_past += cache_length
|
2099
|
+
|
2100
|
+
if inputs_embeds is None:
|
2101
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
2102
|
+
|
2103
|
+
# embed positions
|
2104
|
+
if attention_mask is None:
|
2105
|
+
# [bs, seq_len]
|
2106
|
+
attention_mask = paddle.ones(
|
2107
|
+
(batch_size, seq_length_with_past), dtype=paddle.bool
|
2108
|
+
)
|
2109
|
+
|
2110
|
+
if self.config._attn_implementation == "flash_attention_2":
|
2111
|
+
causal_mask = attention_mask
|
2112
|
+
else:
|
2113
|
+
causal_mask = self._prepare_decoder_attention_mask(
|
2114
|
+
attention_mask,
|
2115
|
+
(batch_size, seq_length),
|
2116
|
+
cache_length,
|
2117
|
+
inputs_embeds.dtype,
|
2118
|
+
) # [bs, 1, seq_len, seq_len]
|
2119
|
+
|
2120
|
+
if cache_position is None:
|
2121
|
+
past_seen_tokens = (
|
2122
|
+
past_key_values[0][0].shape[2] if past_key_values[0] is not None else 0
|
2123
|
+
)
|
2124
|
+
cache_position = paddle.arange(
|
2125
|
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]
|
2126
|
+
)
|
2127
|
+
|
2128
|
+
if position_ids is None:
|
2129
|
+
# the hard coded `3` is for temporal, height and width.
|
2130
|
+
position_ids = cache_position.reshape([1, 1, -1]).expand(
|
2131
|
+
[3, inputs_embeds.shape[0], -1]
|
2132
|
+
)
|
2133
|
+
|
2134
|
+
hidden_states = inputs_embeds
|
2135
|
+
|
2136
|
+
# decoder layers
|
2137
|
+
all_hidden_states = () if output_hidden_states else None
|
2138
|
+
all_self_attns = () if output_attentions else None
|
2139
|
+
next_decoder_cache = ()
|
2140
|
+
|
2141
|
+
for idx, (decoder_layer) in enumerate(self.layers):
|
2142
|
+
if output_hidden_states:
|
2143
|
+
all_hidden_states += (hidden_states,)
|
2144
|
+
past_key_value = (
|
2145
|
+
past_key_values[idx] if past_key_values is not None else None
|
2146
|
+
)
|
2147
|
+
|
2148
|
+
if self.enable_recompute and self.training:
|
2149
|
+
layer_outputs = self.recompute_training_full(
|
2150
|
+
decoder_layer,
|
2151
|
+
hidden_states,
|
2152
|
+
causal_mask,
|
2153
|
+
position_ids,
|
2154
|
+
past_key_value,
|
2155
|
+
output_attentions,
|
2156
|
+
use_cache,
|
2157
|
+
cache_position,
|
2158
|
+
)
|
2159
|
+
else:
|
2160
|
+
layer_outputs = decoder_layer(
|
2161
|
+
hidden_states,
|
2162
|
+
attention_mask=causal_mask,
|
2163
|
+
position_ids=position_ids,
|
2164
|
+
past_key_value=past_key_value,
|
2165
|
+
output_attentions=output_attentions, # False
|
2166
|
+
use_cache=use_cache, # True
|
2167
|
+
cache_position=cache_position,
|
2168
|
+
)
|
2169
|
+
|
2170
|
+
# NOTE: clear outdate cache after it has been used for memory saving
|
2171
|
+
past_key_value = past_key_values[idx] = None
|
2172
|
+
|
2173
|
+
hidden_states = layer_outputs[0]
|
2174
|
+
|
2175
|
+
next_decoder_cache = (
|
2176
|
+
next_decoder_cache + (layer_outputs[-1],) if use_cache else None
|
2177
|
+
)
|
2178
|
+
|
2179
|
+
if output_attentions:
|
2180
|
+
all_self_attns += (layer_outputs[1],)
|
2181
|
+
|
2182
|
+
hidden_states = self.norm(hidden_states)
|
2183
|
+
|
2184
|
+
# add hidden states from the last decoder layer
|
2185
|
+
if output_hidden_states:
|
2186
|
+
all_hidden_states += (hidden_states,)
|
2187
|
+
|
2188
|
+
next_cache = next_decoder_cache if use_cache else None
|
2189
|
+
|
2190
|
+
if not return_dict:
|
2191
|
+
return tuple(
|
2192
|
+
v
|
2193
|
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
2194
|
+
if v is not None
|
2195
|
+
)
|
2196
|
+
return BaseModelOutputWithPast(
|
2197
|
+
last_hidden_state=hidden_states,
|
2198
|
+
past_key_values=next_cache,
|
2199
|
+
hidden_states=all_hidden_states,
|
2200
|
+
attentions=all_self_attns,
|
2201
|
+
)
|
2202
|
+
|
2203
|
+
|
2204
|
+
class Qwen2LMHead(nn.Layer):
|
2205
|
+
def __init__(self, config, embedding_weights=None, transpose_y=False):
|
2206
|
+
super(Qwen2LMHead, self).__init__()
|
2207
|
+
self.config = config
|
2208
|
+
if (
|
2209
|
+
config.tensor_parallel_degree > 1
|
2210
|
+
and config.vocab_size % config.tensor_parallel_degree == 0
|
2211
|
+
):
|
2212
|
+
vocab_size = config.vocab_size // config.tensor_parallel_degree
|
2213
|
+
else:
|
2214
|
+
vocab_size = config.vocab_size
|
2215
|
+
|
2216
|
+
self.transpose_y = transpose_y
|
2217
|
+
if transpose_y:
|
2218
|
+
# only for weight from embedding_weights
|
2219
|
+
if embedding_weights is not None:
|
2220
|
+
self.weight = embedding_weights
|
2221
|
+
else:
|
2222
|
+
self.weight = self.create_parameter(
|
2223
|
+
shape=[vocab_size, config.hidden_size],
|
2224
|
+
dtype=paddle.get_default_dtype(),
|
2225
|
+
)
|
2226
|
+
else:
|
2227
|
+
|
2228
|
+
if vocab_size != config.vocab_size:
|
2229
|
+
with get_rng_state_tracker().rng_state():
|
2230
|
+
self.weight = self.create_parameter(
|
2231
|
+
shape=[config.hidden_size, vocab_size],
|
2232
|
+
dtype=paddle.get_default_dtype(),
|
2233
|
+
)
|
2234
|
+
else:
|
2235
|
+
self.weight = self.create_parameter(
|
2236
|
+
shape=[config.hidden_size, vocab_size],
|
2237
|
+
dtype=paddle.get_default_dtype(),
|
2238
|
+
)
|
2239
|
+
|
2240
|
+
# Must set distributed attr for Tensor Parallel !
|
2241
|
+
self.weight.is_distributed = (
|
2242
|
+
True if (vocab_size != config.vocab_size) else False
|
2243
|
+
)
|
2244
|
+
if self.weight.is_distributed:
|
2245
|
+
# for tie_word_embeddings
|
2246
|
+
self.weight.split_axis = 0 if self.transpose_y else 1
|
2247
|
+
|
2248
|
+
def forward(self, hidden_states, tensor_parallel_output=None):
|
2249
|
+
if tensor_parallel_output is None:
|
2250
|
+
tensor_parallel_output = self.config.tensor_parallel_output
|
2251
|
+
|
2252
|
+
# 确保数据类型一致
|
2253
|
+
if self.weight.dtype != hidden_states.dtype:
|
2254
|
+
hidden_states = paddle.cast(hidden_states, self.weight.dtype)
|
2255
|
+
|
2256
|
+
logits = parallel_matmul(
|
2257
|
+
hidden_states,
|
2258
|
+
self.weight,
|
2259
|
+
transpose_y=self.transpose_y,
|
2260
|
+
tensor_parallel_output=tensor_parallel_output,
|
2261
|
+
)
|
2262
|
+
return logits
|
2263
|
+
|
2264
|
+
|
2265
|
+
class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel):
|
2266
|
+
_tied_weights_keys = ["lm_head.weight"]
|
2267
|
+
config_class = Qwen2_5_VLConfig
|
2268
|
+
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
|
2269
|
+
|
2270
|
+
def __init__(self, config, attn_implementation="flash_attention_2"):
|
2271
|
+
super().__init__(config)
|
2272
|
+
config._attn_implementation = attn_implementation
|
2273
|
+
config.vision_config._attn_implementation = attn_implementation
|
2274
|
+
|
2275
|
+
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(
|
2276
|
+
config.vision_config
|
2277
|
+
)
|
2278
|
+
self.model = Qwen2_5_VLModel(config)
|
2279
|
+
self.vocab_size = config.vocab_size
|
2280
|
+
if config.tie_word_embeddings:
|
2281
|
+
self.lm_head = Qwen2LMHead(
|
2282
|
+
config,
|
2283
|
+
embedding_weights=self.model.embed_tokens.weight,
|
2284
|
+
transpose_y=True,
|
2285
|
+
)
|
2286
|
+
self.tie_weights()
|
2287
|
+
else:
|
2288
|
+
self.lm_head = Qwen2LMHead(config)
|
2289
|
+
self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
2290
|
+
|
2291
|
+
self.enable_recompute = False
|
2292
|
+
|
2293
|
+
def get_input_embeddings(self):
|
2294
|
+
return self.model.embed_tokens
|
2295
|
+
|
2296
|
+
def set_input_embeddings(self, value):
|
2297
|
+
self.model.embed_tokens = value
|
2298
|
+
|
2299
|
+
def get_output_embeddings(self):
|
2300
|
+
return self.lm_head
|
2301
|
+
|
2302
|
+
def set_output_embeddings(self, new_embeddings):
|
2303
|
+
self.lm_head = new_embeddings
|
2304
|
+
|
2305
|
+
def set_decoder(self, decoder):
|
2306
|
+
self.model = decoder
|
2307
|
+
|
2308
|
+
def get_decoder(self):
|
2309
|
+
return self.model
|
2310
|
+
|
2311
|
+
@classmethod
|
2312
|
+
def _get_tensor_parallel_mappings(cls, config: Qwen2_5_VLConfig, is_split=True):
|
2313
|
+
|
2314
|
+
logging.info("Qwen2 inference model _get_tensor_parallel_mappings")
|
2315
|
+
|
2316
|
+
from paddlenlp.transformers.conversion_utils import split_or_merge_func
|
2317
|
+
|
2318
|
+
fn = split_or_merge_func(
|
2319
|
+
is_split=is_split,
|
2320
|
+
tensor_parallel_degree=config.tensor_parallel_degree,
|
2321
|
+
tensor_parallel_rank=config.tensor_parallel_rank,
|
2322
|
+
num_attention_heads=config.num_attention_heads,
|
2323
|
+
)
|
2324
|
+
|
2325
|
+
def get_tensor_parallel_split_mappings(num_layers):
|
2326
|
+
final_actions = {}
|
2327
|
+
|
2328
|
+
base_actions = {
|
2329
|
+
"lm_head.weight": partial(fn, is_column=True),
|
2330
|
+
# Row Linear
|
2331
|
+
"embed_tokens.weight": partial(fn, is_column=False),
|
2332
|
+
"layers.0.self_attn.o_proj.weight": partial(fn, is_column=False),
|
2333
|
+
"layers.0.mlp.down_proj.weight": partial(fn, is_column=False),
|
2334
|
+
}
|
2335
|
+
|
2336
|
+
# Column Linear
|
2337
|
+
# if config.fuse_attention_qkv:
|
2338
|
+
# base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(fn, is_column=True)
|
2339
|
+
# else:
|
2340
|
+
base_actions["layers.0.self_attn.q_proj.weight"] = partial(
|
2341
|
+
fn, is_column=True
|
2342
|
+
)
|
2343
|
+
base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True)
|
2344
|
+
# if we have enough num_key_value_heads to split, then split it.
|
2345
|
+
if config.num_key_value_heads % config.tensor_parallel_degree == 0:
|
2346
|
+
base_actions["layers.0.self_attn.k_proj.weight"] = partial(
|
2347
|
+
fn, is_column=True
|
2348
|
+
)
|
2349
|
+
base_actions["layers.0.self_attn.v_proj.weight"] = partial(
|
2350
|
+
fn, is_column=True
|
2351
|
+
)
|
2352
|
+
base_actions["layers.0.self_attn.k_proj.bias"] = partial(
|
2353
|
+
fn, is_column=True
|
2354
|
+
)
|
2355
|
+
base_actions["layers.0.self_attn.v_proj.bias"] = partial(
|
2356
|
+
fn, is_column=True
|
2357
|
+
)
|
2358
|
+
|
2359
|
+
if config.fuse_attention_ffn:
|
2360
|
+
base_actions["layers.0.mlp.gate_up_fused_proj.weight"] = partial(
|
2361
|
+
fn, is_column=True, is_naive_2fuse=True
|
2362
|
+
)
|
2363
|
+
else:
|
2364
|
+
base_actions["layers.0.mlp.gate_proj.weight"] = partial(
|
2365
|
+
fn, is_column=True
|
2366
|
+
)
|
2367
|
+
base_actions["layers.0.mlp.up_proj.weight"] = partial(
|
2368
|
+
fn, is_column=True
|
2369
|
+
)
|
2370
|
+
|
2371
|
+
for key, action in base_actions.items():
|
2372
|
+
if "layers.0." in key:
|
2373
|
+
for i in range(num_layers):
|
2374
|
+
final_actions[key.replace("layers.0.", f"layers.{i}.")] = action
|
2375
|
+
final_actions[key] = action
|
2376
|
+
|
2377
|
+
return final_actions
|
2378
|
+
|
2379
|
+
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
|
2380
|
+
|
2381
|
+
return mappings
|
2382
|
+
|
2383
|
+
@staticmethod
|
2384
|
+
def get_rope_index(
|
2385
|
+
spatial_merge_size,
|
2386
|
+
image_token_id,
|
2387
|
+
video_token_id,
|
2388
|
+
vision_start_token_id,
|
2389
|
+
tokens_per_second,
|
2390
|
+
input_ids: Optional[paddle.Tensor] = None,
|
2391
|
+
image_grid_thw: Optional[paddle.Tensor] = None,
|
2392
|
+
video_grid_thw: Optional[paddle.Tensor] = None,
|
2393
|
+
second_per_grid_ts: Optional[paddle.Tensor] = None,
|
2394
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
2395
|
+
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
2396
|
+
"""
|
2397
|
+
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
2398
|
+
|
2399
|
+
Explanation:
|
2400
|
+
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
2401
|
+
|
2402
|
+
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
|
2403
|
+
Examples:
|
2404
|
+
input_ids: [T T T T T], here T is for text.
|
2405
|
+
temporal position_ids: [0, 1, 2, 3, 4]
|
2406
|
+
height position_ids: [0, 1, 2, 3, 4]
|
2407
|
+
width position_ids: [0, 1, 2, 3, 4]
|
2408
|
+
|
2409
|
+
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
2410
|
+
and 1D rotary position embedding for text part.
|
2411
|
+
Examples:
|
2412
|
+
Temporal (Time): 3 patches, representing different segments of the video in time.
|
2413
|
+
Height: 2 patches, dividing each frame vertically.
|
2414
|
+
Width: 2 patches, dividing each frame horizontally.
|
2415
|
+
We also have some important parameters:
|
2416
|
+
fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
|
2417
|
+
tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
|
2418
|
+
temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
|
2419
|
+
interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
|
2420
|
+
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
2421
|
+
vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
|
2422
|
+
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
2423
|
+
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
2424
|
+
text temporal position_ids: [101, 102, 103, 104, 105]
|
2425
|
+
text height position_ids: [101, 102, 103, 104, 105]
|
2426
|
+
text width position_ids: [101, 102, 103, 104, 105]
|
2427
|
+
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
2428
|
+
|
2429
|
+
Args:
|
2430
|
+
input_ids (`paddle.LongTensor` of shape `(batch_size, sequence_length)`):
|
2431
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
2432
|
+
it.
|
2433
|
+
image_grid_thw (`paddle.LongTensor` of shape `(num_images, 3)`, *optional*):
|
2434
|
+
The temporal, height and width of feature shape of each image in LLM.
|
2435
|
+
video_grid_thw (`paddle.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
2436
|
+
The temporal, height and width of feature shape of each video in LLM.
|
2437
|
+
second_per_grid_ts (`paddle.Tensor` of shape `(num_videos)`, *optional*):
|
2438
|
+
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
|
2439
|
+
attention_mask (`paddle.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2440
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
2441
|
+
|
2442
|
+
- 1 for tokens that are **not masked**,
|
2443
|
+
- 0 for tokens that are **masked**.
|
2444
|
+
|
2445
|
+
Returns:
|
2446
|
+
position_ids (`paddle.Tensor` of shape `(3, batch_size, sequence_length)`)
|
2447
|
+
mrope_position_deltas (`paddle.Tensor` of shape `(batch_size)`)
|
2448
|
+
"""
|
2449
|
+
# spatial_merge_size = self.config.vision_config.spatial_merge_size
|
2450
|
+
# image_token_id = self.config.image_token_id
|
2451
|
+
# video_token_id = self.config.video_token_id
|
2452
|
+
# vision_start_token_id = self.config.vision_start_token_id
|
2453
|
+
mrope_position_deltas = []
|
2454
|
+
if image_grid_thw is not None or video_grid_thw is not None:
|
2455
|
+
total_input_ids = input_ids
|
2456
|
+
position_ids = paddle.ones(
|
2457
|
+
[3, input_ids.shape[0], input_ids.shape[1]], dtype=input_ids.dtype
|
2458
|
+
)
|
2459
|
+
image_index, video_index = 0, 0
|
2460
|
+
for i, input_ids in enumerate(total_input_ids):
|
2461
|
+
# TODO: CUDA error in some paddle version
|
2462
|
+
if attention_mask is not None:
|
2463
|
+
input_ids = paddle.to_tensor(
|
2464
|
+
input_ids.cpu()[attention_mask[i].cpu() == 1]
|
2465
|
+
)
|
2466
|
+
image_nums, video_nums = 0, 0
|
2467
|
+
vision_start_indices = paddle.nonzero(
|
2468
|
+
input_ids == vision_start_token_id
|
2469
|
+
).squeeze(1)
|
2470
|
+
vision_tokens = input_ids[vision_start_indices + 1]
|
2471
|
+
image_nums = (
|
2472
|
+
(vision_tokens == image_token_id).sum()
|
2473
|
+
if vision_tokens.numel() > 0
|
2474
|
+
else 0
|
2475
|
+
)
|
2476
|
+
video_nums = (
|
2477
|
+
(vision_tokens == video_token_id).sum()
|
2478
|
+
if vision_tokens.numel() > 0
|
2479
|
+
else 0
|
2480
|
+
)
|
2481
|
+
input_tokens = input_ids.tolist()
|
2482
|
+
llm_pos_ids_list: list = []
|
2483
|
+
st = 0
|
2484
|
+
remain_images, remain_videos = image_nums, video_nums
|
2485
|
+
for _ in range(image_nums + video_nums):
|
2486
|
+
if image_token_id in input_tokens and remain_images > 0:
|
2487
|
+
ed_image = input_tokens.index(image_token_id, st)
|
2488
|
+
else:
|
2489
|
+
ed_image = len(input_tokens) + 1
|
2490
|
+
if video_token_id in input_tokens and remain_videos > 0:
|
2491
|
+
ed_video = input_tokens.index(video_token_id, st)
|
2492
|
+
else:
|
2493
|
+
ed_video = len(input_tokens) + 1
|
2494
|
+
if ed_image < ed_video:
|
2495
|
+
t, h, w = (
|
2496
|
+
image_grid_thw[image_index][0],
|
2497
|
+
image_grid_thw[image_index][1],
|
2498
|
+
image_grid_thw[image_index][2],
|
2499
|
+
)
|
2500
|
+
second_per_grid_t = 0
|
2501
|
+
image_index += 1
|
2502
|
+
remain_images -= 1
|
2503
|
+
ed = ed_image
|
2504
|
+
else:
|
2505
|
+
t, h, w = (
|
2506
|
+
video_grid_thw[video_index][0],
|
2507
|
+
video_grid_thw[video_index][1],
|
2508
|
+
video_grid_thw[video_index][2],
|
2509
|
+
)
|
2510
|
+
if second_per_grid_ts is not None:
|
2511
|
+
second_per_grid_t = second_per_grid_ts[video_index]
|
2512
|
+
else:
|
2513
|
+
second_per_grid_t = 1.0
|
2514
|
+
video_index += 1
|
2515
|
+
remain_videos -= 1
|
2516
|
+
ed = ed_video
|
2517
|
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
2518
|
+
t.item(),
|
2519
|
+
h.item() // spatial_merge_size,
|
2520
|
+
w.item() // spatial_merge_size,
|
2521
|
+
)
|
2522
|
+
text_len = ed - st
|
2523
|
+
st_idx = (
|
2524
|
+
llm_pos_ids_list[-1].max() + 1
|
2525
|
+
if len(llm_pos_ids_list) > 0
|
2526
|
+
else 0
|
2527
|
+
)
|
2528
|
+
llm_pos_ids_list.append(
|
2529
|
+
paddle.arange(text_len).reshape([1, -1]).expand([3, -1])
|
2530
|
+
+ st_idx
|
2531
|
+
)
|
2532
|
+
range_tensor = paddle.arange(end=llm_grid_t).reshape([-1, 1])
|
2533
|
+
expanded_range = range_tensor.expand(
|
2534
|
+
shape=[-1, llm_grid_h * llm_grid_w]
|
2535
|
+
)
|
2536
|
+
time_tensor = expanded_range * second_per_grid_t * tokens_per_second
|
2537
|
+
time_tensor_long = time_tensor.astype(dtype="int64")
|
2538
|
+
t_index = time_tensor_long.flatten()
|
2539
|
+
h_index = (
|
2540
|
+
paddle.arange(end=llm_grid_h)
|
2541
|
+
.reshape([1, -1, 1])
|
2542
|
+
.expand(shape=[llm_grid_t, -1, llm_grid_w])
|
2543
|
+
.flatten()
|
2544
|
+
)
|
2545
|
+
w_index = (
|
2546
|
+
paddle.arange(end=llm_grid_w)
|
2547
|
+
.reshape([1, 1, -1])
|
2548
|
+
.expand(shape=[llm_grid_t, llm_grid_h, -1])
|
2549
|
+
.flatten()
|
2550
|
+
)
|
2551
|
+
llm_pos_ids_list.append(
|
2552
|
+
paddle.stack([t_index, h_index, w_index]) + text_len + st_idx
|
2553
|
+
)
|
2554
|
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
2555
|
+
|
2556
|
+
if st < len(input_tokens):
|
2557
|
+
st_idx = (
|
2558
|
+
llm_pos_ids_list[-1].max() + 1
|
2559
|
+
if len(llm_pos_ids_list) > 0
|
2560
|
+
else 0
|
2561
|
+
)
|
2562
|
+
text_len = len(input_tokens) - st
|
2563
|
+
llm_pos_ids_list.append(
|
2564
|
+
paddle.arange(text_len).reshape([1, -1]).expand([3, -1])
|
2565
|
+
+ st_idx
|
2566
|
+
)
|
2567
|
+
llm_positions = paddle.concat(llm_pos_ids_list, axis=1).reshape([3, -1])
|
2568
|
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions
|
2569
|
+
|
2570
|
+
mrope_position_deltas.append(
|
2571
|
+
llm_positions.max() + 1 - len(total_input_ids[i])
|
2572
|
+
)
|
2573
|
+
mrope_position_deltas = paddle.to_tensor(mrope_position_deltas).unsqueeze(1)
|
2574
|
+
return position_ids, mrope_position_deltas
|
2575
|
+
else:
|
2576
|
+
if attention_mask is not None:
|
2577
|
+
position_ids = paddle.cast(attention_mask, dtype="int64").cumsum(-1) - 1
|
2578
|
+
position_ids.masked_fill_(mask=attention_mask == 0, value=1)
|
2579
|
+
position_ids = position_ids.unsqueeze(0).expand([3, -1, -1])
|
2580
|
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(
|
2581
|
+
-1, keepdim=True
|
2582
|
+
)[0]
|
2583
|
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
2584
|
+
else:
|
2585
|
+
position_ids = (
|
2586
|
+
paddle.arange(input_ids.shape[1])
|
2587
|
+
.reshape([1, 1, -1])
|
2588
|
+
.expand(shape=[3, input_ids.shape[0], -1])
|
2589
|
+
)
|
2590
|
+
mrope_position_deltas = paddle.zeros(
|
2591
|
+
[input_ids.shape[0], 1], dtype=input_ids.dtype
|
2592
|
+
)
|
2593
|
+
return position_ids, mrope_position_deltas
|
2594
|
+
|
2595
|
+
def update_model_kwargs_for_generation(
|
2596
|
+
self,
|
2597
|
+
outputs: ModelOutput,
|
2598
|
+
model_kwargs: Dict[str, Any],
|
2599
|
+
is_encoder_decoder: bool = False,
|
2600
|
+
# num_new_tokens: int = 1,
|
2601
|
+
) -> Dict[str, Any]:
|
2602
|
+
model_kwargs = super().update_model_kwargs_for_generation(
|
2603
|
+
outputs=outputs,
|
2604
|
+
model_kwargs=model_kwargs,
|
2605
|
+
is_encoder_decoder=is_encoder_decoder,
|
2606
|
+
# num_new_tokens=num_new_tokens,
|
2607
|
+
)
|
2608
|
+
|
2609
|
+
# return logits + 28 layers k and v, TODO:
|
2610
|
+
if getattr(outputs, "rope_deltas", None) is not None:
|
2611
|
+
model_kwargs["rope_deltas"] = outputs.rope_deltas
|
2612
|
+
|
2613
|
+
return model_kwargs
|
2614
|
+
|
2615
|
+
# NOTE(changwenbin): Vision module added for high-performance inference.
|
2616
|
+
def vision_forward(
|
2617
|
+
self,
|
2618
|
+
input_ids: paddle.Tensor,
|
2619
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
2620
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
2621
|
+
position_ids: Optional[paddle.Tensor] = None,
|
2622
|
+
pixel_values: Optional[paddle.Tensor] = None,
|
2623
|
+
pixel_values_videos: Optional[paddle.Tensor] = None,
|
2624
|
+
image_grid_thw: Optional[paddle.Tensor] = None,
|
2625
|
+
video_grid_thw: Optional[paddle.Tensor] = None,
|
2626
|
+
rope_deltas: Optional[paddle.Tensor] = None,
|
2627
|
+
second_per_grid_ts: Optional[paddle.Tensor] = None,
|
2628
|
+
):
|
2629
|
+
|
2630
|
+
if inputs_embeds is None:
|
2631
|
+
# NOTE: (zhoukangkang、changwenbin) In the high-performance reasoning of Qwen2-vl,
|
2632
|
+
# in order to reduce video memory, the qwen2 embed_tokens method in Paddlenlp is reused here.
|
2633
|
+
from paddlenlp.experimental.transformers.qwen2.modeling import (
|
2634
|
+
Qwen2_5_VLForConditionalGenerationBlockInferenceModel,
|
2635
|
+
)
|
2636
|
+
|
2637
|
+
assert isinstance(
|
2638
|
+
self.model, Qwen2_5_VLForConditionalGenerationBlockInferenceModel
|
2639
|
+
), "model is not an instance of Qwen2_5_VLForConditionalGenerationBlockInferenceModel"
|
2640
|
+
|
2641
|
+
inputs_embeds = self.model.qwen2.embed_tokens(input_ids)
|
2642
|
+
if pixel_values is not None:
|
2643
|
+
pixel_values = paddle.cast(
|
2644
|
+
pixel_values, self.visual.patch_embed.proj.weight.dtype
|
2645
|
+
)
|
2646
|
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
2647
|
+
image_mask = input_ids == self.config.image_token_id
|
2648
|
+
|
2649
|
+
inputs_embeds[image_mask] = image_embeds
|
2650
|
+
if pixel_values_videos is not None:
|
2651
|
+
pixel_values_videos = paddle.cast(
|
2652
|
+
pixel_values_videos, self.visual.patch_embed.proj.weight.dtype
|
2653
|
+
)
|
2654
|
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
2655
|
+
video_mask = input_ids == self.config.video_token_id
|
2656
|
+
inputs_embeds[video_mask] = video_embeds
|
2657
|
+
if attention_mask is not None:
|
2658
|
+
attention_mask = attention_mask
|
2659
|
+
|
2660
|
+
return inputs_embeds
|
2661
|
+
|
2662
|
+
def forward(
|
2663
|
+
self,
|
2664
|
+
input_ids: paddle.Tensor = None, # [1, 400] sum 49356255
|
2665
|
+
attention_mask: Optional[paddle.Tensor] = None, # [1, 400] sum 396
|
2666
|
+
position_ids: Optional[paddle.Tensor] = None,
|
2667
|
+
past_key_values: Optional[List[paddle.Tensor]] = None,
|
2668
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
2669
|
+
labels: Optional[paddle.Tensor] = None, # [1, 400] sum 354841
|
2670
|
+
use_cache: Optional[bool] = None,
|
2671
|
+
output_attentions: Optional[bool] = None,
|
2672
|
+
output_hidden_states: Optional[bool] = None,
|
2673
|
+
return_dict: Optional[bool] = None,
|
2674
|
+
pixel_values: Optional[
|
2675
|
+
paddle.Tensor
|
2676
|
+
] = None, # [1, 1224, 1176] sum 2658700.50000000
|
2677
|
+
pixel_values_videos: Optional[paddle.Tensor] = None,
|
2678
|
+
image_grid_thw: Optional[paddle.Tensor] = None, # [[1 , 36, 34]]
|
2679
|
+
video_grid_thw: Optional[paddle.Tensor] = None,
|
2680
|
+
rope_deltas: Optional[paddle.Tensor] = None,
|
2681
|
+
second_per_grid_ts: Optional[paddle.Tensor] = None,
|
2682
|
+
):
|
2683
|
+
"""
|
2684
|
+
Args:
|
2685
|
+
labels (`paddle.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2686
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
2687
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
2688
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
2689
|
+
|
2690
|
+
Returns:
|
2691
|
+
|
2692
|
+
Example:
|
2693
|
+
|
2694
|
+
```python
|
2695
|
+
>>> from PIL import Image
|
2696
|
+
>>> import requests
|
2697
|
+
>>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
2698
|
+
|
2699
|
+
>>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
2700
|
+
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
2701
|
+
|
2702
|
+
>>> messages = [
|
2703
|
+
{
|
2704
|
+
"role": "user",
|
2705
|
+
"content": [
|
2706
|
+
{"type": "image"},
|
2707
|
+
{"type": "text", "text": "What is shown in this image?"},
|
2708
|
+
],
|
2709
|
+
},
|
2710
|
+
]
|
2711
|
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
2712
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
2713
|
+
|
2714
|
+
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
2715
|
+
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
2716
|
+
|
2717
|
+
>>> # Generate
|
2718
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
2719
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
2720
|
+
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
2721
|
+
```"""
|
2722
|
+
|
2723
|
+
output_attentions = (
|
2724
|
+
output_attentions
|
2725
|
+
if output_attentions is not None
|
2726
|
+
else self.config.output_attentions
|
2727
|
+
)
|
2728
|
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # fmt:skip
|
2729
|
+
# Note:始终为True
|
2730
|
+
return_dict = True # return_dict if return_dict is not None else self.config.use_return_dict
|
2731
|
+
|
2732
|
+
if inputs_embeds is None:
|
2733
|
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
2734
|
+
if pixel_values is not None:
|
2735
|
+
# 确保 pixel_values 和 inputs_embeds 使用相同的数据类型
|
2736
|
+
pixel_values = paddle.cast(pixel_values, inputs_embeds.dtype)
|
2737
|
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
2738
|
+
# 确保 image_embeds 和 inputs_embeds 使用相同的数据类型
|
2739
|
+
image_embeds = paddle.cast(image_embeds, inputs_embeds.dtype)
|
2740
|
+
image_mask = input_ids == self.config.image_token_id
|
2741
|
+
if self.training:
|
2742
|
+
inputs_embeds = inputs_embeds.clone()
|
2743
|
+
inputs_embeds[image_mask] = image_embeds
|
2744
|
+
if pixel_values_videos is not None:
|
2745
|
+
# 确保 pixel_values_videos 和 inputs_embeds 使用相同的数据类型
|
2746
|
+
pixel_values_videos = paddle.cast(
|
2747
|
+
pixel_values_videos, inputs_embeds.dtype
|
2748
|
+
)
|
2749
|
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
2750
|
+
# 确保 video_embeds 和 inputs_embeds 使用相同的数据类型
|
2751
|
+
video_embeds = paddle.cast(video_embeds, inputs_embeds.dtype)
|
2752
|
+
video_mask = input_ids == self.config.video_token_id
|
2753
|
+
inputs_embeds[video_mask] = video_embeds
|
2754
|
+
if attention_mask is not None:
|
2755
|
+
attention_mask = attention_mask
|
2756
|
+
|
2757
|
+
outputs = self.model(
|
2758
|
+
input_ids=None,
|
2759
|
+
position_ids=position_ids,
|
2760
|
+
attention_mask=attention_mask,
|
2761
|
+
past_key_values=past_key_values,
|
2762
|
+
inputs_embeds=inputs_embeds,
|
2763
|
+
use_cache=use_cache,
|
2764
|
+
output_attentions=output_attentions,
|
2765
|
+
output_hidden_states=output_hidden_states,
|
2766
|
+
return_dict=return_dict,
|
2767
|
+
)
|
2768
|
+
|
2769
|
+
hidden_states = outputs[0]
|
2770
|
+
|
2771
|
+
tensor_parallel_output = (
|
2772
|
+
self.config.tensor_parallel_output
|
2773
|
+
and self.config.tensor_parallel_degree > 1
|
2774
|
+
)
|
2775
|
+
|
2776
|
+
logits = self.lm_head(
|
2777
|
+
hidden_states, tensor_parallel_output=tensor_parallel_output
|
2778
|
+
)
|
2779
|
+
# logits = paddle.cast(logits, "float32")
|
2780
|
+
|
2781
|
+
loss = None
|
2782
|
+
if labels is not None:
|
2783
|
+
# Shift so that tokens < n predict n
|
2784
|
+
shift_logits = logits[..., :-1, :] # [1, 395, 151936]
|
2785
|
+
shift_labels = labels[..., 1:] # [1, 395]
|
2786
|
+
# Flatten the tokens
|
2787
|
+
shift_logits = shift_logits.reshape([-1, self.config.vocab_size])
|
2788
|
+
shift_labels = shift_labels.reshape([-1])
|
2789
|
+
loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
2790
|
+
loss = loss_fct(shift_logits, shift_labels)
|
2791
|
+
label_sum = paddle.sum(shift_labels != -100).cast("float32")
|
2792
|
+
loss = loss / label_sum
|
2793
|
+
|
2794
|
+
if not return_dict:
|
2795
|
+
# output = (logits,) + outputs[1:]
|
2796
|
+
# Note: (changwenbin) fix "can only concatenate tuple (not "list") to tuple".
|
2797
|
+
output = (logits,) + tuple(outputs[1:])
|
2798
|
+
return (loss,) + output if loss is not None else output
|
2799
|
+
# return logits + 28 layers k and v
|
2800
|
+
|
2801
|
+
return Qwen2_5_VLCausalLMOutputWithPast(
|
2802
|
+
loss=loss,
|
2803
|
+
logits=logits,
|
2804
|
+
past_key_values=outputs.past_key_values,
|
2805
|
+
hidden_states=outputs.hidden_states,
|
2806
|
+
attentions=outputs.attentions,
|
2807
|
+
rope_deltas=rope_deltas,
|
2808
|
+
)
|
2809
|
+
|
2810
|
+
def prepare_inputs_for_generation(
|
2811
|
+
self,
|
2812
|
+
input_ids, # [1, 3602] # [[151644, 8948, 198, ..., 151644, 77091, 198]]
|
2813
|
+
past_key_values=None, # DynamicCache
|
2814
|
+
attention_mask=None, # [1, 3602] 1
|
2815
|
+
inputs_embeds=None, # None
|
2816
|
+
cache_position=None, # [ 0, 1, 2, ..., 3599, 3600, 3601]
|
2817
|
+
position_ids=None, # None
|
2818
|
+
use_cache=True,
|
2819
|
+
pixel_values=None, # [14308, 1176]
|
2820
|
+
pixel_values_videos=None,
|
2821
|
+
image_grid_thw=None, # [1, 3] # [[ 1, 98, 146]]
|
2822
|
+
video_grid_thw=None,
|
2823
|
+
second_per_grid_ts=None,
|
2824
|
+
**kwargs,
|
2825
|
+
):
|
2826
|
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
2827
|
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
2828
|
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
2829
|
+
batch_size, seq_length = input_ids.shape
|
2830
|
+
if past_key_values is None:
|
2831
|
+
cache_position = paddle.arange(input_ids.shape[1])
|
2832
|
+
else:
|
2833
|
+
cache_position = paddle.to_tensor([seq_length - 1])
|
2834
|
+
|
2835
|
+
if past_key_values is not None:
|
2836
|
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
2837
|
+
|
2838
|
+
rope_deltas = kwargs.get("rope_deltas", None)
|
2839
|
+
|
2840
|
+
if attention_mask is not None and position_ids is None:
|
2841
|
+
if cache_position is None or (
|
2842
|
+
cache_position is not None and cache_position[0] == 0
|
2843
|
+
):
|
2844
|
+
position_ids, rope_deltas = self.get_rope_index(
|
2845
|
+
self.config.vision_config.spatial_merge_size,
|
2846
|
+
self.config.image_token_id,
|
2847
|
+
self.config.video_token_id,
|
2848
|
+
self.config.vision_start_token_id,
|
2849
|
+
self.config.vision_config.tokens_per_second,
|
2850
|
+
input_ids,
|
2851
|
+
image_grid_thw,
|
2852
|
+
video_grid_thw,
|
2853
|
+
second_per_grid_ts,
|
2854
|
+
attention_mask,
|
2855
|
+
)
|
2856
|
+
else:
|
2857
|
+
batch_size, seq_length = input_ids.shape
|
2858
|
+
delta = (
|
2859
|
+
cache_position[0] + rope_deltas
|
2860
|
+
if cache_position is not None and rope_deltas is not None
|
2861
|
+
else 0
|
2862
|
+
)
|
2863
|
+
position_ids = paddle.arange(seq_length)
|
2864
|
+
position_ids = position_ids.reshape([1, -1]).expand([batch_size, -1])
|
2865
|
+
position_ids = position_ids + delta
|
2866
|
+
position_ids = position_ids.unsqueeze(axis=0).expand([3, -1, -1])
|
2867
|
+
|
2868
|
+
if cache_position[0] != 0:
|
2869
|
+
pixel_values = None
|
2870
|
+
pixel_values_videos = None
|
2871
|
+
|
2872
|
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
2873
|
+
if inputs_embeds is not None and cache_position[0] == 0:
|
2874
|
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
2875
|
+
else:
|
2876
|
+
model_inputs = {"input_ids": input_ids}
|
2877
|
+
|
2878
|
+
model_inputs.update(
|
2879
|
+
{
|
2880
|
+
"position_ids": position_ids, # [3, 1, 3602]
|
2881
|
+
"past_key_values": past_key_values, # DynamicCache()
|
2882
|
+
"use_cache": use_cache, # 1
|
2883
|
+
"attention_mask": attention_mask, # [1, 3602]
|
2884
|
+
"pixel_values": pixel_values, # [14308, 1176]
|
2885
|
+
"pixel_values_videos": pixel_values_videos,
|
2886
|
+
"image_grid_thw": image_grid_thw, # [[ 1, 98, 146]]
|
2887
|
+
"video_grid_thw": video_grid_thw,
|
2888
|
+
"rope_deltas": rope_deltas, # [[-3504]]
|
2889
|
+
"second_per_grid_ts": second_per_grid_ts,
|
2890
|
+
}
|
2891
|
+
)
|
2892
|
+
return model_inputs
|
2893
|
+
|
2894
|
+
|
2895
|
+
class PPDocBee2TransformerPretrainedModel(Qwen2_5_VisionTransformerPretrainedModel):
|
2896
|
+
layer_idx = 15
|
2897
|
+
|
2898
|
+
def forward(
|
2899
|
+
self, hidden_states: paddle.Tensor, grid_thw: paddle.Tensor
|
2900
|
+
) -> paddle.Tensor:
|
2901
|
+
"""
|
2902
|
+
Args:
|
2903
|
+
hidden_states (`paddle.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
|
2904
|
+
The final hidden states of the model.
|
2905
|
+
grid_thw (`paddle.Tensor` of shape `(num_images_or_videos, 3)`):
|
2906
|
+
The temporal, height and width of feature shape of each image in LLM.
|
2907
|
+
Returns:
|
2908
|
+
`paddle.Tensor`: hidden_states.
|
2909
|
+
"""
|
2910
|
+
"""
|
2911
|
+
Args:
|
2912
|
+
hidden_states (`paddle.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
|
2913
|
+
The final hidden states of the model.
|
2914
|
+
grid_thw (`paddle.Tensor` of shape `(num_images_or_videos, 3)`):
|
2915
|
+
The temporal, height and width of feature shape of each image in LLM.
|
2916
|
+
|
2917
|
+
Returns:
|
2918
|
+
`paddle.Tensor`: hidden_states.
|
2919
|
+
"""
|
2920
|
+
hidden_states = self.patch_embed(hidden_states)
|
2921
|
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
2922
|
+
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
|
2923
|
+
cu_window_seqlens = paddle.to_tensor(
|
2924
|
+
data=cu_window_seqlens, dtype="int32", place=hidden_states.place
|
2925
|
+
)
|
2926
|
+
cu_window_seqlens = paddle.unique_consecutive(x=cu_window_seqlens)
|
2927
|
+
seq_len, _ = tuple(hidden_states.shape)
|
2928
|
+
hidden_states = hidden_states.reshape(
|
2929
|
+
[seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
|
2930
|
+
)
|
2931
|
+
hidden_states = hidden_states[window_index, :, :]
|
2932
|
+
hidden_states = hidden_states.reshape([seq_len, -1])
|
2933
|
+
rotary_pos_emb = rotary_pos_emb.reshape(
|
2934
|
+
[seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
|
2935
|
+
)
|
2936
|
+
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
2937
|
+
rotary_pos_emb = rotary_pos_emb.reshape([seq_len, -1])
|
2938
|
+
|
2939
|
+
cu_seqlens = paddle.repeat_interleave(
|
2940
|
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
2941
|
+
).cumsum(axis=0, dtype="int32")
|
2942
|
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
2943
|
+
multi_vit = []
|
2944
|
+
for layer_num, blk in enumerate(self.blocks):
|
2945
|
+
if layer_num in self.fullatt_block_indexes:
|
2946
|
+
cu_seqlens_now = cu_seqlens
|
2947
|
+
else:
|
2948
|
+
cu_seqlens_now = cu_window_seqlens
|
2949
|
+
if self.enable_recompute and self.training:
|
2950
|
+
hidden_states = self.recompute_training_full(
|
2951
|
+
blk, hidden_states, cu_seqlens_now, rotary_pos_emb
|
2952
|
+
)
|
2953
|
+
else:
|
2954
|
+
hidden_states = blk(
|
2955
|
+
hidden_states,
|
2956
|
+
cu_seqlens=cu_seqlens_now,
|
2957
|
+
rotary_pos_emb=rotary_pos_emb,
|
2958
|
+
)
|
2959
|
+
|
2960
|
+
multi_vit.append(hidden_states)
|
2961
|
+
layer_idx = type(self).layer_idx
|
2962
|
+
hidden_states = self.merger(hidden_states + multi_vit[layer_idx])
|
2963
|
+
reverse_indices = paddle.argsort(x=window_index)
|
2964
|
+
hidden_states = hidden_states[reverse_indices, :]
|
2965
|
+
|
2966
|
+
return hidden_states
|
2967
|
+
|
2968
|
+
|
2969
|
+
class PPDocBee2Inference(Qwen2_5_VLForConditionalGeneration):
|
2970
|
+
def __init__(self, config, attn_implementation="eager"):
|
2971
|
+
super(Qwen2_5_VLForConditionalGeneration, self).__init__(config)
|
2972
|
+
config._attn_implementation = attn_implementation
|
2973
|
+
config.vision_config._attn_implementation = attn_implementation
|
2974
|
+
|
2975
|
+
self.visual = PPDocBee2TransformerPretrainedModel._from_config(
|
2976
|
+
config.vision_config
|
2977
|
+
)
|
2978
|
+
self.model = Qwen2_5_VLModel(config)
|
2979
|
+
self.vocab_size = config.vocab_size
|
2980
|
+
if config.tie_word_embeddings:
|
2981
|
+
self.lm_head = Qwen2LMHead(
|
2982
|
+
config,
|
2983
|
+
embedding_weights=self.model.embed_tokens.weight,
|
2984
|
+
transpose_y=True,
|
2985
|
+
)
|
2986
|
+
self.tie_weights()
|
2987
|
+
else:
|
2988
|
+
self.lm_head = Qwen2LMHead(config)
|
2989
|
+
self.padding_side = "left"
|
2990
|
+
|
2991
|
+
self.enable_recompute = False
|
2992
|
+
|
2993
|
+
def generate(self, inputs, **kwargs):
|
2994
|
+
max_new_tokens = kwargs.get("max_new_tokens", 2048)
|
2995
|
+
temperature = kwargs.get("temperature", 0.1)
|
2996
|
+
top_p = kwargs.get("top_p", 0.001)
|
2997
|
+
top_k = kwargs.get("top_k", 1)
|
2998
|
+
with paddle.no_grad():
|
2999
|
+
generated_ids = super().generate(
|
3000
|
+
**inputs,
|
3001
|
+
max_new_tokens=max_new_tokens,
|
3002
|
+
temperature=temperature,
|
3003
|
+
top_p=top_p,
|
3004
|
+
top_k=top_k,
|
3005
|
+
)
|
3006
|
+
return generated_ids
|