paddlex 2.1.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1786) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +35 -19
  3. paddlex/__main__.py +39 -0
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
  6. paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  7. paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
  8. paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
  9. paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
  10. paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  11. paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
  12. paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  13. paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  14. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  15. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  16. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  17. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  18. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  19. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
  20. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
  21. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
  22. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  23. paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
  24. paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
  25. paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
  26. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  27. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  28. paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
  29. paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
  30. paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
  31. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  32. paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
  33. paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
  34. paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
  35. paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
  36. paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
  37. paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
  38. paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
  39. paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
  40. paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
  41. paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
  42. paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
  43. paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
  44. paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
  45. paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
  46. paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
  47. paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
  48. paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
  49. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  50. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  51. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  52. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  53. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  54. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  55. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  56. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  57. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  58. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  59. paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
  60. paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  61. paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
  62. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  63. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  64. paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
  65. paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
  66. paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
  67. paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
  68. paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
  69. paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
  70. paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
  71. paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
  72. paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
  73. paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
  74. paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
  75. paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
  76. paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
  77. paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
  78. paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
  79. paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
  80. paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
  81. paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
  82. paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
  83. paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
  84. paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
  85. paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
  86. paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
  87. paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
  88. paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
  89. paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
  90. paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
  91. paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
  92. paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
  93. paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
  94. paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
  95. paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
  96. paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
  97. paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
  98. paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
  99. paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
  100. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  101. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  102. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  103. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  104. paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  105. paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  106. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
  107. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  108. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  109. paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  110. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  111. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  112. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  113. paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  114. paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
  115. paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
  116. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  117. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  118. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  119. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  120. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  121. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  122. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  123. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  124. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  125. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  126. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  127. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  128. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  129. paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  130. paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
  131. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  132. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  133. paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
  134. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  135. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  136. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  137. paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
  138. paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
  139. paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
  140. paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
  141. paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
  142. paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
  143. paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
  144. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
  145. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
  146. paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  147. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  148. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  149. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  150. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  151. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  152. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  153. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  154. paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
  155. paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
  156. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  157. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  158. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  159. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  160. paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
  161. paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
  162. paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  163. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  164. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  165. paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  166. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  167. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  168. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  169. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  170. paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  171. paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  172. paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  173. paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  174. paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  175. paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
  176. paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
  177. paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
  178. paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
  179. paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
  180. paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
  181. paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
  182. paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
  183. paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
  184. paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
  185. paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
  186. paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
  187. paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
  188. paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
  189. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  190. paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  191. paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  192. paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  193. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  194. paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
  195. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  196. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  197. paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  198. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  199. paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
  200. paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
  201. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  202. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  203. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  204. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  205. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  206. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  207. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  208. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  209. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  210. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  211. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  212. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  213. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  214. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  215. paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
  216. paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
  217. paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
  218. paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
  219. paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
  220. paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
  221. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  222. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  223. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  224. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  225. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  226. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  227. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  228. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  229. paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
  230. paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
  231. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  232. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  233. paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  234. paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
  235. paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
  236. paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
  237. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  238. paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  239. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  240. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  241. paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
  242. paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
  243. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  244. paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  245. paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  246. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  247. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  248. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  249. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  250. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  251. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  252. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  253. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  254. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  255. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  256. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  257. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  258. paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  259. paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  260. paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  261. paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  262. paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  263. paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
  264. paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
  265. paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
  266. paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
  267. paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
  268. paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
  269. paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
  270. paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
  271. paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  272. paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  273. paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  274. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  275. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  276. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  277. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  278. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  279. paddlex/configs/pipelines/OCR.yaml +45 -0
  280. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +151 -0
  281. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +237 -0
  282. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  283. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  284. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  285. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  286. paddlex/configs/pipelines/doc_understanding.yaml +9 -0
  287. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  288. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  289. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  290. paddlex/configs/pipelines/image_classification.yaml +10 -0
  291. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  292. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  293. paddlex/configs/pipelines/layout_parsing.yaml +102 -0
  294. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  295. paddlex/configs/pipelines/object_detection.yaml +10 -0
  296. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  297. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  298. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  299. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  300. paddlex/configs/pipelines/seal_recognition.yaml +52 -0
  301. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  302. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  303. paddlex/configs/pipelines/table_recognition.yaml +57 -0
  304. paddlex/configs/pipelines/table_recognition_v2.yaml +82 -0
  305. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  306. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  307. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  308. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  309. paddlex/configs/pipelines/video_classification.yaml +9 -0
  310. paddlex/configs/pipelines/video_detection.yaml +10 -0
  311. paddlex/constants.py +17 -0
  312. paddlex/engine.py +56 -0
  313. paddlex/hpip_links.html +31 -0
  314. paddlex/inference/__init__.py +19 -0
  315. paddlex/inference/common/__init__.py +13 -0
  316. paddlex/inference/common/batch_sampler/__init__.py +21 -0
  317. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
  318. paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
  319. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
  320. paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
  321. paddlex/inference/common/batch_sampler/image_batch_sampler.py +121 -0
  322. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
  323. paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
  324. paddlex/inference/common/reader/__init__.py +19 -0
  325. paddlex/inference/common/reader/audio_reader.py +46 -0
  326. paddlex/inference/common/reader/det_3d_reader.py +241 -0
  327. paddlex/inference/common/reader/image_reader.py +73 -0
  328. paddlex/inference/common/reader/ts_reader.py +46 -0
  329. paddlex/inference/common/reader/video_reader.py +42 -0
  330. paddlex/inference/common/result/__init__.py +29 -0
  331. paddlex/inference/common/result/base_cv_result.py +41 -0
  332. paddlex/inference/common/result/base_result.py +72 -0
  333. paddlex/inference/common/result/base_ts_result.py +41 -0
  334. paddlex/inference/common/result/base_video_result.py +36 -0
  335. paddlex/inference/common/result/mixin.py +709 -0
  336. paddlex/inference/models/__init__.py +86 -0
  337. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  338. paddlex/inference/models/anomaly_detection/predictor.py +135 -0
  339. paddlex/inference/models/anomaly_detection/processors.py +53 -0
  340. paddlex/inference/models/anomaly_detection/result.py +71 -0
  341. paddlex/inference/models/base/__init__.py +15 -0
  342. paddlex/inference/models/base/predictor/__init__.py +15 -0
  343. paddlex/inference/models/base/predictor/base_predictor.py +414 -0
  344. paddlex/inference/models/common/__init__.py +26 -0
  345. paddlex/inference/models/common/static_infer.py +801 -0
  346. paddlex/inference/models/common/tokenizer/__init__.py +21 -0
  347. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  348. paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
  349. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
  350. paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
  351. paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
  352. paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
  353. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
  354. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
  355. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  356. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  357. paddlex/inference/models/common/ts/__init__.py +15 -0
  358. paddlex/inference/models/common/ts/funcs.py +540 -0
  359. paddlex/inference/models/common/ts/processors.py +322 -0
  360. paddlex/inference/models/common/vision/__init__.py +23 -0
  361. paddlex/inference/models/common/vision/funcs.py +98 -0
  362. paddlex/inference/models/common/vision/processors.py +285 -0
  363. paddlex/inference/models/common/vlm/__init__.py +13 -0
  364. paddlex/inference/models/common/vlm/activations.py +189 -0
  365. paddlex/inference/models/common/vlm/bert_padding.py +127 -0
  366. paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
  367. paddlex/inference/models/common/vlm/distributed.py +229 -0
  368. paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
  369. paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
  370. paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
  371. paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
  372. paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
  373. paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
  374. paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
  375. paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
  376. paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
  377. paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
  378. paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
  379. paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
  380. paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
  381. paddlex/inference/models/common/vlm/utils.py +109 -0
  382. paddlex/inference/models/doc_vlm/__init__.py +15 -0
  383. paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
  384. paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
  385. paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
  386. paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
  387. paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
  388. paddlex/inference/models/doc_vlm/predictor.py +253 -0
  389. paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
  390. paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
  391. paddlex/inference/models/doc_vlm/processors/common.py +561 -0
  392. paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
  393. paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
  394. paddlex/inference/models/doc_vlm/result.py +21 -0
  395. paddlex/inference/models/face_feature/__init__.py +15 -0
  396. paddlex/inference/models/face_feature/predictor.py +66 -0
  397. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  398. paddlex/inference/models/formula_recognition/predictor.py +193 -0
  399. paddlex/inference/models/formula_recognition/processors.py +1015 -0
  400. paddlex/inference/models/formula_recognition/result.py +411 -0
  401. paddlex/inference/models/image_classification/__init__.py +15 -0
  402. paddlex/inference/models/image_classification/predictor.py +172 -0
  403. paddlex/inference/models/image_classification/processors.py +89 -0
  404. paddlex/inference/models/image_classification/result.py +93 -0
  405. paddlex/inference/models/image_feature/__init__.py +15 -0
  406. paddlex/inference/models/image_feature/predictor.py +146 -0
  407. paddlex/inference/models/image_feature/processors.py +31 -0
  408. paddlex/inference/models/image_feature/result.py +32 -0
  409. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  410. paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
  411. paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
  412. paddlex/inference/models/image_multilabel_classification/result.py +96 -0
  413. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  414. paddlex/inference/models/image_unwarping/predictor.py +97 -0
  415. paddlex/inference/models/image_unwarping/processors.py +92 -0
  416. paddlex/inference/models/image_unwarping/result.py +47 -0
  417. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  418. paddlex/inference/models/instance_segmentation/predictor.py +202 -0
  419. paddlex/inference/models/instance_segmentation/processors.py +102 -0
  420. paddlex/inference/models/instance_segmentation/result.py +162 -0
  421. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  422. paddlex/inference/models/keypoint_detection/predictor.py +190 -0
  423. paddlex/inference/models/keypoint_detection/processors.py +367 -0
  424. paddlex/inference/models/keypoint_detection/result.py +197 -0
  425. paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
  426. paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
  427. paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
  428. paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
  429. paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
  430. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  431. paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
  432. paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
  433. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  434. paddlex/inference/models/object_detection/__init__.py +15 -0
  435. paddlex/inference/models/object_detection/predictor.py +344 -0
  436. paddlex/inference/models/object_detection/processors.py +885 -0
  437. paddlex/inference/models/object_detection/result.py +114 -0
  438. paddlex/inference/models/object_detection/utils.py +70 -0
  439. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  440. paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
  441. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
  442. paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
  443. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
  444. paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
  445. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  446. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
  447. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  448. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  449. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  450. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
  451. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  452. paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
  453. paddlex/inference/models/semantic_segmentation/processors.py +117 -0
  454. paddlex/inference/models/semantic_segmentation/result.py +73 -0
  455. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  456. paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
  457. paddlex/inference/models/table_structure_recognition/processors.py +229 -0
  458. paddlex/inference/models/table_structure_recognition/result.py +63 -0
  459. paddlex/inference/models/text_detection/__init__.py +15 -0
  460. paddlex/inference/models/text_detection/predictor.py +191 -0
  461. paddlex/inference/models/text_detection/processors.py +538 -0
  462. paddlex/inference/models/text_detection/result.py +46 -0
  463. paddlex/inference/models/text_recognition/__init__.py +15 -0
  464. paddlex/inference/models/text_recognition/predictor.py +98 -0
  465. paddlex/inference/models/text_recognition/processors.py +245 -0
  466. paddlex/inference/models/text_recognition/result.py +76 -0
  467. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  468. paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
  469. paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
  470. paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
  471. paddlex/inference/models/ts_classification/__init__.py +15 -0
  472. paddlex/inference/models/ts_classification/predictor.py +122 -0
  473. paddlex/inference/models/ts_classification/processors.py +122 -0
  474. paddlex/inference/models/ts_classification/result.py +87 -0
  475. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  476. paddlex/inference/models/ts_forecasting/predictor.py +154 -0
  477. paddlex/inference/models/ts_forecasting/processors.py +158 -0
  478. paddlex/inference/models/ts_forecasting/result.py +96 -0
  479. paddlex/inference/models/video_classification/__init__.py +15 -0
  480. paddlex/inference/models/video_classification/predictor.py +141 -0
  481. paddlex/inference/models/video_classification/processors.py +409 -0
  482. paddlex/inference/models/video_classification/result.py +96 -0
  483. paddlex/inference/models/video_detection/__init__.py +15 -0
  484. paddlex/inference/models/video_detection/predictor.py +129 -0
  485. paddlex/inference/models/video_detection/processors.py +463 -0
  486. paddlex/inference/models/video_detection/result.py +109 -0
  487. paddlex/inference/pipelines/__init__.py +239 -0
  488. paddlex/inference/pipelines/_parallel.py +172 -0
  489. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  490. paddlex/inference/pipelines/anomaly_detection/pipeline.py +82 -0
  491. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  492. paddlex/inference/pipelines/attribute_recognition/pipeline.py +120 -0
  493. paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
  494. paddlex/inference/pipelines/base.py +156 -0
  495. paddlex/inference/pipelines/components/__init__.py +29 -0
  496. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  497. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  498. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  499. paddlex/inference/pipelines/components/common/__init__.py +19 -0
  500. paddlex/inference/pipelines/components/common/base_operator.py +37 -0
  501. paddlex/inference/pipelines/components/common/base_result.py +66 -0
  502. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
  503. paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
  504. paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
  505. paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
  506. paddlex/inference/pipelines/components/common/warp_image.py +50 -0
  507. paddlex/inference/pipelines/components/faisser.py +357 -0
  508. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  509. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  510. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
  511. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  512. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  513. paddlex/inference/pipelines/components/retriever/base.py +228 -0
  514. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  515. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
  516. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  517. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  518. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  519. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +209 -0
  520. paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
  521. paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
  522. paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
  523. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  524. paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
  525. paddlex/inference/pipelines/face_recognition/result.py +44 -0
  526. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  527. paddlex/inference/pipelines/formula_recognition/pipeline.py +347 -0
  528. paddlex/inference/pipelines/formula_recognition/result.py +282 -0
  529. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  530. paddlex/inference/pipelines/image_classification/pipeline.py +90 -0
  531. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  532. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +97 -0
  533. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  534. paddlex/inference/pipelines/instance_segmentation/pipeline.py +91 -0
  535. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  536. paddlex/inference/pipelines/keypoint_detection/pipeline.py +158 -0
  537. paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
  538. paddlex/inference/pipelines/layout_parsing/pipeline.py +568 -0
  539. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +1382 -0
  540. paddlex/inference/pipelines/layout_parsing/result.py +191 -0
  541. paddlex/inference/pipelines/layout_parsing/result_v2.py +745 -0
  542. paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
  543. paddlex/inference/pipelines/layout_parsing/utils.py +951 -0
  544. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
  545. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1143 -0
  546. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +562 -0
  547. paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
  548. paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
  549. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  550. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
  551. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  552. paddlex/inference/pipelines/object_detection/pipeline.py +115 -0
  553. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  554. paddlex/inference/pipelines/ocr/pipeline.py +463 -0
  555. paddlex/inference/pipelines/ocr/result.py +255 -0
  556. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  557. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
  558. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  559. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
  560. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  561. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
  562. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +781 -0
  563. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +992 -0
  564. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  565. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
  566. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  567. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  568. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +95 -0
  569. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  570. paddlex/inference/pipelines/seal_recognition/pipeline.py +335 -0
  571. paddlex/inference/pipelines/seal_recognition/result.py +89 -0
  572. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  573. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +95 -0
  574. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  575. paddlex/inference/pipelines/small_object_detection/pipeline.py +95 -0
  576. paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
  577. paddlex/inference/pipelines/table_recognition/pipeline.py +486 -0
  578. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +1395 -0
  579. paddlex/inference/pipelines/table_recognition/result.py +218 -0
  580. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
  581. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +488 -0
  582. paddlex/inference/pipelines/table_recognition/utils.py +44 -0
  583. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  584. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
  585. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  586. paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
  587. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  588. paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
  589. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  590. paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
  591. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  592. paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
  593. paddlex/inference/serving/__init__.py +17 -0
  594. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  595. paddlex/inference/serving/basic_serving/_app.py +221 -0
  596. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
  597. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  598. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +104 -0
  599. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  600. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
  601. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
  602. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
  603. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
  604. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
  605. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
  606. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
  607. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
  608. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
  609. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
  610. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +117 -0
  611. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
  612. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
  613. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
  614. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
  615. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
  616. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
  617. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
  618. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +193 -0
  619. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +223 -0
  620. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
  621. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +143 -0
  622. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
  623. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
  624. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
  625. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
  626. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
  627. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +113 -0
  628. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
  629. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
  630. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
  631. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
  632. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
  633. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
  634. paddlex/inference/serving/basic_serving/_server.py +40 -0
  635. paddlex/inference/serving/infra/__init__.py +13 -0
  636. paddlex/inference/serving/infra/config.py +36 -0
  637. paddlex/inference/serving/infra/models.py +79 -0
  638. paddlex/inference/serving/infra/storage.py +180 -0
  639. paddlex/inference/serving/infra/utils.py +285 -0
  640. paddlex/inference/serving/schemas/__init__.py +13 -0
  641. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  642. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  643. paddlex/inference/serving/schemas/doc_understanding.py +78 -0
  644. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  645. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  646. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  647. paddlex/inference/serving/schemas/image_classification.py +45 -0
  648. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  649. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  650. paddlex/inference/serving/schemas/layout_parsing.py +71 -0
  651. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  652. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  653. paddlex/inference/serving/schemas/object_detection.py +52 -0
  654. paddlex/inference/serving/schemas/ocr.py +60 -0
  655. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  656. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  657. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  658. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +133 -0
  659. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +150 -0
  660. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  661. paddlex/inference/serving/schemas/pp_structurev3.py +88 -0
  662. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  663. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  664. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  665. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  666. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  667. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  668. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  669. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  670. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  671. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  672. paddlex/inference/serving/schemas/table_recognition_v2.py +69 -0
  673. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  674. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  675. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  676. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  677. paddlex/inference/serving/schemas/video_classification.py +44 -0
  678. paddlex/inference/serving/schemas/video_detection.py +56 -0
  679. paddlex/inference/utils/__init__.py +13 -0
  680. paddlex/inference/utils/benchmark.py +379 -0
  681. paddlex/inference/utils/color_map.py +123 -0
  682. paddlex/inference/utils/get_pipeline_path.py +27 -0
  683. paddlex/inference/utils/hpi.py +254 -0
  684. paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
  685. paddlex/inference/utils/io/__init__.py +36 -0
  686. paddlex/inference/utils/io/readers.py +504 -0
  687. paddlex/inference/utils/io/style.py +381 -0
  688. paddlex/inference/utils/io/tablepyxl.py +157 -0
  689. paddlex/inference/utils/io/writers.py +458 -0
  690. paddlex/inference/utils/model_paths.py +48 -0
  691. paddlex/inference/utils/new_ir_blocklist.py +27 -0
  692. paddlex/inference/utils/official_models.py +367 -0
  693. paddlex/inference/utils/pp_option.py +339 -0
  694. paddlex/inference/utils/trt_blocklist.py +43 -0
  695. paddlex/inference/utils/trt_config.py +420 -0
  696. paddlex/model.py +131 -0
  697. paddlex/modules/__init__.py +115 -0
  698. paddlex/modules/anomaly_detection/__init__.py +18 -0
  699. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +94 -0
  700. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  701. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  702. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  703. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +233 -0
  704. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  705. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  706. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +76 -0
  707. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  708. paddlex/modules/anomaly_detection/exportor.py +22 -0
  709. paddlex/modules/anomaly_detection/model_list.py +16 -0
  710. paddlex/modules/anomaly_detection/trainer.py +70 -0
  711. paddlex/modules/base/__init__.py +18 -0
  712. paddlex/modules/base/build_model.py +33 -0
  713. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  714. paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
  715. paddlex/modules/base/dataset_checker/utils.py +108 -0
  716. paddlex/modules/base/evaluator.py +170 -0
  717. paddlex/modules/base/exportor.py +145 -0
  718. paddlex/modules/base/trainer.py +144 -0
  719. paddlex/modules/base/utils/__init__.py +13 -0
  720. paddlex/modules/base/utils/cinn_setting.py +89 -0
  721. paddlex/modules/base/utils/coco_eval.py +94 -0
  722. paddlex/modules/base/utils/topk_eval.py +118 -0
  723. paddlex/modules/doc_vlm/__init__.py +18 -0
  724. paddlex/modules/doc_vlm/dataset_checker.py +29 -0
  725. paddlex/modules/doc_vlm/evaluator.py +29 -0
  726. paddlex/modules/doc_vlm/exportor.py +29 -0
  727. paddlex/modules/doc_vlm/model_list.py +16 -0
  728. paddlex/modules/doc_vlm/trainer.py +41 -0
  729. paddlex/modules/face_recognition/__init__.py +18 -0
  730. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  731. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  732. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +172 -0
  733. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  734. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  735. paddlex/modules/face_recognition/evaluator.py +52 -0
  736. paddlex/modules/face_recognition/exportor.py +22 -0
  737. paddlex/modules/face_recognition/model_list.py +15 -0
  738. paddlex/modules/face_recognition/trainer.py +75 -0
  739. paddlex/modules/formula_recognition/__init__.py +18 -0
  740. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  741. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  742. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
  743. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
  744. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  745. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  746. paddlex/modules/formula_recognition/evaluator.py +80 -0
  747. paddlex/modules/formula_recognition/exportor.py +22 -0
  748. paddlex/modules/formula_recognition/model_list.py +23 -0
  749. paddlex/modules/formula_recognition/trainer.py +123 -0
  750. paddlex/modules/general_recognition/__init__.py +18 -0
  751. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  752. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  753. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +96 -0
  754. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +99 -0
  755. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +100 -0
  756. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  757. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  758. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +147 -0
  759. paddlex/modules/general_recognition/evaluator.py +31 -0
  760. paddlex/modules/general_recognition/exportor.py +22 -0
  761. paddlex/modules/general_recognition/model_list.py +19 -0
  762. paddlex/modules/general_recognition/trainer.py +52 -0
  763. paddlex/modules/image_classification/__init__.py +18 -0
  764. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  765. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  766. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +92 -0
  767. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  768. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  769. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  770. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  771. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  772. paddlex/modules/image_classification/evaluator.py +43 -0
  773. paddlex/modules/image_classification/exportor.py +22 -0
  774. paddlex/modules/image_classification/model_list.py +99 -0
  775. paddlex/modules/image_classification/trainer.py +82 -0
  776. paddlex/modules/image_unwarping/__init__.py +13 -0
  777. paddlex/modules/image_unwarping/model_list.py +17 -0
  778. paddlex/modules/instance_segmentation/__init__.py +18 -0
  779. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +107 -0
  780. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  781. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  782. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +95 -0
  783. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  784. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +122 -0
  785. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  786. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +223 -0
  787. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  788. paddlex/modules/instance_segmentation/exportor.py +22 -0
  789. paddlex/modules/instance_segmentation/model_list.py +33 -0
  790. paddlex/modules/instance_segmentation/trainer.py +31 -0
  791. paddlex/modules/keypoint_detection/__init__.py +18 -0
  792. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  793. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  794. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  795. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  796. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
  797. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  798. paddlex/modules/keypoint_detection/exportor.py +22 -0
  799. paddlex/modules/keypoint_detection/model_list.py +16 -0
  800. paddlex/modules/keypoint_detection/trainer.py +39 -0
  801. paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
  802. paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
  803. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  804. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  805. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
  806. paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
  807. paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
  808. paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
  809. paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
  810. paddlex/modules/multilabel_classification/__init__.py +18 -0
  811. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  812. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  813. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +94 -0
  814. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  815. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +120 -0
  816. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  817. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  818. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +149 -0
  819. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  820. paddlex/modules/multilabel_classification/exportor.py +22 -0
  821. paddlex/modules/multilabel_classification/model_list.py +24 -0
  822. paddlex/modules/multilabel_classification/trainer.py +85 -0
  823. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  824. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  825. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  826. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  827. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  828. paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
  829. paddlex/modules/object_detection/__init__.py +18 -0
  830. paddlex/modules/object_detection/dataset_checker/__init__.py +106 -0
  831. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  832. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  833. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  834. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +438 -0
  835. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +123 -0
  836. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  837. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +193 -0
  838. paddlex/modules/object_detection/evaluator.py +57 -0
  839. paddlex/modules/object_detection/exportor.py +22 -0
  840. paddlex/modules/object_detection/model_list.py +86 -0
  841. paddlex/modules/object_detection/trainer.py +98 -0
  842. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  843. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  844. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  845. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  846. paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
  847. paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
  848. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  849. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  850. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  851. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  852. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  853. paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
  854. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  855. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +109 -0
  856. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  857. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +76 -0
  858. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  859. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +165 -0
  860. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  861. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  862. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +75 -0
  863. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  864. paddlex/modules/semantic_segmentation/exportor.py +31 -0
  865. paddlex/modules/semantic_segmentation/model_list.py +37 -0
  866. paddlex/modules/semantic_segmentation/trainer.py +72 -0
  867. paddlex/modules/table_recognition/__init__.py +18 -0
  868. paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
  869. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  870. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +59 -0
  871. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  872. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  873. paddlex/modules/table_recognition/evaluator.py +43 -0
  874. paddlex/modules/table_recognition/exportor.py +22 -0
  875. paddlex/modules/table_recognition/model_list.py +21 -0
  876. paddlex/modules/table_recognition/trainer.py +67 -0
  877. paddlex/modules/text_detection/__init__.py +18 -0
  878. paddlex/modules/text_detection/dataset_checker/__init__.py +107 -0
  879. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  880. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +220 -0
  881. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
  882. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  883. paddlex/modules/text_detection/evaluator.py +41 -0
  884. paddlex/modules/text_detection/exportor.py +22 -0
  885. paddlex/modules/text_detection/model_list.py +26 -0
  886. paddlex/modules/text_detection/trainer.py +65 -0
  887. paddlex/modules/text_recognition/__init__.py +18 -0
  888. paddlex/modules/text_recognition/dataset_checker/__init__.py +125 -0
  889. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  890. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +162 -0
  891. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +104 -0
  892. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  893. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  894. paddlex/modules/text_recognition/evaluator.py +64 -0
  895. paddlex/modules/text_recognition/exportor.py +22 -0
  896. paddlex/modules/text_recognition/model_list.py +36 -0
  897. paddlex/modules/text_recognition/trainer.py +105 -0
  898. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  899. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +111 -0
  900. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  901. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  902. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  903. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +74 -0
  904. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  905. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  906. paddlex/modules/ts_anomaly_detection/exportor.py +44 -0
  907. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  908. paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
  909. paddlex/modules/ts_classification/__init__.py +19 -0
  910. paddlex/modules/ts_classification/dataset_checker/__init__.py +111 -0
  911. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  912. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +77 -0
  913. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  914. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +74 -0
  915. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  916. paddlex/modules/ts_classification/evaluator.py +66 -0
  917. paddlex/modules/ts_classification/exportor.py +44 -0
  918. paddlex/modules/ts_classification/model_list.py +18 -0
  919. paddlex/modules/ts_classification/trainer.py +108 -0
  920. paddlex/modules/ts_forecast/__init__.py +19 -0
  921. paddlex/modules/ts_forecast/dataset_checker/__init__.py +111 -0
  922. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  923. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  924. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  925. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +73 -0
  926. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  927. paddlex/modules/ts_forecast/evaluator.py +66 -0
  928. paddlex/modules/ts_forecast/exportor.py +44 -0
  929. paddlex/modules/ts_forecast/model_list.py +24 -0
  930. paddlex/modules/ts_forecast/trainer.py +108 -0
  931. paddlex/modules/video_classification/__init__.py +18 -0
  932. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  933. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  934. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  935. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
  936. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  937. paddlex/modules/video_classification/evaluator.py +44 -0
  938. paddlex/modules/video_classification/exportor.py +22 -0
  939. paddlex/modules/video_classification/model_list.py +19 -0
  940. paddlex/modules/video_classification/trainer.py +88 -0
  941. paddlex/modules/video_detection/__init__.py +18 -0
  942. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  943. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  944. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
  945. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
  946. paddlex/modules/video_detection/evaluator.py +42 -0
  947. paddlex/modules/video_detection/exportor.py +22 -0
  948. paddlex/modules/video_detection/model_list.py +15 -0
  949. paddlex/modules/video_detection/trainer.py +82 -0
  950. paddlex/ops/__init__.py +152 -0
  951. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
  952. paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
  953. paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
  954. paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
  955. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
  956. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
  957. paddlex/ops/setup.py +37 -0
  958. paddlex/ops/voxel/voxelize_op.cc +194 -0
  959. paddlex/ops/voxel/voxelize_op.cu +346 -0
  960. paddlex/paddlex_cli.py +476 -0
  961. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  962. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  963. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  964. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  965. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  966. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  967. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
  968. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  969. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  970. paddlex/repo_apis/PaddleClas_api/cls/config.py +595 -0
  971. paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
  972. paddlex/repo_apis/PaddleClas_api/cls/register.py +907 -0
  973. paddlex/repo_apis/PaddleClas_api/cls/runner.py +218 -0
  974. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  975. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  976. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +20 -0
  977. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  978. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +50 -0
  979. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  980. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  981. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  982. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +457 -0
  983. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
  984. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +262 -0
  985. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +225 -0
  986. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  987. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +540 -0
  988. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +429 -0
  989. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +245 -0
  990. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1135 -0
  991. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +225 -0
  992. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  993. paddlex/repo_apis/PaddleOCR_api/__init__.py +22 -0
  994. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  995. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  996. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
  997. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +398 -0
  998. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +99 -0
  999. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
  1000. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  1001. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  1002. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  1003. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +70 -0
  1004. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  1005. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  1006. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  1007. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  1008. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +107 -0
  1009. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  1010. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  1011. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +564 -0
  1012. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +398 -0
  1013. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +216 -0
  1014. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +239 -0
  1015. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  1016. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  1017. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  1018. paddlex/repo_apis/PaddleSeg_api/seg/config.py +183 -0
  1019. paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
  1020. paddlex/repo_apis/PaddleSeg_api/seg/register.py +272 -0
  1021. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +261 -0
  1022. paddlex/repo_apis/PaddleTS_api/__init__.py +20 -0
  1023. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  1024. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +88 -0
  1025. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  1026. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  1027. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  1028. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +244 -0
  1029. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
  1030. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  1031. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  1032. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +72 -0
  1033. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  1034. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  1035. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  1036. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +136 -0
  1037. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  1038. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  1039. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  1040. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  1041. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
  1042. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  1043. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
  1044. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
  1045. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  1046. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
  1047. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  1048. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
  1049. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
  1050. paddlex/repo_apis/__init__.py +13 -0
  1051. paddlex/repo_apis/base/__init__.py +22 -0
  1052. paddlex/repo_apis/base/config.py +237 -0
  1053. paddlex/repo_apis/base/model.py +563 -0
  1054. paddlex/repo_apis/base/register.py +135 -0
  1055. paddlex/repo_apis/base/runner.py +390 -0
  1056. paddlex/repo_apis/base/utils/__init__.py +13 -0
  1057. paddlex/repo_apis/base/utils/arg.py +64 -0
  1058. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  1059. paddlex/repo_manager/__init__.py +17 -0
  1060. paddlex/repo_manager/core.py +253 -0
  1061. paddlex/repo_manager/meta.py +180 -0
  1062. paddlex/repo_manager/repo.py +425 -0
  1063. paddlex/repo_manager/utils.py +148 -0
  1064. paddlex/utils/__init__.py +1 -12
  1065. paddlex/utils/cache.py +146 -0
  1066. paddlex/utils/config.py +216 -0
  1067. paddlex/utils/custom_device_list.py +311 -0
  1068. paddlex/utils/deps.py +249 -0
  1069. paddlex/utils/device.py +195 -0
  1070. paddlex/utils/download.py +168 -182
  1071. paddlex/utils/env.py +32 -45
  1072. paddlex/utils/errors/__init__.py +17 -0
  1073. paddlex/utils/errors/dataset_checker.py +78 -0
  1074. paddlex/utils/errors/others.py +138 -0
  1075. paddlex/utils/file_interface.py +211 -0
  1076. paddlex/utils/flags.py +70 -0
  1077. paddlex/utils/fonts/__init__.py +97 -0
  1078. paddlex/utils/func_register.py +41 -0
  1079. paddlex/utils/install.py +87 -0
  1080. paddlex/utils/interactive_get_pipeline.py +55 -0
  1081. paddlex/utils/lazy_loader.py +68 -0
  1082. paddlex/utils/logging.py +140 -33
  1083. paddlex/utils/misc.py +201 -0
  1084. paddlex/utils/pipeline_arguments.py +719 -0
  1085. paddlex/utils/result_saver.py +58 -0
  1086. paddlex/utils/subclass_register.py +99 -0
  1087. paddlex/version.py +55 -0
  1088. paddlex-3.0.0.dist-info/METADATA +1168 -0
  1089. paddlex-3.0.0.dist-info/RECORD +1093 -0
  1090. paddlex-3.0.0.dist-info/WHEEL +5 -0
  1091. paddlex-3.0.0.dist-info/entry_points.txt +2 -0
  1092. paddlex-3.0.0.dist-info/licenses/LICENSE +169 -0
  1093. paddlex-3.0.0.dist-info/top_level.txt +1 -0
  1094. PaddleClas/__init__.py +0 -16
  1095. PaddleClas/deploy/__init__.py +0 -1
  1096. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  1097. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  1098. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  1099. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  1100. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  1101. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  1102. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  1103. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  1104. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  1105. PaddleClas/deploy/python/__init__.py +0 -0
  1106. PaddleClas/deploy/python/build_gallery.py +0 -214
  1107. PaddleClas/deploy/python/det_preprocess.py +0 -205
  1108. PaddleClas/deploy/python/postprocess.py +0 -161
  1109. PaddleClas/deploy/python/predict_cls.py +0 -142
  1110. PaddleClas/deploy/python/predict_det.py +0 -158
  1111. PaddleClas/deploy/python/predict_rec.py +0 -138
  1112. PaddleClas/deploy/python/predict_system.py +0 -144
  1113. PaddleClas/deploy/python/preprocess.py +0 -337
  1114. PaddleClas/deploy/utils/__init__.py +0 -5
  1115. PaddleClas/deploy/utils/config.py +0 -197
  1116. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  1117. PaddleClas/deploy/utils/encode_decode.py +0 -31
  1118. PaddleClas/deploy/utils/get_image_list.py +0 -49
  1119. PaddleClas/deploy/utils/logger.py +0 -120
  1120. PaddleClas/deploy/utils/predictor.py +0 -71
  1121. PaddleClas/deploy/vector_search/__init__.py +0 -1
  1122. PaddleClas/deploy/vector_search/interface.py +0 -272
  1123. PaddleClas/deploy/vector_search/test.py +0 -34
  1124. PaddleClas/hubconf.py +0 -788
  1125. PaddleClas/paddleclas.py +0 -552
  1126. PaddleClas/ppcls/__init__.py +0 -20
  1127. PaddleClas/ppcls/arch/__init__.py +0 -127
  1128. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  1129. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  1130. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  1131. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1132. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1133. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  1134. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1135. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1136. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1137. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1138. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1139. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  1140. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1141. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1142. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1143. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1144. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1145. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1146. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1147. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1148. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1149. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1150. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1151. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1152. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1153. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1154. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1155. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1156. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1157. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1158. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1159. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1160. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1161. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1162. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1163. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1164. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1165. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1166. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1167. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1168. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1169. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1170. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1171. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1172. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1173. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1174. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1175. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1176. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1177. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1178. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1179. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1180. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1181. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1182. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  1183. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  1184. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  1185. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  1186. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  1187. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  1188. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  1189. PaddleClas/ppcls/arch/utils.py +0 -53
  1190. PaddleClas/ppcls/data/__init__.py +0 -144
  1191. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1192. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  1193. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  1194. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  1195. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1196. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1197. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  1198. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  1199. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  1200. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1201. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  1202. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1203. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  1204. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  1205. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  1206. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  1207. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1208. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  1209. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1210. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  1211. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  1212. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  1213. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  1214. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1215. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  1216. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1217. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1218. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1219. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  1220. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  1221. PaddleClas/ppcls/engine/__init__.py +0 -0
  1222. PaddleClas/ppcls/engine/engine.py +0 -436
  1223. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  1224. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  1225. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  1226. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  1227. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  1228. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  1229. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  1230. PaddleClas/ppcls/engine/train/train.py +0 -79
  1231. PaddleClas/ppcls/engine/train/utils.py +0 -72
  1232. PaddleClas/ppcls/loss/__init__.py +0 -65
  1233. PaddleClas/ppcls/loss/celoss.py +0 -67
  1234. PaddleClas/ppcls/loss/centerloss.py +0 -54
  1235. PaddleClas/ppcls/loss/comfunc.py +0 -45
  1236. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  1237. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  1238. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  1239. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  1240. PaddleClas/ppcls/loss/emlloss.py +0 -97
  1241. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  1242. PaddleClas/ppcls/loss/msmloss.py +0 -78
  1243. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  1244. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  1245. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  1246. PaddleClas/ppcls/loss/supconloss.py +0 -108
  1247. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  1248. PaddleClas/ppcls/loss/triplet.py +0 -137
  1249. PaddleClas/ppcls/metric/__init__.py +0 -51
  1250. PaddleClas/ppcls/metric/metrics.py +0 -308
  1251. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  1252. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  1253. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  1254. PaddleClas/ppcls/utils/__init__.py +0 -27
  1255. PaddleClas/ppcls/utils/check.py +0 -151
  1256. PaddleClas/ppcls/utils/config.py +0 -210
  1257. PaddleClas/ppcls/utils/download.py +0 -319
  1258. PaddleClas/ppcls/utils/ema.py +0 -63
  1259. PaddleClas/ppcls/utils/logger.py +0 -137
  1260. PaddleClas/ppcls/utils/metrics.py +0 -107
  1261. PaddleClas/ppcls/utils/misc.py +0 -63
  1262. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  1263. PaddleClas/ppcls/utils/profiler.py +0 -111
  1264. PaddleClas/ppcls/utils/save_load.py +0 -136
  1265. PaddleClas/setup.py +0 -58
  1266. PaddleClas/tools/__init__.py +0 -15
  1267. PaddleClas/tools/eval.py +0 -31
  1268. PaddleClas/tools/export_model.py +0 -34
  1269. PaddleClas/tools/infer.py +0 -31
  1270. PaddleClas/tools/train.py +0 -32
  1271. paddlex/cls.py +0 -82
  1272. paddlex/command.py +0 -215
  1273. paddlex/cv/__init__.py +0 -17
  1274. paddlex/cv/datasets/__init__.py +0 -18
  1275. paddlex/cv/datasets/coco.py +0 -208
  1276. paddlex/cv/datasets/imagenet.py +0 -88
  1277. paddlex/cv/datasets/seg_dataset.py +0 -91
  1278. paddlex/cv/datasets/voc.py +0 -445
  1279. paddlex/cv/models/__init__.py +0 -18
  1280. paddlex/cv/models/base.py +0 -631
  1281. paddlex/cv/models/classifier.py +0 -989
  1282. paddlex/cv/models/detector.py +0 -2292
  1283. paddlex/cv/models/load_model.py +0 -148
  1284. paddlex/cv/models/segmenter.py +0 -768
  1285. paddlex/cv/models/slim/__init__.py +0 -13
  1286. paddlex/cv/models/slim/prune.py +0 -55
  1287. paddlex/cv/models/utils/__init__.py +0 -13
  1288. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  1289. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  1290. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  1291. paddlex/cv/models/utils/infer_nets.py +0 -45
  1292. paddlex/cv/models/utils/seg_metrics.py +0 -62
  1293. paddlex/cv/models/utils/visualize.py +0 -399
  1294. paddlex/cv/transforms/__init__.py +0 -46
  1295. paddlex/cv/transforms/batch_operators.py +0 -286
  1296. paddlex/cv/transforms/box_utils.py +0 -41
  1297. paddlex/cv/transforms/functions.py +0 -193
  1298. paddlex/cv/transforms/operators.py +0 -1402
  1299. paddlex/deploy.py +0 -268
  1300. paddlex/det.py +0 -49
  1301. paddlex/paddleseg/__init__.py +0 -17
  1302. paddlex/paddleseg/core/__init__.py +0 -20
  1303. paddlex/paddleseg/core/infer.py +0 -289
  1304. paddlex/paddleseg/core/predict.py +0 -145
  1305. paddlex/paddleseg/core/train.py +0 -258
  1306. paddlex/paddleseg/core/val.py +0 -172
  1307. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  1308. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  1309. paddlex/paddleseg/cvlibs/config.py +0 -359
  1310. paddlex/paddleseg/cvlibs/manager.py +0 -142
  1311. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  1312. paddlex/paddleseg/datasets/__init__.py +0 -21
  1313. paddlex/paddleseg/datasets/ade.py +0 -112
  1314. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  1315. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  1316. paddlex/paddleseg/datasets/dataset.py +0 -164
  1317. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  1318. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  1319. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  1320. paddlex/paddleseg/datasets/voc.py +0 -113
  1321. paddlex/paddleseg/models/__init__.py +0 -39
  1322. paddlex/paddleseg/models/ann.py +0 -436
  1323. paddlex/paddleseg/models/attention_unet.py +0 -189
  1324. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  1325. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  1326. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  1327. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  1328. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  1329. paddlex/paddleseg/models/bisenet.py +0 -311
  1330. paddlex/paddleseg/models/danet.py +0 -220
  1331. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  1332. paddlex/paddleseg/models/deeplab.py +0 -258
  1333. paddlex/paddleseg/models/dnlnet.py +0 -231
  1334. paddlex/paddleseg/models/emanet.py +0 -219
  1335. paddlex/paddleseg/models/fast_scnn.py +0 -318
  1336. paddlex/paddleseg/models/fcn.py +0 -135
  1337. paddlex/paddleseg/models/gcnet.py +0 -223
  1338. paddlex/paddleseg/models/gscnn.py +0 -357
  1339. paddlex/paddleseg/models/hardnet.py +0 -309
  1340. paddlex/paddleseg/models/isanet.py +0 -202
  1341. paddlex/paddleseg/models/layers/__init__.py +0 -19
  1342. paddlex/paddleseg/models/layers/activation.py +0 -73
  1343. paddlex/paddleseg/models/layers/attention.py +0 -146
  1344. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  1345. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  1346. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  1347. paddlex/paddleseg/models/losses/__init__.py +0 -27
  1348. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  1349. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  1350. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  1351. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  1352. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  1353. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  1354. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  1355. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  1356. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  1357. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  1358. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  1359. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  1360. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  1361. paddlex/paddleseg/models/ocrnet.py +0 -248
  1362. paddlex/paddleseg/models/pspnet.py +0 -147
  1363. paddlex/paddleseg/models/sfnet.py +0 -236
  1364. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  1365. paddlex/paddleseg/models/u2net.py +0 -574
  1366. paddlex/paddleseg/models/unet.py +0 -155
  1367. paddlex/paddleseg/models/unet_3plus.py +0 -316
  1368. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  1369. paddlex/paddleseg/transforms/__init__.py +0 -16
  1370. paddlex/paddleseg/transforms/functional.py +0 -161
  1371. paddlex/paddleseg/transforms/transforms.py +0 -937
  1372. paddlex/paddleseg/utils/__init__.py +0 -22
  1373. paddlex/paddleseg/utils/config_check.py +0 -60
  1374. paddlex/paddleseg/utils/download.py +0 -163
  1375. paddlex/paddleseg/utils/env/__init__.py +0 -16
  1376. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  1377. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  1378. paddlex/paddleseg/utils/logger.py +0 -48
  1379. paddlex/paddleseg/utils/metrics.py +0 -146
  1380. paddlex/paddleseg/utils/progbar.py +0 -212
  1381. paddlex/paddleseg/utils/timer.py +0 -53
  1382. paddlex/paddleseg/utils/utils.py +0 -120
  1383. paddlex/paddleseg/utils/visualize.py +0 -90
  1384. paddlex/ppcls/__init__.py +0 -20
  1385. paddlex/ppcls/arch/__init__.py +0 -127
  1386. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  1387. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  1388. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  1389. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1390. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1391. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  1392. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1393. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1394. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1395. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1396. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1397. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  1398. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1399. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1400. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1401. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1402. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1403. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1404. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1405. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1406. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1407. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1408. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1409. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1410. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1411. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1412. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1413. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1414. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1415. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1416. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1417. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1418. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1419. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1420. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1421. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1422. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1423. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1424. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1425. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1426. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1427. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1428. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1429. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1430. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1431. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1432. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1433. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1434. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1435. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1436. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1437. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1438. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1439. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1440. paddlex/ppcls/arch/gears/__init__.py +0 -32
  1441. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  1442. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  1443. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  1444. paddlex/ppcls/arch/gears/fc.py +0 -35
  1445. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  1446. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1447. paddlex/ppcls/arch/utils.py +0 -53
  1448. paddlex/ppcls/data/__init__.py +0 -144
  1449. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1450. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1451. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1452. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1453. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1454. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1455. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1456. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1457. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1458. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1459. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1460. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1461. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1462. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1463. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1464. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1465. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1466. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1467. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1468. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1469. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1470. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1471. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1472. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1473. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1474. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1475. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1476. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1477. paddlex/ppcls/data/utils/__init__.py +0 -13
  1478. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1479. paddlex/ppcls/engine/__init__.py +0 -0
  1480. paddlex/ppcls/engine/engine.py +0 -436
  1481. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1482. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1483. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1484. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1485. paddlex/ppcls/engine/slim/prune.py +0 -66
  1486. paddlex/ppcls/engine/slim/quant.py +0 -55
  1487. paddlex/ppcls/engine/train/__init__.py +0 -14
  1488. paddlex/ppcls/engine/train/train.py +0 -79
  1489. paddlex/ppcls/engine/train/utils.py +0 -72
  1490. paddlex/ppcls/loss/__init__.py +0 -65
  1491. paddlex/ppcls/loss/celoss.py +0 -67
  1492. paddlex/ppcls/loss/centerloss.py +0 -54
  1493. paddlex/ppcls/loss/comfunc.py +0 -45
  1494. paddlex/ppcls/loss/deephashloss.py +0 -96
  1495. paddlex/ppcls/loss/distanceloss.py +0 -43
  1496. paddlex/ppcls/loss/distillationloss.py +0 -141
  1497. paddlex/ppcls/loss/dmlloss.py +0 -46
  1498. paddlex/ppcls/loss/emlloss.py +0 -97
  1499. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1500. paddlex/ppcls/loss/msmloss.py +0 -78
  1501. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1502. paddlex/ppcls/loss/npairsloss.py +0 -38
  1503. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1504. paddlex/ppcls/loss/supconloss.py +0 -108
  1505. paddlex/ppcls/loss/trihardloss.py +0 -82
  1506. paddlex/ppcls/loss/triplet.py +0 -137
  1507. paddlex/ppcls/metric/__init__.py +0 -51
  1508. paddlex/ppcls/metric/metrics.py +0 -308
  1509. paddlex/ppcls/optimizer/__init__.py +0 -72
  1510. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1511. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1512. paddlex/ppcls/utils/__init__.py +0 -27
  1513. paddlex/ppcls/utils/check.py +0 -151
  1514. paddlex/ppcls/utils/config.py +0 -210
  1515. paddlex/ppcls/utils/download.py +0 -319
  1516. paddlex/ppcls/utils/ema.py +0 -63
  1517. paddlex/ppcls/utils/logger.py +0 -137
  1518. paddlex/ppcls/utils/metrics.py +0 -112
  1519. paddlex/ppcls/utils/misc.py +0 -63
  1520. paddlex/ppcls/utils/model_zoo.py +0 -213
  1521. paddlex/ppcls/utils/profiler.py +0 -111
  1522. paddlex/ppcls/utils/save_load.py +0 -136
  1523. paddlex/ppdet/__init__.py +0 -16
  1524. paddlex/ppdet/core/__init__.py +0 -15
  1525. paddlex/ppdet/core/config/__init__.py +0 -13
  1526. paddlex/ppdet/core/config/schema.py +0 -248
  1527. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1528. paddlex/ppdet/core/workspace.py +0 -278
  1529. paddlex/ppdet/data/__init__.py +0 -21
  1530. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1531. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1532. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1533. paddlex/ppdet/data/reader.py +0 -302
  1534. paddlex/ppdet/data/shm_utils.py +0 -67
  1535. paddlex/ppdet/data/source/__init__.py +0 -29
  1536. paddlex/ppdet/data/source/category.py +0 -904
  1537. paddlex/ppdet/data/source/coco.py +0 -251
  1538. paddlex/ppdet/data/source/dataset.py +0 -197
  1539. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1540. paddlex/ppdet/data/source/mot.py +0 -636
  1541. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1542. paddlex/ppdet/data/source/voc.py +0 -231
  1543. paddlex/ppdet/data/source/widerface.py +0 -180
  1544. paddlex/ppdet/data/transform/__init__.py +0 -28
  1545. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1546. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1547. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1548. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1549. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1550. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1551. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1552. paddlex/ppdet/data/transform/operators.py +0 -3025
  1553. paddlex/ppdet/engine/__init__.py +0 -30
  1554. paddlex/ppdet/engine/callbacks.py +0 -340
  1555. paddlex/ppdet/engine/env.py +0 -50
  1556. paddlex/ppdet/engine/export_utils.py +0 -177
  1557. paddlex/ppdet/engine/tracker.py +0 -538
  1558. paddlex/ppdet/engine/trainer.py +0 -723
  1559. paddlex/ppdet/metrics/__init__.py +0 -29
  1560. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1561. paddlex/ppdet/metrics/json_results.py +0 -149
  1562. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1563. paddlex/ppdet/metrics/map_utils.py +0 -444
  1564. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1565. paddlex/ppdet/metrics/metrics.py +0 -434
  1566. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1567. paddlex/ppdet/metrics/munkres.py +0 -428
  1568. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1569. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1570. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1571. paddlex/ppdet/modeling/__init__.py +0 -45
  1572. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1573. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1574. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1575. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1576. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1577. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1578. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1579. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1580. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1581. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1582. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1583. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1584. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1585. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1586. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1587. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1588. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1589. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1590. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1591. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1592. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1593. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1594. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1595. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1596. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1597. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1598. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1599. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1600. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1601. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1602. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1603. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1604. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1605. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1606. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1607. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1608. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1609. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1610. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1611. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1612. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1613. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1614. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1615. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1616. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1617. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1618. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1619. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1620. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1621. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1622. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1623. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1624. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1625. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1626. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1627. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1628. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1629. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1630. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1631. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1632. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1633. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1634. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1635. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1636. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1637. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1638. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1639. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1640. paddlex/ppdet/modeling/initializer.py +0 -317
  1641. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1642. paddlex/ppdet/modeling/layers.py +0 -1430
  1643. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1644. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1645. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1646. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1647. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1648. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1649. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1650. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1651. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1652. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1653. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1654. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1655. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1656. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1657. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1658. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1659. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1660. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1661. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1662. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1663. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1664. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1665. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1666. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1667. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1668. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1669. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1670. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1671. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1672. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1673. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1674. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1675. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1676. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1677. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1678. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1679. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1680. paddlex/ppdet/modeling/ops.py +0 -1611
  1681. paddlex/ppdet/modeling/post_process.py +0 -731
  1682. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1683. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1684. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1685. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1686. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1687. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1688. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1689. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1690. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1691. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1692. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1693. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1694. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1695. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1696. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1697. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1698. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1699. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1700. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1701. paddlex/ppdet/optimizer.py +0 -335
  1702. paddlex/ppdet/slim/__init__.py +0 -82
  1703. paddlex/ppdet/slim/distill.py +0 -110
  1704. paddlex/ppdet/slim/prune.py +0 -85
  1705. paddlex/ppdet/slim/quant.py +0 -84
  1706. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1707. paddlex/ppdet/utils/__init__.py +0 -13
  1708. paddlex/ppdet/utils/check.py +0 -112
  1709. paddlex/ppdet/utils/checkpoint.py +0 -226
  1710. paddlex/ppdet/utils/cli.py +0 -151
  1711. paddlex/ppdet/utils/colormap.py +0 -58
  1712. paddlex/ppdet/utils/download.py +0 -558
  1713. paddlex/ppdet/utils/logger.py +0 -70
  1714. paddlex/ppdet/utils/profiler.py +0 -111
  1715. paddlex/ppdet/utils/stats.py +0 -94
  1716. paddlex/ppdet/utils/visualizer.py +0 -321
  1717. paddlex/ppdet/utils/voc_utils.py +0 -86
  1718. paddlex/seg.py +0 -41
  1719. paddlex/tools/__init__.py +0 -17
  1720. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1721. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1722. paddlex/tools/convert.py +0 -52
  1723. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1724. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1725. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1726. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1727. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1728. paddlex/tools/dataset_split/__init__.py +0 -23
  1729. paddlex/tools/dataset_split/coco_split.py +0 -69
  1730. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1731. paddlex/tools/dataset_split/seg_split.py +0 -96
  1732. paddlex/tools/dataset_split/utils.py +0 -75
  1733. paddlex/tools/dataset_split/voc_split.py +0 -91
  1734. paddlex/tools/split.py +0 -41
  1735. paddlex/utils/checkpoint.py +0 -492
  1736. paddlex/utils/shm.py +0 -67
  1737. paddlex/utils/stats.py +0 -68
  1738. paddlex/utils/utils.py +0 -229
  1739. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1740. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1741. paddlex-2.1.0.dist-info/METADATA +0 -32
  1742. paddlex-2.1.0.dist-info/RECORD +0 -698
  1743. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1744. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1745. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1746. paddlex_restful/__init__.py +0 -15
  1747. paddlex_restful/command.py +0 -63
  1748. paddlex_restful/restful/__init__.py +0 -15
  1749. paddlex_restful/restful/app.py +0 -969
  1750. paddlex_restful/restful/dataset/__init__.py +0 -13
  1751. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1752. paddlex_restful/restful/dataset/dataset.py +0 -266
  1753. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1754. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1755. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1756. paddlex_restful/restful/dataset/operate.py +0 -155
  1757. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1758. paddlex_restful/restful/dataset/utils.py +0 -267
  1759. paddlex_restful/restful/demo.py +0 -202
  1760. paddlex_restful/restful/dir.py +0 -45
  1761. paddlex_restful/restful/model.py +0 -312
  1762. paddlex_restful/restful/project/__init__.py +0 -13
  1763. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1764. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1765. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1766. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1767. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1768. paddlex_restful/restful/project/operate.py +0 -931
  1769. paddlex_restful/restful/project/project.py +0 -143
  1770. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1771. paddlex_restful/restful/project/prune/classification.py +0 -32
  1772. paddlex_restful/restful/project/prune/detection.py +0 -48
  1773. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1774. paddlex_restful/restful/project/task.py +0 -884
  1775. paddlex_restful/restful/project/train/__init__.py +0 -13
  1776. paddlex_restful/restful/project/train/classification.py +0 -141
  1777. paddlex_restful/restful/project/train/detection.py +0 -263
  1778. paddlex_restful/restful/project/train/params.py +0 -432
  1779. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1780. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1781. paddlex_restful/restful/project/visualize.py +0 -244
  1782. paddlex_restful/restful/system.py +0 -102
  1783. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1784. paddlex_restful/restful/utils.py +0 -841
  1785. paddlex_restful/restful/workspace.py +0 -343
  1786. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -0,0 +1,3006 @@
1
+ # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from dataclasses import dataclass
17
+ from functools import partial
18
+ from typing import Any, Dict, List, Optional, Tuple, Union
19
+
20
+ import paddle
21
+ import paddle.distributed.fleet.meta_parallel as mpu
22
+ import paddle.nn.functional as F
23
+ from paddle import Tensor, nn
24
+ from paddle.distributed import fleet
25
+ from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
26
+ from paddle.distributed.fleet.utils import recompute
27
+
28
+ from .....utils import logging
29
+ from .....utils.env import get_device_type
30
+ from ...common.vlm.activations import ACT2FN
31
+ from ...common.vlm.bert_padding import index_first_axis, pad_input, unpad_input
32
+ from ...common.vlm.flash_attn_utils import has_flash_attn_func
33
+ from ...common.vlm.transformers import PretrainedConfig, PretrainedModel
34
+ from ...common.vlm.transformers.model_outputs import (
35
+ BaseModelOutputWithPast,
36
+ ModelOutput,
37
+ )
38
+
39
+
40
+ class Qwen2_5_VLVisionConfig(PretrainedConfig):
41
+ model_type = "qwen2_5_vl"
42
+ base_config_key = "vision_config"
43
+
44
+ def __init__(
45
+ self,
46
+ depth=32,
47
+ hidden_size=3584,
48
+ hidden_act="silu",
49
+ intermediate_size=3420,
50
+ num_heads=16,
51
+ in_channels=3,
52
+ patch_size=14,
53
+ spatial_merge_size=2,
54
+ temporal_patch_size=2,
55
+ tokens_per_second=4,
56
+ window_size=112,
57
+ out_hidden_size=3584,
58
+ fullatt_block_indexes=[7, 15, 23, 31],
59
+ **kwargs,
60
+ ):
61
+ super().__init__(**kwargs)
62
+ self.depth = depth
63
+ self.hidden_size = hidden_size
64
+ self.hidden_act = hidden_act
65
+ self.intermediate_size = intermediate_size
66
+ self.num_heads = num_heads
67
+ self.in_channels = in_channels
68
+ self.patch_size = patch_size
69
+ self.spatial_merge_size = spatial_merge_size
70
+ self.temporal_patch_size = temporal_patch_size
71
+ self.tokens_per_second = tokens_per_second
72
+ self.window_size = window_size
73
+ self.fullatt_block_indexes = fullatt_block_indexes
74
+ self.out_hidden_size = out_hidden_size
75
+
76
+
77
+ class Qwen2_5_VLConfig(PretrainedConfig):
78
+ """
79
+ This is the configuration class to store the configuration of a [`Qwen2_5_VLModel`]. It is used to instantiate a
80
+ Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
81
+ with the defaults will yield a similar configuration to that of
82
+ Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
83
+
84
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
85
+ documentation from [`PretrainedConfig`] for more information.
86
+
87
+
88
+ Args:
89
+ vocab_size (`int`, *optional*, defaults to 152064):
90
+ Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
91
+ `inputs_ids` passed when calling [`Qwen2_5_VLModel`]
92
+ hidden_size (`int`, *optional*, defaults to 8192):
93
+ Dimension of the hidden representations.
94
+ intermediate_size (`int`, *optional*, defaults to 29568):
95
+ Dimension of the MLP representations.
96
+ num_hidden_layers (`int`, *optional*, defaults to 80):
97
+ Number of hidden layers in the Transformer encoder.
98
+ num_attention_heads (`int`, *optional*, defaults to 64):
99
+ Number of attention heads for each attention layer in the Transformer encoder.
100
+ num_key_value_heads (`int`, *optional*, defaults to 8):
101
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
102
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
103
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
104
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
105
+ by meanpooling all the original heads within that group. For more details checkout [this
106
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
107
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
108
+ The non-linear activation function (function or string) in the decoder.
109
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
110
+ The maximum sequence length that this model might ever be used with.
111
+ initializer_range (`float`, *optional*, defaults to 0.02):
112
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
113
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
114
+ The epsilon used by the rms normalization layers.
115
+ use_cache (`bool`, *optional*, defaults to `True`):
116
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
117
+ relevant if `config.is_decoder=True`.
118
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
119
+ Whether the model's input and output word embeddings should be tied.
120
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
121
+ The base period of the RoPE embeddings.
122
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
123
+ Whether to use sliding window attention.
124
+ sliding_window (`int`, *optional*, defaults to 4096):
125
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
126
+ max_window_layers (`int`, *optional*, defaults to 80):
127
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
128
+ attention_dropout (`float`, *optional*, defaults to 0.0):
129
+ The dropout ratio for the attention probabilities.
130
+ vision_config (`Dict`, *optional*):
131
+ The config for the visual encoder initialization.
132
+ rope_scaling (`Dict`, *optional*):
133
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
134
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
135
+ accordingly.
136
+ Expected contents:
137
+ `rope_type` (`str`):
138
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
139
+ 'llama3'], with 'default' being the original RoPE implementation.
140
+ `factor` (`float`, *optional*):
141
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
142
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
143
+ original maximum pre-trained length.
144
+ `original_max_position_embeddings` (`int`, *optional*):
145
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
146
+ pretraining.
147
+ `attention_factor` (`float`, *optional*):
148
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
149
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
150
+ `factor` field to infer the suggested value.
151
+ `beta_fast` (`float`, *optional*):
152
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
153
+ ramp function. If unspecified, it defaults to 32.
154
+ `beta_slow` (`float`, *optional*):
155
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
156
+ ramp function. If unspecified, it defaults to 1.
157
+ `short_factor` (`List[float]`, *optional*):
158
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
159
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
160
+ size divided by the number of attention heads divided by 2
161
+ `long_factor` (`List[float]`, *optional*):
162
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
163
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
164
+ size divided by the number of attention heads divided by 2
165
+ `low_freq_factor` (`float`, *optional*):
166
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
167
+ `high_freq_factor` (`float`, *optional*):
168
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
169
+
170
+ ```python
171
+ >>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
172
+
173
+ >>> # Initializing a Qwen2_5_VL style configuration
174
+ >>> configuration = Qwen2_5_VLConfig()
175
+
176
+ >>> # Initializing a model from the Qwen2-VL-7B style configuration
177
+ >>> model = Qwen2_5_VLForConditionalGeneration(configuration)
178
+
179
+ >>> # Accessing the model configuration
180
+ >>> configuration = model.config
181
+ ```"""
182
+
183
+ model_type = "qwen2_5_vl"
184
+ sub_configs = {"vision_config": Qwen2_5_VLVisionConfig}
185
+ keys_to_ignore_at_inference = ["past_key_values"]
186
+ base_model_tp_plan = {
187
+ "layers.*.self_attn.q_proj": "colwise",
188
+ "layers.*.self_attn.k_proj": "colwise",
189
+ "layers.*.self_attn.v_proj": "colwise",
190
+ "layers.*.self_attn.o_proj": "rowwise",
191
+ "layers.*.mlp.gate_proj": "colwise",
192
+ "layers.*.mlp.up_proj": "colwise",
193
+ "layers.*.mlp.down_proj": "rowwise",
194
+ }
195
+
196
+ def __init__(
197
+ self,
198
+ vocab_size=152064,
199
+ hidden_size=8192,
200
+ intermediate_size=29568,
201
+ num_hidden_layers=80,
202
+ num_attention_heads=64,
203
+ num_key_value_heads=8,
204
+ hidden_act="silu",
205
+ max_position_embeddings=32768,
206
+ initializer_range=0.02,
207
+ rms_norm_eps=1e-05,
208
+ use_cache=True,
209
+ tie_word_embeddings=False,
210
+ rope_theta=1000000.0,
211
+ use_sliding_window=False,
212
+ sliding_window=4096,
213
+ max_window_layers=80,
214
+ attention_dropout=0.0,
215
+ vision_config=None,
216
+ rope_scaling=None,
217
+ **kwargs,
218
+ ):
219
+ if isinstance(vision_config, dict):
220
+ self.vision_config = self.sub_configs["vision_config"](**vision_config)
221
+ elif vision_config is None:
222
+ self.vision_config = self.sub_configs["vision_config"]()
223
+ self.vocab_size = vocab_size
224
+ self.max_position_embeddings = max_position_embeddings
225
+ self.hidden_size = hidden_size
226
+ self.intermediate_size = intermediate_size
227
+ self.num_hidden_layers = num_hidden_layers
228
+ self.num_attention_heads = num_attention_heads
229
+ self.use_sliding_window = use_sliding_window
230
+ self.sliding_window = sliding_window
231
+ self.max_window_layers = max_window_layers
232
+ if num_key_value_heads is None:
233
+ num_key_value_heads = num_attention_heads
234
+ self.num_key_value_heads = num_key_value_heads
235
+ self.hidden_act = hidden_act
236
+ self.initializer_range = initializer_range
237
+ self.rms_norm_eps = rms_norm_eps
238
+ self.use_cache = use_cache
239
+ self.rope_theta = rope_theta
240
+ self.attention_dropout = attention_dropout
241
+ self.rope_scaling = rope_scaling
242
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
243
+ if self.rope_scaling["type"] == "mrope":
244
+ self.rope_scaling["type"] = "default"
245
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
246
+
247
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
248
+
249
+
250
+ flash_attn_func, flash_attn_varlen_func = has_flash_attn_func()
251
+
252
+ Linear = nn.Linear
253
+ ColumnParallelLinear = mpu.ColumnParallelLinear
254
+ RowParallelLinear = mpu.RowParallelLinear
255
+
256
+
257
+ def get_triangle_upper_mask(x, mask=None):
258
+ if mask is not None:
259
+ return mask
260
+ shape = x.shape
261
+ shape[1] = 1
262
+ mask = paddle.full(shape, paddle.finfo(x.dtype).min, dtype=x.dtype)
263
+ mask = paddle.triu(mask, diagonal=1)
264
+ mask.stop_gradient = True
265
+ return mask
266
+
267
+
268
+ def parallel_matmul(
269
+ x: Tensor, y: Tensor, transpose_y=True, tensor_parallel_output=True
270
+ ):
271
+ is_fleet_init = True
272
+ tensor_parallel_degree = 1
273
+ try:
274
+ hcg = fleet.get_hybrid_communicate_group()
275
+ model_parallel_group = hcg.get_model_parallel_group()
276
+ tensor_parallel_degree = hcg.get_model_parallel_world_size()
277
+ except:
278
+ is_fleet_init = False
279
+
280
+ if paddle.in_dynamic_mode():
281
+ y_is_distributed = y.is_distributed
282
+ else:
283
+ y_is_distributed = tensor_parallel_degree > 1
284
+
285
+ if is_fleet_init and tensor_parallel_degree > 1 and y_is_distributed:
286
+
287
+ input_parallel = paddle.distributed.collective._c_identity(
288
+ x, group=model_parallel_group
289
+ )
290
+ logits = paddle.matmul(input_parallel, y, transpose_y=transpose_y)
291
+
292
+ if tensor_parallel_output:
293
+ return logits
294
+ return paddle.distributed.collective._c_concat(
295
+ logits, group=model_parallel_group
296
+ )
297
+
298
+ else:
299
+ logits = paddle.matmul(x, y, transpose_y=transpose_y)
300
+ return logits
301
+
302
+
303
+ def _compute_default_rope_parameters(
304
+ config: Optional[PretrainedConfig] = None,
305
+ device: Optional["paddle.device"] = None,
306
+ seq_len: Optional[int] = None,
307
+ **rope_kwargs,
308
+ ) -> Tuple["paddle.Tensor", float]:
309
+ """
310
+ Computes the inverse frequencies according to the original RoPE implementation
311
+ Args:
312
+ config ([`~transformers.PretrainedConfig`]):
313
+ The model configuration.
314
+ device (`paddle.device`):
315
+ The device to use for initialization of the inverse frequencies.
316
+ seq_len (`int`, *optional*):
317
+ The current sequence length. Unused for this type of RoPE.
318
+ rope_kwargs (`Dict`, *optional*):
319
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
320
+ Returns:
321
+ Tuple of (`paddle.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
322
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
323
+ """
324
+ if config is not None and len(rope_kwargs) > 0:
325
+ raise ValueError(
326
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
327
+ f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
328
+ )
329
+ if len(rope_kwargs) > 0:
330
+ base = rope_kwargs["base"]
331
+ dim = rope_kwargs["dim"]
332
+ elif config is not None:
333
+ base = config.rope_theta
334
+ partial_rotary_factor = (
335
+ config.partial_rotary_factor
336
+ if hasattr(config, "partial_rotary_factor")
337
+ else 1.0
338
+ )
339
+ head_dim = getattr(
340
+ config, "head_dim", config.hidden_size // config.num_attention_heads
341
+ )
342
+ dim = int(head_dim * partial_rotary_factor)
343
+
344
+ attention_factor = 1.0 # Unused in this type of RoPE
345
+
346
+ # Compute the inverse frequencies
347
+ inv_freq = 1.0 / (
348
+ base ** (paddle.arange(0, dim, 2, dtype="int64").astype("float32") / dim)
349
+ )
350
+ return inv_freq, attention_factor
351
+
352
+
353
+ ROPE_INIT_FUNCTIONS = {
354
+ "default": _compute_default_rope_parameters,
355
+ }
356
+
357
+
358
+ def _get_unpad_data(attention_mask):
359
+ seqlens_in_batch = attention_mask.sum(axis=-1, dtype="int32")
360
+ indices = paddle.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
361
+ max_seqlen_in_batch = seqlens_in_batch.max().item() # [2, 1, 1323]
362
+ cu_seqlens = F.pad(
363
+ paddle.cumsum(seqlens_in_batch, axis=0), (1, 0), data_format="NCL"
364
+ )
365
+ return (
366
+ indices,
367
+ cu_seqlens,
368
+ max_seqlen_in_batch,
369
+ )
370
+
371
+
372
+ def is_casual_mask(attention_mask):
373
+ """
374
+ Upper triangular of attention_mask equals to attention_mask is casual
375
+ """
376
+ return (paddle.triu(attention_mask) == attention_mask).all().item()
377
+
378
+
379
+ def _make_causal_mask(input_ids_shape, past_key_values_length):
380
+ """
381
+ Make causal mask used for self-attention
382
+ """
383
+ batch_size, target_length = input_ids_shape # target_length: seq_len
384
+
385
+ mask = paddle.tril(paddle.ones((target_length, target_length), dtype="bool"))
386
+
387
+ if past_key_values_length > 0:
388
+ # [tgt_len, tgt_len + past_len]
389
+ mask = paddle.concat(
390
+ [paddle.ones([target_length, past_key_values_length], dtype="bool"), mask],
391
+ axis=-1,
392
+ )
393
+
394
+ # [bs, 1, tgt_len, tgt_len + past_len]
395
+ return mask[None, None, :, :].expand(
396
+ [batch_size, 1, target_length, target_length + past_key_values_length]
397
+ )
398
+
399
+
400
+ def _expand_2d_mask(mask, dtype, tgt_length):
401
+ """
402
+ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
403
+ """
404
+ batch_size, src_length = mask.shape[0], mask.shape[-1]
405
+ tgt_length = tgt_length if tgt_length is not None else src_length
406
+
407
+ mask = mask[:, None, None, :].astype("bool")
408
+ mask.stop_gradient = True
409
+ expanded_mask = mask.expand([batch_size, 1, tgt_length, src_length])
410
+
411
+ return expanded_mask
412
+
413
+
414
+ @dataclass
415
+ class Qwen2_5_VLCausalLMOutputWithPast(ModelOutput):
416
+ """
417
+ Base class for Qwen2_5_VL causal language model (or autoregressive) outputs.
418
+
419
+ Args:
420
+ loss (`paddle.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
421
+ Language modeling loss (for next-token prediction).
422
+ logits (`paddle.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
423
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
424
+ past_key_values (`tuple(tuple(paddle.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
425
+ Tuple of `tuple(paddle.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
426
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
427
+
428
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
429
+ `past_key_values` input) to speed up sequential decoding.
430
+ hidden_states (`tuple(paddle.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
431
+ Tuple of `paddle.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
432
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
433
+
434
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
435
+ attentions (`tuple(paddle.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
436
+ Tuple of `paddle.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
437
+ sequence_length)`.
438
+
439
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
440
+ heads.
441
+ rope_deltas (`paddle.LongTensor` of shape `(batch_size, )`, *optional*):
442
+ The rope index difference between sequence length and multimodal rope.
443
+ """
444
+
445
+ loss: Optional[paddle.Tensor] = None
446
+ logits: paddle.float32 = None
447
+ past_key_values: Optional[List[paddle.Tensor]] = None
448
+ hidden_states: Optional[Tuple[paddle.Tensor]] = None
449
+ attentions: Optional[Tuple[paddle.Tensor]] = None
450
+ rope_deltas: Optional[paddle.Tensor] = None
451
+
452
+
453
+ class Qwen2_5_VLRotaryEmbedding(nn.Layer):
454
+ def __init__(
455
+ self,
456
+ dim=None,
457
+ max_position_embeddings=2048,
458
+ base=10000,
459
+ device=None,
460
+ scaling_factor=1.0,
461
+ rope_type="default",
462
+ config: Optional[Qwen2_5_VLConfig] = None,
463
+ ):
464
+ super().__init__()
465
+ # TODO (joao): remove the `if` below, only used for BC
466
+ self.rope_kwargs = {}
467
+ if config is None:
468
+ logging.warning_once(
469
+ "`Qwen2_5_VLRotaryEmbedding` can now be fully parameterized by passing the model config through the "
470
+ "`config` argument. All other arguments will be removed in v4.46"
471
+ )
472
+ self.rope_kwargs = {
473
+ "rope_type": rope_type,
474
+ "factor": scaling_factor,
475
+ "dim": dim,
476
+ "base": base,
477
+ "max_position_embeddings": max_position_embeddings,
478
+ }
479
+ self.rope_type = rope_type
480
+ self.max_seq_len_cached = max_position_embeddings
481
+ self.original_max_seq_len = max_position_embeddings
482
+ else:
483
+ # BC: "rope_type" was originally "type"
484
+ if config.rope_scaling is not None:
485
+ self.rope_type = config.rope_scaling.get(
486
+ "rope_type", config.rope_scaling.get("type")
487
+ )
488
+ else:
489
+ self.rope_type = "default"
490
+ self.max_seq_len_cached = config.max_position_embeddings
491
+ self.original_max_seq_len = config.max_position_embeddings
492
+
493
+ self.config = config
494
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
495
+
496
+ self.inv_freq, self.attention_scaling = self.rope_init_fn(
497
+ self.config, device, **self.rope_kwargs
498
+ )
499
+ self.original_inv_freq = self.inv_freq
500
+
501
+ self._set_cos_sin_cache(seq_len=max_position_embeddings)
502
+
503
+ def _set_cos_sin_cache(self, seq_len):
504
+ self.max_seq_len_cached = seq_len
505
+ # [seq_len]
506
+ t = paddle.arange(seq_len, dtype="float32")
507
+ # [seq_len, dim/2]
508
+ freqs = paddle.einsum("i,j->ij", t, self.inv_freq)
509
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
510
+ # [seq_len, dim]
511
+ emb = paddle.concat([freqs, freqs], axis=-1)
512
+ # [1, seqlen, 1, dim]
513
+ self.cos_cached = emb.cos()
514
+ self.sin_cached = emb.sin()
515
+
516
+ def _dynamic_frequency_update(self, position_ids, device):
517
+ """
518
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
519
+ 1 - growing beyond the cached sequence length (allow scaling)
520
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
521
+ """
522
+ seq_len = paddle.max(position_ids) + 1
523
+ if seq_len > self.max_seq_len_cached: # growth
524
+ inv_freq, self.attention_scaling = self.rope_init_fn(
525
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
526
+ )
527
+ self.inv_freq = inv_freq
528
+ self.max_seq_len_cached = seq_len
529
+
530
+ if (
531
+ seq_len < self.original_max_seq_len
532
+ and self.max_seq_len_cached > self.original_max_seq_len
533
+ ): # reset
534
+ self.inv_freq = self.original_inv_freq
535
+ self.max_seq_len_cached = self.original_max_seq_len
536
+
537
+ @paddle.no_grad()
538
+ def forward(self, x, position_ids):
539
+ if "dynamic" in self.rope_type:
540
+ self._dynamic_frequency_update(position_ids, device=x.device)
541
+
542
+ # Core RoPE block. In contrast to other models, Qwen2_VL has different position ids for thw grids
543
+ # So we expand the inv_freq to shape (3, ...)
544
+ inv_freq_expanded = (
545
+ self.inv_freq[None, None, :, None]
546
+ .astype("float32")
547
+ .expand([3, position_ids.shape[1], -1, 1])
548
+ )
549
+ position_ids_expanded = position_ids[:, :, None, :].astype(
550
+ "float32"
551
+ ) # shape (3, bs, 1, positions)
552
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
553
+ device_type = paddle.get_device()
554
+ device_type = (
555
+ device_type
556
+ if isinstance(device_type, str) and device_type != "mps"
557
+ else "cpu"
558
+ )
559
+ with paddle.amp.auto_cast():
560
+ # Compute frequencies by matrix multiplication and transpose
561
+ # inv_freq_expanded shape: [3, bs, dim/2, 1]
562
+ # position_ids_expanded shape: [3, bs, 1, positions]
563
+ # Result shape after matmul: [3, bs, dim/2, positions]
564
+ # After transpose: [3, bs, positions, dim/2]
565
+ freqs = paddle.matmul(inv_freq_expanded, position_ids_expanded)
566
+ freqs = freqs.transpose([0, 1, 3, 2])
567
+ emb = paddle.concat((freqs, freqs), axis=-1)
568
+ cos = emb.cos()
569
+ sin = emb.sin()
570
+
571
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
572
+ cos = cos * self.attention_scaling
573
+ sin = sin * self.attention_scaling
574
+
575
+ return cos.astype(x.dtype), sin.astype(x.dtype)
576
+
577
+
578
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
579
+ def rotate_half(x):
580
+ """Rotates half the hidden dims of the input."""
581
+ x1 = x[..., : x.shape[-1] // 2]
582
+ x2 = x[..., x.shape[-1] // 2 :]
583
+ return paddle.concat([-x2, x1], axis=-1) # shape is the same as x
584
+
585
+
586
+ def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
587
+ """Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
588
+
589
+ Explanation:
590
+ Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
591
+ sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
592
+ vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
593
+ Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
594
+ For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
595
+ height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
596
+ difference with modern LLMs.
597
+
598
+ Args:
599
+ q (`paddle.Tensor`): The query tensor.
600
+ k (`paddle.Tensor`): The key tensor.
601
+ cos (`paddle.Tensor`): The cosine part of the rotary embedding.
602
+ sin (`paddle.Tensor`): The sine part of the rotary embedding.
603
+ position_ids (`paddle.Tensor`):
604
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
605
+ used to pass offsetted position ids when working with a KV-cache.
606
+ mrope_section(`List(int)`):
607
+ Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
608
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
609
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
610
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
611
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
612
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
613
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
614
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
615
+ Returns:
616
+ `tuple(paddle.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
617
+ """
618
+
619
+ # cos = cos[position_ids]
620
+ # sin = sin[position_ids]
621
+ mrope_section = mrope_section * 2
622
+ cos = paddle.concat(
623
+ x=[m[i % 3] for i, m in enumerate(cos.split(mrope_section, axis=-1))], axis=-1
624
+ ).unsqueeze(axis=unsqueeze_dim)
625
+ sin = paddle.concat(
626
+ x=[m[i % 3] for i, m in enumerate(sin.split(mrope_section, axis=-1))], axis=-1
627
+ ).unsqueeze(axis=unsqueeze_dim)
628
+
629
+ q_embed = (q * cos) + (rotate_half(q) * sin)
630
+ k_embed = (k * cos) + (rotate_half(k) * sin)
631
+ return q_embed, k_embed
632
+
633
+
634
+ def apply_rotary_pos_emb_vision(
635
+ tensor: paddle.Tensor, freqs: paddle.Tensor
636
+ ) -> paddle.Tensor:
637
+ orig_dtype = tensor.dtype
638
+
639
+ with paddle.amp.auto_cast(False):
640
+ tensor = tensor.astype(dtype="float32")
641
+ cos = freqs.cos()
642
+ sin = freqs.sin()
643
+ cos = (
644
+ cos.unsqueeze(1)
645
+ .tile(repeat_times=[1, 1, 2])
646
+ .unsqueeze(0)
647
+ .astype(dtype="float32")
648
+ )
649
+ sin = (
650
+ sin.unsqueeze(1)
651
+ .tile(repeat_times=[1, 1, 2])
652
+ .unsqueeze(0)
653
+ .astype(dtype="float32")
654
+ )
655
+ output = tensor * cos + rotate_half(tensor) * sin
656
+ output = paddle.cast(output, orig_dtype)
657
+ return output
658
+
659
+
660
+ class Qwen2_5_VisionRotaryEmbedding(nn.Layer):
661
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
662
+ super().__init__()
663
+ self.inv_freq = 1.0 / theta ** (
664
+ paddle.arange(start=0, end=dim, step=2, dtype="float32") / dim
665
+ )
666
+
667
+ def forward(self, seqlen: int) -> paddle.Tensor:
668
+ seq = paddle.arange(seqlen).cast(self.inv_freq.dtype)
669
+ freqs = paddle.outer(x=seq, y=self.inv_freq)
670
+ return freqs
671
+
672
+
673
+ class Qwen2_5_VisionPatchEmbed(nn.Layer):
674
+ def __init__(
675
+ self,
676
+ patch_size: int = 14,
677
+ temporal_patch_size: int = 2,
678
+ in_channels: int = 3,
679
+ embed_dim: int = 1152,
680
+ ) -> None:
681
+ super().__init__()
682
+ self.patch_size = patch_size
683
+ self.temporal_patch_size = temporal_patch_size
684
+ self.in_channels = in_channels
685
+ self.embed_dim = embed_dim
686
+
687
+ kernel_size = [temporal_patch_size, patch_size, patch_size]
688
+ self.proj = nn.Conv3D(
689
+ in_channels,
690
+ embed_dim,
691
+ kernel_size=kernel_size,
692
+ stride=kernel_size,
693
+ bias_attr=False,
694
+ )
695
+
696
+ def forward(self, hidden_states: paddle.Tensor) -> paddle.Tensor:
697
+
698
+ target_dtype = self.proj.weight.dtype
699
+ hidden_states = hidden_states.reshape(
700
+ [
701
+ -1,
702
+ self.in_channels,
703
+ self.temporal_patch_size,
704
+ self.patch_size,
705
+ self.patch_size,
706
+ ]
707
+ )
708
+
709
+ # NOTE(changwenbin): AttributeError: 'Variable' object has no attribute 'to'.
710
+ # hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).reshape([-1, self.embed_dim])
711
+ hidden_states = self.proj(
712
+ paddle.cast(hidden_states, dtype=target_dtype)
713
+ ).reshape([-1, self.embed_dim])
714
+ return hidden_states
715
+
716
+
717
+ class Qwen2_5_VLPatchMerger(paddle.nn.Layer):
718
+ def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
719
+ super().__init__()
720
+ self.hidden_size = context_dim * (spatial_merge_size**2)
721
+ self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6)
722
+ self.mlp = nn.Sequential(
723
+ nn.Linear(self.hidden_size, self.hidden_size),
724
+ nn.GELU(),
725
+ nn.Linear(self.hidden_size, dim),
726
+ )
727
+
728
+ def forward(self, x: paddle.Tensor) -> paddle.Tensor:
729
+ x = self.mlp(self.ln_q(x).reshape([-1, self.hidden_size]))
730
+ return x
731
+
732
+
733
+ class Qwen2_5_VLMLP(paddle.nn.Layer):
734
+ def __init__(self, config, bias: bool = False):
735
+ super().__init__()
736
+ self.hidden_size = config.hidden_size
737
+ self.intermediate_size = config.intermediate_size
738
+ self.gate_proj = paddle.nn.Linear(
739
+ in_features=self.hidden_size,
740
+ out_features=self.intermediate_size,
741
+ bias_attr=bias,
742
+ )
743
+ self.up_proj = paddle.nn.Linear(
744
+ in_features=self.hidden_size,
745
+ out_features=self.intermediate_size,
746
+ bias_attr=bias,
747
+ )
748
+ self.down_proj = paddle.nn.Linear(
749
+ in_features=self.intermediate_size,
750
+ out_features=self.hidden_size,
751
+ bias_attr=bias,
752
+ )
753
+ self.act_fn = ACT2FN[config.hidden_act]
754
+
755
+ def forward(self, hidden_state):
756
+ return self.down_proj(
757
+ self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)
758
+ )
759
+
760
+
761
+ class Qwen2_5_VLVisionAttention(nn.Layer):
762
+ def __init__(self, dim: int, num_heads: int = 16) -> None:
763
+ super().__init__()
764
+ self.num_heads = num_heads
765
+ self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
766
+ self.proj = nn.Linear(dim, dim)
767
+ self.head_dim = dim // num_heads # must added
768
+
769
+ def forward(
770
+ self,
771
+ hidden_states: paddle.Tensor,
772
+ cu_seqlens: paddle.Tensor,
773
+ rotary_pos_emb: paddle.Tensor = None,
774
+ ) -> paddle.Tensor:
775
+ seq_length = hidden_states.shape[0]
776
+ q, k, v = (
777
+ self.qkv(hidden_states)
778
+ .reshape([seq_length, 3, self.num_heads, -1])
779
+ .transpose([1, 0, 2, 3])
780
+ .unbind(0)
781
+ )
782
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
783
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
784
+
785
+ attention_mask = paddle.zeros([1, seq_length, seq_length], dtype="bool")
786
+ for i in range(1, len(cu_seqlens)):
787
+ attention_mask[
788
+ ...,
789
+ cu_seqlens[i - 1] : cu_seqlens[i],
790
+ cu_seqlens[i - 1] : cu_seqlens[i],
791
+ ] = True
792
+
793
+ zero = paddle.zeros(attention_mask.shape, dtype=hidden_states.dtype)
794
+ neg_inf = paddle.full_like(
795
+ attention_mask,
796
+ paddle.finfo(hidden_states.dtype).min,
797
+ dtype=hidden_states.dtype,
798
+ )
799
+ attention_mask = paddle.where(attention_mask, zero, neg_inf)
800
+
801
+ q = q.transpose([1, 0, 2])
802
+ k = k.transpose([1, 0, 2])
803
+ v = v.transpose([1, 0, 2])
804
+ attn_weights = paddle.matmul(q, k.transpose([0, 2, 1])) / math.sqrt(
805
+ self.head_dim
806
+ )
807
+ attn_weights = attn_weights + attention_mask
808
+ attn_weights = nn.functional.softmax(attn_weights, axis=-1)
809
+ attn_output = paddle.matmul(attn_weights, v)
810
+ attn_output = attn_output.transpose([1, 0, 2])
811
+ attn_output = attn_output.reshape([seq_length, -1])
812
+ attn_output = self.proj(attn_output)
813
+ return attn_output
814
+
815
+
816
+ class Qwen2_5_VLVisionFlashAttention2(nn.Layer):
817
+ def __init__(self, dim: int, num_heads: int = 16) -> None:
818
+ super().__init__()
819
+ self.num_heads = num_heads
820
+ self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
821
+ self.proj = nn.Linear(dim, dim)
822
+ self.head_dim = dim // num_heads # must added
823
+
824
+ def forward(
825
+ self,
826
+ hidden_states: paddle.Tensor,
827
+ cu_seqlens: paddle.Tensor,
828
+ rotary_pos_emb: paddle.Tensor = None,
829
+ ) -> paddle.Tensor:
830
+ seq_length = tuple(hidden_states.shape)[0]
831
+ qkv = (
832
+ self.qkv(hidden_states)
833
+ .reshape([seq_length, 3, self.num_heads, -1])
834
+ .transpose(perm=[1, 0, 2, 3])
835
+ )
836
+ q, k, v = qkv.unbind(axis=0)
837
+ q = apply_rotary_pos_emb_flashatt(q.unsqueeze(axis=0), rotary_pos_emb).squeeze(
838
+ axis=0
839
+ )
840
+ k = apply_rotary_pos_emb_flashatt(k.unsqueeze(axis=0), rotary_pos_emb).squeeze(
841
+ axis=0
842
+ )
843
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
844
+ softmax_scale = self.head_dim**-0.5 # TODO: 需要手动加上
845
+ attn_output = (
846
+ flash_attn_varlen_func( # flash_attn_unpadded
847
+ q.astype("bfloat16"), # 不支持float32
848
+ k.astype("bfloat16"),
849
+ v.astype("bfloat16"),
850
+ cu_seqlens,
851
+ cu_seqlens,
852
+ max_seqlen,
853
+ max_seqlen,
854
+ scale=softmax_scale, # TODO: 需要手动加上
855
+ )[0]
856
+ .squeeze(0)
857
+ .reshape([seq_length, -1])
858
+ )
859
+
860
+ attn_output = self.proj(attn_output)
861
+ return attn_output
862
+
863
+
864
+ class Qwen2_5_VLVisionSdpaAttention(nn.Layer):
865
+ def __init__(self, dim: int, num_heads: int = 16) -> None:
866
+ super().__init__()
867
+ self.num_heads = num_heads
868
+ self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
869
+ self.proj = nn.Linear(dim, dim)
870
+
871
+ is_bfloat16_supported = paddle.amp.is_bfloat16_supported()
872
+ if is_bfloat16_supported:
873
+ self.compute_dtype = "bfloat16"
874
+ else:
875
+ self.compute_dtype = "float16"
876
+
877
+ def forward(
878
+ self,
879
+ hidden_states: paddle.Tensor,
880
+ cu_seqlens: paddle.Tensor,
881
+ rotary_pos_emb: paddle.Tensor = None,
882
+ ) -> paddle.Tensor:
883
+ seq_length = hidden_states.shape[0]
884
+ q, k, v = (
885
+ self.qkv(hidden_states)
886
+ .reshape([seq_length, 3, self.num_heads, -1])
887
+ .transpose([1, 0, 2, 3])
888
+ .unbind(0)
889
+ )
890
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb)
891
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb)
892
+ attention_mask = paddle.zeros([1, 1, seq_length, seq_length], dtype="bool")
893
+ for i in range(1, len(cu_seqlens)):
894
+ attention_mask[
895
+ ...,
896
+ cu_seqlens[i - 1] : cu_seqlens[i],
897
+ cu_seqlens[i - 1] : cu_seqlens[i],
898
+ ] = True
899
+
900
+ zero = paddle.zeros(attention_mask.shape, dtype=hidden_states.dtype)
901
+ neg_inf = paddle.full_like(
902
+ attention_mask,
903
+ paddle.finfo(hidden_states.dtype).min,
904
+ dtype=hidden_states.dtype,
905
+ )
906
+ attention_mask = paddle.where(attention_mask, zero, neg_inf)
907
+ v = v.unsqueeze(0)
908
+
909
+ attn_output = paddle.nn.functional.scaled_dot_product_attention(
910
+ query=q.astype(self.compute_dtype),
911
+ key=k.astype(self.compute_dtype),
912
+ value=v.astype(self.compute_dtype),
913
+ attn_mask=attention_mask.astype(self.compute_dtype),
914
+ dropout_p=0.0,
915
+ )
916
+
917
+ attn_output = attn_output.transpose([1, 0, 2])
918
+ attn_output = attn_output.reshape([seq_length, -1])
919
+ attn_output = self.proj(attn_output)
920
+
921
+ return attn_output
922
+
923
+
924
+ QWEN2_5_VL_VISION_ATTENTION_CLASSES = {
925
+ "eager": Qwen2_5_VLVisionAttention,
926
+ "flash_attention_2": Qwen2_5_VLVisionFlashAttention2,
927
+ "sdpa": Qwen2_5_VLVisionSdpaAttention,
928
+ }
929
+
930
+
931
+ class Qwen2_5_VLVisionBlock(paddle.nn.Layer):
932
+ def __init__(self, config, attn_implementation: str = "sdpa") -> None:
933
+ super().__init__()
934
+ self.norm1 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
935
+ self.norm2 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
936
+ self.attn = QWEN2_5_VL_VISION_ATTENTION_CLASSES[attn_implementation](
937
+ config.hidden_size, num_heads=config.num_heads
938
+ )
939
+
940
+ self.mlp = Qwen2_5_VLMLP(config, bias=True)
941
+
942
+ def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> paddle.Tensor:
943
+ hidden_states = hidden_states + self.attn(
944
+ self.norm1(hidden_states),
945
+ cu_seqlens=cu_seqlens,
946
+ rotary_pos_emb=rotary_pos_emb,
947
+ )
948
+ hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
949
+ return hidden_states
950
+
951
+
952
+ def apply_rotary_emb(tensor, cos, sin):
953
+ """
954
+ Apply rotary position embedding to the input tensor.
955
+ Args:
956
+ tensor (paddle.Tensor): The input tensor of shape [batch_size, seq_len, num_heads, head_dim]
957
+ cos (paddle.Tensor): The cosine part of the rotary embedding [seq_len, head_dim/2]
958
+ sin (paddle.Tensor): The sine part of the rotary embedding [seq_len, head_dim/2]
959
+ Returns:
960
+ paddle.Tensor: The tensor after applying rotary embedding
961
+ """
962
+ # Split the tensor into two halves along the last dimension
963
+ dim = tensor.shape[-1]
964
+ half_dim = dim // 2
965
+ tensor1 = tensor[..., :half_dim]
966
+ tensor2 = tensor[..., half_dim:]
967
+
968
+ # Reshape cos/sin for broadcasting
969
+ # From [seq_len, head_dim/2] to [1, seq_len, 1, head_dim/2]
970
+ cos = cos.unsqueeze(0).unsqueeze(2)
971
+ sin = sin.unsqueeze(0).unsqueeze(2)
972
+
973
+ # Apply rotary embedding
974
+ # tensor1/tensor2 shape: [batch_size, seq_len, num_heads, head_dim/2]
975
+ # cos/sin shape: [1, seq_len, 1, head_dim/2]
976
+ rotated = paddle.concat(
977
+ [tensor1 * cos - tensor2 * sin, tensor1 * sin + tensor2 * cos], axis=-1
978
+ )
979
+
980
+ return rotated
981
+
982
+
983
+ def apply_rotary_pos_emb_flashatt(
984
+ tensor: paddle.Tensor, freqs: paddle.Tensor
985
+ ) -> paddle.Tensor:
986
+ tensor_ = tensor.astype(dtype="float32")
987
+ cos = freqs.cos()
988
+ sin = freqs.sin()
989
+ output = apply_rotary_emb(tensor_, cos, sin).astype(dtype=tensor.dtype)
990
+ return output
991
+
992
+
993
+ # Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RMSNorm
994
+ class Qwen2RMSNorm(nn.Layer):
995
+ def __init__(self, hidden_size, eps=1e-6):
996
+ """
997
+ Qwen2RMSNorm is equivalent to T5LayerNorm
998
+ """
999
+ super().__init__()
1000
+ self.weight = paddle.create_parameter(
1001
+ shape=[hidden_size],
1002
+ dtype=paddle.get_default_dtype(),
1003
+ default_initializer=nn.initializer.Constant(1.0),
1004
+ )
1005
+ self.variance_epsilon = eps
1006
+
1007
+ def forward(self, hidden_states):
1008
+ if paddle.in_dynamic_mode():
1009
+ with paddle.amp.auto_cast(False):
1010
+ variance = hidden_states.astype("float32").pow(2).mean(-1, keepdim=True)
1011
+ hidden_states = (
1012
+ paddle.rsqrt(variance + self.variance_epsilon) * hidden_states
1013
+ )
1014
+ else:
1015
+ variance = hidden_states.astype("float32").pow(2).mean(-1, keepdim=True)
1016
+ hidden_states = (
1017
+ paddle.rsqrt(variance + self.variance_epsilon) * hidden_states
1018
+ )
1019
+
1020
+ if self.weight.dtype in [paddle.float16, paddle.bfloat16]:
1021
+ hidden_states = paddle.cast(hidden_states, self.weight.dtype)
1022
+ return hidden_states * self.weight
1023
+
1024
+
1025
+ class Qwen2MLP(nn.Layer):
1026
+ def __init__(self, config):
1027
+ super().__init__()
1028
+ self.hidden_size = config.hidden_size
1029
+ self.intermediate_size = config.intermediate_size
1030
+ self.fuse_attention_ffn = config.fuse_attention_ffn
1031
+ self.tensor_parallel_degree = config.tensor_parallel_degree
1032
+
1033
+ if config.tensor_parallel_degree > 1:
1034
+
1035
+ self.gate_proj = ColumnParallelLinear(
1036
+ self.hidden_size,
1037
+ self.intermediate_size,
1038
+ gather_output=False,
1039
+ has_bias=False,
1040
+ )
1041
+ self.up_proj = ColumnParallelLinear(
1042
+ self.hidden_size,
1043
+ self.intermediate_size,
1044
+ gather_output=False,
1045
+ has_bias=False,
1046
+ )
1047
+ self.down_proj = RowParallelLinear(
1048
+ self.intermediate_size,
1049
+ self.hidden_size,
1050
+ input_is_parallel=True,
1051
+ has_bias=False,
1052
+ )
1053
+ else:
1054
+ if get_device_type() == "xpu":
1055
+ self.gate_proj = nn.Linear(
1056
+ self.hidden_size, self.intermediate_size, bias_attr=False
1057
+ ) # w1
1058
+ self.up_proj = nn.Linear(
1059
+ self.hidden_size, self.intermediate_size, bias_attr=False
1060
+ ) # w3
1061
+ self.down_proj = nn.Linear(
1062
+ self.intermediate_size, self.hidden_size, bias_attr=False
1063
+ ) # w2
1064
+ else:
1065
+ self.gate_proj = Linear(
1066
+ self.hidden_size, self.intermediate_size, bias_attr=False
1067
+ ) # w1
1068
+ self.up_proj = Linear(
1069
+ self.hidden_size, self.intermediate_size, bias_attr=False
1070
+ ) # w3
1071
+ self.down_proj = Linear(
1072
+ self.intermediate_size, self.hidden_size, bias_attr=False
1073
+ ) # w2
1074
+
1075
+ self.act_fn = ACT2FN[config.hidden_act]
1076
+ self.fuse_swiglu = False
1077
+
1078
+ def forward(self, x):
1079
+ x, y = self.gate_proj(x), self.up_proj(x)
1080
+ if self.fuse_swiglu:
1081
+ x = self.act_fn(x, y)
1082
+ else:
1083
+ x = self.act_fn(x) * y
1084
+
1085
+ return self.down_proj(x)
1086
+
1087
+
1088
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
1089
+ def repeat_kv(hidden_states: paddle.Tensor, n_rep: int) -> paddle.Tensor:
1090
+ """
1091
+ This is the equivalent of paddle.repeat_interleave(x, axis=1, repeats=n_rep). The hidden states go from (batch,
1092
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
1093
+ """
1094
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
1095
+ if n_rep == 1:
1096
+ return hidden_states
1097
+ hidden_states = hidden_states[:, :, None, :, :].expand(
1098
+ [batch, num_key_value_heads, n_rep, slen, head_dim]
1099
+ )
1100
+ return hidden_states.reshape([batch, num_key_value_heads * n_rep, slen, head_dim])
1101
+
1102
+
1103
+ class Qwen2_5_VLAttention(paddle.nn.Layer):
1104
+ """
1105
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
1106
+ and "Generating Long Sequences with Sparse Transformers".
1107
+ """
1108
+
1109
+ def __init__(self, config: Qwen2_5_VLConfig, layer_idx: Optional[int] = None):
1110
+ super().__init__()
1111
+ self.config = config
1112
+ self.layer_idx = layer_idx
1113
+ if layer_idx is None:
1114
+ logging.warning_once(
1115
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
1116
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
1117
+ "when creating this class."
1118
+ )
1119
+
1120
+ self.hidden_size = config.hidden_size
1121
+ self.num_heads = config.num_attention_heads
1122
+ self.head_dim = self.hidden_size // self.num_heads
1123
+ self.num_key_value_heads = config.num_key_value_heads
1124
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
1125
+ self.max_position_embeddings = config.max_position_embeddings
1126
+ self.rope_theta = config.rope_theta
1127
+ self.is_causal = True
1128
+ self.attention_dropout = config.attention_dropout
1129
+ self.rope_scaling = config.rope_scaling
1130
+ # self.sequence_parallel = config.sequence_parallel
1131
+
1132
+ if config.tensor_parallel_degree > 1:
1133
+ assert (
1134
+ self.num_heads % config.tensor_parallel_degree == 0
1135
+ ), f"num_heads: {self.num_heads}, tensor_parallel_degree: {config.tensor_parallel_degree}"
1136
+ self.num_heads = self.num_heads // config.tensor_parallel_degree
1137
+
1138
+ assert (
1139
+ self.num_key_value_heads % config.tensor_parallel_degree == 0
1140
+ ), f"num_key_value_heads: {self.num_key_value_heads}, tensor_parallel_degree: {config.tensor_parallel_degree}"
1141
+ self.num_key_value_heads = (
1142
+ self.num_key_value_heads // config.tensor_parallel_degree
1143
+ )
1144
+
1145
+ if config.tensor_parallel_degree > 1:
1146
+ self.q_proj = ColumnParallelLinear(
1147
+ self.hidden_size, self.hidden_size, has_bias=True, gather_output=False
1148
+ )
1149
+ self.k_proj = ColumnParallelLinear(self.hidden_size, self.config.num_key_value_heads * self.head_dim, has_bias=True, gather_output=False) # fmt:skip
1150
+ self.v_proj = ColumnParallelLinear(self.hidden_size, self.config.num_key_value_heads * self.head_dim, has_bias=True, gather_output=False) # fmt:skip
1151
+ self.o_proj = RowParallelLinear(
1152
+ self.hidden_size,
1153
+ self.hidden_size,
1154
+ has_bias=False,
1155
+ input_is_parallel=True,
1156
+ )
1157
+ else:
1158
+ self.q_proj = Linear(self.hidden_size, self.hidden_size, bias_attr=True)
1159
+ self.k_proj = Linear(
1160
+ self.hidden_size,
1161
+ self.config.num_key_value_heads * self.head_dim,
1162
+ bias_attr=True,
1163
+ )
1164
+ self.v_proj = Linear(
1165
+ self.hidden_size,
1166
+ self.config.num_key_value_heads * self.head_dim,
1167
+ bias_attr=True,
1168
+ )
1169
+ self.o_proj = Linear(self.hidden_size, self.hidden_size, bias_attr=False)
1170
+
1171
+ self.rotary_emb = Qwen2_5_VLRotaryEmbedding(
1172
+ self.head_dim,
1173
+ max_position_embeddings=self.max_position_embeddings,
1174
+ base=self.rope_theta,
1175
+ )
1176
+
1177
+ def forward(
1178
+ self,
1179
+ hidden_states: paddle.Tensor,
1180
+ attention_mask: Optional[paddle.Tensor] = None,
1181
+ position_ids: Optional[paddle.Tensor] = None,
1182
+ past_key_value: Optional[Tuple[paddle.Tensor]] = None, # Cache
1183
+ output_attentions: bool = False,
1184
+ use_cache: bool = False, # default true
1185
+ cache_position: Optional[paddle.Tensor] = None,
1186
+ ) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
1187
+ bsz, q_len, _ = hidden_states.shape
1188
+
1189
+ try:
1190
+ query_states = self.q_proj(hidden_states)
1191
+ key_states = self.k_proj(hidden_states)
1192
+ value_states = self.v_proj(hidden_states)
1193
+ except:
1194
+ hidden_states = hidden_states.astype(self.config.dtype)
1195
+ query_states = self.q_proj(hidden_states)
1196
+ key_states = self.k_proj(hidden_states)
1197
+ value_states = self.v_proj(hidden_states)
1198
+
1199
+ target_query_shape = [0, 0, self.num_heads, self.head_dim]
1200
+ target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
1201
+ query_states = query_states.reshape(shape=target_query_shape)
1202
+ key_states = key_states.reshape(shape=target_key_value_shape)
1203
+ value_states = value_states.reshape(shape=target_key_value_shape)
1204
+
1205
+ new_perm = [0, 2, 1, 3]
1206
+ query_states = query_states.transpose(new_perm)
1207
+ key_states = key_states.transpose(new_perm)
1208
+ value_states = value_states.transpose(new_perm)
1209
+
1210
+ kv_seq_len = key_states.shape[
1211
+ -2
1212
+ ] # q_len ######## [bs, num_head, seq_len, head_dim] # qwen2是 [-3]
1213
+ if past_key_value is not None:
1214
+ kv_seq_len += cache_position[0] + 1
1215
+ # kv_seq_len += past_key_value[0].shape[-2] # qwen2是 [-3]
1216
+
1217
+ cos, sin = self.rotary_emb(value_states, position_ids)
1218
+ query_states, key_states = apply_multimodal_rotary_pos_emb(
1219
+ query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
1220
+ )
1221
+
1222
+ # [bs, num_head, seq_len, head_dim]
1223
+ if past_key_value is not None:
1224
+ # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
1225
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
1226
+ key_states = paddle.concat(
1227
+ [past_key_value[0], key_states], axis=2
1228
+ ) # qwen2是 axis=1, qwen2_vl是 axis=2
1229
+ value_states = paddle.concat(
1230
+ [past_key_value[1], value_states], axis=2
1231
+ ) # qwen2是 axis=1
1232
+ past_key_value = (key_states, value_states) if use_cache else None
1233
+
1234
+ # repeat k/v heads if n_kv_heads < n_heads
1235
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
1236
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
1237
+
1238
+ query_states = query_states.astype("float32")
1239
+ key_states = key_states.astype("float32")
1240
+ value_states = value_states.astype("float32")
1241
+
1242
+ attn_weights = paddle.matmul(
1243
+ query_states, key_states.transpose([0, 1, 3, 2])
1244
+ ) / math.sqrt(self.head_dim)
1245
+
1246
+ if attention_mask is not None:
1247
+ attn_weights = attn_weights + attention_mask
1248
+ attn_weights = nn.functional.softmax(attn_weights, axis=-1)
1249
+ attn_weights = nn.functional.dropout(
1250
+ x=attn_weights, p=self.attention_dropout, training=self.training
1251
+ )
1252
+ attn_output = paddle.matmul(
1253
+ attn_weights.cast(self.config.dtype), value_states.cast(self.config.dtype)
1254
+ )
1255
+
1256
+ if attn_output.shape != [bsz, self.num_heads, q_len, self.head_dim]:
1257
+ raise ValueError(
1258
+ f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
1259
+ f" {attn_output.shape}"
1260
+ )
1261
+
1262
+ attn_output = attn_output.transpose([0, 2, 1, 3])
1263
+ attn_output = attn_output.reshape([bsz, q_len, -1])
1264
+ attn_output = self.o_proj(attn_output)
1265
+ if not output_attentions:
1266
+ attn_weights = None
1267
+ return attn_output, attn_weights, past_key_value
1268
+
1269
+
1270
+ class Qwen2_5_VLFlashAttention2(Qwen2_5_VLAttention):
1271
+ """
1272
+ Qwen2_5_VL flash attention module, following Qwen2_5_VL attention module. This module inherits from `Qwen2_5_VLAttention`
1273
+ as the weights of the module stays untouched. The only required change would be on the forward pass
1274
+ where it needs to correctly call the public API of flash attention and deal with padding tokens
1275
+ in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
1276
+ config.max_window_layers layers.
1277
+ """
1278
+
1279
+ def __init__(self, *args, **kwargs):
1280
+ super().__init__(*args, **kwargs)
1281
+
1282
+ def forward(
1283
+ self,
1284
+ hidden_states: paddle.Tensor,
1285
+ attention_mask: Optional[paddle.Tensor] = None,
1286
+ position_ids: Optional[paddle.Tensor] = None,
1287
+ past_key_value: Optional[Tuple[paddle.Tensor]] = None, # Cache
1288
+ output_attentions: bool = False,
1289
+ use_cache: bool = False, # default true
1290
+ cache_position: Optional[paddle.Tensor] = None,
1291
+ ) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
1292
+ bsz, q_len, _ = tuple(hidden_states.shape)
1293
+ try:
1294
+ query_states = self.q_proj(hidden_states)
1295
+ key_states = self.k_proj(hidden_states)
1296
+ value_states = self.v_proj(hidden_states)
1297
+ except:
1298
+ hidden_states = hidden_states.astype("bfloat16")
1299
+ query_states = self.q_proj(hidden_states)
1300
+ key_states = self.k_proj(hidden_states)
1301
+ value_states = self.v_proj(hidden_states)
1302
+
1303
+ target_query_shape = [0, 0, self.num_heads, self.head_dim]
1304
+ target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
1305
+ query_states = query_states.reshape(shape=target_query_shape)
1306
+ key_states = key_states.reshape(shape=target_key_value_shape)
1307
+ value_states = value_states.reshape(shape=target_key_value_shape)
1308
+
1309
+ new_perm = [0, 2, 1, 3]
1310
+ # [1, 3599, 1536] [bsz, q_len, self.num_heads * self.head_dim]
1311
+ query_states = query_states.transpose(new_perm)
1312
+ key_states = key_states.transpose(new_perm)
1313
+ value_states = value_states.transpose(new_perm)
1314
+
1315
+ kv_seq_len = key_states.shape[
1316
+ -2
1317
+ ] # q_len ######## [bs, num_head, seq_len, head_dim] # qwen2是 [-3]
1318
+ if past_key_value is not None:
1319
+ kv_seq_len += cache_position[0] + 1
1320
+
1321
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
1322
+ cos, sin = self.rotary_emb(value_states, position_ids)
1323
+ query_states, key_states = apply_multimodal_rotary_pos_emb(
1324
+ query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
1325
+ )
1326
+
1327
+ if past_key_value is not None:
1328
+ # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
1329
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
1330
+ key_states = paddle.concat(
1331
+ [past_key_value[0], key_states], axis=2
1332
+ ) # qwen2是 axis=1, qwen2_vl是 axis=2
1333
+ value_states = paddle.concat(
1334
+ [past_key_value[1], value_states], axis=2
1335
+ ) # qwen2是 axis=1
1336
+ past_key_value = (key_states, value_states) if use_cache else None
1337
+
1338
+ # repeat k/v heads if n_kv_heads < n_heads
1339
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
1340
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
1341
+
1342
+ # Reashape to the expected shape for Flash Attention
1343
+ # [1, 3599, 12, 128]
1344
+ query_states = query_states.transpose(perm=[0, 2, 1, 3])
1345
+ key_states = key_states.transpose(perm=[0, 2, 1, 3])
1346
+ value_states = value_states.transpose(perm=[0, 2, 1, 3])
1347
+
1348
+ attn_output = self._flash_attention_forward(
1349
+ query_states,
1350
+ key_states,
1351
+ value_states,
1352
+ attention_mask,
1353
+ q_len,
1354
+ # dropout=0.0 if not self.training else self.attention_dropout,
1355
+ # causal=self.is_causal,
1356
+ )
1357
+
1358
+ attn_output = attn_output.reshape([bsz, q_len, -1])
1359
+ attn_output = self.o_proj(attn_output)
1360
+ if not output_attentions:
1361
+ attn_weights = None
1362
+ return attn_output, attn_weights, past_key_value
1363
+
1364
+ def _flash_attention_forward(
1365
+ self,
1366
+ query_states,
1367
+ key_states,
1368
+ value_states,
1369
+ attention_mask,
1370
+ query_length,
1371
+ dropout=0.0,
1372
+ softmax_scale=None,
1373
+ ):
1374
+ """
1375
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1376
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1377
+
1378
+ Args:
1379
+ query_states (`paddle.Tensor`):
1380
+ Input query states to be passed to Flash Attention API
1381
+ key_states (`paddle.Tensor`):
1382
+ Input key states to be passed to Flash Attention API
1383
+ value_states (`paddle.Tensor`):
1384
+ Input value states to be passed to Flash Attention API
1385
+ attention_mask (`paddle.Tensor`):
1386
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1387
+ position of padding tokens and 1 for the position of non-padding tokens.
1388
+ dropout (`int`, *optional*):
1389
+ Attention dropout
1390
+ softmax_scale (`float`, *optional*):
1391
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1392
+ """
1393
+ # Contains at least one padding token in the sequence
1394
+ causal = self.is_causal and query_length != 1
1395
+ head_dim = query_states.shape[-1]
1396
+ softmax_scale = head_dim**-0.5 # TODO: 需要手动加上
1397
+
1398
+ if attention_mask is not None: # attention_mask.shape # [2, 1, 1323, 1323]
1399
+ batch_size = query_states.shape[0] # [2, 1323, 12, 128]
1400
+ (
1401
+ query_states,
1402
+ key_states,
1403
+ value_states,
1404
+ indices_q,
1405
+ cu_seq_lens,
1406
+ max_seq_lens,
1407
+ ) = self._unpad_input(
1408
+ query_states, key_states, value_states, attention_mask, query_length
1409
+ )
1410
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1411
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1412
+
1413
+ attn_output_unpad = flash_attn_varlen_func( # TODO: flash_attn_unpadded
1414
+ query_states, # [5998, 16, 128]
1415
+ key_states, # [5998, 8, 128]
1416
+ value_states, # [5998, 8, 128]
1417
+ cu_seqlens_q=cu_seqlens_q,
1418
+ cu_seqlens_k=cu_seqlens_k,
1419
+ max_seqlen_q=max_seqlen_in_batch_q,
1420
+ max_seqlen_k=max_seqlen_in_batch_k,
1421
+ scale=softmax_scale, # not softmax_scale=
1422
+ dropout=dropout,
1423
+ causal=causal,
1424
+ )[0]
1425
+
1426
+ attn_output = pad_input(
1427
+ attn_output_unpad, indices_q, batch_size, query_length
1428
+ )
1429
+ else:
1430
+ attn_output = flash_attn_func(
1431
+ query_states,
1432
+ key_states,
1433
+ value_states,
1434
+ dropout,
1435
+ causal=causal, # no softmax_scale=
1436
+ )[0]
1437
+
1438
+ # # 修改这里的维度转换,考虑并行策略下的维度
1439
+ # batch_size = query_states.shape[0]
1440
+ # hidden_size = self.num_heads * self.head_dim # 计算实际的 hidden_size
1441
+ # attn_output = attn_output.reshape([batch_size, query_length, hidden_size])
1442
+
1443
+ return attn_output
1444
+
1445
+ def _unpad_input(
1446
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1447
+ ):
1448
+ # Note: This function was named _upad_input() in paddle transformers/modeling_flash_attention_utils.py
1449
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1450
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1451
+
1452
+ # TODO:cuda error
1453
+ key_layer = index_first_axis(
1454
+ key_layer.reshape([batch_size * kv_seq_len, num_key_value_heads, head_dim]),
1455
+ indices_k,
1456
+ )
1457
+ value_layer = index_first_axis(
1458
+ value_layer.reshape(
1459
+ [batch_size * kv_seq_len, num_key_value_heads, head_dim]
1460
+ ),
1461
+ indices_k,
1462
+ )
1463
+
1464
+ if query_length == kv_seq_len:
1465
+ query_layer = index_first_axis(
1466
+ query_layer.reshape(
1467
+ [batch_size * kv_seq_len, self.num_heads, head_dim]
1468
+ ),
1469
+ indices_k,
1470
+ )
1471
+ cu_seqlens_q = cu_seqlens_k
1472
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1473
+ indices_q = indices_k
1474
+ elif query_length == 1:
1475
+ max_seqlen_in_batch_q = 1
1476
+ cu_seqlens_q = paddle.arange(
1477
+ batch_size + 1, dtype=paddle.int32
1478
+ ) # There is a memcpy here, that is very bad.
1479
+ indices_q = cu_seqlens_q[:-1]
1480
+ query_layer = query_layer.squeeze(1)
1481
+ else:
1482
+ # The -q_len: slice assumes left padding.
1483
+ attention_mask = attention_mask[:, -query_length:]
1484
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1485
+ query_layer, attention_mask
1486
+ )
1487
+
1488
+ return (
1489
+ query_layer,
1490
+ key_layer,
1491
+ value_layer,
1492
+ indices_q.to(paddle.int64),
1493
+ (cu_seqlens_q, cu_seqlens_k),
1494
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1495
+ )
1496
+
1497
+
1498
+ class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention):
1499
+ """
1500
+ Qwen2 attention module using paddle.nn.functional.scaled_dot_product_attention. This module inherits from
1501
+ `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
1502
+ SDPA API.
1503
+ """
1504
+
1505
+ def forward(
1506
+ self,
1507
+ hidden_states: paddle.Tensor,
1508
+ attention_mask: Optional[paddle.Tensor] = None,
1509
+ position_ids: Optional[paddle.Tensor] = None,
1510
+ past_key_value: Optional[Tuple[paddle.Tensor]] = None,
1511
+ output_attentions: bool = False,
1512
+ use_cache: bool = False,
1513
+ cache_position: Optional[paddle.Tensor] = None,
1514
+ position_embeddings: Optional[Tuple[paddle.Tensor, paddle.Tensor]] = None,
1515
+ ) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
1516
+ if output_attentions:
1517
+ logging.warning_once(
1518
+ 'Qwen2_5_VLModel is using Qwen2_5_VLSdpaAttention, but `paddle.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
1519
+ )
1520
+ return super().forward(
1521
+ hidden_states=hidden_states,
1522
+ attention_mask=attention_mask,
1523
+ position_ids=position_ids,
1524
+ past_key_value=past_key_value,
1525
+ output_attentions=output_attentions,
1526
+ use_cache=use_cache,
1527
+ cache_position=cache_position,
1528
+ position_embeddings=position_embeddings,
1529
+ )
1530
+ bsz, q_len, _ = hidden_states.shape
1531
+
1532
+ try:
1533
+ query_states = self.q_proj(hidden_states)
1534
+ key_states = self.k_proj(hidden_states)
1535
+ value_states = self.v_proj(hidden_states)
1536
+ except:
1537
+ hidden_states = hidden_states.astype(self.config.dtype)
1538
+ query_states = self.q_proj(hidden_states)
1539
+ key_states = self.k_proj(hidden_states)
1540
+ value_states = self.v_proj(hidden_states)
1541
+
1542
+ target_query_shape = [0, 0, self.num_heads, self.head_dim]
1543
+ target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
1544
+ query_states = query_states.reshape(shape=target_query_shape)
1545
+ key_states = key_states.reshape(shape=target_key_value_shape)
1546
+ value_states = value_states.reshape(shape=target_key_value_shape)
1547
+
1548
+ new_perm = [0, 2, 1, 3]
1549
+ query_states = query_states.transpose(new_perm)
1550
+ key_states = key_states.transpose(new_perm)
1551
+ value_states = value_states.transpose(new_perm)
1552
+
1553
+ kv_seq_len = key_states.shape[
1554
+ -2
1555
+ ] # q_len ######## [bs, num_head, seq_len, head_dim] # qwen2是 [-3]
1556
+ if past_key_value is not None:
1557
+ kv_seq_len += cache_position[0] + 1
1558
+ # kv_seq_len += past_key_value[0].shape[-2] # qwen2是 [-3]
1559
+
1560
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
1561
+ cos, sin = self.rotary_emb(value_states, position_ids)
1562
+ query_states, key_states = apply_multimodal_rotary_pos_emb(
1563
+ query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
1564
+ )
1565
+
1566
+ if past_key_value is not None:
1567
+ # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
1568
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
1569
+ key_states = paddle.concat(
1570
+ [past_key_value[0], key_states], axis=2
1571
+ ) # qwen2是 axis=1, qwen2_vl是 axis=2
1572
+ value_states = paddle.concat(
1573
+ [past_key_value[1], value_states], axis=2
1574
+ ) # qwen2是 axis=1
1575
+ past_key_value = (key_states, value_states) if use_cache else None
1576
+
1577
+ # repeat k/v heads if n_kv_heads < n_heads
1578
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
1579
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
1580
+
1581
+ # Reashape to the expected shape for Flash Attention
1582
+ # [1, 3599, 12, 128]
1583
+ query_states = query_states.transpose(perm=[0, 2, 1, 3])
1584
+ key_states = key_states.transpose(perm=[0, 2, 1, 3])
1585
+ value_states = value_states.transpose(perm=[0, 2, 1, 3])
1586
+
1587
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1588
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1589
+ # to infer the attention mask.
1590
+ attention_mask = None
1591
+ causal_mask = attention_mask
1592
+ # Convert attention mask slicing
1593
+ if attention_mask is not None:
1594
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-3]]
1595
+
1596
+ # Ensure contiguous tensors for PaddlePaddle
1597
+ if query_states.place.is_gpu_place() and attention_mask is not None:
1598
+ query_states = query_states.contiguous()
1599
+ key_states = key_states.contiguous()
1600
+ value_states = value_states.contiguous()
1601
+
1602
+ # Determine if the operation is causal
1603
+ is_causal = True if causal_mask is None and q_len > 1 else False
1604
+
1605
+ attn_output = paddle.nn.functional.scaled_dot_product_attention(
1606
+ query_states,
1607
+ key_states,
1608
+ value_states,
1609
+ attn_mask=causal_mask,
1610
+ dropout_p=self.attention_dropout if self.training else 0.0,
1611
+ is_causal=is_causal,
1612
+ )
1613
+
1614
+ attn_output = attn_output.reshape([bsz, q_len, -1])
1615
+
1616
+ # Apply the output projection
1617
+ attn_output = self.o_proj(attn_output)
1618
+
1619
+ return attn_output, None, past_key_value
1620
+
1621
+
1622
+ QWEN2_5_VL_ATTENTION_CLASSES = {
1623
+ "eager": Qwen2_5_VLAttention,
1624
+ "flash_attention_2": Qwen2_5_VLFlashAttention2,
1625
+ "sdpa": Qwen2_5_VLSdpaAttention,
1626
+ }
1627
+
1628
+
1629
+ class Qwen2_5_VLDecoderLayer(nn.Layer):
1630
+ def __init__(self, config: Qwen2_5_VLConfig, layer_idx: int):
1631
+ super().__init__()
1632
+ self.hidden_size = config.hidden_size
1633
+ # use_sliding_window false
1634
+ if (
1635
+ config.use_sliding_window
1636
+ and config.attn_implementation != "flash_attention_2"
1637
+ ):
1638
+ logging.warning_once(
1639
+ f"Sliding Window Attention is enabled but not implemented for `{config.attn_implementation}`; "
1640
+ "unexpected results may be encountered."
1641
+ )
1642
+ self.self_attn = QWEN2_5_VL_ATTENTION_CLASSES[config._attn_implementation](
1643
+ config, layer_idx
1644
+ )
1645
+ self.mlp = Qwen2MLP(config)
1646
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1647
+ self.post_attention_layernorm = Qwen2RMSNorm(
1648
+ config.hidden_size, eps=config.rms_norm_eps
1649
+ )
1650
+
1651
+ def forward(
1652
+ self,
1653
+ hidden_states: paddle.Tensor,
1654
+ attention_mask: Optional[paddle.Tensor] = None,
1655
+ position_ids: Optional[paddle.Tensor] = None,
1656
+ past_key_value: Optional[Tuple[paddle.Tensor]] = None,
1657
+ output_attentions: Optional[bool] = False,
1658
+ use_cache: Optional[bool] = False,
1659
+ cache_position: Optional[paddle.Tensor] = None,
1660
+ **kwargs,
1661
+ ):
1662
+ """
1663
+ Args:
1664
+ hidden_states (`paddle.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1665
+ attention_mask (`paddle.FloatTensor`, *optional*): attention mask of size
1666
+ `(batch, sequence_length)` where padding elements are indicated by 0.
1667
+ output_attentions (`bool`, *optional*):
1668
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1669
+ returned tensors for more detail.
1670
+ use_cache (`bool`, *optional*):
1671
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1672
+ (see `past_key_values`).
1673
+ past_key_value (`Tuple(paddle.FloatTensor)`, *optional*): cached past key and value projection states
1674
+ cache_position (`paddle.LongTensor` of shape `(sequence_length)`, *optional*):
1675
+ Indices depicting the position of the input sequence tokens in the sequence.
1676
+ position_embeddings (`Tuple[paddle.FloatTensor, paddle.FloatTensor]`, *optional*):
1677
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
1678
+ with `head_dim` being the embedding dimension of each attention head.
1679
+ kwargs (`dict`, *optional*):
1680
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
1681
+ into the model
1682
+ """
1683
+ residual = hidden_states
1684
+
1685
+ hidden_states = self.input_layernorm(hidden_states)
1686
+ # Self Attention
1687
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1688
+ hidden_states=hidden_states,
1689
+ attention_mask=attention_mask,
1690
+ position_ids=position_ids,
1691
+ past_key_value=past_key_value,
1692
+ output_attentions=output_attentions,
1693
+ use_cache=use_cache,
1694
+ cache_position=cache_position,
1695
+ )
1696
+ hidden_states = residual + hidden_states
1697
+
1698
+ # Fully Connected
1699
+ residual = hidden_states
1700
+ hidden_states = self.post_attention_layernorm(hidden_states)
1701
+ hidden_states = self.mlp(hidden_states)
1702
+ hidden_states = residual + hidden_states
1703
+
1704
+ outputs = (hidden_states,)
1705
+
1706
+ if output_attentions:
1707
+ outputs += (self_attn_weights,)
1708
+
1709
+ if use_cache:
1710
+ outputs += (present_key_value,)
1711
+
1712
+ return outputs
1713
+
1714
+
1715
+ class Qwen2_5_VLPreTrainedModel(PretrainedModel):
1716
+ config_class = Qwen2_5_VLConfig
1717
+ base_model_prefix = "model"
1718
+ _no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
1719
+ _skip_keys_device_placement = "past_key_values"
1720
+
1721
+ def _init_weights(self, layer):
1722
+ std = 0.2
1723
+ if isinstance(layer, (nn.Linear, nn.Conv3D)):
1724
+ nn.initializer.Normal(mean=0.0, std=std)(layer.weight)
1725
+ if layer.bias is not None:
1726
+ nn.initializer.Constant(0.0)(layer.bias)
1727
+ elif isinstance(layer, nn.Embedding):
1728
+ nn.initializer.Normal(mean=0.0, std=std)(layer.weight)
1729
+ if layer._padding_idx is not None:
1730
+ with paddle.no_grad():
1731
+ layer.weight[layer._padding_idx] = 0.0
1732
+
1733
+
1734
+ class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel):
1735
+ config_class = Qwen2_5_VLVisionConfig
1736
+ _no_split_modules = ["Qwen2_5_VLVisionBlock"]
1737
+
1738
+ def __init__(self, config, *inputs, **kwargs) -> None:
1739
+ super().__init__(config, *inputs, **kwargs)
1740
+ self.spatial_merge_size = config.spatial_merge_size
1741
+
1742
+ self.patch_size = config.patch_size
1743
+ self.fullatt_block_indexes = config.fullatt_block_indexes
1744
+ self.window_size = config.window_size
1745
+ self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
1746
+ self.patch_embed = Qwen2_5_VisionPatchEmbed(
1747
+ patch_size=config.patch_size,
1748
+ temporal_patch_size=config.temporal_patch_size,
1749
+ in_channels=config.in_channels,
1750
+ embed_dim=config.hidden_size,
1751
+ )
1752
+ head_dim = config.hidden_size // config.num_heads
1753
+ self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
1754
+ self.blocks = nn.LayerList(
1755
+ sublayers=[
1756
+ Qwen2_5_VLVisionBlock(config, config._attn_implementation)
1757
+ for _ in range(config.depth)
1758
+ ]
1759
+ )
1760
+ self.merger = Qwen2_5_VLPatchMerger(
1761
+ dim=config.out_hidden_size,
1762
+ context_dim=config.hidden_size,
1763
+ spatial_merge_size=config.spatial_merge_size,
1764
+ )
1765
+ self.enable_recompute = False
1766
+
1767
+ def rot_pos_emb(self, grid_thw):
1768
+ pos_ids = []
1769
+ for t, h, w in grid_thw:
1770
+ hpos_ids = paddle.arange(h).unsqueeze(1).expand([-1, w])
1771
+ hpos_ids = hpos_ids.reshape(
1772
+ [
1773
+ h // self.spatial_merge_size,
1774
+ self.spatial_merge_size,
1775
+ w // self.spatial_merge_size,
1776
+ self.spatial_merge_size,
1777
+ ]
1778
+ )
1779
+ hpos_ids = hpos_ids.transpose(perm=[0, 2, 1, 3])
1780
+ hpos_ids = hpos_ids.flatten()
1781
+
1782
+ wpos_ids = paddle.arange(w).unsqueeze(0).expand([h, -1])
1783
+ wpos_ids = wpos_ids.reshape(
1784
+ [
1785
+ h // self.spatial_merge_size,
1786
+ self.spatial_merge_size,
1787
+ w // self.spatial_merge_size,
1788
+ self.spatial_merge_size,
1789
+ ]
1790
+ )
1791
+ wpos_ids = wpos_ids.transpose([0, 2, 1, 3])
1792
+ wpos_ids = wpos_ids.flatten()
1793
+ pos_ids.append(
1794
+ paddle.stack(x=[hpos_ids, wpos_ids], axis=-1).tile(repeat_times=[t, 1])
1795
+ )
1796
+ pos_ids = paddle.concat(x=pos_ids, axis=0)
1797
+ max_grid_size = grid_thw[:, 1:].max()
1798
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
1799
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(start_axis=1)
1800
+ return rotary_pos_emb
1801
+
1802
+ def get_window_index(self, grid_thw):
1803
+ window_index: list = []
1804
+ cu_window_seqlens: list = [0]
1805
+ window_index_id = 0
1806
+ vit_merger_window_size = (
1807
+ self.window_size // self.spatial_merge_size // self.patch_size
1808
+ )
1809
+ for grid_t, grid_h, grid_w in grid_thw:
1810
+ llm_grid_h, llm_grid_w = (
1811
+ grid_h // self.spatial_merge_size,
1812
+ grid_w // self.spatial_merge_size,
1813
+ )
1814
+ index = paddle.arange(end=grid_t * llm_grid_h * llm_grid_w).reshape(
1815
+ [grid_t, llm_grid_h, llm_grid_w]
1816
+ )
1817
+ pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
1818
+ pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
1819
+ num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
1820
+ num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
1821
+ index_padded = paddle.nn.functional.pad(
1822
+ x=index,
1823
+ pad=(0, pad_w, 0, pad_h),
1824
+ mode="constant",
1825
+ value=-100,
1826
+ pad_from_left_axis=False,
1827
+ )
1828
+ index_padded = index_padded.reshape(
1829
+ [
1830
+ grid_t,
1831
+ num_windows_h,
1832
+ vit_merger_window_size,
1833
+ num_windows_w,
1834
+ vit_merger_window_size,
1835
+ ]
1836
+ )
1837
+ index_padded = index_padded.transpose(perm=[0, 1, 3, 2, 4]).reshape(
1838
+ [
1839
+ grid_t,
1840
+ num_windows_h * num_windows_w,
1841
+ vit_merger_window_size,
1842
+ vit_merger_window_size,
1843
+ ]
1844
+ )
1845
+ seqlens = (index_padded != -100).sum(axis=[2, 3]).reshape([-1])
1846
+ index_padded = index_padded.reshape([-1])
1847
+ index_new = index_padded[index_padded != -100]
1848
+ window_index.append(index_new + window_index_id)
1849
+ cu_seqlens_tmp = (
1850
+ seqlens.cumsum(axis=0) * self.spatial_merge_unit + cu_window_seqlens[-1]
1851
+ )
1852
+ cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
1853
+ window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
1854
+ window_index = paddle.concat(x=window_index, axis=0)
1855
+ return window_index, cu_window_seqlens
1856
+
1857
+ @paddle.jit.not_to_static
1858
+ def recompute_training_full(
1859
+ self,
1860
+ layer_module: nn.Layer,
1861
+ hidden_states: paddle.Tensor,
1862
+ cu_seqlens_now: paddle.Tensor,
1863
+ rotary_pos_emb: paddle.Tensor,
1864
+ ):
1865
+ def create_custom_forward(module):
1866
+ def custom_forward(*inputs):
1867
+ return module(*inputs)
1868
+
1869
+ return custom_forward
1870
+
1871
+ hidden_states = recompute(
1872
+ create_custom_forward(layer_module),
1873
+ hidden_states,
1874
+ cu_seqlens_now,
1875
+ rotary_pos_emb,
1876
+ # use_reentrant=self.config.recompute_use_reentrant,
1877
+ )
1878
+ return hidden_states
1879
+
1880
+ def forward(
1881
+ self, hidden_states: paddle.Tensor, grid_thw: paddle.Tensor
1882
+ ) -> paddle.Tensor:
1883
+ """
1884
+ Args:
1885
+ hidden_states (`paddle.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
1886
+ The final hidden states of the model.
1887
+ grid_thw (`paddle.Tensor` of shape `(num_images_or_videos, 3)`):
1888
+ The temporal, height and width of feature shape of each image in LLM.
1889
+
1890
+ Returns:
1891
+ `paddle.Tensor`: hidden_states.
1892
+ """
1893
+ hidden_states = self.patch_embed(hidden_states)
1894
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
1895
+ window_index, cu_window_seqlens = self.get_window_index(grid_thw)
1896
+ cu_window_seqlens = paddle.to_tensor(
1897
+ data=cu_window_seqlens, dtype="int32", place=hidden_states.place
1898
+ )
1899
+ cu_window_seqlens = paddle.unique_consecutive(x=cu_window_seqlens)
1900
+ seq_len, _ = tuple(hidden_states.shape)
1901
+ hidden_states = hidden_states.reshape(
1902
+ [seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
1903
+ )
1904
+ hidden_states = hidden_states[window_index, :, :]
1905
+ hidden_states = hidden_states.reshape([seq_len, -1])
1906
+ rotary_pos_emb = rotary_pos_emb.reshape(
1907
+ [seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
1908
+ )
1909
+ rotary_pos_emb = rotary_pos_emb[window_index, :, :]
1910
+ rotary_pos_emb = rotary_pos_emb.reshape([seq_len, -1])
1911
+
1912
+ cu_seqlens = paddle.repeat_interleave(
1913
+ grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
1914
+ ).cumsum(axis=0, dtype="int32")
1915
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
1916
+
1917
+ for layer_num, blk in enumerate(self.blocks):
1918
+ if layer_num in self.fullatt_block_indexes:
1919
+ cu_seqlens_now = cu_seqlens
1920
+ else:
1921
+ cu_seqlens_now = cu_window_seqlens
1922
+ if self.enable_recompute and self.training:
1923
+ hidden_states = self.recompute_training_full(
1924
+ blk, hidden_states, cu_seqlens_now, rotary_pos_emb
1925
+ )
1926
+ else:
1927
+ hidden_states = blk(
1928
+ hidden_states,
1929
+ cu_seqlens=cu_seqlens_now,
1930
+ rotary_pos_emb=rotary_pos_emb,
1931
+ )
1932
+
1933
+ hidden_states = self.merger(hidden_states)
1934
+ reverse_indices = paddle.argsort(x=window_index)
1935
+ hidden_states = hidden_states[reverse_indices, :]
1936
+
1937
+ return hidden_states
1938
+
1939
+
1940
+ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
1941
+ def __init__(self, config: Qwen2_5_VLConfig):
1942
+ super().__init__(config)
1943
+ self.padding_idx = config.pad_token_id
1944
+ self.vocab_size = config.vocab_size
1945
+ self.hidden_size = config.hidden_size
1946
+ self.config = config
1947
+ # Recompute defaults to False and is controlled by Trainer
1948
+
1949
+ if (
1950
+ config.tensor_parallel_degree > 1
1951
+ and config.vocab_size % config.tensor_parallel_degree == 0
1952
+ ):
1953
+ self.embed_tokens = mpu.VocabParallelEmbedding(
1954
+ self.vocab_size,
1955
+ self.hidden_size,
1956
+ weight_attr=paddle.ParamAttr(initializer=nn.initializer.XavierNormal()),
1957
+ )
1958
+ else:
1959
+ self.embed_tokens = nn.Embedding(
1960
+ self.vocab_size,
1961
+ self.hidden_size,
1962
+ )
1963
+
1964
+ # self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1965
+ self.layers = nn.LayerList(
1966
+ [
1967
+ Qwen2_5_VLDecoderLayer(config, layer_idx)
1968
+ for layer_idx in range(config.num_hidden_layers)
1969
+ ]
1970
+ )
1971
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1972
+
1973
+ self.enable_recompute = False
1974
+
1975
+ def get_input_embeddings(self):
1976
+ return self.embed_tokens
1977
+
1978
+ def set_input_embeddings(self, value):
1979
+ self.embed_tokens = value
1980
+
1981
+ @staticmethod
1982
+ def _prepare_decoder_attention_mask(
1983
+ attention_mask, input_shape, past_key_values_length, dtype
1984
+ ):
1985
+ if attention_mask is not None:
1986
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1987
+ if len(attention_mask.shape) == 2:
1988
+ expanded_attn_mask = _expand_2d_mask(
1989
+ attention_mask, dtype, tgt_length=input_shape[-1]
1990
+ )
1991
+ # For decoding phase in generation, seq_length = 1, we don't need to add causal mask
1992
+ if input_shape[-1] > 1:
1993
+ combined_attention_mask = _make_causal_mask(
1994
+ input_shape,
1995
+ past_key_values_length=past_key_values_length,
1996
+ )
1997
+ expanded_attn_mask = expanded_attn_mask & combined_attention_mask
1998
+ # [bsz, seq_len, seq_len] -> [bsz, 1, seq_len, seq_len]
1999
+ elif len(attention_mask.shape) == 3:
2000
+ expanded_attn_mask = attention_mask.unsqueeze(1).astype("bool")
2001
+ # if attention_mask is already 4-D, do nothing
2002
+ else:
2003
+ expanded_attn_mask = attention_mask
2004
+ else:
2005
+ expanded_attn_mask = _make_causal_mask(
2006
+ input_shape,
2007
+ past_key_values_length=past_key_values_length,
2008
+ )
2009
+ # Convert bool attention_mask to float attention mask, which will be added to attention_scores later
2010
+ expanded_attn_mask = paddle.where(
2011
+ expanded_attn_mask, 0.0, paddle.finfo(dtype).min
2012
+ ).astype(dtype)
2013
+ return expanded_attn_mask
2014
+
2015
+ @paddle.jit.not_to_static
2016
+ def recompute_training_full(
2017
+ self,
2018
+ layer_module: nn.Layer,
2019
+ hidden_states: paddle.Tensor,
2020
+ position_ids: Optional[paddle.Tensor],
2021
+ attention_mask: paddle.Tensor,
2022
+ output_attentions: bool,
2023
+ past_key_value: paddle.Tensor,
2024
+ use_cache: bool,
2025
+ cache_position: Optional[paddle.Tensor] = None,
2026
+ ):
2027
+ def create_custom_forward(module):
2028
+ def custom_forward(*inputs):
2029
+ return module(*inputs)
2030
+
2031
+ return custom_forward
2032
+
2033
+ hidden_states = recompute(
2034
+ create_custom_forward(layer_module),
2035
+ hidden_states,
2036
+ position_ids,
2037
+ attention_mask,
2038
+ output_attentions,
2039
+ past_key_value,
2040
+ use_cache,
2041
+ cache_position,
2042
+ use_reentrant=self.config.recompute_use_reentrant,
2043
+ )
2044
+
2045
+ return hidden_states
2046
+
2047
+ def forward(
2048
+ self,
2049
+ input_ids: paddle.Tensor = None,
2050
+ attention_mask: Optional[paddle.Tensor] = None,
2051
+ position_ids: Optional[paddle.Tensor] = None,
2052
+ past_key_values: Optional[List[paddle.Tensor]] = None,
2053
+ inputs_embeds: Optional[paddle.Tensor] = None,
2054
+ use_cache: Optional[bool] = None,
2055
+ output_attentions: Optional[bool] = None,
2056
+ output_hidden_states: Optional[bool] = None,
2057
+ return_dict: Optional[bool] = None,
2058
+ cache_position: Optional[paddle.Tensor] = None,
2059
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
2060
+ output_attentions = (
2061
+ output_attentions
2062
+ if output_attentions is not None
2063
+ else self.config.output_attentions
2064
+ )
2065
+ output_hidden_states = (
2066
+ output_hidden_states
2067
+ if output_hidden_states is not None
2068
+ else self.config.output_hidden_states
2069
+ )
2070
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
2071
+
2072
+ return_dict = (
2073
+ return_dict if return_dict is not None else self.config.use_return_dict
2074
+ )
2075
+
2076
+ if (input_ids is None) ^ (inputs_embeds is not None):
2077
+ raise ValueError(
2078
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
2079
+ )
2080
+ elif input_ids is not None:
2081
+ batch_size, seq_length = input_ids.shape
2082
+ elif inputs_embeds is not None:
2083
+ batch_size, seq_length, _ = inputs_embeds.shape
2084
+ else:
2085
+ raise ValueError(
2086
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
2087
+ )
2088
+
2089
+ if past_key_values is None:
2090
+ past_key_values = tuple([None] * len(self.layers))
2091
+ # NOTE: to make cache can be clear in-time
2092
+ past_key_values = list(past_key_values)
2093
+
2094
+ seq_length_with_past = seq_length
2095
+ cache_length = 0
2096
+ if past_key_values[0] is not None:
2097
+ cache_length = past_key_values[0][0].shape[2] # shape[1] in qwen2
2098
+ seq_length_with_past += cache_length
2099
+
2100
+ if inputs_embeds is None:
2101
+ inputs_embeds = self.embed_tokens(input_ids)
2102
+
2103
+ # embed positions
2104
+ if attention_mask is None:
2105
+ # [bs, seq_len]
2106
+ attention_mask = paddle.ones(
2107
+ (batch_size, seq_length_with_past), dtype=paddle.bool
2108
+ )
2109
+
2110
+ if self.config._attn_implementation == "flash_attention_2":
2111
+ causal_mask = attention_mask
2112
+ else:
2113
+ causal_mask = self._prepare_decoder_attention_mask(
2114
+ attention_mask,
2115
+ (batch_size, seq_length),
2116
+ cache_length,
2117
+ inputs_embeds.dtype,
2118
+ ) # [bs, 1, seq_len, seq_len]
2119
+
2120
+ if cache_position is None:
2121
+ past_seen_tokens = (
2122
+ past_key_values[0][0].shape[2] if past_key_values[0] is not None else 0
2123
+ )
2124
+ cache_position = paddle.arange(
2125
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]
2126
+ )
2127
+
2128
+ if position_ids is None:
2129
+ # the hard coded `3` is for temporal, height and width.
2130
+ position_ids = cache_position.reshape([1, 1, -1]).expand(
2131
+ [3, inputs_embeds.shape[0], -1]
2132
+ )
2133
+
2134
+ hidden_states = inputs_embeds
2135
+
2136
+ # decoder layers
2137
+ all_hidden_states = () if output_hidden_states else None
2138
+ all_self_attns = () if output_attentions else None
2139
+ next_decoder_cache = ()
2140
+
2141
+ for idx, (decoder_layer) in enumerate(self.layers):
2142
+ if output_hidden_states:
2143
+ all_hidden_states += (hidden_states,)
2144
+ past_key_value = (
2145
+ past_key_values[idx] if past_key_values is not None else None
2146
+ )
2147
+
2148
+ if self.enable_recompute and self.training:
2149
+ layer_outputs = self.recompute_training_full(
2150
+ decoder_layer,
2151
+ hidden_states,
2152
+ causal_mask,
2153
+ position_ids,
2154
+ past_key_value,
2155
+ output_attentions,
2156
+ use_cache,
2157
+ cache_position,
2158
+ )
2159
+ else:
2160
+ layer_outputs = decoder_layer(
2161
+ hidden_states,
2162
+ attention_mask=causal_mask,
2163
+ position_ids=position_ids,
2164
+ past_key_value=past_key_value,
2165
+ output_attentions=output_attentions, # False
2166
+ use_cache=use_cache, # True
2167
+ cache_position=cache_position,
2168
+ )
2169
+
2170
+ # NOTE: clear outdate cache after it has been used for memory saving
2171
+ past_key_value = past_key_values[idx] = None
2172
+
2173
+ hidden_states = layer_outputs[0]
2174
+
2175
+ next_decoder_cache = (
2176
+ next_decoder_cache + (layer_outputs[-1],) if use_cache else None
2177
+ )
2178
+
2179
+ if output_attentions:
2180
+ all_self_attns += (layer_outputs[1],)
2181
+
2182
+ hidden_states = self.norm(hidden_states)
2183
+
2184
+ # add hidden states from the last decoder layer
2185
+ if output_hidden_states:
2186
+ all_hidden_states += (hidden_states,)
2187
+
2188
+ next_cache = next_decoder_cache if use_cache else None
2189
+
2190
+ if not return_dict:
2191
+ return tuple(
2192
+ v
2193
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
2194
+ if v is not None
2195
+ )
2196
+ return BaseModelOutputWithPast(
2197
+ last_hidden_state=hidden_states,
2198
+ past_key_values=next_cache,
2199
+ hidden_states=all_hidden_states,
2200
+ attentions=all_self_attns,
2201
+ )
2202
+
2203
+
2204
+ class Qwen2LMHead(nn.Layer):
2205
+ def __init__(self, config, embedding_weights=None, transpose_y=False):
2206
+ super(Qwen2LMHead, self).__init__()
2207
+ self.config = config
2208
+ if (
2209
+ config.tensor_parallel_degree > 1
2210
+ and config.vocab_size % config.tensor_parallel_degree == 0
2211
+ ):
2212
+ vocab_size = config.vocab_size // config.tensor_parallel_degree
2213
+ else:
2214
+ vocab_size = config.vocab_size
2215
+
2216
+ self.transpose_y = transpose_y
2217
+ if transpose_y:
2218
+ # only for weight from embedding_weights
2219
+ if embedding_weights is not None:
2220
+ self.weight = embedding_weights
2221
+ else:
2222
+ self.weight = self.create_parameter(
2223
+ shape=[vocab_size, config.hidden_size],
2224
+ dtype=paddle.get_default_dtype(),
2225
+ )
2226
+ else:
2227
+
2228
+ if vocab_size != config.vocab_size:
2229
+ with get_rng_state_tracker().rng_state():
2230
+ self.weight = self.create_parameter(
2231
+ shape=[config.hidden_size, vocab_size],
2232
+ dtype=paddle.get_default_dtype(),
2233
+ )
2234
+ else:
2235
+ self.weight = self.create_parameter(
2236
+ shape=[config.hidden_size, vocab_size],
2237
+ dtype=paddle.get_default_dtype(),
2238
+ )
2239
+
2240
+ # Must set distributed attr for Tensor Parallel !
2241
+ self.weight.is_distributed = (
2242
+ True if (vocab_size != config.vocab_size) else False
2243
+ )
2244
+ if self.weight.is_distributed:
2245
+ # for tie_word_embeddings
2246
+ self.weight.split_axis = 0 if self.transpose_y else 1
2247
+
2248
+ def forward(self, hidden_states, tensor_parallel_output=None):
2249
+ if tensor_parallel_output is None:
2250
+ tensor_parallel_output = self.config.tensor_parallel_output
2251
+
2252
+ # 确保数据类型一致
2253
+ if self.weight.dtype != hidden_states.dtype:
2254
+ hidden_states = paddle.cast(hidden_states, self.weight.dtype)
2255
+
2256
+ logits = parallel_matmul(
2257
+ hidden_states,
2258
+ self.weight,
2259
+ transpose_y=self.transpose_y,
2260
+ tensor_parallel_output=tensor_parallel_output,
2261
+ )
2262
+ return logits
2263
+
2264
+
2265
+ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel):
2266
+ _tied_weights_keys = ["lm_head.weight"]
2267
+ config_class = Qwen2_5_VLConfig
2268
+ _no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
2269
+
2270
+ def __init__(self, config, attn_implementation="flash_attention_2"):
2271
+ super().__init__(config)
2272
+ config._attn_implementation = attn_implementation
2273
+ config.vision_config._attn_implementation = attn_implementation
2274
+
2275
+ self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(
2276
+ config.vision_config
2277
+ )
2278
+ self.model = Qwen2_5_VLModel(config)
2279
+ self.vocab_size = config.vocab_size
2280
+ if config.tie_word_embeddings:
2281
+ self.lm_head = Qwen2LMHead(
2282
+ config,
2283
+ embedding_weights=self.model.embed_tokens.weight,
2284
+ transpose_y=True,
2285
+ )
2286
+ self.tie_weights()
2287
+ else:
2288
+ self.lm_head = Qwen2LMHead(config)
2289
+ self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides
2290
+
2291
+ self.enable_recompute = False
2292
+
2293
+ def get_input_embeddings(self):
2294
+ return self.model.embed_tokens
2295
+
2296
+ def set_input_embeddings(self, value):
2297
+ self.model.embed_tokens = value
2298
+
2299
+ def get_output_embeddings(self):
2300
+ return self.lm_head
2301
+
2302
+ def set_output_embeddings(self, new_embeddings):
2303
+ self.lm_head = new_embeddings
2304
+
2305
+ def set_decoder(self, decoder):
2306
+ self.model = decoder
2307
+
2308
+ def get_decoder(self):
2309
+ return self.model
2310
+
2311
+ @classmethod
2312
+ def _get_tensor_parallel_mappings(cls, config: Qwen2_5_VLConfig, is_split=True):
2313
+
2314
+ logging.info("Qwen2 inference model _get_tensor_parallel_mappings")
2315
+
2316
+ from paddlenlp.transformers.conversion_utils import split_or_merge_func
2317
+
2318
+ fn = split_or_merge_func(
2319
+ is_split=is_split,
2320
+ tensor_parallel_degree=config.tensor_parallel_degree,
2321
+ tensor_parallel_rank=config.tensor_parallel_rank,
2322
+ num_attention_heads=config.num_attention_heads,
2323
+ )
2324
+
2325
+ def get_tensor_parallel_split_mappings(num_layers):
2326
+ final_actions = {}
2327
+
2328
+ base_actions = {
2329
+ "lm_head.weight": partial(fn, is_column=True),
2330
+ # Row Linear
2331
+ "embed_tokens.weight": partial(fn, is_column=False),
2332
+ "layers.0.self_attn.o_proj.weight": partial(fn, is_column=False),
2333
+ "layers.0.mlp.down_proj.weight": partial(fn, is_column=False),
2334
+ }
2335
+
2336
+ # Column Linear
2337
+ # if config.fuse_attention_qkv:
2338
+ # base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(fn, is_column=True)
2339
+ # else:
2340
+ base_actions["layers.0.self_attn.q_proj.weight"] = partial(
2341
+ fn, is_column=True
2342
+ )
2343
+ base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True)
2344
+ # if we have enough num_key_value_heads to split, then split it.
2345
+ if config.num_key_value_heads % config.tensor_parallel_degree == 0:
2346
+ base_actions["layers.0.self_attn.k_proj.weight"] = partial(
2347
+ fn, is_column=True
2348
+ )
2349
+ base_actions["layers.0.self_attn.v_proj.weight"] = partial(
2350
+ fn, is_column=True
2351
+ )
2352
+ base_actions["layers.0.self_attn.k_proj.bias"] = partial(
2353
+ fn, is_column=True
2354
+ )
2355
+ base_actions["layers.0.self_attn.v_proj.bias"] = partial(
2356
+ fn, is_column=True
2357
+ )
2358
+
2359
+ if config.fuse_attention_ffn:
2360
+ base_actions["layers.0.mlp.gate_up_fused_proj.weight"] = partial(
2361
+ fn, is_column=True, is_naive_2fuse=True
2362
+ )
2363
+ else:
2364
+ base_actions["layers.0.mlp.gate_proj.weight"] = partial(
2365
+ fn, is_column=True
2366
+ )
2367
+ base_actions["layers.0.mlp.up_proj.weight"] = partial(
2368
+ fn, is_column=True
2369
+ )
2370
+
2371
+ for key, action in base_actions.items():
2372
+ if "layers.0." in key:
2373
+ for i in range(num_layers):
2374
+ final_actions[key.replace("layers.0.", f"layers.{i}.")] = action
2375
+ final_actions[key] = action
2376
+
2377
+ return final_actions
2378
+
2379
+ mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
2380
+
2381
+ return mappings
2382
+
2383
+ @staticmethod
2384
+ def get_rope_index(
2385
+ spatial_merge_size,
2386
+ image_token_id,
2387
+ video_token_id,
2388
+ vision_start_token_id,
2389
+ tokens_per_second,
2390
+ input_ids: Optional[paddle.Tensor] = None,
2391
+ image_grid_thw: Optional[paddle.Tensor] = None,
2392
+ video_grid_thw: Optional[paddle.Tensor] = None,
2393
+ second_per_grid_ts: Optional[paddle.Tensor] = None,
2394
+ attention_mask: Optional[paddle.Tensor] = None,
2395
+ ) -> Tuple[paddle.Tensor, paddle.Tensor]:
2396
+ """
2397
+ Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
2398
+
2399
+ Explanation:
2400
+ Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
2401
+
2402
+ For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
2403
+ Examples:
2404
+ input_ids: [T T T T T], here T is for text.
2405
+ temporal position_ids: [0, 1, 2, 3, 4]
2406
+ height position_ids: [0, 1, 2, 3, 4]
2407
+ width position_ids: [0, 1, 2, 3, 4]
2408
+
2409
+ For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
2410
+ and 1D rotary position embedding for text part.
2411
+ Examples:
2412
+ Temporal (Time): 3 patches, representing different segments of the video in time.
2413
+ Height: 2 patches, dividing each frame vertically.
2414
+ Width: 2 patches, dividing each frame horizontally.
2415
+ We also have some important parameters:
2416
+ fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
2417
+ tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
2418
+ temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
2419
+ interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
2420
+ input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
2421
+ vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
2422
+ vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
2423
+ vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
2424
+ text temporal position_ids: [101, 102, 103, 104, 105]
2425
+ text height position_ids: [101, 102, 103, 104, 105]
2426
+ text width position_ids: [101, 102, 103, 104, 105]
2427
+ Here we calculate the text start position_ids as the max vision position_ids plus 1.
2428
+
2429
+ Args:
2430
+ input_ids (`paddle.LongTensor` of shape `(batch_size, sequence_length)`):
2431
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
2432
+ it.
2433
+ image_grid_thw (`paddle.LongTensor` of shape `(num_images, 3)`, *optional*):
2434
+ The temporal, height and width of feature shape of each image in LLM.
2435
+ video_grid_thw (`paddle.LongTensor` of shape `(num_videos, 3)`, *optional*):
2436
+ The temporal, height and width of feature shape of each video in LLM.
2437
+ second_per_grid_ts (`paddle.Tensor` of shape `(num_videos)`, *optional*):
2438
+ The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
2439
+ attention_mask (`paddle.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
2440
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
2441
+
2442
+ - 1 for tokens that are **not masked**,
2443
+ - 0 for tokens that are **masked**.
2444
+
2445
+ Returns:
2446
+ position_ids (`paddle.Tensor` of shape `(3, batch_size, sequence_length)`)
2447
+ mrope_position_deltas (`paddle.Tensor` of shape `(batch_size)`)
2448
+ """
2449
+ # spatial_merge_size = self.config.vision_config.spatial_merge_size
2450
+ # image_token_id = self.config.image_token_id
2451
+ # video_token_id = self.config.video_token_id
2452
+ # vision_start_token_id = self.config.vision_start_token_id
2453
+ mrope_position_deltas = []
2454
+ if image_grid_thw is not None or video_grid_thw is not None:
2455
+ total_input_ids = input_ids
2456
+ position_ids = paddle.ones(
2457
+ [3, input_ids.shape[0], input_ids.shape[1]], dtype=input_ids.dtype
2458
+ )
2459
+ image_index, video_index = 0, 0
2460
+ for i, input_ids in enumerate(total_input_ids):
2461
+ # TODO: CUDA error in some paddle version
2462
+ if attention_mask is not None:
2463
+ input_ids = paddle.to_tensor(
2464
+ input_ids.cpu()[attention_mask[i].cpu() == 1]
2465
+ )
2466
+ image_nums, video_nums = 0, 0
2467
+ vision_start_indices = paddle.nonzero(
2468
+ input_ids == vision_start_token_id
2469
+ ).squeeze(1)
2470
+ vision_tokens = input_ids[vision_start_indices + 1]
2471
+ image_nums = (
2472
+ (vision_tokens == image_token_id).sum()
2473
+ if vision_tokens.numel() > 0
2474
+ else 0
2475
+ )
2476
+ video_nums = (
2477
+ (vision_tokens == video_token_id).sum()
2478
+ if vision_tokens.numel() > 0
2479
+ else 0
2480
+ )
2481
+ input_tokens = input_ids.tolist()
2482
+ llm_pos_ids_list: list = []
2483
+ st = 0
2484
+ remain_images, remain_videos = image_nums, video_nums
2485
+ for _ in range(image_nums + video_nums):
2486
+ if image_token_id in input_tokens and remain_images > 0:
2487
+ ed_image = input_tokens.index(image_token_id, st)
2488
+ else:
2489
+ ed_image = len(input_tokens) + 1
2490
+ if video_token_id in input_tokens and remain_videos > 0:
2491
+ ed_video = input_tokens.index(video_token_id, st)
2492
+ else:
2493
+ ed_video = len(input_tokens) + 1
2494
+ if ed_image < ed_video:
2495
+ t, h, w = (
2496
+ image_grid_thw[image_index][0],
2497
+ image_grid_thw[image_index][1],
2498
+ image_grid_thw[image_index][2],
2499
+ )
2500
+ second_per_grid_t = 0
2501
+ image_index += 1
2502
+ remain_images -= 1
2503
+ ed = ed_image
2504
+ else:
2505
+ t, h, w = (
2506
+ video_grid_thw[video_index][0],
2507
+ video_grid_thw[video_index][1],
2508
+ video_grid_thw[video_index][2],
2509
+ )
2510
+ if second_per_grid_ts is not None:
2511
+ second_per_grid_t = second_per_grid_ts[video_index]
2512
+ else:
2513
+ second_per_grid_t = 1.0
2514
+ video_index += 1
2515
+ remain_videos -= 1
2516
+ ed = ed_video
2517
+ llm_grid_t, llm_grid_h, llm_grid_w = (
2518
+ t.item(),
2519
+ h.item() // spatial_merge_size,
2520
+ w.item() // spatial_merge_size,
2521
+ )
2522
+ text_len = ed - st
2523
+ st_idx = (
2524
+ llm_pos_ids_list[-1].max() + 1
2525
+ if len(llm_pos_ids_list) > 0
2526
+ else 0
2527
+ )
2528
+ llm_pos_ids_list.append(
2529
+ paddle.arange(text_len).reshape([1, -1]).expand([3, -1])
2530
+ + st_idx
2531
+ )
2532
+ range_tensor = paddle.arange(end=llm_grid_t).reshape([-1, 1])
2533
+ expanded_range = range_tensor.expand(
2534
+ shape=[-1, llm_grid_h * llm_grid_w]
2535
+ )
2536
+ time_tensor = expanded_range * second_per_grid_t * tokens_per_second
2537
+ time_tensor_long = time_tensor.astype(dtype="int64")
2538
+ t_index = time_tensor_long.flatten()
2539
+ h_index = (
2540
+ paddle.arange(end=llm_grid_h)
2541
+ .reshape([1, -1, 1])
2542
+ .expand(shape=[llm_grid_t, -1, llm_grid_w])
2543
+ .flatten()
2544
+ )
2545
+ w_index = (
2546
+ paddle.arange(end=llm_grid_w)
2547
+ .reshape([1, 1, -1])
2548
+ .expand(shape=[llm_grid_t, llm_grid_h, -1])
2549
+ .flatten()
2550
+ )
2551
+ llm_pos_ids_list.append(
2552
+ paddle.stack([t_index, h_index, w_index]) + text_len + st_idx
2553
+ )
2554
+ st = ed + llm_grid_t * llm_grid_h * llm_grid_w
2555
+
2556
+ if st < len(input_tokens):
2557
+ st_idx = (
2558
+ llm_pos_ids_list[-1].max() + 1
2559
+ if len(llm_pos_ids_list) > 0
2560
+ else 0
2561
+ )
2562
+ text_len = len(input_tokens) - st
2563
+ llm_pos_ids_list.append(
2564
+ paddle.arange(text_len).reshape([1, -1]).expand([3, -1])
2565
+ + st_idx
2566
+ )
2567
+ llm_positions = paddle.concat(llm_pos_ids_list, axis=1).reshape([3, -1])
2568
+ position_ids[..., i, attention_mask[i] == 1] = llm_positions
2569
+
2570
+ mrope_position_deltas.append(
2571
+ llm_positions.max() + 1 - len(total_input_ids[i])
2572
+ )
2573
+ mrope_position_deltas = paddle.to_tensor(mrope_position_deltas).unsqueeze(1)
2574
+ return position_ids, mrope_position_deltas
2575
+ else:
2576
+ if attention_mask is not None:
2577
+ position_ids = paddle.cast(attention_mask, dtype="int64").cumsum(-1) - 1
2578
+ position_ids.masked_fill_(mask=attention_mask == 0, value=1)
2579
+ position_ids = position_ids.unsqueeze(0).expand([3, -1, -1])
2580
+ max_position_ids = position_ids.max(0, keepdim=False)[0].max(
2581
+ -1, keepdim=True
2582
+ )[0]
2583
+ mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
2584
+ else:
2585
+ position_ids = (
2586
+ paddle.arange(input_ids.shape[1])
2587
+ .reshape([1, 1, -1])
2588
+ .expand(shape=[3, input_ids.shape[0], -1])
2589
+ )
2590
+ mrope_position_deltas = paddle.zeros(
2591
+ [input_ids.shape[0], 1], dtype=input_ids.dtype
2592
+ )
2593
+ return position_ids, mrope_position_deltas
2594
+
2595
+ def update_model_kwargs_for_generation(
2596
+ self,
2597
+ outputs: ModelOutput,
2598
+ model_kwargs: Dict[str, Any],
2599
+ is_encoder_decoder: bool = False,
2600
+ # num_new_tokens: int = 1,
2601
+ ) -> Dict[str, Any]:
2602
+ model_kwargs = super().update_model_kwargs_for_generation(
2603
+ outputs=outputs,
2604
+ model_kwargs=model_kwargs,
2605
+ is_encoder_decoder=is_encoder_decoder,
2606
+ # num_new_tokens=num_new_tokens,
2607
+ )
2608
+
2609
+ # return logits + 28 layers k and v, TODO:
2610
+ if getattr(outputs, "rope_deltas", None) is not None:
2611
+ model_kwargs["rope_deltas"] = outputs.rope_deltas
2612
+
2613
+ return model_kwargs
2614
+
2615
+ # NOTE(changwenbin): Vision module added for high-performance inference.
2616
+ def vision_forward(
2617
+ self,
2618
+ input_ids: paddle.Tensor,
2619
+ inputs_embeds: Optional[paddle.Tensor] = None,
2620
+ attention_mask: Optional[paddle.Tensor] = None,
2621
+ position_ids: Optional[paddle.Tensor] = None,
2622
+ pixel_values: Optional[paddle.Tensor] = None,
2623
+ pixel_values_videos: Optional[paddle.Tensor] = None,
2624
+ image_grid_thw: Optional[paddle.Tensor] = None,
2625
+ video_grid_thw: Optional[paddle.Tensor] = None,
2626
+ rope_deltas: Optional[paddle.Tensor] = None,
2627
+ second_per_grid_ts: Optional[paddle.Tensor] = None,
2628
+ ):
2629
+
2630
+ if inputs_embeds is None:
2631
+ # NOTE: (zhoukangkang、changwenbin) In the high-performance reasoning of Qwen2-vl,
2632
+ # in order to reduce video memory, the qwen2 embed_tokens method in Paddlenlp is reused here.
2633
+ from paddlenlp.experimental.transformers.qwen2.modeling import (
2634
+ Qwen2_5_VLForConditionalGenerationBlockInferenceModel,
2635
+ )
2636
+
2637
+ assert isinstance(
2638
+ self.model, Qwen2_5_VLForConditionalGenerationBlockInferenceModel
2639
+ ), "model is not an instance of Qwen2_5_VLForConditionalGenerationBlockInferenceModel"
2640
+
2641
+ inputs_embeds = self.model.qwen2.embed_tokens(input_ids)
2642
+ if pixel_values is not None:
2643
+ pixel_values = paddle.cast(
2644
+ pixel_values, self.visual.patch_embed.proj.weight.dtype
2645
+ )
2646
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
2647
+ image_mask = input_ids == self.config.image_token_id
2648
+
2649
+ inputs_embeds[image_mask] = image_embeds
2650
+ if pixel_values_videos is not None:
2651
+ pixel_values_videos = paddle.cast(
2652
+ pixel_values_videos, self.visual.patch_embed.proj.weight.dtype
2653
+ )
2654
+ video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
2655
+ video_mask = input_ids == self.config.video_token_id
2656
+ inputs_embeds[video_mask] = video_embeds
2657
+ if attention_mask is not None:
2658
+ attention_mask = attention_mask
2659
+
2660
+ return inputs_embeds
2661
+
2662
+ def forward(
2663
+ self,
2664
+ input_ids: paddle.Tensor = None, # [1, 400] sum 49356255
2665
+ attention_mask: Optional[paddle.Tensor] = None, # [1, 400] sum 396
2666
+ position_ids: Optional[paddle.Tensor] = None,
2667
+ past_key_values: Optional[List[paddle.Tensor]] = None,
2668
+ inputs_embeds: Optional[paddle.Tensor] = None,
2669
+ labels: Optional[paddle.Tensor] = None, # [1, 400] sum 354841
2670
+ use_cache: Optional[bool] = None,
2671
+ output_attentions: Optional[bool] = None,
2672
+ output_hidden_states: Optional[bool] = None,
2673
+ return_dict: Optional[bool] = None,
2674
+ pixel_values: Optional[
2675
+ paddle.Tensor
2676
+ ] = None, # [1, 1224, 1176] sum 2658700.50000000
2677
+ pixel_values_videos: Optional[paddle.Tensor] = None,
2678
+ image_grid_thw: Optional[paddle.Tensor] = None, # [[1 , 36, 34]]
2679
+ video_grid_thw: Optional[paddle.Tensor] = None,
2680
+ rope_deltas: Optional[paddle.Tensor] = None,
2681
+ second_per_grid_ts: Optional[paddle.Tensor] = None,
2682
+ ):
2683
+ """
2684
+ Args:
2685
+ labels (`paddle.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
2686
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
2687
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
2688
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
2689
+
2690
+ Returns:
2691
+
2692
+ Example:
2693
+
2694
+ ```python
2695
+ >>> from PIL import Image
2696
+ >>> import requests
2697
+ >>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
2698
+
2699
+ >>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
2700
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
2701
+
2702
+ >>> messages = [
2703
+ {
2704
+ "role": "user",
2705
+ "content": [
2706
+ {"type": "image"},
2707
+ {"type": "text", "text": "What is shown in this image?"},
2708
+ ],
2709
+ },
2710
+ ]
2711
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
2712
+ >>> image = Image.open(requests.get(url, stream=True).raw)
2713
+
2714
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
2715
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
2716
+
2717
+ >>> # Generate
2718
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
2719
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
2720
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
2721
+ ```"""
2722
+
2723
+ output_attentions = (
2724
+ output_attentions
2725
+ if output_attentions is not None
2726
+ else self.config.output_attentions
2727
+ )
2728
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # fmt:skip
2729
+ # Note:始终为True
2730
+ return_dict = True # return_dict if return_dict is not None else self.config.use_return_dict
2731
+
2732
+ if inputs_embeds is None:
2733
+ inputs_embeds = self.model.embed_tokens(input_ids)
2734
+ if pixel_values is not None:
2735
+ # 确保 pixel_values 和 inputs_embeds 使用相同的数据类型
2736
+ pixel_values = paddle.cast(pixel_values, inputs_embeds.dtype)
2737
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
2738
+ # 确保 image_embeds 和 inputs_embeds 使用相同的数据类型
2739
+ image_embeds = paddle.cast(image_embeds, inputs_embeds.dtype)
2740
+ image_mask = input_ids == self.config.image_token_id
2741
+ if self.training:
2742
+ inputs_embeds = inputs_embeds.clone()
2743
+ inputs_embeds[image_mask] = image_embeds
2744
+ if pixel_values_videos is not None:
2745
+ # 确保 pixel_values_videos 和 inputs_embeds 使用相同的数据类型
2746
+ pixel_values_videos = paddle.cast(
2747
+ pixel_values_videos, inputs_embeds.dtype
2748
+ )
2749
+ video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
2750
+ # 确保 video_embeds 和 inputs_embeds 使用相同的数据类型
2751
+ video_embeds = paddle.cast(video_embeds, inputs_embeds.dtype)
2752
+ video_mask = input_ids == self.config.video_token_id
2753
+ inputs_embeds[video_mask] = video_embeds
2754
+ if attention_mask is not None:
2755
+ attention_mask = attention_mask
2756
+
2757
+ outputs = self.model(
2758
+ input_ids=None,
2759
+ position_ids=position_ids,
2760
+ attention_mask=attention_mask,
2761
+ past_key_values=past_key_values,
2762
+ inputs_embeds=inputs_embeds,
2763
+ use_cache=use_cache,
2764
+ output_attentions=output_attentions,
2765
+ output_hidden_states=output_hidden_states,
2766
+ return_dict=return_dict,
2767
+ )
2768
+
2769
+ hidden_states = outputs[0]
2770
+
2771
+ tensor_parallel_output = (
2772
+ self.config.tensor_parallel_output
2773
+ and self.config.tensor_parallel_degree > 1
2774
+ )
2775
+
2776
+ logits = self.lm_head(
2777
+ hidden_states, tensor_parallel_output=tensor_parallel_output
2778
+ )
2779
+ # logits = paddle.cast(logits, "float32")
2780
+
2781
+ loss = None
2782
+ if labels is not None:
2783
+ # Shift so that tokens < n predict n
2784
+ shift_logits = logits[..., :-1, :] # [1, 395, 151936]
2785
+ shift_labels = labels[..., 1:] # [1, 395]
2786
+ # Flatten the tokens
2787
+ shift_logits = shift_logits.reshape([-1, self.config.vocab_size])
2788
+ shift_labels = shift_labels.reshape([-1])
2789
+ loss_fct = nn.CrossEntropyLoss(reduction="sum")
2790
+ loss = loss_fct(shift_logits, shift_labels)
2791
+ label_sum = paddle.sum(shift_labels != -100).cast("float32")
2792
+ loss = loss / label_sum
2793
+
2794
+ if not return_dict:
2795
+ # output = (logits,) + outputs[1:]
2796
+ # Note: (changwenbin) fix "can only concatenate tuple (not "list") to tuple".
2797
+ output = (logits,) + tuple(outputs[1:])
2798
+ return (loss,) + output if loss is not None else output
2799
+ # return logits + 28 layers k and v
2800
+
2801
+ return Qwen2_5_VLCausalLMOutputWithPast(
2802
+ loss=loss,
2803
+ logits=logits,
2804
+ past_key_values=outputs.past_key_values,
2805
+ hidden_states=outputs.hidden_states,
2806
+ attentions=outputs.attentions,
2807
+ rope_deltas=rope_deltas,
2808
+ )
2809
+
2810
+ def prepare_inputs_for_generation(
2811
+ self,
2812
+ input_ids, # [1, 3602] # [[151644, 8948, 198, ..., 151644, 77091, 198]]
2813
+ past_key_values=None, # DynamicCache
2814
+ attention_mask=None, # [1, 3602] 1
2815
+ inputs_embeds=None, # None
2816
+ cache_position=None, # [ 0, 1, 2, ..., 3599, 3600, 3601]
2817
+ position_ids=None, # None
2818
+ use_cache=True,
2819
+ pixel_values=None, # [14308, 1176]
2820
+ pixel_values_videos=None,
2821
+ image_grid_thw=None, # [1, 3] # [[ 1, 98, 146]]
2822
+ video_grid_thw=None,
2823
+ second_per_grid_ts=None,
2824
+ **kwargs,
2825
+ ):
2826
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
2827
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
2828
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
2829
+ batch_size, seq_length = input_ids.shape
2830
+ if past_key_values is None:
2831
+ cache_position = paddle.arange(input_ids.shape[1])
2832
+ else:
2833
+ cache_position = paddle.to_tensor([seq_length - 1])
2834
+
2835
+ if past_key_values is not None:
2836
+ input_ids = input_ids[:, -1].unsqueeze(-1)
2837
+
2838
+ rope_deltas = kwargs.get("rope_deltas", None)
2839
+
2840
+ if attention_mask is not None and position_ids is None:
2841
+ if cache_position is None or (
2842
+ cache_position is not None and cache_position[0] == 0
2843
+ ):
2844
+ position_ids, rope_deltas = self.get_rope_index(
2845
+ self.config.vision_config.spatial_merge_size,
2846
+ self.config.image_token_id,
2847
+ self.config.video_token_id,
2848
+ self.config.vision_start_token_id,
2849
+ self.config.vision_config.tokens_per_second,
2850
+ input_ids,
2851
+ image_grid_thw,
2852
+ video_grid_thw,
2853
+ second_per_grid_ts,
2854
+ attention_mask,
2855
+ )
2856
+ else:
2857
+ batch_size, seq_length = input_ids.shape
2858
+ delta = (
2859
+ cache_position[0] + rope_deltas
2860
+ if cache_position is not None and rope_deltas is not None
2861
+ else 0
2862
+ )
2863
+ position_ids = paddle.arange(seq_length)
2864
+ position_ids = position_ids.reshape([1, -1]).expand([batch_size, -1])
2865
+ position_ids = position_ids + delta
2866
+ position_ids = position_ids.unsqueeze(axis=0).expand([3, -1, -1])
2867
+
2868
+ if cache_position[0] != 0:
2869
+ pixel_values = None
2870
+ pixel_values_videos = None
2871
+
2872
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
2873
+ if inputs_embeds is not None and cache_position[0] == 0:
2874
+ model_inputs = {"inputs_embeds": inputs_embeds}
2875
+ else:
2876
+ model_inputs = {"input_ids": input_ids}
2877
+
2878
+ model_inputs.update(
2879
+ {
2880
+ "position_ids": position_ids, # [3, 1, 3602]
2881
+ "past_key_values": past_key_values, # DynamicCache()
2882
+ "use_cache": use_cache, # 1
2883
+ "attention_mask": attention_mask, # [1, 3602]
2884
+ "pixel_values": pixel_values, # [14308, 1176]
2885
+ "pixel_values_videos": pixel_values_videos,
2886
+ "image_grid_thw": image_grid_thw, # [[ 1, 98, 146]]
2887
+ "video_grid_thw": video_grid_thw,
2888
+ "rope_deltas": rope_deltas, # [[-3504]]
2889
+ "second_per_grid_ts": second_per_grid_ts,
2890
+ }
2891
+ )
2892
+ return model_inputs
2893
+
2894
+
2895
+ class PPDocBee2TransformerPretrainedModel(Qwen2_5_VisionTransformerPretrainedModel):
2896
+ layer_idx = 15
2897
+
2898
+ def forward(
2899
+ self, hidden_states: paddle.Tensor, grid_thw: paddle.Tensor
2900
+ ) -> paddle.Tensor:
2901
+ """
2902
+ Args:
2903
+ hidden_states (`paddle.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
2904
+ The final hidden states of the model.
2905
+ grid_thw (`paddle.Tensor` of shape `(num_images_or_videos, 3)`):
2906
+ The temporal, height and width of feature shape of each image in LLM.
2907
+ Returns:
2908
+ `paddle.Tensor`: hidden_states.
2909
+ """
2910
+ """
2911
+ Args:
2912
+ hidden_states (`paddle.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
2913
+ The final hidden states of the model.
2914
+ grid_thw (`paddle.Tensor` of shape `(num_images_or_videos, 3)`):
2915
+ The temporal, height and width of feature shape of each image in LLM.
2916
+
2917
+ Returns:
2918
+ `paddle.Tensor`: hidden_states.
2919
+ """
2920
+ hidden_states = self.patch_embed(hidden_states)
2921
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
2922
+ window_index, cu_window_seqlens = self.get_window_index(grid_thw)
2923
+ cu_window_seqlens = paddle.to_tensor(
2924
+ data=cu_window_seqlens, dtype="int32", place=hidden_states.place
2925
+ )
2926
+ cu_window_seqlens = paddle.unique_consecutive(x=cu_window_seqlens)
2927
+ seq_len, _ = tuple(hidden_states.shape)
2928
+ hidden_states = hidden_states.reshape(
2929
+ [seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
2930
+ )
2931
+ hidden_states = hidden_states[window_index, :, :]
2932
+ hidden_states = hidden_states.reshape([seq_len, -1])
2933
+ rotary_pos_emb = rotary_pos_emb.reshape(
2934
+ [seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1]
2935
+ )
2936
+ rotary_pos_emb = rotary_pos_emb[window_index, :, :]
2937
+ rotary_pos_emb = rotary_pos_emb.reshape([seq_len, -1])
2938
+
2939
+ cu_seqlens = paddle.repeat_interleave(
2940
+ grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
2941
+ ).cumsum(axis=0, dtype="int32")
2942
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
2943
+ multi_vit = []
2944
+ for layer_num, blk in enumerate(self.blocks):
2945
+ if layer_num in self.fullatt_block_indexes:
2946
+ cu_seqlens_now = cu_seqlens
2947
+ else:
2948
+ cu_seqlens_now = cu_window_seqlens
2949
+ if self.enable_recompute and self.training:
2950
+ hidden_states = self.recompute_training_full(
2951
+ blk, hidden_states, cu_seqlens_now, rotary_pos_emb
2952
+ )
2953
+ else:
2954
+ hidden_states = blk(
2955
+ hidden_states,
2956
+ cu_seqlens=cu_seqlens_now,
2957
+ rotary_pos_emb=rotary_pos_emb,
2958
+ )
2959
+
2960
+ multi_vit.append(hidden_states)
2961
+ layer_idx = type(self).layer_idx
2962
+ hidden_states = self.merger(hidden_states + multi_vit[layer_idx])
2963
+ reverse_indices = paddle.argsort(x=window_index)
2964
+ hidden_states = hidden_states[reverse_indices, :]
2965
+
2966
+ return hidden_states
2967
+
2968
+
2969
+ class PPDocBee2Inference(Qwen2_5_VLForConditionalGeneration):
2970
+ def __init__(self, config, attn_implementation="eager"):
2971
+ super(Qwen2_5_VLForConditionalGeneration, self).__init__(config)
2972
+ config._attn_implementation = attn_implementation
2973
+ config.vision_config._attn_implementation = attn_implementation
2974
+
2975
+ self.visual = PPDocBee2TransformerPretrainedModel._from_config(
2976
+ config.vision_config
2977
+ )
2978
+ self.model = Qwen2_5_VLModel(config)
2979
+ self.vocab_size = config.vocab_size
2980
+ if config.tie_word_embeddings:
2981
+ self.lm_head = Qwen2LMHead(
2982
+ config,
2983
+ embedding_weights=self.model.embed_tokens.weight,
2984
+ transpose_y=True,
2985
+ )
2986
+ self.tie_weights()
2987
+ else:
2988
+ self.lm_head = Qwen2LMHead(config)
2989
+ self.padding_side = "left"
2990
+
2991
+ self.enable_recompute = False
2992
+
2993
+ def generate(self, inputs, **kwargs):
2994
+ max_new_tokens = kwargs.get("max_new_tokens", 2048)
2995
+ temperature = kwargs.get("temperature", 0.1)
2996
+ top_p = kwargs.get("top_p", 0.001)
2997
+ top_k = kwargs.get("top_k", 1)
2998
+ with paddle.no_grad():
2999
+ generated_ids = super().generate(
3000
+ **inputs,
3001
+ max_new_tokens=max_new_tokens,
3002
+ temperature=temperature,
3003
+ top_p=top_p,
3004
+ top_k=top_k,
3005
+ )
3006
+ return generated_ids