paddlex 2.1.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1786) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +35 -19
  3. paddlex/__main__.py +39 -0
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
  6. paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  7. paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
  8. paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
  9. paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
  10. paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  11. paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
  12. paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  13. paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  14. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  15. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  16. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  17. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  18. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  19. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
  20. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
  21. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
  22. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  23. paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
  24. paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
  25. paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
  26. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  27. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  28. paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
  29. paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
  30. paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
  31. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  32. paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
  33. paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
  34. paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
  35. paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
  36. paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
  37. paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
  38. paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
  39. paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
  40. paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
  41. paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
  42. paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
  43. paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
  44. paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
  45. paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
  46. paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
  47. paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
  48. paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
  49. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  50. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  51. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  52. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  53. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  54. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  55. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  56. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  57. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  58. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  59. paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
  60. paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  61. paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
  62. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  63. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  64. paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
  65. paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
  66. paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
  67. paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
  68. paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
  69. paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
  70. paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
  71. paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
  72. paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
  73. paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
  74. paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
  75. paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
  76. paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
  77. paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
  78. paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
  79. paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
  80. paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
  81. paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
  82. paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
  83. paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
  84. paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
  85. paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
  86. paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
  87. paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
  88. paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
  89. paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
  90. paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
  91. paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
  92. paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
  93. paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
  94. paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
  95. paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
  96. paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
  97. paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
  98. paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
  99. paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
  100. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  101. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  102. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  103. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  104. paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  105. paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  106. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
  107. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  108. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  109. paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  110. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  111. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  112. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  113. paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  114. paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
  115. paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
  116. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  117. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  118. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  119. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  120. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  121. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  122. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  123. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  124. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  125. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  126. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  127. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  128. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  129. paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  130. paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
  131. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  132. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  133. paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
  134. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  135. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  136. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  137. paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
  138. paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
  139. paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
  140. paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
  141. paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
  142. paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
  143. paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
  144. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
  145. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
  146. paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  147. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  148. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  149. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  150. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  151. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  152. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  153. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  154. paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
  155. paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
  156. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  157. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  158. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  159. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  160. paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
  161. paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
  162. paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  163. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  164. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  165. paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  166. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  167. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  168. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  169. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  170. paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  171. paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  172. paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  173. paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  174. paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  175. paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
  176. paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
  177. paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
  178. paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
  179. paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
  180. paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
  181. paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
  182. paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
  183. paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
  184. paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
  185. paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
  186. paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
  187. paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
  188. paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
  189. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  190. paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  191. paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  192. paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  193. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  194. paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
  195. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  196. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  197. paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  198. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  199. paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
  200. paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
  201. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  202. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  203. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  204. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  205. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  206. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  207. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  208. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  209. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  210. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  211. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  212. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  213. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  214. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  215. paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
  216. paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
  217. paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
  218. paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
  219. paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
  220. paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
  221. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  222. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  223. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  224. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  225. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  226. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  227. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  228. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  229. paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
  230. paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
  231. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  232. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  233. paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  234. paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
  235. paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
  236. paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
  237. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  238. paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  239. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  240. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  241. paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
  242. paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
  243. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  244. paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  245. paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  246. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  247. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  248. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  249. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  250. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  251. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  252. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  253. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  254. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  255. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  256. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  257. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  258. paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  259. paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  260. paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  261. paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  262. paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  263. paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
  264. paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
  265. paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
  266. paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
  267. paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
  268. paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
  269. paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
  270. paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
  271. paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  272. paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  273. paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  274. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  275. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  276. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  277. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  278. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  279. paddlex/configs/pipelines/OCR.yaml +45 -0
  280. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +151 -0
  281. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +237 -0
  282. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  283. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  284. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  285. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  286. paddlex/configs/pipelines/doc_understanding.yaml +9 -0
  287. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  288. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  289. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  290. paddlex/configs/pipelines/image_classification.yaml +10 -0
  291. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  292. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  293. paddlex/configs/pipelines/layout_parsing.yaml +102 -0
  294. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  295. paddlex/configs/pipelines/object_detection.yaml +10 -0
  296. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  297. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  298. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  299. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  300. paddlex/configs/pipelines/seal_recognition.yaml +52 -0
  301. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  302. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  303. paddlex/configs/pipelines/table_recognition.yaml +57 -0
  304. paddlex/configs/pipelines/table_recognition_v2.yaml +82 -0
  305. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  306. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  307. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  308. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  309. paddlex/configs/pipelines/video_classification.yaml +9 -0
  310. paddlex/configs/pipelines/video_detection.yaml +10 -0
  311. paddlex/constants.py +17 -0
  312. paddlex/engine.py +56 -0
  313. paddlex/hpip_links.html +31 -0
  314. paddlex/inference/__init__.py +19 -0
  315. paddlex/inference/common/__init__.py +13 -0
  316. paddlex/inference/common/batch_sampler/__init__.py +21 -0
  317. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
  318. paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
  319. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
  320. paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
  321. paddlex/inference/common/batch_sampler/image_batch_sampler.py +121 -0
  322. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
  323. paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
  324. paddlex/inference/common/reader/__init__.py +19 -0
  325. paddlex/inference/common/reader/audio_reader.py +46 -0
  326. paddlex/inference/common/reader/det_3d_reader.py +241 -0
  327. paddlex/inference/common/reader/image_reader.py +73 -0
  328. paddlex/inference/common/reader/ts_reader.py +46 -0
  329. paddlex/inference/common/reader/video_reader.py +42 -0
  330. paddlex/inference/common/result/__init__.py +29 -0
  331. paddlex/inference/common/result/base_cv_result.py +41 -0
  332. paddlex/inference/common/result/base_result.py +72 -0
  333. paddlex/inference/common/result/base_ts_result.py +41 -0
  334. paddlex/inference/common/result/base_video_result.py +36 -0
  335. paddlex/inference/common/result/mixin.py +709 -0
  336. paddlex/inference/models/__init__.py +86 -0
  337. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  338. paddlex/inference/models/anomaly_detection/predictor.py +135 -0
  339. paddlex/inference/models/anomaly_detection/processors.py +53 -0
  340. paddlex/inference/models/anomaly_detection/result.py +71 -0
  341. paddlex/inference/models/base/__init__.py +15 -0
  342. paddlex/inference/models/base/predictor/__init__.py +15 -0
  343. paddlex/inference/models/base/predictor/base_predictor.py +414 -0
  344. paddlex/inference/models/common/__init__.py +26 -0
  345. paddlex/inference/models/common/static_infer.py +801 -0
  346. paddlex/inference/models/common/tokenizer/__init__.py +21 -0
  347. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  348. paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
  349. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
  350. paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
  351. paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
  352. paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
  353. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
  354. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
  355. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  356. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  357. paddlex/inference/models/common/ts/__init__.py +15 -0
  358. paddlex/inference/models/common/ts/funcs.py +540 -0
  359. paddlex/inference/models/common/ts/processors.py +322 -0
  360. paddlex/inference/models/common/vision/__init__.py +23 -0
  361. paddlex/inference/models/common/vision/funcs.py +98 -0
  362. paddlex/inference/models/common/vision/processors.py +285 -0
  363. paddlex/inference/models/common/vlm/__init__.py +13 -0
  364. paddlex/inference/models/common/vlm/activations.py +189 -0
  365. paddlex/inference/models/common/vlm/bert_padding.py +127 -0
  366. paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
  367. paddlex/inference/models/common/vlm/distributed.py +229 -0
  368. paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
  369. paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
  370. paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
  371. paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
  372. paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
  373. paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
  374. paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
  375. paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
  376. paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
  377. paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
  378. paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
  379. paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
  380. paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
  381. paddlex/inference/models/common/vlm/utils.py +109 -0
  382. paddlex/inference/models/doc_vlm/__init__.py +15 -0
  383. paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
  384. paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
  385. paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
  386. paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
  387. paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
  388. paddlex/inference/models/doc_vlm/predictor.py +253 -0
  389. paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
  390. paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
  391. paddlex/inference/models/doc_vlm/processors/common.py +561 -0
  392. paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
  393. paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
  394. paddlex/inference/models/doc_vlm/result.py +21 -0
  395. paddlex/inference/models/face_feature/__init__.py +15 -0
  396. paddlex/inference/models/face_feature/predictor.py +66 -0
  397. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  398. paddlex/inference/models/formula_recognition/predictor.py +193 -0
  399. paddlex/inference/models/formula_recognition/processors.py +1015 -0
  400. paddlex/inference/models/formula_recognition/result.py +411 -0
  401. paddlex/inference/models/image_classification/__init__.py +15 -0
  402. paddlex/inference/models/image_classification/predictor.py +172 -0
  403. paddlex/inference/models/image_classification/processors.py +89 -0
  404. paddlex/inference/models/image_classification/result.py +93 -0
  405. paddlex/inference/models/image_feature/__init__.py +15 -0
  406. paddlex/inference/models/image_feature/predictor.py +146 -0
  407. paddlex/inference/models/image_feature/processors.py +31 -0
  408. paddlex/inference/models/image_feature/result.py +32 -0
  409. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  410. paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
  411. paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
  412. paddlex/inference/models/image_multilabel_classification/result.py +96 -0
  413. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  414. paddlex/inference/models/image_unwarping/predictor.py +97 -0
  415. paddlex/inference/models/image_unwarping/processors.py +92 -0
  416. paddlex/inference/models/image_unwarping/result.py +47 -0
  417. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  418. paddlex/inference/models/instance_segmentation/predictor.py +202 -0
  419. paddlex/inference/models/instance_segmentation/processors.py +102 -0
  420. paddlex/inference/models/instance_segmentation/result.py +162 -0
  421. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  422. paddlex/inference/models/keypoint_detection/predictor.py +190 -0
  423. paddlex/inference/models/keypoint_detection/processors.py +367 -0
  424. paddlex/inference/models/keypoint_detection/result.py +197 -0
  425. paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
  426. paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
  427. paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
  428. paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
  429. paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
  430. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  431. paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
  432. paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
  433. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  434. paddlex/inference/models/object_detection/__init__.py +15 -0
  435. paddlex/inference/models/object_detection/predictor.py +344 -0
  436. paddlex/inference/models/object_detection/processors.py +885 -0
  437. paddlex/inference/models/object_detection/result.py +114 -0
  438. paddlex/inference/models/object_detection/utils.py +70 -0
  439. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  440. paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
  441. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
  442. paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
  443. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
  444. paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
  445. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  446. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
  447. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  448. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  449. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  450. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
  451. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  452. paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
  453. paddlex/inference/models/semantic_segmentation/processors.py +117 -0
  454. paddlex/inference/models/semantic_segmentation/result.py +73 -0
  455. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  456. paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
  457. paddlex/inference/models/table_structure_recognition/processors.py +229 -0
  458. paddlex/inference/models/table_structure_recognition/result.py +63 -0
  459. paddlex/inference/models/text_detection/__init__.py +15 -0
  460. paddlex/inference/models/text_detection/predictor.py +191 -0
  461. paddlex/inference/models/text_detection/processors.py +538 -0
  462. paddlex/inference/models/text_detection/result.py +46 -0
  463. paddlex/inference/models/text_recognition/__init__.py +15 -0
  464. paddlex/inference/models/text_recognition/predictor.py +98 -0
  465. paddlex/inference/models/text_recognition/processors.py +245 -0
  466. paddlex/inference/models/text_recognition/result.py +76 -0
  467. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  468. paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
  469. paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
  470. paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
  471. paddlex/inference/models/ts_classification/__init__.py +15 -0
  472. paddlex/inference/models/ts_classification/predictor.py +122 -0
  473. paddlex/inference/models/ts_classification/processors.py +122 -0
  474. paddlex/inference/models/ts_classification/result.py +87 -0
  475. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  476. paddlex/inference/models/ts_forecasting/predictor.py +154 -0
  477. paddlex/inference/models/ts_forecasting/processors.py +158 -0
  478. paddlex/inference/models/ts_forecasting/result.py +96 -0
  479. paddlex/inference/models/video_classification/__init__.py +15 -0
  480. paddlex/inference/models/video_classification/predictor.py +141 -0
  481. paddlex/inference/models/video_classification/processors.py +409 -0
  482. paddlex/inference/models/video_classification/result.py +96 -0
  483. paddlex/inference/models/video_detection/__init__.py +15 -0
  484. paddlex/inference/models/video_detection/predictor.py +129 -0
  485. paddlex/inference/models/video_detection/processors.py +463 -0
  486. paddlex/inference/models/video_detection/result.py +109 -0
  487. paddlex/inference/pipelines/__init__.py +239 -0
  488. paddlex/inference/pipelines/_parallel.py +172 -0
  489. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  490. paddlex/inference/pipelines/anomaly_detection/pipeline.py +82 -0
  491. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  492. paddlex/inference/pipelines/attribute_recognition/pipeline.py +120 -0
  493. paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
  494. paddlex/inference/pipelines/base.py +156 -0
  495. paddlex/inference/pipelines/components/__init__.py +29 -0
  496. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  497. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  498. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  499. paddlex/inference/pipelines/components/common/__init__.py +19 -0
  500. paddlex/inference/pipelines/components/common/base_operator.py +37 -0
  501. paddlex/inference/pipelines/components/common/base_result.py +66 -0
  502. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
  503. paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
  504. paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
  505. paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
  506. paddlex/inference/pipelines/components/common/warp_image.py +50 -0
  507. paddlex/inference/pipelines/components/faisser.py +357 -0
  508. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  509. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  510. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
  511. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  512. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  513. paddlex/inference/pipelines/components/retriever/base.py +228 -0
  514. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  515. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
  516. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  517. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  518. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  519. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +209 -0
  520. paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
  521. paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
  522. paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
  523. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  524. paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
  525. paddlex/inference/pipelines/face_recognition/result.py +44 -0
  526. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  527. paddlex/inference/pipelines/formula_recognition/pipeline.py +347 -0
  528. paddlex/inference/pipelines/formula_recognition/result.py +282 -0
  529. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  530. paddlex/inference/pipelines/image_classification/pipeline.py +90 -0
  531. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  532. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +97 -0
  533. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  534. paddlex/inference/pipelines/instance_segmentation/pipeline.py +91 -0
  535. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  536. paddlex/inference/pipelines/keypoint_detection/pipeline.py +158 -0
  537. paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
  538. paddlex/inference/pipelines/layout_parsing/pipeline.py +568 -0
  539. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +1382 -0
  540. paddlex/inference/pipelines/layout_parsing/result.py +191 -0
  541. paddlex/inference/pipelines/layout_parsing/result_v2.py +745 -0
  542. paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
  543. paddlex/inference/pipelines/layout_parsing/utils.py +951 -0
  544. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
  545. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1143 -0
  546. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +562 -0
  547. paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
  548. paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
  549. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  550. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
  551. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  552. paddlex/inference/pipelines/object_detection/pipeline.py +115 -0
  553. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  554. paddlex/inference/pipelines/ocr/pipeline.py +463 -0
  555. paddlex/inference/pipelines/ocr/result.py +255 -0
  556. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  557. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
  558. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  559. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
  560. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  561. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
  562. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +781 -0
  563. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +992 -0
  564. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  565. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
  566. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  567. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  568. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +95 -0
  569. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  570. paddlex/inference/pipelines/seal_recognition/pipeline.py +335 -0
  571. paddlex/inference/pipelines/seal_recognition/result.py +89 -0
  572. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  573. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +95 -0
  574. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  575. paddlex/inference/pipelines/small_object_detection/pipeline.py +95 -0
  576. paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
  577. paddlex/inference/pipelines/table_recognition/pipeline.py +486 -0
  578. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +1395 -0
  579. paddlex/inference/pipelines/table_recognition/result.py +218 -0
  580. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
  581. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +488 -0
  582. paddlex/inference/pipelines/table_recognition/utils.py +44 -0
  583. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  584. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
  585. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  586. paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
  587. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  588. paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
  589. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  590. paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
  591. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  592. paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
  593. paddlex/inference/serving/__init__.py +17 -0
  594. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  595. paddlex/inference/serving/basic_serving/_app.py +221 -0
  596. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
  597. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  598. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +104 -0
  599. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  600. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
  601. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
  602. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
  603. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
  604. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
  605. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
  606. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
  607. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
  608. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
  609. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
  610. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +117 -0
  611. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
  612. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
  613. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
  614. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
  615. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
  616. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
  617. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
  618. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +193 -0
  619. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +223 -0
  620. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
  621. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +143 -0
  622. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
  623. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
  624. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
  625. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
  626. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
  627. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +113 -0
  628. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
  629. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
  630. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
  631. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
  632. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
  633. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
  634. paddlex/inference/serving/basic_serving/_server.py +40 -0
  635. paddlex/inference/serving/infra/__init__.py +13 -0
  636. paddlex/inference/serving/infra/config.py +36 -0
  637. paddlex/inference/serving/infra/models.py +79 -0
  638. paddlex/inference/serving/infra/storage.py +180 -0
  639. paddlex/inference/serving/infra/utils.py +285 -0
  640. paddlex/inference/serving/schemas/__init__.py +13 -0
  641. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  642. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  643. paddlex/inference/serving/schemas/doc_understanding.py +78 -0
  644. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  645. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  646. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  647. paddlex/inference/serving/schemas/image_classification.py +45 -0
  648. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  649. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  650. paddlex/inference/serving/schemas/layout_parsing.py +71 -0
  651. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  652. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  653. paddlex/inference/serving/schemas/object_detection.py +52 -0
  654. paddlex/inference/serving/schemas/ocr.py +60 -0
  655. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  656. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  657. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  658. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +133 -0
  659. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +150 -0
  660. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  661. paddlex/inference/serving/schemas/pp_structurev3.py +88 -0
  662. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  663. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  664. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  665. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  666. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  667. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  668. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  669. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  670. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  671. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  672. paddlex/inference/serving/schemas/table_recognition_v2.py +69 -0
  673. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  674. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  675. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  676. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  677. paddlex/inference/serving/schemas/video_classification.py +44 -0
  678. paddlex/inference/serving/schemas/video_detection.py +56 -0
  679. paddlex/inference/utils/__init__.py +13 -0
  680. paddlex/inference/utils/benchmark.py +379 -0
  681. paddlex/inference/utils/color_map.py +123 -0
  682. paddlex/inference/utils/get_pipeline_path.py +27 -0
  683. paddlex/inference/utils/hpi.py +254 -0
  684. paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
  685. paddlex/inference/utils/io/__init__.py +36 -0
  686. paddlex/inference/utils/io/readers.py +504 -0
  687. paddlex/inference/utils/io/style.py +381 -0
  688. paddlex/inference/utils/io/tablepyxl.py +157 -0
  689. paddlex/inference/utils/io/writers.py +458 -0
  690. paddlex/inference/utils/model_paths.py +48 -0
  691. paddlex/inference/utils/new_ir_blocklist.py +27 -0
  692. paddlex/inference/utils/official_models.py +367 -0
  693. paddlex/inference/utils/pp_option.py +339 -0
  694. paddlex/inference/utils/trt_blocklist.py +43 -0
  695. paddlex/inference/utils/trt_config.py +420 -0
  696. paddlex/model.py +131 -0
  697. paddlex/modules/__init__.py +115 -0
  698. paddlex/modules/anomaly_detection/__init__.py +18 -0
  699. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +94 -0
  700. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  701. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  702. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  703. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +233 -0
  704. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  705. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  706. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +76 -0
  707. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  708. paddlex/modules/anomaly_detection/exportor.py +22 -0
  709. paddlex/modules/anomaly_detection/model_list.py +16 -0
  710. paddlex/modules/anomaly_detection/trainer.py +70 -0
  711. paddlex/modules/base/__init__.py +18 -0
  712. paddlex/modules/base/build_model.py +33 -0
  713. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  714. paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
  715. paddlex/modules/base/dataset_checker/utils.py +108 -0
  716. paddlex/modules/base/evaluator.py +170 -0
  717. paddlex/modules/base/exportor.py +145 -0
  718. paddlex/modules/base/trainer.py +144 -0
  719. paddlex/modules/base/utils/__init__.py +13 -0
  720. paddlex/modules/base/utils/cinn_setting.py +89 -0
  721. paddlex/modules/base/utils/coco_eval.py +94 -0
  722. paddlex/modules/base/utils/topk_eval.py +118 -0
  723. paddlex/modules/doc_vlm/__init__.py +18 -0
  724. paddlex/modules/doc_vlm/dataset_checker.py +29 -0
  725. paddlex/modules/doc_vlm/evaluator.py +29 -0
  726. paddlex/modules/doc_vlm/exportor.py +29 -0
  727. paddlex/modules/doc_vlm/model_list.py +16 -0
  728. paddlex/modules/doc_vlm/trainer.py +41 -0
  729. paddlex/modules/face_recognition/__init__.py +18 -0
  730. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  731. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  732. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +172 -0
  733. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  734. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  735. paddlex/modules/face_recognition/evaluator.py +52 -0
  736. paddlex/modules/face_recognition/exportor.py +22 -0
  737. paddlex/modules/face_recognition/model_list.py +15 -0
  738. paddlex/modules/face_recognition/trainer.py +75 -0
  739. paddlex/modules/formula_recognition/__init__.py +18 -0
  740. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  741. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  742. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
  743. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
  744. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  745. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  746. paddlex/modules/formula_recognition/evaluator.py +80 -0
  747. paddlex/modules/formula_recognition/exportor.py +22 -0
  748. paddlex/modules/formula_recognition/model_list.py +23 -0
  749. paddlex/modules/formula_recognition/trainer.py +123 -0
  750. paddlex/modules/general_recognition/__init__.py +18 -0
  751. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  752. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  753. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +96 -0
  754. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +99 -0
  755. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +100 -0
  756. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  757. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  758. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +147 -0
  759. paddlex/modules/general_recognition/evaluator.py +31 -0
  760. paddlex/modules/general_recognition/exportor.py +22 -0
  761. paddlex/modules/general_recognition/model_list.py +19 -0
  762. paddlex/modules/general_recognition/trainer.py +52 -0
  763. paddlex/modules/image_classification/__init__.py +18 -0
  764. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  765. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  766. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +92 -0
  767. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  768. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  769. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  770. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  771. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  772. paddlex/modules/image_classification/evaluator.py +43 -0
  773. paddlex/modules/image_classification/exportor.py +22 -0
  774. paddlex/modules/image_classification/model_list.py +99 -0
  775. paddlex/modules/image_classification/trainer.py +82 -0
  776. paddlex/modules/image_unwarping/__init__.py +13 -0
  777. paddlex/modules/image_unwarping/model_list.py +17 -0
  778. paddlex/modules/instance_segmentation/__init__.py +18 -0
  779. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +107 -0
  780. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  781. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  782. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +95 -0
  783. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  784. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +122 -0
  785. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  786. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +223 -0
  787. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  788. paddlex/modules/instance_segmentation/exportor.py +22 -0
  789. paddlex/modules/instance_segmentation/model_list.py +33 -0
  790. paddlex/modules/instance_segmentation/trainer.py +31 -0
  791. paddlex/modules/keypoint_detection/__init__.py +18 -0
  792. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  793. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  794. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  795. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  796. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
  797. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  798. paddlex/modules/keypoint_detection/exportor.py +22 -0
  799. paddlex/modules/keypoint_detection/model_list.py +16 -0
  800. paddlex/modules/keypoint_detection/trainer.py +39 -0
  801. paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
  802. paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
  803. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  804. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  805. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
  806. paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
  807. paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
  808. paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
  809. paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
  810. paddlex/modules/multilabel_classification/__init__.py +18 -0
  811. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  812. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  813. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +94 -0
  814. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  815. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +120 -0
  816. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  817. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  818. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +149 -0
  819. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  820. paddlex/modules/multilabel_classification/exportor.py +22 -0
  821. paddlex/modules/multilabel_classification/model_list.py +24 -0
  822. paddlex/modules/multilabel_classification/trainer.py +85 -0
  823. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  824. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  825. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  826. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  827. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  828. paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
  829. paddlex/modules/object_detection/__init__.py +18 -0
  830. paddlex/modules/object_detection/dataset_checker/__init__.py +106 -0
  831. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  832. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  833. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  834. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +438 -0
  835. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +123 -0
  836. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  837. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +193 -0
  838. paddlex/modules/object_detection/evaluator.py +57 -0
  839. paddlex/modules/object_detection/exportor.py +22 -0
  840. paddlex/modules/object_detection/model_list.py +86 -0
  841. paddlex/modules/object_detection/trainer.py +98 -0
  842. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  843. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  844. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  845. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  846. paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
  847. paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
  848. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  849. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  850. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  851. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  852. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  853. paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
  854. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  855. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +109 -0
  856. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  857. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +76 -0
  858. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  859. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +165 -0
  860. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  861. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  862. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +75 -0
  863. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  864. paddlex/modules/semantic_segmentation/exportor.py +31 -0
  865. paddlex/modules/semantic_segmentation/model_list.py +37 -0
  866. paddlex/modules/semantic_segmentation/trainer.py +72 -0
  867. paddlex/modules/table_recognition/__init__.py +18 -0
  868. paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
  869. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  870. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +59 -0
  871. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  872. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  873. paddlex/modules/table_recognition/evaluator.py +43 -0
  874. paddlex/modules/table_recognition/exportor.py +22 -0
  875. paddlex/modules/table_recognition/model_list.py +21 -0
  876. paddlex/modules/table_recognition/trainer.py +67 -0
  877. paddlex/modules/text_detection/__init__.py +18 -0
  878. paddlex/modules/text_detection/dataset_checker/__init__.py +107 -0
  879. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  880. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +220 -0
  881. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
  882. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  883. paddlex/modules/text_detection/evaluator.py +41 -0
  884. paddlex/modules/text_detection/exportor.py +22 -0
  885. paddlex/modules/text_detection/model_list.py +26 -0
  886. paddlex/modules/text_detection/trainer.py +65 -0
  887. paddlex/modules/text_recognition/__init__.py +18 -0
  888. paddlex/modules/text_recognition/dataset_checker/__init__.py +125 -0
  889. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  890. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +162 -0
  891. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +104 -0
  892. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  893. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  894. paddlex/modules/text_recognition/evaluator.py +64 -0
  895. paddlex/modules/text_recognition/exportor.py +22 -0
  896. paddlex/modules/text_recognition/model_list.py +36 -0
  897. paddlex/modules/text_recognition/trainer.py +105 -0
  898. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  899. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +111 -0
  900. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  901. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  902. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  903. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +74 -0
  904. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  905. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  906. paddlex/modules/ts_anomaly_detection/exportor.py +44 -0
  907. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  908. paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
  909. paddlex/modules/ts_classification/__init__.py +19 -0
  910. paddlex/modules/ts_classification/dataset_checker/__init__.py +111 -0
  911. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  912. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +77 -0
  913. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  914. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +74 -0
  915. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  916. paddlex/modules/ts_classification/evaluator.py +66 -0
  917. paddlex/modules/ts_classification/exportor.py +44 -0
  918. paddlex/modules/ts_classification/model_list.py +18 -0
  919. paddlex/modules/ts_classification/trainer.py +108 -0
  920. paddlex/modules/ts_forecast/__init__.py +19 -0
  921. paddlex/modules/ts_forecast/dataset_checker/__init__.py +111 -0
  922. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  923. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  924. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  925. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +73 -0
  926. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  927. paddlex/modules/ts_forecast/evaluator.py +66 -0
  928. paddlex/modules/ts_forecast/exportor.py +44 -0
  929. paddlex/modules/ts_forecast/model_list.py +24 -0
  930. paddlex/modules/ts_forecast/trainer.py +108 -0
  931. paddlex/modules/video_classification/__init__.py +18 -0
  932. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  933. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  934. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  935. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
  936. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  937. paddlex/modules/video_classification/evaluator.py +44 -0
  938. paddlex/modules/video_classification/exportor.py +22 -0
  939. paddlex/modules/video_classification/model_list.py +19 -0
  940. paddlex/modules/video_classification/trainer.py +88 -0
  941. paddlex/modules/video_detection/__init__.py +18 -0
  942. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  943. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  944. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
  945. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
  946. paddlex/modules/video_detection/evaluator.py +42 -0
  947. paddlex/modules/video_detection/exportor.py +22 -0
  948. paddlex/modules/video_detection/model_list.py +15 -0
  949. paddlex/modules/video_detection/trainer.py +82 -0
  950. paddlex/ops/__init__.py +152 -0
  951. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
  952. paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
  953. paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
  954. paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
  955. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
  956. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
  957. paddlex/ops/setup.py +37 -0
  958. paddlex/ops/voxel/voxelize_op.cc +194 -0
  959. paddlex/ops/voxel/voxelize_op.cu +346 -0
  960. paddlex/paddlex_cli.py +476 -0
  961. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  962. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  963. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  964. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  965. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  966. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  967. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
  968. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  969. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  970. paddlex/repo_apis/PaddleClas_api/cls/config.py +595 -0
  971. paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
  972. paddlex/repo_apis/PaddleClas_api/cls/register.py +907 -0
  973. paddlex/repo_apis/PaddleClas_api/cls/runner.py +218 -0
  974. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  975. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  976. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +20 -0
  977. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  978. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +50 -0
  979. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  980. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  981. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  982. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +457 -0
  983. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
  984. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +262 -0
  985. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +225 -0
  986. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  987. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +540 -0
  988. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +429 -0
  989. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +245 -0
  990. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1135 -0
  991. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +225 -0
  992. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  993. paddlex/repo_apis/PaddleOCR_api/__init__.py +22 -0
  994. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  995. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  996. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
  997. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +398 -0
  998. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +99 -0
  999. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
  1000. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  1001. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  1002. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  1003. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +70 -0
  1004. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  1005. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  1006. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  1007. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  1008. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +107 -0
  1009. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  1010. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  1011. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +564 -0
  1012. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +398 -0
  1013. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +216 -0
  1014. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +239 -0
  1015. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  1016. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  1017. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  1018. paddlex/repo_apis/PaddleSeg_api/seg/config.py +183 -0
  1019. paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
  1020. paddlex/repo_apis/PaddleSeg_api/seg/register.py +272 -0
  1021. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +261 -0
  1022. paddlex/repo_apis/PaddleTS_api/__init__.py +20 -0
  1023. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  1024. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +88 -0
  1025. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  1026. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  1027. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  1028. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +244 -0
  1029. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
  1030. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  1031. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  1032. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +72 -0
  1033. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  1034. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  1035. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  1036. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +136 -0
  1037. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  1038. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  1039. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  1040. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  1041. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
  1042. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  1043. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
  1044. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
  1045. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  1046. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
  1047. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  1048. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
  1049. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
  1050. paddlex/repo_apis/__init__.py +13 -0
  1051. paddlex/repo_apis/base/__init__.py +22 -0
  1052. paddlex/repo_apis/base/config.py +237 -0
  1053. paddlex/repo_apis/base/model.py +563 -0
  1054. paddlex/repo_apis/base/register.py +135 -0
  1055. paddlex/repo_apis/base/runner.py +390 -0
  1056. paddlex/repo_apis/base/utils/__init__.py +13 -0
  1057. paddlex/repo_apis/base/utils/arg.py +64 -0
  1058. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  1059. paddlex/repo_manager/__init__.py +17 -0
  1060. paddlex/repo_manager/core.py +253 -0
  1061. paddlex/repo_manager/meta.py +180 -0
  1062. paddlex/repo_manager/repo.py +425 -0
  1063. paddlex/repo_manager/utils.py +148 -0
  1064. paddlex/utils/__init__.py +1 -12
  1065. paddlex/utils/cache.py +146 -0
  1066. paddlex/utils/config.py +216 -0
  1067. paddlex/utils/custom_device_list.py +311 -0
  1068. paddlex/utils/deps.py +249 -0
  1069. paddlex/utils/device.py +195 -0
  1070. paddlex/utils/download.py +168 -182
  1071. paddlex/utils/env.py +32 -45
  1072. paddlex/utils/errors/__init__.py +17 -0
  1073. paddlex/utils/errors/dataset_checker.py +78 -0
  1074. paddlex/utils/errors/others.py +138 -0
  1075. paddlex/utils/file_interface.py +211 -0
  1076. paddlex/utils/flags.py +70 -0
  1077. paddlex/utils/fonts/__init__.py +97 -0
  1078. paddlex/utils/func_register.py +41 -0
  1079. paddlex/utils/install.py +87 -0
  1080. paddlex/utils/interactive_get_pipeline.py +55 -0
  1081. paddlex/utils/lazy_loader.py +68 -0
  1082. paddlex/utils/logging.py +140 -33
  1083. paddlex/utils/misc.py +201 -0
  1084. paddlex/utils/pipeline_arguments.py +719 -0
  1085. paddlex/utils/result_saver.py +58 -0
  1086. paddlex/utils/subclass_register.py +99 -0
  1087. paddlex/version.py +55 -0
  1088. paddlex-3.0.0.dist-info/METADATA +1168 -0
  1089. paddlex-3.0.0.dist-info/RECORD +1093 -0
  1090. paddlex-3.0.0.dist-info/WHEEL +5 -0
  1091. paddlex-3.0.0.dist-info/entry_points.txt +2 -0
  1092. paddlex-3.0.0.dist-info/licenses/LICENSE +169 -0
  1093. paddlex-3.0.0.dist-info/top_level.txt +1 -0
  1094. PaddleClas/__init__.py +0 -16
  1095. PaddleClas/deploy/__init__.py +0 -1
  1096. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  1097. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  1098. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  1099. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  1100. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  1101. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  1102. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  1103. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  1104. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  1105. PaddleClas/deploy/python/__init__.py +0 -0
  1106. PaddleClas/deploy/python/build_gallery.py +0 -214
  1107. PaddleClas/deploy/python/det_preprocess.py +0 -205
  1108. PaddleClas/deploy/python/postprocess.py +0 -161
  1109. PaddleClas/deploy/python/predict_cls.py +0 -142
  1110. PaddleClas/deploy/python/predict_det.py +0 -158
  1111. PaddleClas/deploy/python/predict_rec.py +0 -138
  1112. PaddleClas/deploy/python/predict_system.py +0 -144
  1113. PaddleClas/deploy/python/preprocess.py +0 -337
  1114. PaddleClas/deploy/utils/__init__.py +0 -5
  1115. PaddleClas/deploy/utils/config.py +0 -197
  1116. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  1117. PaddleClas/deploy/utils/encode_decode.py +0 -31
  1118. PaddleClas/deploy/utils/get_image_list.py +0 -49
  1119. PaddleClas/deploy/utils/logger.py +0 -120
  1120. PaddleClas/deploy/utils/predictor.py +0 -71
  1121. PaddleClas/deploy/vector_search/__init__.py +0 -1
  1122. PaddleClas/deploy/vector_search/interface.py +0 -272
  1123. PaddleClas/deploy/vector_search/test.py +0 -34
  1124. PaddleClas/hubconf.py +0 -788
  1125. PaddleClas/paddleclas.py +0 -552
  1126. PaddleClas/ppcls/__init__.py +0 -20
  1127. PaddleClas/ppcls/arch/__init__.py +0 -127
  1128. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  1129. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  1130. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  1131. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1132. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1133. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  1134. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1135. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1136. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1137. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1138. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1139. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  1140. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1141. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1142. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1143. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1144. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1145. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1146. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1147. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1148. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1149. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1150. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1151. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1152. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1153. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1154. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1155. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1156. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1157. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1158. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1159. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1160. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1161. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1162. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1163. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1164. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1165. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1166. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1167. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1168. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1169. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1170. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1171. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1172. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1173. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1174. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1175. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1176. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1177. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1178. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1179. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1180. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1181. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1182. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  1183. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  1184. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  1185. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  1186. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  1187. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  1188. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  1189. PaddleClas/ppcls/arch/utils.py +0 -53
  1190. PaddleClas/ppcls/data/__init__.py +0 -144
  1191. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1192. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  1193. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  1194. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  1195. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1196. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1197. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  1198. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  1199. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  1200. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1201. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  1202. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1203. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  1204. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  1205. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  1206. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  1207. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1208. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  1209. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1210. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  1211. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  1212. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  1213. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  1214. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1215. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  1216. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1217. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1218. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1219. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  1220. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  1221. PaddleClas/ppcls/engine/__init__.py +0 -0
  1222. PaddleClas/ppcls/engine/engine.py +0 -436
  1223. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  1224. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  1225. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  1226. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  1227. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  1228. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  1229. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  1230. PaddleClas/ppcls/engine/train/train.py +0 -79
  1231. PaddleClas/ppcls/engine/train/utils.py +0 -72
  1232. PaddleClas/ppcls/loss/__init__.py +0 -65
  1233. PaddleClas/ppcls/loss/celoss.py +0 -67
  1234. PaddleClas/ppcls/loss/centerloss.py +0 -54
  1235. PaddleClas/ppcls/loss/comfunc.py +0 -45
  1236. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  1237. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  1238. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  1239. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  1240. PaddleClas/ppcls/loss/emlloss.py +0 -97
  1241. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  1242. PaddleClas/ppcls/loss/msmloss.py +0 -78
  1243. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  1244. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  1245. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  1246. PaddleClas/ppcls/loss/supconloss.py +0 -108
  1247. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  1248. PaddleClas/ppcls/loss/triplet.py +0 -137
  1249. PaddleClas/ppcls/metric/__init__.py +0 -51
  1250. PaddleClas/ppcls/metric/metrics.py +0 -308
  1251. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  1252. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  1253. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  1254. PaddleClas/ppcls/utils/__init__.py +0 -27
  1255. PaddleClas/ppcls/utils/check.py +0 -151
  1256. PaddleClas/ppcls/utils/config.py +0 -210
  1257. PaddleClas/ppcls/utils/download.py +0 -319
  1258. PaddleClas/ppcls/utils/ema.py +0 -63
  1259. PaddleClas/ppcls/utils/logger.py +0 -137
  1260. PaddleClas/ppcls/utils/metrics.py +0 -107
  1261. PaddleClas/ppcls/utils/misc.py +0 -63
  1262. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  1263. PaddleClas/ppcls/utils/profiler.py +0 -111
  1264. PaddleClas/ppcls/utils/save_load.py +0 -136
  1265. PaddleClas/setup.py +0 -58
  1266. PaddleClas/tools/__init__.py +0 -15
  1267. PaddleClas/tools/eval.py +0 -31
  1268. PaddleClas/tools/export_model.py +0 -34
  1269. PaddleClas/tools/infer.py +0 -31
  1270. PaddleClas/tools/train.py +0 -32
  1271. paddlex/cls.py +0 -82
  1272. paddlex/command.py +0 -215
  1273. paddlex/cv/__init__.py +0 -17
  1274. paddlex/cv/datasets/__init__.py +0 -18
  1275. paddlex/cv/datasets/coco.py +0 -208
  1276. paddlex/cv/datasets/imagenet.py +0 -88
  1277. paddlex/cv/datasets/seg_dataset.py +0 -91
  1278. paddlex/cv/datasets/voc.py +0 -445
  1279. paddlex/cv/models/__init__.py +0 -18
  1280. paddlex/cv/models/base.py +0 -631
  1281. paddlex/cv/models/classifier.py +0 -989
  1282. paddlex/cv/models/detector.py +0 -2292
  1283. paddlex/cv/models/load_model.py +0 -148
  1284. paddlex/cv/models/segmenter.py +0 -768
  1285. paddlex/cv/models/slim/__init__.py +0 -13
  1286. paddlex/cv/models/slim/prune.py +0 -55
  1287. paddlex/cv/models/utils/__init__.py +0 -13
  1288. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  1289. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  1290. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  1291. paddlex/cv/models/utils/infer_nets.py +0 -45
  1292. paddlex/cv/models/utils/seg_metrics.py +0 -62
  1293. paddlex/cv/models/utils/visualize.py +0 -399
  1294. paddlex/cv/transforms/__init__.py +0 -46
  1295. paddlex/cv/transforms/batch_operators.py +0 -286
  1296. paddlex/cv/transforms/box_utils.py +0 -41
  1297. paddlex/cv/transforms/functions.py +0 -193
  1298. paddlex/cv/transforms/operators.py +0 -1402
  1299. paddlex/deploy.py +0 -268
  1300. paddlex/det.py +0 -49
  1301. paddlex/paddleseg/__init__.py +0 -17
  1302. paddlex/paddleseg/core/__init__.py +0 -20
  1303. paddlex/paddleseg/core/infer.py +0 -289
  1304. paddlex/paddleseg/core/predict.py +0 -145
  1305. paddlex/paddleseg/core/train.py +0 -258
  1306. paddlex/paddleseg/core/val.py +0 -172
  1307. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  1308. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  1309. paddlex/paddleseg/cvlibs/config.py +0 -359
  1310. paddlex/paddleseg/cvlibs/manager.py +0 -142
  1311. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  1312. paddlex/paddleseg/datasets/__init__.py +0 -21
  1313. paddlex/paddleseg/datasets/ade.py +0 -112
  1314. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  1315. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  1316. paddlex/paddleseg/datasets/dataset.py +0 -164
  1317. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  1318. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  1319. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  1320. paddlex/paddleseg/datasets/voc.py +0 -113
  1321. paddlex/paddleseg/models/__init__.py +0 -39
  1322. paddlex/paddleseg/models/ann.py +0 -436
  1323. paddlex/paddleseg/models/attention_unet.py +0 -189
  1324. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  1325. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  1326. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  1327. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  1328. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  1329. paddlex/paddleseg/models/bisenet.py +0 -311
  1330. paddlex/paddleseg/models/danet.py +0 -220
  1331. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  1332. paddlex/paddleseg/models/deeplab.py +0 -258
  1333. paddlex/paddleseg/models/dnlnet.py +0 -231
  1334. paddlex/paddleseg/models/emanet.py +0 -219
  1335. paddlex/paddleseg/models/fast_scnn.py +0 -318
  1336. paddlex/paddleseg/models/fcn.py +0 -135
  1337. paddlex/paddleseg/models/gcnet.py +0 -223
  1338. paddlex/paddleseg/models/gscnn.py +0 -357
  1339. paddlex/paddleseg/models/hardnet.py +0 -309
  1340. paddlex/paddleseg/models/isanet.py +0 -202
  1341. paddlex/paddleseg/models/layers/__init__.py +0 -19
  1342. paddlex/paddleseg/models/layers/activation.py +0 -73
  1343. paddlex/paddleseg/models/layers/attention.py +0 -146
  1344. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  1345. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  1346. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  1347. paddlex/paddleseg/models/losses/__init__.py +0 -27
  1348. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  1349. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  1350. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  1351. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  1352. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  1353. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  1354. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  1355. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  1356. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  1357. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  1358. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  1359. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  1360. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  1361. paddlex/paddleseg/models/ocrnet.py +0 -248
  1362. paddlex/paddleseg/models/pspnet.py +0 -147
  1363. paddlex/paddleseg/models/sfnet.py +0 -236
  1364. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  1365. paddlex/paddleseg/models/u2net.py +0 -574
  1366. paddlex/paddleseg/models/unet.py +0 -155
  1367. paddlex/paddleseg/models/unet_3plus.py +0 -316
  1368. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  1369. paddlex/paddleseg/transforms/__init__.py +0 -16
  1370. paddlex/paddleseg/transforms/functional.py +0 -161
  1371. paddlex/paddleseg/transforms/transforms.py +0 -937
  1372. paddlex/paddleseg/utils/__init__.py +0 -22
  1373. paddlex/paddleseg/utils/config_check.py +0 -60
  1374. paddlex/paddleseg/utils/download.py +0 -163
  1375. paddlex/paddleseg/utils/env/__init__.py +0 -16
  1376. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  1377. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  1378. paddlex/paddleseg/utils/logger.py +0 -48
  1379. paddlex/paddleseg/utils/metrics.py +0 -146
  1380. paddlex/paddleseg/utils/progbar.py +0 -212
  1381. paddlex/paddleseg/utils/timer.py +0 -53
  1382. paddlex/paddleseg/utils/utils.py +0 -120
  1383. paddlex/paddleseg/utils/visualize.py +0 -90
  1384. paddlex/ppcls/__init__.py +0 -20
  1385. paddlex/ppcls/arch/__init__.py +0 -127
  1386. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  1387. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  1388. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  1389. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1390. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1391. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  1392. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1393. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1394. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1395. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1396. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1397. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  1398. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1399. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1400. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1401. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1402. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1403. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1404. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1405. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1406. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1407. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1408. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1409. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1410. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1411. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1412. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1413. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1414. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1415. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1416. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1417. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1418. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1419. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1420. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1421. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1422. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1423. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1424. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1425. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1426. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1427. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1428. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1429. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1430. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1431. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1432. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1433. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1434. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1435. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1436. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1437. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1438. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1439. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1440. paddlex/ppcls/arch/gears/__init__.py +0 -32
  1441. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  1442. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  1443. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  1444. paddlex/ppcls/arch/gears/fc.py +0 -35
  1445. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  1446. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1447. paddlex/ppcls/arch/utils.py +0 -53
  1448. paddlex/ppcls/data/__init__.py +0 -144
  1449. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1450. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1451. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1452. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1453. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1454. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1455. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1456. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1457. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1458. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1459. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1460. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1461. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1462. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1463. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1464. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1465. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1466. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1467. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1468. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1469. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1470. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1471. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1472. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1473. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1474. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1475. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1476. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1477. paddlex/ppcls/data/utils/__init__.py +0 -13
  1478. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1479. paddlex/ppcls/engine/__init__.py +0 -0
  1480. paddlex/ppcls/engine/engine.py +0 -436
  1481. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1482. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1483. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1484. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1485. paddlex/ppcls/engine/slim/prune.py +0 -66
  1486. paddlex/ppcls/engine/slim/quant.py +0 -55
  1487. paddlex/ppcls/engine/train/__init__.py +0 -14
  1488. paddlex/ppcls/engine/train/train.py +0 -79
  1489. paddlex/ppcls/engine/train/utils.py +0 -72
  1490. paddlex/ppcls/loss/__init__.py +0 -65
  1491. paddlex/ppcls/loss/celoss.py +0 -67
  1492. paddlex/ppcls/loss/centerloss.py +0 -54
  1493. paddlex/ppcls/loss/comfunc.py +0 -45
  1494. paddlex/ppcls/loss/deephashloss.py +0 -96
  1495. paddlex/ppcls/loss/distanceloss.py +0 -43
  1496. paddlex/ppcls/loss/distillationloss.py +0 -141
  1497. paddlex/ppcls/loss/dmlloss.py +0 -46
  1498. paddlex/ppcls/loss/emlloss.py +0 -97
  1499. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1500. paddlex/ppcls/loss/msmloss.py +0 -78
  1501. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1502. paddlex/ppcls/loss/npairsloss.py +0 -38
  1503. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1504. paddlex/ppcls/loss/supconloss.py +0 -108
  1505. paddlex/ppcls/loss/trihardloss.py +0 -82
  1506. paddlex/ppcls/loss/triplet.py +0 -137
  1507. paddlex/ppcls/metric/__init__.py +0 -51
  1508. paddlex/ppcls/metric/metrics.py +0 -308
  1509. paddlex/ppcls/optimizer/__init__.py +0 -72
  1510. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1511. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1512. paddlex/ppcls/utils/__init__.py +0 -27
  1513. paddlex/ppcls/utils/check.py +0 -151
  1514. paddlex/ppcls/utils/config.py +0 -210
  1515. paddlex/ppcls/utils/download.py +0 -319
  1516. paddlex/ppcls/utils/ema.py +0 -63
  1517. paddlex/ppcls/utils/logger.py +0 -137
  1518. paddlex/ppcls/utils/metrics.py +0 -112
  1519. paddlex/ppcls/utils/misc.py +0 -63
  1520. paddlex/ppcls/utils/model_zoo.py +0 -213
  1521. paddlex/ppcls/utils/profiler.py +0 -111
  1522. paddlex/ppcls/utils/save_load.py +0 -136
  1523. paddlex/ppdet/__init__.py +0 -16
  1524. paddlex/ppdet/core/__init__.py +0 -15
  1525. paddlex/ppdet/core/config/__init__.py +0 -13
  1526. paddlex/ppdet/core/config/schema.py +0 -248
  1527. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1528. paddlex/ppdet/core/workspace.py +0 -278
  1529. paddlex/ppdet/data/__init__.py +0 -21
  1530. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1531. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1532. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1533. paddlex/ppdet/data/reader.py +0 -302
  1534. paddlex/ppdet/data/shm_utils.py +0 -67
  1535. paddlex/ppdet/data/source/__init__.py +0 -29
  1536. paddlex/ppdet/data/source/category.py +0 -904
  1537. paddlex/ppdet/data/source/coco.py +0 -251
  1538. paddlex/ppdet/data/source/dataset.py +0 -197
  1539. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1540. paddlex/ppdet/data/source/mot.py +0 -636
  1541. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1542. paddlex/ppdet/data/source/voc.py +0 -231
  1543. paddlex/ppdet/data/source/widerface.py +0 -180
  1544. paddlex/ppdet/data/transform/__init__.py +0 -28
  1545. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1546. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1547. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1548. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1549. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1550. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1551. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1552. paddlex/ppdet/data/transform/operators.py +0 -3025
  1553. paddlex/ppdet/engine/__init__.py +0 -30
  1554. paddlex/ppdet/engine/callbacks.py +0 -340
  1555. paddlex/ppdet/engine/env.py +0 -50
  1556. paddlex/ppdet/engine/export_utils.py +0 -177
  1557. paddlex/ppdet/engine/tracker.py +0 -538
  1558. paddlex/ppdet/engine/trainer.py +0 -723
  1559. paddlex/ppdet/metrics/__init__.py +0 -29
  1560. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1561. paddlex/ppdet/metrics/json_results.py +0 -149
  1562. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1563. paddlex/ppdet/metrics/map_utils.py +0 -444
  1564. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1565. paddlex/ppdet/metrics/metrics.py +0 -434
  1566. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1567. paddlex/ppdet/metrics/munkres.py +0 -428
  1568. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1569. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1570. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1571. paddlex/ppdet/modeling/__init__.py +0 -45
  1572. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1573. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1574. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1575. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1576. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1577. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1578. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1579. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1580. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1581. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1582. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1583. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1584. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1585. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1586. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1587. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1588. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1589. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1590. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1591. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1592. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1593. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1594. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1595. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1596. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1597. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1598. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1599. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1600. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1601. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1602. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1603. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1604. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1605. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1606. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1607. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1608. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1609. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1610. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1611. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1612. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1613. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1614. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1615. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1616. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1617. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1618. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1619. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1620. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1621. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1622. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1623. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1624. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1625. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1626. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1627. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1628. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1629. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1630. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1631. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1632. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1633. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1634. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1635. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1636. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1637. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1638. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1639. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1640. paddlex/ppdet/modeling/initializer.py +0 -317
  1641. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1642. paddlex/ppdet/modeling/layers.py +0 -1430
  1643. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1644. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1645. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1646. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1647. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1648. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1649. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1650. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1651. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1652. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1653. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1654. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1655. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1656. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1657. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1658. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1659. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1660. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1661. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1662. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1663. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1664. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1665. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1666. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1667. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1668. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1669. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1670. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1671. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1672. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1673. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1674. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1675. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1676. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1677. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1678. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1679. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1680. paddlex/ppdet/modeling/ops.py +0 -1611
  1681. paddlex/ppdet/modeling/post_process.py +0 -731
  1682. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1683. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1684. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1685. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1686. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1687. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1688. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1689. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1690. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1691. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1692. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1693. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1694. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1695. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1696. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1697. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1698. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1699. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1700. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1701. paddlex/ppdet/optimizer.py +0 -335
  1702. paddlex/ppdet/slim/__init__.py +0 -82
  1703. paddlex/ppdet/slim/distill.py +0 -110
  1704. paddlex/ppdet/slim/prune.py +0 -85
  1705. paddlex/ppdet/slim/quant.py +0 -84
  1706. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1707. paddlex/ppdet/utils/__init__.py +0 -13
  1708. paddlex/ppdet/utils/check.py +0 -112
  1709. paddlex/ppdet/utils/checkpoint.py +0 -226
  1710. paddlex/ppdet/utils/cli.py +0 -151
  1711. paddlex/ppdet/utils/colormap.py +0 -58
  1712. paddlex/ppdet/utils/download.py +0 -558
  1713. paddlex/ppdet/utils/logger.py +0 -70
  1714. paddlex/ppdet/utils/profiler.py +0 -111
  1715. paddlex/ppdet/utils/stats.py +0 -94
  1716. paddlex/ppdet/utils/visualizer.py +0 -321
  1717. paddlex/ppdet/utils/voc_utils.py +0 -86
  1718. paddlex/seg.py +0 -41
  1719. paddlex/tools/__init__.py +0 -17
  1720. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1721. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1722. paddlex/tools/convert.py +0 -52
  1723. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1724. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1725. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1726. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1727. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1728. paddlex/tools/dataset_split/__init__.py +0 -23
  1729. paddlex/tools/dataset_split/coco_split.py +0 -69
  1730. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1731. paddlex/tools/dataset_split/seg_split.py +0 -96
  1732. paddlex/tools/dataset_split/utils.py +0 -75
  1733. paddlex/tools/dataset_split/voc_split.py +0 -91
  1734. paddlex/tools/split.py +0 -41
  1735. paddlex/utils/checkpoint.py +0 -492
  1736. paddlex/utils/shm.py +0 -67
  1737. paddlex/utils/stats.py +0 -68
  1738. paddlex/utils/utils.py +0 -229
  1739. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1740. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1741. paddlex-2.1.0.dist-info/METADATA +0 -32
  1742. paddlex-2.1.0.dist-info/RECORD +0 -698
  1743. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1744. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1745. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1746. paddlex_restful/__init__.py +0 -15
  1747. paddlex_restful/command.py +0 -63
  1748. paddlex_restful/restful/__init__.py +0 -15
  1749. paddlex_restful/restful/app.py +0 -969
  1750. paddlex_restful/restful/dataset/__init__.py +0 -13
  1751. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1752. paddlex_restful/restful/dataset/dataset.py +0 -266
  1753. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1754. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1755. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1756. paddlex_restful/restful/dataset/operate.py +0 -155
  1757. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1758. paddlex_restful/restful/dataset/utils.py +0 -267
  1759. paddlex_restful/restful/demo.py +0 -202
  1760. paddlex_restful/restful/dir.py +0 -45
  1761. paddlex_restful/restful/model.py +0 -312
  1762. paddlex_restful/restful/project/__init__.py +0 -13
  1763. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1764. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1765. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1766. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1767. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1768. paddlex_restful/restful/project/operate.py +0 -931
  1769. paddlex_restful/restful/project/project.py +0 -143
  1770. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1771. paddlex_restful/restful/project/prune/classification.py +0 -32
  1772. paddlex_restful/restful/project/prune/detection.py +0 -48
  1773. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1774. paddlex_restful/restful/project/task.py +0 -884
  1775. paddlex_restful/restful/project/train/__init__.py +0 -13
  1776. paddlex_restful/restful/project/train/classification.py +0 -141
  1777. paddlex_restful/restful/project/train/detection.py +0 -263
  1778. paddlex_restful/restful/project/train/params.py +0 -432
  1779. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1780. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1781. paddlex_restful/restful/project/visualize.py +0 -244
  1782. paddlex_restful/restful/system.py +0 -102
  1783. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1784. paddlex_restful/restful/utils.py +0 -841
  1785. paddlex_restful/restful/workspace.py +0 -343
  1786. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,2292 +0,0 @@
1
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
-
17
- import collections
18
- import copy
19
- import os
20
- import os.path as osp
21
- import numpy as np
22
- import paddle
23
- from paddle.static import InputSpec
24
- import paddlex.ppdet as ppdet
25
- from paddlex.ppdet.modeling.proposal_generator.target_layer import BBoxAssigner, MaskAssigner
26
- import paddlex
27
- import paddlex.utils.logging as logging
28
- from paddlex.cv.transforms.operators import _NormalizeBox, _PadBox, _BboxXYXY2XYWH, Resize, Padding
29
- from paddlex.cv.transforms.batch_operators import BatchCompose, BatchRandomResize, BatchRandomResizeByShort, \
30
- _BatchPadding, _Gt2YoloTarget
31
- from paddlex.cv.transforms import arrange_transforms
32
- from .base import BaseModel
33
- from .utils.det_metrics import VOCMetric, COCOMetric
34
- from paddlex.ppdet.optimizer import ModelEMA
35
- from paddlex.utils.checkpoint import det_pretrain_weights_dict
36
-
37
- __all__ = [
38
- "YOLOv3", "FasterRCNN", "PPYOLO", "PPYOLOTiny", "PPYOLOv2", "MaskRCNN",
39
- "PicoDet"
40
- ]
41
-
42
-
43
- class BaseDetector(BaseModel):
44
- def __init__(self, model_name, num_classes=80, **params):
45
- self.init_params.update(locals())
46
- if 'with_net' in self.init_params:
47
- del self.init_params['with_net']
48
- super(BaseDetector, self).__init__('detector')
49
- if not hasattr(ppdet.modeling, model_name):
50
- raise Exception("ERROR: There's no model named {}.".format(
51
- model_name))
52
-
53
- self.model_name = model_name
54
- self.num_classes = num_classes
55
- self.labels = None
56
- if params.get('with_net', True):
57
- params.pop('with_net', None)
58
- self.net = self.build_net(**params)
59
-
60
- def build_net(self, **params):
61
- with paddle.utils.unique_name.guard():
62
- net = ppdet.modeling.__dict__[self.model_name](**params)
63
- return net
64
-
65
- def _fix_transforms_shape(self, image_shape):
66
- raise NotImplementedError("_fix_transforms_shape: not implemented!")
67
-
68
- def _define_input_spec(self, image_shape):
69
- input_spec = [{
70
- "image": InputSpec(
71
- shape=image_shape, name='image', dtype='float32'),
72
- "im_shape": InputSpec(
73
- shape=[image_shape[0], 2], name='im_shape', dtype='float32'),
74
- "scale_factor": InputSpec(
75
- shape=[image_shape[0], 2],
76
- name='scale_factor',
77
- dtype='float32')
78
- }]
79
- return input_spec
80
-
81
- def _check_image_shape(self, image_shape):
82
- if len(image_shape) == 2:
83
- image_shape = [1, 3] + image_shape
84
- if image_shape[-2] % 32 > 0 or image_shape[-1] % 32 > 0:
85
- raise Exception(
86
- "Height and width in fixed_input_shape must be a multiple of 32, but received {}.".
87
- format(image_shape[-2:]))
88
- return image_shape
89
-
90
- def _get_test_inputs(self, image_shape):
91
- if image_shape is not None:
92
- image_shape = self._check_image_shape(image_shape)
93
- self._fix_transforms_shape(image_shape[-2:])
94
- else:
95
- image_shape = [None, 3, -1, -1]
96
- self.fixed_input_shape = image_shape
97
-
98
- return self._define_input_spec(image_shape)
99
-
100
- def _get_backbone(self, backbone_name, **params):
101
- backbone = getattr(ppdet.modeling, backbone_name)(**params)
102
- return backbone
103
-
104
- def run(self, net, inputs, mode):
105
- net_out = net(inputs)
106
- if mode in ['train', 'eval']:
107
- outputs = net_out
108
- else:
109
- outputs = dict()
110
- for key in net_out:
111
- outputs[key] = net_out[key].numpy()
112
-
113
- return outputs
114
-
115
- def default_optimizer(self,
116
- parameters,
117
- learning_rate,
118
- warmup_steps,
119
- warmup_start_lr,
120
- lr_decay_epochs,
121
- lr_decay_gamma,
122
- num_steps_each_epoch,
123
- reg_coeff=1e-04,
124
- scheduler='Piecewise',
125
- num_epochs=None):
126
- if scheduler.lower() == 'piecewise':
127
- if warmup_steps > 0 and warmup_steps > lr_decay_epochs[
128
- 0] * num_steps_each_epoch:
129
- logging.error(
130
- "In function train(), parameters must satisfy: "
131
- "warmup_steps <= lr_decay_epochs[0] * num_samples_in_train_dataset. "
132
- "See this doc for more information: "
133
- "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md",
134
- exit=False)
135
- logging.error(
136
- "Either `warmup_steps` be less than {} or lr_decay_epochs[0] be greater than {} "
137
- "must be satisfied, please modify 'warmup_steps' or 'lr_decay_epochs' in train function".
138
- format(lr_decay_epochs[0] * num_steps_each_epoch,
139
- warmup_steps // num_steps_each_epoch),
140
- exit=True)
141
- boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
142
- values = [(lr_decay_gamma**i) * learning_rate
143
- for i in range(len(lr_decay_epochs) + 1)]
144
- scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries, values)
145
- elif scheduler.lower() == 'cosine':
146
- if num_epochs is None:
147
- logging.error(
148
- "`num_epochs` must be set while using cosine annealing decay scheduler, but received {}".
149
- format(num_epochs),
150
- exit=False)
151
- if warmup_steps > 0 and warmup_steps > num_epochs * num_steps_each_epoch:
152
- logging.error(
153
- "In function train(), parameters must satisfy: "
154
- "warmup_steps <= num_epochs * num_samples_in_train_dataset. "
155
- "See this doc for more information: "
156
- "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md",
157
- exit=False)
158
- logging.error(
159
- "`warmup_steps` must be less than the total number of steps({}), "
160
- "please modify 'num_epochs' or 'warmup_steps' in train function".
161
- format(num_epochs * num_steps_each_epoch),
162
- exit=True)
163
- T_max = num_epochs * num_steps_each_epoch - warmup_steps
164
- scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
165
- learning_rate=learning_rate,
166
- T_max=T_max,
167
- eta_min=0.0,
168
- last_epoch=-1)
169
- else:
170
- logging.error(
171
- "Invalid learning rate scheduler: {}!".format(scheduler),
172
- exit=True)
173
-
174
- if warmup_steps > 0:
175
- scheduler = paddle.optimizer.lr.LinearWarmup(
176
- learning_rate=scheduler,
177
- warmup_steps=warmup_steps,
178
- start_lr=warmup_start_lr,
179
- end_lr=learning_rate)
180
- optimizer = paddle.optimizer.Momentum(
181
- scheduler,
182
- momentum=.9,
183
- weight_decay=paddle.regularizer.L2Decay(coeff=reg_coeff),
184
- parameters=parameters)
185
- return optimizer
186
-
187
- def train(self,
188
- num_epochs,
189
- train_dataset,
190
- train_batch_size=64,
191
- eval_dataset=None,
192
- optimizer=None,
193
- save_interval_epochs=1,
194
- log_interval_steps=10,
195
- save_dir='output',
196
- pretrain_weights='IMAGENET',
197
- learning_rate=.001,
198
- warmup_steps=0,
199
- warmup_start_lr=0.0,
200
- lr_decay_epochs=(216, 243),
201
- lr_decay_gamma=0.1,
202
- metric=None,
203
- use_ema=False,
204
- early_stop=False,
205
- early_stop_patience=5,
206
- use_vdl=True,
207
- resume_checkpoint=None):
208
- """
209
- Train the model.
210
- Args:
211
- num_epochs(int): The number of epochs.
212
- train_dataset(paddlex.dataset): Training dataset.
213
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
214
- eval_dataset(paddlex.dataset, optional):
215
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
216
- optimizer(paddle.optimizer.Optimizer or None, optional):
217
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
218
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
219
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
220
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
221
- pretrain_weights(str or None, optional):
222
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
223
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
224
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
225
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
226
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
227
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
228
- metric({'VOC', 'COCO', None}, optional):
229
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
230
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
231
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
232
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
233
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
234
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
235
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
236
- `pretrain_weights` can be set simultaneously. Defaults to None.
237
- """
238
- if self.status == 'Infer':
239
- logging.error(
240
- "Exported inference model does not support training.",
241
- exit=True)
242
- if pretrain_weights is not None and resume_checkpoint is not None:
243
- logging.error(
244
- "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
245
- exit=True)
246
- if train_dataset.__class__.__name__ == 'VOCDetection':
247
- train_dataset.data_fields = {
248
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
249
- 'difficult'
250
- }
251
- elif train_dataset.__class__.__name__ == 'CocoDetection':
252
- if self.__class__.__name__ == 'MaskRCNN':
253
- train_dataset.data_fields = {
254
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
255
- 'gt_poly', 'is_crowd'
256
- }
257
- else:
258
- train_dataset.data_fields = {
259
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
260
- 'is_crowd'
261
- }
262
-
263
- if metric is None:
264
- if eval_dataset.__class__.__name__ == 'VOCDetection':
265
- self.metric = 'voc'
266
- elif eval_dataset.__class__.__name__ == 'CocoDetection':
267
- self.metric = 'coco'
268
- else:
269
- assert metric.lower() in ['coco', 'voc'], \
270
- "Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
271
- self.metric = metric.lower()
272
-
273
- self.labels = train_dataset.labels
274
- self.num_max_boxes = train_dataset.num_max_boxes
275
- train_dataset.batch_transforms = self._compose_batch_transform(
276
- train_dataset.transforms, mode='train')
277
-
278
- # build optimizer if not defined
279
- if optimizer is None:
280
- num_steps_each_epoch = len(train_dataset) // train_batch_size
281
- self.optimizer = self.default_optimizer(
282
- parameters=self.net.parameters(),
283
- learning_rate=learning_rate,
284
- warmup_steps=warmup_steps,
285
- warmup_start_lr=warmup_start_lr,
286
- lr_decay_epochs=lr_decay_epochs,
287
- lr_decay_gamma=lr_decay_gamma,
288
- num_steps_each_epoch=num_steps_each_epoch)
289
- else:
290
- self.optimizer = optimizer
291
-
292
- # initiate weights
293
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
294
- if pretrain_weights not in det_pretrain_weights_dict['_'.join(
295
- [self.model_name, self.backbone_name])]:
296
- logging.warning(
297
- "Path of pretrain_weights('{}') does not exist!".format(
298
- pretrain_weights))
299
- pretrain_weights = det_pretrain_weights_dict['_'.join(
300
- [self.model_name, self.backbone_name])][0]
301
- logging.warning("Pretrain_weights is forcibly set to '{}'. "
302
- "If you don't want to use pretrain weights, "
303
- "set pretrain_weights to be None.".format(
304
- pretrain_weights))
305
- elif pretrain_weights is not None and osp.exists(pretrain_weights):
306
- if osp.splitext(pretrain_weights)[-1] != '.pdparams':
307
- logging.error(
308
- "Invalid pretrain weights. Please specify a '.pdparams' file.",
309
- exit=True)
310
- pretrained_dir = osp.join(save_dir, 'pretrain')
311
- self.net_initialize(
312
- pretrain_weights=pretrain_weights,
313
- save_dir=pretrained_dir,
314
- resume_checkpoint=resume_checkpoint,
315
- is_backbone_weights=(pretrain_weights == 'IMAGENET' and
316
- 'ESNet_' in self.backbone_name))
317
-
318
- if use_ema:
319
- ema = ModelEMA(model=self.net, decay=.9998, use_thres_step=True)
320
- else:
321
- ema = None
322
- # start train loop
323
- self.train_loop(
324
- num_epochs=num_epochs,
325
- train_dataset=train_dataset,
326
- train_batch_size=train_batch_size,
327
- eval_dataset=eval_dataset,
328
- save_interval_epochs=save_interval_epochs,
329
- log_interval_steps=log_interval_steps,
330
- save_dir=save_dir,
331
- ema=ema,
332
- early_stop=early_stop,
333
- early_stop_patience=early_stop_patience,
334
- use_vdl=use_vdl)
335
-
336
- def quant_aware_train(self,
337
- num_epochs,
338
- train_dataset,
339
- train_batch_size=64,
340
- eval_dataset=None,
341
- optimizer=None,
342
- save_interval_epochs=1,
343
- log_interval_steps=10,
344
- save_dir='output',
345
- learning_rate=.00001,
346
- warmup_steps=0,
347
- warmup_start_lr=0.0,
348
- lr_decay_epochs=(216, 243),
349
- lr_decay_gamma=0.1,
350
- metric=None,
351
- use_ema=False,
352
- early_stop=False,
353
- early_stop_patience=5,
354
- use_vdl=True,
355
- resume_checkpoint=None,
356
- quant_config=None):
357
- """
358
- Quantization-aware training.
359
- Args:
360
- num_epochs(int): The number of epochs.
361
- train_dataset(paddlex.dataset): Training dataset.
362
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
363
- eval_dataset(paddlex.dataset, optional):
364
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
365
- optimizer(paddle.optimizer.Optimizer or None, optional):
366
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
367
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
368
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
369
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
370
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
371
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
372
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
373
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
374
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
375
- metric({'VOC', 'COCO', None}, optional):
376
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
377
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
378
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
379
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
380
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
381
- quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
382
- configuration will be used. Defaults to None.
383
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
384
- from. If None, no training checkpoint will be resumed. Defaults to None.
385
- """
386
- self._prepare_qat(quant_config)
387
- self.train(
388
- num_epochs=num_epochs,
389
- train_dataset=train_dataset,
390
- train_batch_size=train_batch_size,
391
- eval_dataset=eval_dataset,
392
- optimizer=optimizer,
393
- save_interval_epochs=save_interval_epochs,
394
- log_interval_steps=log_interval_steps,
395
- save_dir=save_dir,
396
- pretrain_weights=None,
397
- learning_rate=learning_rate,
398
- warmup_steps=warmup_steps,
399
- warmup_start_lr=warmup_start_lr,
400
- lr_decay_epochs=lr_decay_epochs,
401
- lr_decay_gamma=lr_decay_gamma,
402
- metric=metric,
403
- use_ema=use_ema,
404
- early_stop=early_stop,
405
- early_stop_patience=early_stop_patience,
406
- use_vdl=use_vdl,
407
- resume_checkpoint=resume_checkpoint)
408
-
409
- def evaluate(self,
410
- eval_dataset,
411
- batch_size=1,
412
- metric=None,
413
- return_details=False):
414
- """
415
- Evaluate the model.
416
- Args:
417
- eval_dataset(paddlex.dataset): Evaluation dataset.
418
- batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
419
- metric({'VOC', 'COCO', None}, optional):
420
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
421
- return_details(bool, optional): Whether to return evaluation details. Defaults to False.
422
- Returns:
423
- collections.OrderedDict with key-value pairs: {"mAP(0.50, 11point)":`mean average precision`}.
424
- """
425
-
426
- if metric is None:
427
- if not hasattr(self, 'metric'):
428
- if eval_dataset.__class__.__name__ == 'VOCDetection':
429
- self.metric = 'voc'
430
- elif eval_dataset.__class__.__name__ == 'CocoDetection':
431
- self.metric = 'coco'
432
- else:
433
- assert metric.lower() in ['coco', 'voc'], \
434
- "Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
435
- self.metric = metric.lower()
436
-
437
- if self.metric == 'voc':
438
- eval_dataset.data_fields = {
439
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
440
- 'difficult'
441
- }
442
- elif self.metric == 'coco':
443
- if self.__class__.__name__ == 'MaskRCNN':
444
- eval_dataset.data_fields = {
445
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
446
- 'gt_poly', 'is_crowd'
447
- }
448
- else:
449
- eval_dataset.data_fields = {
450
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
451
- 'is_crowd'
452
- }
453
- eval_dataset.batch_transforms = self._compose_batch_transform(
454
- eval_dataset.transforms, mode='eval')
455
- arrange_transforms(
456
- model_type=self.model_type,
457
- transforms=eval_dataset.transforms,
458
- mode='eval')
459
-
460
- self.net.eval()
461
- nranks = paddle.distributed.get_world_size()
462
- local_rank = paddle.distributed.get_rank()
463
- if nranks > 1:
464
- # Initialize parallel environment if not done.
465
- if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
466
- ):
467
- paddle.distributed.init_parallel_env()
468
-
469
- if batch_size > 1:
470
- logging.warning(
471
- "Detector only supports single card evaluation with batch_size=1 "
472
- "during evaluation, so batch_size is forcibly set to 1.")
473
- batch_size = 1
474
-
475
- if nranks < 2 or local_rank == 0:
476
- self.eval_data_loader = self.build_data_loader(
477
- eval_dataset, batch_size=batch_size, mode='eval')
478
- is_bbox_normalized = False
479
- if eval_dataset.batch_transforms is not None:
480
- is_bbox_normalized = any(
481
- isinstance(t, _NormalizeBox)
482
- for t in eval_dataset.batch_transforms.batch_transforms)
483
- if self.metric == 'voc':
484
- eval_metric = VOCMetric(
485
- labels=eval_dataset.labels,
486
- coco_gt=copy.deepcopy(eval_dataset.coco_gt),
487
- is_bbox_normalized=is_bbox_normalized,
488
- classwise=False)
489
- else:
490
- eval_metric = COCOMetric(
491
- coco_gt=copy.deepcopy(eval_dataset.coco_gt),
492
- classwise=False)
493
- scores = collections.OrderedDict()
494
- logging.info(
495
- "Start to evaluate(total_samples={}, total_steps={})...".
496
- format(eval_dataset.num_samples, eval_dataset.num_samples))
497
- with paddle.no_grad():
498
- for step, data in enumerate(self.eval_data_loader):
499
- outputs = self.run(self.net, data, 'eval')
500
- eval_metric.update(data, outputs)
501
- eval_metric.accumulate()
502
- self.eval_details = eval_metric.details
503
- scores.update(eval_metric.get())
504
- eval_metric.reset()
505
-
506
- if return_details:
507
- return scores, self.eval_details
508
- return scores
509
-
510
- def predict(self, img_file, transforms=None):
511
- """
512
- Do inference.
513
- Args:
514
- img_file(List[np.ndarray or str], str or np.ndarray):
515
- Image path or decoded image data in a BGR format, which also could constitute a list,
516
- meaning all images to be predicted as a mini-batch.
517
- transforms(paddlex.transforms.Compose or None, optional):
518
- Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
519
- Returns:
520
- If img_file is a string or np.array, the result is a list of dict with key-value pairs:
521
- {"category_id": `category_id`, "category": `category`, "bbox": `[x, y, w, h]`, "score": `score`}.
522
- If img_file is a list, the result is a list composed of dicts with the corresponding fields:
523
- category_id(int): the predicted category ID. 0 represents the first category in the dataset, and so on.
524
- category(str): category name
525
- bbox(list): bounding box in [x, y, w, h] format
526
- score(str): confidence
527
- mask(dict): Only for instance segmentation task. Mask of the object in RLE format
528
- """
529
- if transforms is None and not hasattr(self, 'test_transforms'):
530
- raise Exception("transforms need to be defined, now is None.")
531
- if transforms is None:
532
- transforms = self.test_transforms
533
- if isinstance(img_file, (str, np.ndarray)):
534
- images = [img_file]
535
- else:
536
- images = img_file
537
-
538
- batch_samples = self._preprocess(images, transforms)
539
- self.net.eval()
540
- outputs = self.run(self.net, batch_samples, 'test')
541
- prediction = self._postprocess(outputs)
542
-
543
- if isinstance(img_file, (str, np.ndarray)):
544
- prediction = prediction[0]
545
- return prediction
546
-
547
- def _preprocess(self, images, transforms, to_tensor=True):
548
- arrange_transforms(
549
- model_type=self.model_type, transforms=transforms, mode='test')
550
- batch_samples = list()
551
- for im in images:
552
- sample = {'image': im}
553
- batch_samples.append(transforms(sample))
554
- batch_transforms = self._compose_batch_transform(transforms, 'test')
555
- batch_samples = batch_transforms(batch_samples)
556
- if to_tensor:
557
- for k in batch_samples:
558
- batch_samples[k] = paddle.to_tensor(batch_samples[k])
559
-
560
- return batch_samples
561
-
562
- def _postprocess(self, batch_pred):
563
- infer_result = {}
564
- if 'bbox' in batch_pred:
565
- bboxes = batch_pred['bbox']
566
- bbox_nums = batch_pred['bbox_num']
567
- det_res = []
568
- k = 0
569
- for i in range(len(bbox_nums)):
570
- det_nums = bbox_nums[i]
571
- for j in range(det_nums):
572
- dt = bboxes[k]
573
- k = k + 1
574
- num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
575
- if int(num_id) < 0:
576
- continue
577
- category = self.labels[int(num_id)]
578
- w = xmax - xmin
579
- h = ymax - ymin
580
- bbox = [xmin, ymin, w, h]
581
- dt_res = {
582
- 'category_id': int(num_id),
583
- 'category': category,
584
- 'bbox': bbox,
585
- 'score': score
586
- }
587
- det_res.append(dt_res)
588
- infer_result['bbox'] = det_res
589
-
590
- if 'mask' in batch_pred:
591
- masks = batch_pred['mask']
592
- bboxes = batch_pred['bbox']
593
- mask_nums = batch_pred['bbox_num']
594
- seg_res = []
595
- k = 0
596
- for i in range(len(mask_nums)):
597
- det_nums = mask_nums[i]
598
- for j in range(det_nums):
599
- mask = masks[k].astype(np.uint8)
600
- score = float(bboxes[k][1])
601
- label = int(bboxes[k][0])
602
- k = k + 1
603
- if label == -1:
604
- continue
605
- category = self.labels[int(label)]
606
- sg_res = {
607
- 'category_id': int(label),
608
- 'category': category,
609
- 'mask': mask.astype('uint8'),
610
- 'score': score
611
- }
612
- seg_res.append(sg_res)
613
- infer_result['mask'] = seg_res
614
-
615
- bbox_num = batch_pred['bbox_num']
616
- results = []
617
- start = 0
618
- for num in bbox_num:
619
- end = start + num
620
- curr_res = infer_result['bbox'][start:end]
621
- if 'mask' in infer_result:
622
- mask_res = infer_result['mask'][start:end]
623
- for box, mask in zip(curr_res, mask_res):
624
- box.update(mask)
625
- results.append(curr_res)
626
- start = end
627
-
628
- return results
629
-
630
-
631
- class PicoDet(BaseDetector):
632
- def __init__(self,
633
- num_classes=80,
634
- backbone='ESNet_m',
635
- nms_score_threshold=.025,
636
- nms_topk=1000,
637
- nms_keep_topk=100,
638
- nms_iou_threshold=.6,
639
- **params):
640
- self.init_params = locals()
641
- if backbone not in {
642
- 'ESNet_s', 'ESNet_m', 'ESNet_l', 'LCNet', 'MobileNetV3',
643
- 'ResNet18_vd'
644
- }:
645
- raise ValueError(
646
- "backbone: {} is not supported. Please choose one of "
647
- "('ESNet_s', 'ESNet_m', 'ESNet_l', 'LCNet', 'MobileNetV3', 'ResNet18_vd')".
648
- format(backbone))
649
- self.backbone_name = backbone
650
- if params.get('with_net', True):
651
- if backbone == 'ESNet_s':
652
- backbone = self._get_backbone(
653
- 'ESNet',
654
- scale=.75,
655
- feature_maps=[4, 11, 14],
656
- act="hard_swish",
657
- channel_ratio=[
658
- 0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5,
659
- 0.5, 0.5, 0.5
660
- ])
661
- neck_out_channels = 96
662
- head_num_convs = 2
663
- elif backbone == 'ESNet_m':
664
- backbone = self._get_backbone(
665
- 'ESNet',
666
- scale=1.0,
667
- feature_maps=[4, 11, 14],
668
- act="hard_swish",
669
- channel_ratio=[
670
- 0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5,
671
- 0.625, 1.0, 0.625, 0.75
672
- ])
673
- neck_out_channels = 128
674
- head_num_convs = 4
675
- elif backbone == 'ESNet_l':
676
- backbone = self._get_backbone(
677
- 'ESNet',
678
- scale=1.25,
679
- feature_maps=[4, 11, 14],
680
- act="hard_swish",
681
- channel_ratio=[
682
- 0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5,
683
- 0.625, 1.0, 0.625, 0.75
684
- ])
685
- neck_out_channels = 160
686
- head_num_convs = 4
687
- elif backbone == 'LCNet':
688
- backbone = self._get_backbone(
689
- 'LCNet', scale=1.5, feature_maps=[3, 4, 5])
690
- neck_out_channels = 128
691
- head_num_convs = 4
692
- elif backbone == 'MobileNetV3':
693
- backbone = self._get_backbone(
694
- 'MobileNetV3',
695
- scale=1.0,
696
- with_extra_blocks=False,
697
- extra_block_filters=[],
698
- feature_maps=[7, 13, 16])
699
- neck_out_channels = 128
700
- head_num_convs = 4
701
- else:
702
- backbone = self._get_backbone(
703
- 'ResNet',
704
- depth=18,
705
- variant='d',
706
- return_idx=[1, 2, 3],
707
- freeze_at=-1,
708
- freeze_norm=False,
709
- norm_decay=0.)
710
- neck_out_channels = 128
711
- head_num_convs = 4
712
-
713
- neck = ppdet.modeling.CSPPAN(
714
- in_channels=[i.channels for i in backbone.out_shape],
715
- out_channels=neck_out_channels,
716
- num_features=4,
717
- num_csp_blocks=1,
718
- use_depthwise=True)
719
-
720
- head_conv_feat = ppdet.modeling.PicoFeat(
721
- feat_in=neck_out_channels,
722
- feat_out=neck_out_channels,
723
- num_fpn_stride=4,
724
- num_convs=head_num_convs,
725
- norm_type='bn',
726
- share_cls_reg=True, )
727
- loss_class = ppdet.modeling.VarifocalLoss(
728
- use_sigmoid=True, iou_weighted=True, loss_weight=1.0)
729
- loss_dfl = ppdet.modeling.DistributionFocalLoss(loss_weight=.25)
730
- loss_bbox = ppdet.modeling.GIoULoss(loss_weight=2.0)
731
- assigner = ppdet.modeling.SimOTAAssigner(
732
- candidate_topk=10, iou_weight=6, num_classes=num_classes)
733
- nms = ppdet.modeling.MultiClassNMS(
734
- nms_top_k=nms_topk,
735
- keep_top_k=nms_keep_topk,
736
- score_threshold=nms_score_threshold,
737
- nms_threshold=nms_iou_threshold)
738
- head = ppdet.modeling.PicoHead(
739
- conv_feat=head_conv_feat,
740
- num_classes=num_classes,
741
- fpn_stride=[8, 16, 32, 64],
742
- prior_prob=0.01,
743
- reg_max=7,
744
- cell_offset=.5,
745
- loss_class=loss_class,
746
- loss_dfl=loss_dfl,
747
- loss_bbox=loss_bbox,
748
- assigner=assigner,
749
- feat_in_chan=neck_out_channels,
750
- nms=nms)
751
- params.update({
752
- 'backbone': backbone,
753
- 'neck': neck,
754
- 'head': head,
755
- })
756
- super(PicoDet, self).__init__(
757
- model_name='PicoDet', num_classes=num_classes, **params)
758
-
759
- def _compose_batch_transform(self, transforms, mode='train'):
760
- default_batch_transforms = [_BatchPadding(pad_to_stride=32)]
761
- if mode == 'eval':
762
- collate_batch = True
763
- else:
764
- collate_batch = False
765
-
766
- custom_batch_transforms = []
767
- for i, op in enumerate(transforms.transforms):
768
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
769
- if mode != 'train':
770
- raise Exception(
771
- "{} cannot be present in the {} transforms. ".format(
772
- op.__class__.__name__, mode) +
773
- "Please check the {} transforms.".format(mode))
774
- custom_batch_transforms.insert(0, copy.deepcopy(op))
775
-
776
- batch_transforms = BatchCompose(
777
- custom_batch_transforms + default_batch_transforms,
778
- collate_batch=collate_batch)
779
-
780
- return batch_transforms
781
-
782
- def _fix_transforms_shape(self, image_shape):
783
- if getattr(self, 'test_transforms', None):
784
- has_resize_op = False
785
- resize_op_idx = -1
786
- normalize_op_idx = len(self.test_transforms.transforms)
787
- for idx, op in enumerate(self.test_transforms.transforms):
788
- name = op.__class__.__name__
789
- if name == 'Resize':
790
- has_resize_op = True
791
- resize_op_idx = idx
792
- if name == 'Normalize':
793
- normalize_op_idx = idx
794
-
795
- if not has_resize_op:
796
- self.test_transforms.transforms.insert(
797
- normalize_op_idx,
798
- Resize(
799
- target_size=image_shape, interp='CUBIC'))
800
- else:
801
- self.test_transforms.transforms[
802
- resize_op_idx].target_size = image_shape
803
-
804
- def _get_test_inputs(self, image_shape):
805
- if image_shape is not None:
806
- image_shape = self._check_image_shape(image_shape)
807
- self._fix_transforms_shape(image_shape[-2:])
808
- else:
809
- image_shape = [None, 3, 320, 320]
810
- if getattr(self, 'test_transforms', None):
811
- for idx, op in enumerate(self.test_transforms.transforms):
812
- name = op.__class__.__name__
813
- if name == 'Resize':
814
- image_shape = [None, 3] + list(
815
- self.test_transforms.transforms[idx].target_size)
816
- logging.warning(
817
- '[Important!!!] When exporting inference model for {}, '
818
- 'if fixed_input_shape is not set, it will be forcibly set to {}. '
819
- 'Please ensure image shape after transforms is {}, if not, '
820
- 'fixed_input_shape should be specified manually.'
821
- .format(self.__class__.__name__, image_shape, image_shape[1:]))
822
-
823
- self.fixed_input_shape = image_shape
824
- return self._define_input_spec(image_shape)
825
-
826
- def train(self,
827
- num_epochs,
828
- train_dataset,
829
- train_batch_size=64,
830
- eval_dataset=None,
831
- optimizer=None,
832
- save_interval_epochs=1,
833
- log_interval_steps=10,
834
- save_dir='output',
835
- pretrain_weights='IMAGENET',
836
- learning_rate=.001,
837
- warmup_steps=0,
838
- warmup_start_lr=0.0,
839
- lr_decay_epochs=(216, 243),
840
- lr_decay_gamma=0.1,
841
- metric=None,
842
- use_ema=False,
843
- early_stop=False,
844
- early_stop_patience=5,
845
- use_vdl=True,
846
- resume_checkpoint=None):
847
- """
848
- Train the model.
849
- Args:
850
- num_epochs(int): The number of epochs.
851
- train_dataset(paddlex.dataset): Training dataset.
852
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
853
- eval_dataset(paddlex.dataset, optional):
854
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
855
- optimizer(paddle.optimizer.Optimizer or None, optional):
856
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
857
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
858
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
859
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
860
- pretrain_weights(str or None, optional):
861
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
862
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
863
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
864
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
865
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
866
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
867
- metric({'VOC', 'COCO', None}, optional):
868
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
869
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
870
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
871
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
872
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
873
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
874
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
875
- `pretrain_weights` can be set simultaneously. Defaults to None.
876
- """
877
- if optimizer is None:
878
- num_steps_each_epoch = len(train_dataset) // train_batch_size
879
- optimizer = self.default_optimizer(
880
- parameters=self.net.parameters(),
881
- learning_rate=learning_rate,
882
- warmup_steps=warmup_steps,
883
- warmup_start_lr=warmup_start_lr,
884
- lr_decay_epochs=lr_decay_epochs,
885
- lr_decay_gamma=lr_decay_gamma,
886
- num_steps_each_epoch=num_steps_each_epoch,
887
- reg_coeff=4e-05,
888
- scheduler='Cosine',
889
- num_epochs=num_epochs)
890
- super(PicoDet, self).train(
891
- num_epochs=num_epochs,
892
- train_dataset=train_dataset,
893
- train_batch_size=train_batch_size,
894
- eval_dataset=eval_dataset,
895
- optimizer=optimizer,
896
- save_interval_epochs=save_interval_epochs,
897
- log_interval_steps=log_interval_steps,
898
- save_dir=save_dir,
899
- pretrain_weights=pretrain_weights,
900
- learning_rate=learning_rate,
901
- warmup_steps=warmup_steps,
902
- warmup_start_lr=warmup_start_lr,
903
- lr_decay_epochs=lr_decay_epochs,
904
- lr_decay_gamma=lr_decay_gamma,
905
- metric=metric,
906
- use_ema=use_ema,
907
- early_stop=early_stop,
908
- early_stop_patience=early_stop_patience,
909
- use_vdl=use_vdl,
910
- resume_checkpoint=resume_checkpoint)
911
-
912
-
913
- class YOLOv3(BaseDetector):
914
- def __init__(self,
915
- num_classes=80,
916
- backbone='MobileNetV1',
917
- anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
918
- [59, 119], [116, 90], [156, 198], [373, 326]],
919
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
920
- ignore_threshold=0.7,
921
- nms_score_threshold=0.01,
922
- nms_topk=1000,
923
- nms_keep_topk=100,
924
- nms_iou_threshold=0.45,
925
- label_smooth=False,
926
- **params):
927
- self.init_params = locals()
928
- if backbone not in {
929
- 'MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3',
930
- 'MobileNetV3_ssld', 'DarkNet53', 'ResNet50_vd_dcn', 'ResNet34'
931
- }:
932
- raise ValueError(
933
- "backbone: {} is not supported. Please choose one of "
934
- "('MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3', 'MobileNetV3_ssld', 'DarkNet53', "
935
- "'ResNet50_vd_dcn', 'ResNet34')".format(backbone))
936
-
937
- self.backbone_name = backbone
938
- if params.get('with_net', True):
939
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
940
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
941
- norm_type = 'sync_bn'
942
- else:
943
- norm_type = 'bn'
944
-
945
- if 'MobileNetV1' in backbone:
946
- norm_type = 'bn'
947
- backbone = self._get_backbone('MobileNet', norm_type=norm_type)
948
- elif 'MobileNetV3' in backbone:
949
- backbone = self._get_backbone(
950
- 'MobileNetV3',
951
- norm_type=norm_type,
952
- feature_maps=[7, 13, 16])
953
- elif backbone == 'ResNet50_vd_dcn':
954
- backbone = self._get_backbone(
955
- 'ResNet',
956
- norm_type=norm_type,
957
- variant='d',
958
- return_idx=[1, 2, 3],
959
- dcn_v2_stages=[3],
960
- freeze_at=-1,
961
- freeze_norm=False)
962
- elif backbone == 'ResNet34':
963
- backbone = self._get_backbone(
964
- 'ResNet',
965
- depth=34,
966
- norm_type=norm_type,
967
- return_idx=[1, 2, 3],
968
- freeze_at=-1,
969
- freeze_norm=False,
970
- norm_decay=0.)
971
- else:
972
- backbone = self._get_backbone('DarkNet', norm_type=norm_type)
973
-
974
- neck = ppdet.modeling.YOLOv3FPN(
975
- norm_type=norm_type,
976
- in_channels=[i.channels for i in backbone.out_shape])
977
- loss = ppdet.modeling.YOLOv3Loss(
978
- num_classes=num_classes,
979
- ignore_thresh=ignore_threshold,
980
- label_smooth=label_smooth)
981
- yolo_head = ppdet.modeling.YOLOv3Head(
982
- in_channels=[i.channels for i in neck.out_shape],
983
- anchors=anchors,
984
- anchor_masks=anchor_masks,
985
- num_classes=num_classes,
986
- loss=loss)
987
- post_process = ppdet.modeling.BBoxPostProcess(
988
- decode=ppdet.modeling.YOLOBox(num_classes=num_classes),
989
- nms=ppdet.modeling.MultiClassNMS(
990
- score_threshold=nms_score_threshold,
991
- nms_top_k=nms_topk,
992
- keep_top_k=nms_keep_topk,
993
- nms_threshold=nms_iou_threshold))
994
- params.update({
995
- 'backbone': backbone,
996
- 'neck': neck,
997
- 'yolo_head': yolo_head,
998
- 'post_process': post_process
999
- })
1000
- super(YOLOv3, self).__init__(
1001
- model_name='YOLOv3', num_classes=num_classes, **params)
1002
- self.anchors = anchors
1003
- self.anchor_masks = anchor_masks
1004
-
1005
- def _compose_batch_transform(self, transforms, mode='train'):
1006
- if mode == 'train':
1007
- default_batch_transforms = [
1008
- _BatchPadding(pad_to_stride=-1), _NormalizeBox(),
1009
- _PadBox(getattr(self, 'num_max_boxes', 50)), _BboxXYXY2XYWH(),
1010
- _Gt2YoloTarget(
1011
- anchor_masks=self.anchor_masks,
1012
- anchors=self.anchors,
1013
- downsample_ratios=getattr(self, 'downsample_ratios',
1014
- [32, 16, 8]),
1015
- num_classes=self.num_classes)
1016
- ]
1017
- else:
1018
- default_batch_transforms = [_BatchPadding(pad_to_stride=-1)]
1019
- if mode == 'eval' and self.metric == 'voc':
1020
- collate_batch = False
1021
- else:
1022
- collate_batch = True
1023
-
1024
- custom_batch_transforms = []
1025
- for i, op in enumerate(transforms.transforms):
1026
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
1027
- if mode != 'train':
1028
- raise Exception(
1029
- "{} cannot be present in the {} transforms. ".format(
1030
- op.__class__.__name__, mode) +
1031
- "Please check the {} transforms.".format(mode))
1032
- custom_batch_transforms.insert(0, copy.deepcopy(op))
1033
-
1034
- batch_transforms = BatchCompose(
1035
- custom_batch_transforms + default_batch_transforms,
1036
- collate_batch=collate_batch)
1037
-
1038
- return batch_transforms
1039
-
1040
- def _fix_transforms_shape(self, image_shape):
1041
- if getattr(self, 'test_transforms', None):
1042
- has_resize_op = False
1043
- resize_op_idx = -1
1044
- normalize_op_idx = len(self.test_transforms.transforms)
1045
- for idx, op in enumerate(self.test_transforms.transforms):
1046
- name = op.__class__.__name__
1047
- if name == 'Resize':
1048
- has_resize_op = True
1049
- resize_op_idx = idx
1050
- if name == 'Normalize':
1051
- normalize_op_idx = idx
1052
-
1053
- if not has_resize_op:
1054
- self.test_transforms.transforms.insert(
1055
- normalize_op_idx,
1056
- Resize(
1057
- target_size=image_shape, interp='CUBIC'))
1058
- else:
1059
- self.test_transforms.transforms[
1060
- resize_op_idx].target_size = image_shape
1061
-
1062
-
1063
- class FasterRCNN(BaseDetector):
1064
- def __init__(self,
1065
- num_classes=80,
1066
- backbone='ResNet50',
1067
- with_fpn=True,
1068
- with_dcn=False,
1069
- aspect_ratios=[0.5, 1.0, 2.0],
1070
- anchor_sizes=[[32], [64], [128], [256], [512]],
1071
- keep_top_k=100,
1072
- nms_threshold=0.5,
1073
- score_threshold=0.05,
1074
- fpn_num_channels=256,
1075
- rpn_batch_size_per_im=256,
1076
- rpn_fg_fraction=0.5,
1077
- test_pre_nms_top_n=None,
1078
- test_post_nms_top_n=1000,
1079
- **params):
1080
- self.init_params = locals()
1081
- if backbone not in {
1082
- 'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34',
1083
- 'ResNet34_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18'
1084
- }:
1085
- raise ValueError(
1086
- "backbone: {} is not supported. Please choose one of "
1087
- "('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34', 'ResNet34_vd', "
1088
- "'ResNet101', 'ResNet101_vd', 'HRNet_W18')".format(backbone))
1089
- self.backbone_name = backbone
1090
-
1091
- if params.get('with_net', True):
1092
- dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
1093
- if backbone == 'HRNet_W18':
1094
- if not with_fpn:
1095
- logging.warning(
1096
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1097
- format(backbone))
1098
- with_fpn = True
1099
- if with_dcn:
1100
- logging.warning(
1101
- "Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
1102
- format(backbone))
1103
- backbone = self._get_backbone(
1104
- 'HRNet', width=18, freeze_at=0, return_idx=[0, 1, 2, 3])
1105
- elif backbone == 'ResNet50_vd_ssld':
1106
- if not with_fpn:
1107
- logging.warning(
1108
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1109
- format(backbone))
1110
- with_fpn = True
1111
- backbone = self._get_backbone(
1112
- 'ResNet',
1113
- variant='d',
1114
- norm_type='bn',
1115
- freeze_at=0,
1116
- return_idx=[0, 1, 2, 3],
1117
- num_stages=4,
1118
- lr_mult_list=[0.05, 0.05, 0.1, 0.15],
1119
- dcn_v2_stages=dcn_v2_stages)
1120
- elif 'ResNet50' in backbone:
1121
- if with_fpn:
1122
- backbone = self._get_backbone(
1123
- 'ResNet',
1124
- variant='d' if '_vd' in backbone else 'b',
1125
- norm_type='bn',
1126
- freeze_at=0,
1127
- return_idx=[0, 1, 2, 3],
1128
- num_stages=4,
1129
- dcn_v2_stages=dcn_v2_stages)
1130
- else:
1131
- if with_dcn:
1132
- logging.warning(
1133
- "Backbone {} without fpn should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
1134
- format(backbone))
1135
- backbone = self._get_backbone(
1136
- 'ResNet',
1137
- variant='d' if '_vd' in backbone else 'b',
1138
- norm_type='bn',
1139
- freeze_at=0,
1140
- return_idx=[2],
1141
- num_stages=3)
1142
- elif 'ResNet34' in backbone:
1143
- if not with_fpn:
1144
- logging.warning(
1145
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1146
- format(backbone))
1147
- with_fpn = True
1148
- backbone = self._get_backbone(
1149
- 'ResNet',
1150
- depth=34,
1151
- variant='d' if 'vd' in backbone else 'b',
1152
- norm_type='bn',
1153
- freeze_at=0,
1154
- return_idx=[0, 1, 2, 3],
1155
- num_stages=4,
1156
- dcn_v2_stages=dcn_v2_stages)
1157
- else:
1158
- if not with_fpn:
1159
- logging.warning(
1160
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1161
- format(backbone))
1162
- with_fpn = True
1163
- backbone = self._get_backbone(
1164
- 'ResNet',
1165
- depth=101,
1166
- variant='d' if 'vd' in backbone else 'b',
1167
- norm_type='bn',
1168
- freeze_at=0,
1169
- return_idx=[0, 1, 2, 3],
1170
- num_stages=4,
1171
- dcn_v2_stages=dcn_v2_stages)
1172
-
1173
- rpn_in_channel = backbone.out_shape[0].channels
1174
-
1175
- if with_fpn:
1176
- self.backbone_name = self.backbone_name + '_fpn'
1177
-
1178
- if 'HRNet' in self.backbone_name:
1179
- neck = ppdet.modeling.HRFPN(
1180
- in_channels=[i.channels for i in backbone.out_shape],
1181
- out_channel=fpn_num_channels,
1182
- spatial_scales=[
1183
- 1.0 / i.stride for i in backbone.out_shape
1184
- ],
1185
- share_conv=False)
1186
- else:
1187
- neck = ppdet.modeling.FPN(
1188
- in_channels=[i.channels for i in backbone.out_shape],
1189
- out_channel=fpn_num_channels,
1190
- spatial_scales=[
1191
- 1.0 / i.stride for i in backbone.out_shape
1192
- ])
1193
- rpn_in_channel = neck.out_shape[0].channels
1194
- anchor_generator_cfg = {
1195
- 'aspect_ratios': aspect_ratios,
1196
- 'anchor_sizes': anchor_sizes,
1197
- 'strides': [4, 8, 16, 32, 64]
1198
- }
1199
- train_proposal_cfg = {
1200
- 'min_size': 0.0,
1201
- 'nms_thresh': .7,
1202
- 'pre_nms_top_n': 2000,
1203
- 'post_nms_top_n': 1000,
1204
- 'topk_after_collect': True
1205
- }
1206
- test_proposal_cfg = {
1207
- 'min_size': 0.0,
1208
- 'nms_thresh': .7,
1209
- 'pre_nms_top_n': 1000
1210
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
1211
- 'post_nms_top_n': test_post_nms_top_n
1212
- }
1213
- head = ppdet.modeling.TwoFCHead(
1214
- in_channel=neck.out_shape[0].channels, out_channel=1024)
1215
- roi_extractor_cfg = {
1216
- 'resolution': 7,
1217
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
1218
- 'sampling_ratio': 0,
1219
- 'aligned': True
1220
- }
1221
- with_pool = False
1222
-
1223
- else:
1224
- neck = None
1225
- anchor_generator_cfg = {
1226
- 'aspect_ratios': aspect_ratios,
1227
- 'anchor_sizes': anchor_sizes,
1228
- 'strides': [16]
1229
- }
1230
- train_proposal_cfg = {
1231
- 'min_size': 0.0,
1232
- 'nms_thresh': .7,
1233
- 'pre_nms_top_n': 12000,
1234
- 'post_nms_top_n': 2000,
1235
- 'topk_after_collect': False
1236
- }
1237
- test_proposal_cfg = {
1238
- 'min_size': 0.0,
1239
- 'nms_thresh': .7,
1240
- 'pre_nms_top_n': 6000
1241
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
1242
- 'post_nms_top_n': test_post_nms_top_n
1243
- }
1244
- head = ppdet.modeling.Res5Head()
1245
- roi_extractor_cfg = {
1246
- 'resolution': 14,
1247
- 'spatial_scale':
1248
- [1. / i.stride for i in backbone.out_shape],
1249
- 'sampling_ratio': 0,
1250
- 'aligned': True
1251
- }
1252
- with_pool = True
1253
-
1254
- rpn_target_assign_cfg = {
1255
- 'batch_size_per_im': rpn_batch_size_per_im,
1256
- 'fg_fraction': rpn_fg_fraction,
1257
- 'negative_overlap': .3,
1258
- 'positive_overlap': .7,
1259
- 'use_random': True
1260
- }
1261
-
1262
- rpn_head = ppdet.modeling.RPNHead(
1263
- anchor_generator=anchor_generator_cfg,
1264
- rpn_target_assign=rpn_target_assign_cfg,
1265
- train_proposal=train_proposal_cfg,
1266
- test_proposal=test_proposal_cfg,
1267
- in_channel=rpn_in_channel)
1268
-
1269
- bbox_assigner = BBoxAssigner(num_classes=num_classes)
1270
-
1271
- bbox_head = ppdet.modeling.BBoxHead(
1272
- head=head,
1273
- in_channel=head.out_shape[0].channels,
1274
- roi_extractor=roi_extractor_cfg,
1275
- with_pool=with_pool,
1276
- bbox_assigner=bbox_assigner,
1277
- num_classes=num_classes)
1278
-
1279
- bbox_post_process = ppdet.modeling.BBoxPostProcess(
1280
- num_classes=num_classes,
1281
- decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
1282
- nms=ppdet.modeling.MultiClassNMS(
1283
- score_threshold=score_threshold,
1284
- keep_top_k=keep_top_k,
1285
- nms_threshold=nms_threshold))
1286
-
1287
- params.update({
1288
- 'backbone': backbone,
1289
- 'neck': neck,
1290
- 'rpn_head': rpn_head,
1291
- 'bbox_head': bbox_head,
1292
- 'bbox_post_process': bbox_post_process
1293
- })
1294
- else:
1295
- if backbone not in {'ResNet50', 'ResNet50_vd'}:
1296
- with_fpn = True
1297
-
1298
- self.with_fpn = with_fpn
1299
- super(FasterRCNN, self).__init__(
1300
- model_name='FasterRCNN', num_classes=num_classes, **params)
1301
-
1302
- def train(self,
1303
- num_epochs,
1304
- train_dataset,
1305
- train_batch_size=64,
1306
- eval_dataset=None,
1307
- optimizer=None,
1308
- save_interval_epochs=1,
1309
- log_interval_steps=10,
1310
- save_dir='output',
1311
- pretrain_weights='IMAGENET',
1312
- learning_rate=.001,
1313
- warmup_steps=0,
1314
- warmup_start_lr=0.0,
1315
- lr_decay_epochs=(216, 243),
1316
- lr_decay_gamma=0.1,
1317
- metric=None,
1318
- use_ema=False,
1319
- early_stop=False,
1320
- early_stop_patience=5,
1321
- use_vdl=True,
1322
- resume_checkpoint=None):
1323
- """
1324
- Train the model.
1325
- Args:
1326
- num_epochs(int): The number of epochs.
1327
- train_dataset(paddlex.dataset): Training dataset.
1328
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
1329
- eval_dataset(paddlex.dataset, optional):
1330
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
1331
- optimizer(paddle.optimizer.Optimizer or None, optional):
1332
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
1333
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
1334
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
1335
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
1336
- pretrain_weights(str or None, optional):
1337
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
1338
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
1339
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
1340
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
1341
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
1342
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
1343
- metric({'VOC', 'COCO', None}, optional):
1344
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
1345
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
1346
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
1347
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
1348
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
1349
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
1350
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
1351
- `pretrain_weights` can be set simultaneously. Defaults to None.
1352
- """
1353
- if train_dataset.pos_num < len(train_dataset.file_list):
1354
- train_dataset.num_workers = 0
1355
- if train_batch_size != 1:
1356
- train_batch_size = 1
1357
- logging.warning(
1358
- "Training RCNN models with negative samples only support batch size equals to 1 "
1359
- "on a single gpu/cpu card, `train_batch_size` is forcibly set to 1."
1360
- )
1361
- nranks = paddle.distributed.get_world_size()
1362
- local_rank = paddle.distributed.get_rank()
1363
- # single card training
1364
- if nranks < 2 or local_rank == 0:
1365
- super(FasterRCNN, self).train(
1366
- num_epochs, train_dataset, train_batch_size, eval_dataset,
1367
- optimizer, save_interval_epochs, log_interval_steps,
1368
- save_dir, pretrain_weights, learning_rate, warmup_steps,
1369
- warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric,
1370
- use_ema, early_stop, early_stop_patience, use_vdl,
1371
- resume_checkpoint)
1372
- else:
1373
- super(FasterRCNN, self).train(
1374
- num_epochs, train_dataset, train_batch_size, eval_dataset,
1375
- optimizer, save_interval_epochs, log_interval_steps, save_dir,
1376
- pretrain_weights, learning_rate, warmup_steps, warmup_start_lr,
1377
- lr_decay_epochs, lr_decay_gamma, metric, use_ema, early_stop,
1378
- early_stop_patience, use_vdl, resume_checkpoint)
1379
-
1380
- def _compose_batch_transform(self, transforms, mode='train'):
1381
- if mode == 'train':
1382
- default_batch_transforms = [
1383
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
1384
- ]
1385
- collate_batch = False
1386
- else:
1387
- default_batch_transforms = [
1388
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
1389
- ]
1390
- collate_batch = True
1391
- custom_batch_transforms = []
1392
- for i, op in enumerate(transforms.transforms):
1393
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
1394
- if mode != 'train':
1395
- raise Exception(
1396
- "{} cannot be present in the {} transforms. ".format(
1397
- op.__class__.__name__, mode) +
1398
- "Please check the {} transforms.".format(mode))
1399
- custom_batch_transforms.insert(0, copy.deepcopy(op))
1400
-
1401
- batch_transforms = BatchCompose(
1402
- custom_batch_transforms + default_batch_transforms,
1403
- collate_batch=collate_batch)
1404
-
1405
- return batch_transforms
1406
-
1407
- def _fix_transforms_shape(self, image_shape):
1408
- if getattr(self, 'test_transforms', None):
1409
- has_resize_op = False
1410
- resize_op_idx = -1
1411
- normalize_op_idx = len(self.test_transforms.transforms)
1412
- for idx, op in enumerate(self.test_transforms.transforms):
1413
- name = op.__class__.__name__
1414
- if name == 'ResizeByShort':
1415
- has_resize_op = True
1416
- resize_op_idx = idx
1417
- if name == 'Normalize':
1418
- normalize_op_idx = idx
1419
-
1420
- if not has_resize_op:
1421
- self.test_transforms.transforms.insert(
1422
- normalize_op_idx,
1423
- Resize(
1424
- target_size=image_shape,
1425
- keep_ratio=True,
1426
- interp='CUBIC'))
1427
- else:
1428
- self.test_transforms.transforms[resize_op_idx] = Resize(
1429
- target_size=image_shape, keep_ratio=True, interp='CUBIC')
1430
- self.test_transforms.transforms.append(
1431
- Padding(im_padding_value=[0., 0., 0.]))
1432
-
1433
- def _get_test_inputs(self, image_shape):
1434
- if image_shape is not None:
1435
- image_shape = self._check_image_shape(image_shape)
1436
- self._fix_transforms_shape(image_shape[-2:])
1437
- else:
1438
- image_shape = [None, 3, -1, -1]
1439
- if self.with_fpn:
1440
- self.test_transforms.transforms.append(
1441
- Padding(im_padding_value=[0., 0., 0.]))
1442
-
1443
- self.fixed_input_shape = image_shape
1444
- return self._define_input_spec(image_shape)
1445
-
1446
-
1447
- class PPYOLO(YOLOv3):
1448
- def __init__(self,
1449
- num_classes=80,
1450
- backbone='ResNet50_vd_dcn',
1451
- anchors=None,
1452
- anchor_masks=None,
1453
- use_coord_conv=True,
1454
- use_iou_aware=True,
1455
- use_spp=True,
1456
- use_drop_block=True,
1457
- scale_x_y=1.05,
1458
- ignore_threshold=0.7,
1459
- label_smooth=False,
1460
- use_iou_loss=True,
1461
- use_matrix_nms=True,
1462
- nms_score_threshold=0.01,
1463
- nms_topk=-1,
1464
- nms_keep_topk=100,
1465
- nms_iou_threshold=0.45,
1466
- **params):
1467
- self.init_params = locals()
1468
- if backbone not in {
1469
- 'ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large',
1470
- 'MobileNetV3_small'
1471
- }:
1472
- raise ValueError(
1473
- "backbone: {} is not supported. Please choose one of "
1474
- "('ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large', 'MobileNetV3_small')".
1475
- format(backbone))
1476
- self.backbone_name = backbone
1477
- self.downsample_ratios = [
1478
- 32, 16, 8
1479
- ] if backbone == 'ResNet50_vd_dcn' else [32, 16]
1480
-
1481
- if params.get('with_net', True):
1482
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1483
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1484
- norm_type = 'sync_bn'
1485
- else:
1486
- norm_type = 'bn'
1487
- if anchors is None and anchor_masks is None:
1488
- if 'MobileNetV3' in backbone:
1489
- anchors = [[11, 18], [34, 47], [51, 126], [115, 71],
1490
- [120, 195], [254, 235]]
1491
- anchor_masks = [[3, 4, 5], [0, 1, 2]]
1492
- elif backbone == 'ResNet50_vd_dcn':
1493
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61],
1494
- [62, 45], [59, 119], [116, 90], [156, 198],
1495
- [373, 326]]
1496
- anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
1497
- else:
1498
- anchors = [[10, 14], [23, 27], [37, 58], [81, 82],
1499
- [135, 169], [344, 319]]
1500
- anchor_masks = [[3, 4, 5], [0, 1, 2]]
1501
- elif anchors is None or anchor_masks is None:
1502
- raise ValueError(
1503
- "Please define both anchors and anchor_masks.")
1504
-
1505
- if backbone == 'ResNet50_vd_dcn':
1506
- backbone = self._get_backbone(
1507
- 'ResNet',
1508
- variant='d',
1509
- norm_type=norm_type,
1510
- return_idx=[1, 2, 3],
1511
- dcn_v2_stages=[3],
1512
- freeze_at=-1,
1513
- freeze_norm=False,
1514
- norm_decay=0.)
1515
-
1516
- elif backbone == 'ResNet18_vd':
1517
- backbone = self._get_backbone(
1518
- 'ResNet',
1519
- depth=18,
1520
- variant='d',
1521
- norm_type=norm_type,
1522
- return_idx=[2, 3],
1523
- freeze_at=-1,
1524
- freeze_norm=False,
1525
- norm_decay=0.)
1526
-
1527
- elif backbone == 'MobileNetV3_large':
1528
- backbone = self._get_backbone(
1529
- 'MobileNetV3',
1530
- model_name='large',
1531
- norm_type=norm_type,
1532
- scale=1,
1533
- with_extra_blocks=False,
1534
- extra_block_filters=[],
1535
- feature_maps=[13, 16])
1536
-
1537
- elif backbone == 'MobileNetV3_small':
1538
- backbone = self._get_backbone(
1539
- 'MobileNetV3',
1540
- model_name='small',
1541
- norm_type=norm_type,
1542
- scale=1,
1543
- with_extra_blocks=False,
1544
- extra_block_filters=[],
1545
- feature_maps=[9, 12])
1546
-
1547
- neck = ppdet.modeling.PPYOLOFPN(
1548
- norm_type=norm_type,
1549
- in_channels=[i.channels for i in backbone.out_shape],
1550
- coord_conv=use_coord_conv,
1551
- drop_block=use_drop_block,
1552
- spp=use_spp,
1553
- conv_block_num=0
1554
- if ('MobileNetV3' in self.backbone_name or
1555
- self.backbone_name == 'ResNet18_vd') else 2)
1556
-
1557
- loss = ppdet.modeling.YOLOv3Loss(
1558
- num_classes=num_classes,
1559
- ignore_thresh=ignore_threshold,
1560
- downsample=self.downsample_ratios,
1561
- label_smooth=label_smooth,
1562
- scale_x_y=scale_x_y,
1563
- iou_loss=ppdet.modeling.IouLoss(
1564
- loss_weight=2.5, loss_square=True)
1565
- if use_iou_loss else None,
1566
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1567
- if use_iou_aware else None)
1568
-
1569
- yolo_head = ppdet.modeling.YOLOv3Head(
1570
- in_channels=[i.channels for i in neck.out_shape],
1571
- anchors=anchors,
1572
- anchor_masks=anchor_masks,
1573
- num_classes=num_classes,
1574
- loss=loss,
1575
- iou_aware=use_iou_aware)
1576
-
1577
- if use_matrix_nms:
1578
- nms = ppdet.modeling.MatrixNMS(
1579
- keep_top_k=nms_keep_topk,
1580
- score_threshold=nms_score_threshold,
1581
- post_threshold=.05
1582
- if 'MobileNetV3' in self.backbone_name else .01,
1583
- nms_top_k=nms_topk,
1584
- background_label=-1)
1585
- else:
1586
- nms = ppdet.modeling.MultiClassNMS(
1587
- score_threshold=nms_score_threshold,
1588
- nms_top_k=nms_topk,
1589
- keep_top_k=nms_keep_topk,
1590
- nms_threshold=nms_iou_threshold)
1591
-
1592
- post_process = ppdet.modeling.BBoxPostProcess(
1593
- decode=ppdet.modeling.YOLOBox(
1594
- num_classes=num_classes,
1595
- conf_thresh=.005
1596
- if 'MobileNetV3' in self.backbone_name else .01,
1597
- scale_x_y=scale_x_y),
1598
- nms=nms)
1599
-
1600
- params.update({
1601
- 'backbone': backbone,
1602
- 'neck': neck,
1603
- 'yolo_head': yolo_head,
1604
- 'post_process': post_process
1605
- })
1606
-
1607
- super(YOLOv3, self).__init__(
1608
- model_name='YOLOv3', num_classes=num_classes, **params)
1609
- self.anchors = anchors
1610
- self.anchor_masks = anchor_masks
1611
- self.model_name = 'PPYOLO'
1612
-
1613
- def _get_test_inputs(self, image_shape):
1614
- if image_shape is not None:
1615
- image_shape = self._check_image_shape(image_shape)
1616
- self._fix_transforms_shape(image_shape[-2:])
1617
- else:
1618
- image_shape = [None, 3, 608, 608]
1619
- if getattr(self, 'test_transforms', None):
1620
- for idx, op in enumerate(self.test_transforms.transforms):
1621
- name = op.__class__.__name__
1622
- if name == 'Resize':
1623
- image_shape = [None, 3] + list(
1624
- self.test_transforms.transforms[idx].target_size)
1625
- logging.warning(
1626
- '[Important!!!] When exporting inference model for {}, '
1627
- 'if fixed_input_shape is not set, it will be forcibly set to {}. '
1628
- 'Please ensure image shape after transforms is {}, if not, '
1629
- 'fixed_input_shape should be specified manually.'
1630
- .format(self.__class__.__name__, image_shape, image_shape[1:]))
1631
-
1632
- self.fixed_input_shape = image_shape
1633
- return self._define_input_spec(image_shape)
1634
-
1635
-
1636
- class PPYOLOTiny(YOLOv3):
1637
- def __init__(self,
1638
- num_classes=80,
1639
- backbone='MobileNetV3',
1640
- anchors=[[10, 15], [24, 36], [72, 42], [35, 87], [102, 96],
1641
- [60, 170], [220, 125], [128, 222], [264, 266]],
1642
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
1643
- use_iou_aware=False,
1644
- use_spp=True,
1645
- use_drop_block=True,
1646
- scale_x_y=1.05,
1647
- ignore_threshold=0.5,
1648
- label_smooth=False,
1649
- use_iou_loss=True,
1650
- use_matrix_nms=False,
1651
- nms_score_threshold=0.005,
1652
- nms_topk=1000,
1653
- nms_keep_topk=100,
1654
- nms_iou_threshold=0.45,
1655
- **params):
1656
- self.init_params = locals()
1657
- if backbone != 'MobileNetV3':
1658
- logging.warning(
1659
- "PPYOLOTiny only supports MobileNetV3 as backbone. "
1660
- "Backbone is forcibly set to MobileNetV3.")
1661
- self.backbone_name = 'MobileNetV3'
1662
- self.downsample_ratios = [32, 16, 8]
1663
- if params.get('with_net', True):
1664
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1665
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1666
- norm_type = 'sync_bn'
1667
- else:
1668
- norm_type = 'bn'
1669
-
1670
- backbone = self._get_backbone(
1671
- 'MobileNetV3',
1672
- model_name='large',
1673
- norm_type=norm_type,
1674
- scale=.5,
1675
- with_extra_blocks=False,
1676
- extra_block_filters=[],
1677
- feature_maps=[7, 13, 16])
1678
-
1679
- neck = ppdet.modeling.PPYOLOTinyFPN(
1680
- detection_block_channels=[160, 128, 96],
1681
- in_channels=[i.channels for i in backbone.out_shape],
1682
- spp=use_spp,
1683
- drop_block=use_drop_block)
1684
-
1685
- loss = ppdet.modeling.YOLOv3Loss(
1686
- num_classes=num_classes,
1687
- ignore_thresh=ignore_threshold,
1688
- downsample=self.downsample_ratios,
1689
- label_smooth=label_smooth,
1690
- scale_x_y=scale_x_y,
1691
- iou_loss=ppdet.modeling.IouLoss(
1692
- loss_weight=2.5, loss_square=True)
1693
- if use_iou_loss else None,
1694
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1695
- if use_iou_aware else None)
1696
-
1697
- yolo_head = ppdet.modeling.YOLOv3Head(
1698
- in_channels=[i.channels for i in neck.out_shape],
1699
- anchors=anchors,
1700
- anchor_masks=anchor_masks,
1701
- num_classes=num_classes,
1702
- loss=loss,
1703
- iou_aware=use_iou_aware)
1704
-
1705
- if use_matrix_nms:
1706
- nms = ppdet.modeling.MatrixNMS(
1707
- keep_top_k=nms_keep_topk,
1708
- score_threshold=nms_score_threshold,
1709
- post_threshold=.05,
1710
- nms_top_k=nms_topk,
1711
- background_label=-1)
1712
- else:
1713
- nms = ppdet.modeling.MultiClassNMS(
1714
- score_threshold=nms_score_threshold,
1715
- nms_top_k=nms_topk,
1716
- keep_top_k=nms_keep_topk,
1717
- nms_threshold=nms_iou_threshold)
1718
-
1719
- post_process = ppdet.modeling.BBoxPostProcess(
1720
- decode=ppdet.modeling.YOLOBox(
1721
- num_classes=num_classes,
1722
- conf_thresh=.005,
1723
- downsample_ratio=32,
1724
- clip_bbox=True,
1725
- scale_x_y=scale_x_y),
1726
- nms=nms)
1727
-
1728
- params.update({
1729
- 'backbone': backbone,
1730
- 'neck': neck,
1731
- 'yolo_head': yolo_head,
1732
- 'post_process': post_process
1733
- })
1734
-
1735
- super(YOLOv3, self).__init__(
1736
- model_name='YOLOv3', num_classes=num_classes, **params)
1737
- self.anchors = anchors
1738
- self.anchor_masks = anchor_masks
1739
- self.model_name = 'PPYOLOTiny'
1740
-
1741
- def _get_test_inputs(self, image_shape):
1742
- if image_shape is not None:
1743
- image_shape = self._check_image_shape(image_shape)
1744
- self._fix_transforms_shape(image_shape[-2:])
1745
- else:
1746
- image_shape = [None, 3, 320, 320]
1747
- if getattr(self, 'test_transforms', None):
1748
- for idx, op in enumerate(self.test_transforms.transforms):
1749
- name = op.__class__.__name__
1750
- if name == 'Resize':
1751
- image_shape = [None, 3] + list(
1752
- self.test_transforms.transforms[idx].target_size)
1753
- logging.warning(
1754
- '[Important!!!] When exporting inference model for {},'.format(
1755
- self.__class__.__name__) +
1756
- ' if fixed_input_shape is not set, it will be forcibly set to {}. '.
1757
- format(image_shape) +
1758
- 'Please check image shape after transforms is {}, if not, fixed_input_shape '.
1759
- format(image_shape[1:]) + 'should be specified manually.')
1760
-
1761
- self.fixed_input_shape = image_shape
1762
- return self._define_input_spec(image_shape)
1763
-
1764
-
1765
- class PPYOLOv2(YOLOv3):
1766
- def __init__(self,
1767
- num_classes=80,
1768
- backbone='ResNet50_vd_dcn',
1769
- anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
1770
- [59, 119], [116, 90], [156, 198], [373, 326]],
1771
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
1772
- use_iou_aware=True,
1773
- use_spp=True,
1774
- use_drop_block=True,
1775
- scale_x_y=1.05,
1776
- ignore_threshold=0.7,
1777
- label_smooth=False,
1778
- use_iou_loss=True,
1779
- use_matrix_nms=True,
1780
- nms_score_threshold=0.01,
1781
- nms_topk=-1,
1782
- nms_keep_topk=100,
1783
- nms_iou_threshold=0.45,
1784
- **params):
1785
- self.init_params = locals()
1786
- if backbone not in {'ResNet50_vd_dcn', 'ResNet101_vd_dcn'}:
1787
- raise ValueError(
1788
- "backbone: {} is not supported. Please choose one of "
1789
- "('ResNet50_vd_dcn', 'ResNet101_vd_dcn')".format(backbone))
1790
- self.backbone_name = backbone
1791
- self.downsample_ratios = [32, 16, 8]
1792
-
1793
- if params.get('with_net', True):
1794
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1795
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1796
- norm_type = 'sync_bn'
1797
- else:
1798
- norm_type = 'bn'
1799
-
1800
- if backbone == 'ResNet50_vd_dcn':
1801
- backbone = self._get_backbone(
1802
- 'ResNet',
1803
- variant='d',
1804
- norm_type=norm_type,
1805
- return_idx=[1, 2, 3],
1806
- dcn_v2_stages=[3],
1807
- freeze_at=-1,
1808
- freeze_norm=False,
1809
- norm_decay=0.)
1810
-
1811
- elif backbone == 'ResNet101_vd_dcn':
1812
- backbone = self._get_backbone(
1813
- 'ResNet',
1814
- depth=101,
1815
- variant='d',
1816
- norm_type=norm_type,
1817
- return_idx=[1, 2, 3],
1818
- dcn_v2_stages=[3],
1819
- freeze_at=-1,
1820
- freeze_norm=False,
1821
- norm_decay=0.)
1822
-
1823
- neck = ppdet.modeling.PPYOLOPAN(
1824
- norm_type=norm_type,
1825
- in_channels=[i.channels for i in backbone.out_shape],
1826
- drop_block=use_drop_block,
1827
- block_size=3,
1828
- keep_prob=.9,
1829
- spp=use_spp)
1830
-
1831
- loss = ppdet.modeling.YOLOv3Loss(
1832
- num_classes=num_classes,
1833
- ignore_thresh=ignore_threshold,
1834
- downsample=self.downsample_ratios,
1835
- label_smooth=label_smooth,
1836
- scale_x_y=scale_x_y,
1837
- iou_loss=ppdet.modeling.IouLoss(
1838
- loss_weight=2.5, loss_square=True)
1839
- if use_iou_loss else None,
1840
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1841
- if use_iou_aware else None)
1842
-
1843
- yolo_head = ppdet.modeling.YOLOv3Head(
1844
- in_channels=[i.channels for i in neck.out_shape],
1845
- anchors=anchors,
1846
- anchor_masks=anchor_masks,
1847
- num_classes=num_classes,
1848
- loss=loss,
1849
- iou_aware=use_iou_aware,
1850
- iou_aware_factor=.5)
1851
-
1852
- if use_matrix_nms:
1853
- nms = ppdet.modeling.MatrixNMS(
1854
- keep_top_k=nms_keep_topk,
1855
- score_threshold=nms_score_threshold,
1856
- post_threshold=.01,
1857
- nms_top_k=nms_topk,
1858
- background_label=-1)
1859
- else:
1860
- nms = ppdet.modeling.MultiClassNMS(
1861
- score_threshold=nms_score_threshold,
1862
- nms_top_k=nms_topk,
1863
- keep_top_k=nms_keep_topk,
1864
- nms_threshold=nms_iou_threshold)
1865
-
1866
- post_process = ppdet.modeling.BBoxPostProcess(
1867
- decode=ppdet.modeling.YOLOBox(
1868
- num_classes=num_classes,
1869
- conf_thresh=.01,
1870
- downsample_ratio=32,
1871
- clip_bbox=True,
1872
- scale_x_y=scale_x_y),
1873
- nms=nms)
1874
-
1875
- params.update({
1876
- 'backbone': backbone,
1877
- 'neck': neck,
1878
- 'yolo_head': yolo_head,
1879
- 'post_process': post_process
1880
- })
1881
-
1882
- super(YOLOv3, self).__init__(
1883
- model_name='YOLOv3', num_classes=num_classes, **params)
1884
- self.anchors = anchors
1885
- self.anchor_masks = anchor_masks
1886
- self.model_name = 'PPYOLOv2'
1887
-
1888
- def _get_test_inputs(self, image_shape):
1889
- if image_shape is not None:
1890
- image_shape = self._check_image_shape(image_shape)
1891
- self._fix_transforms_shape(image_shape[-2:])
1892
- else:
1893
- image_shape = [None, 3, 640, 640]
1894
- if getattr(self, 'test_transforms', None):
1895
- for idx, op in enumerate(self.test_transforms.transforms):
1896
- name = op.__class__.__name__
1897
- if name == 'Resize':
1898
- image_shape = [None, 3] + list(
1899
- self.test_transforms.transforms[idx].target_size)
1900
- logging.warning(
1901
- '[Important!!!] When exporting inference model for {},'.format(
1902
- self.__class__.__name__) +
1903
- ' if fixed_input_shape is not set, it will be forcibly set to {}. '.
1904
- format(image_shape) +
1905
- 'Please check image shape after transforms is {}, if not, fixed_input_shape '.
1906
- format(image_shape[1:]) + 'should be specified manually.')
1907
-
1908
- self.fixed_input_shape = image_shape
1909
- return self._define_input_spec(image_shape)
1910
-
1911
-
1912
- class MaskRCNN(BaseDetector):
1913
- def __init__(self,
1914
- num_classes=80,
1915
- backbone='ResNet50_vd',
1916
- with_fpn=True,
1917
- with_dcn=False,
1918
- aspect_ratios=[0.5, 1.0, 2.0],
1919
- anchor_sizes=[[32], [64], [128], [256], [512]],
1920
- keep_top_k=100,
1921
- nms_threshold=0.5,
1922
- score_threshold=0.05,
1923
- fpn_num_channels=256,
1924
- rpn_batch_size_per_im=256,
1925
- rpn_fg_fraction=0.5,
1926
- test_pre_nms_top_n=None,
1927
- test_post_nms_top_n=1000,
1928
- **params):
1929
- self.init_params = locals()
1930
- if backbone not in {
1931
- 'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101',
1932
- 'ResNet101_vd'
1933
- }:
1934
- raise ValueError(
1935
- "backbone: {} is not supported. Please choose one of "
1936
- "('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101', 'ResNet101_vd')".
1937
- format(backbone))
1938
-
1939
- self.backbone_name = backbone + '_fpn' if with_fpn else backbone
1940
- dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
1941
-
1942
- if params.get('with_net', True):
1943
- if backbone == 'ResNet50':
1944
- if with_fpn:
1945
- backbone = self._get_backbone(
1946
- 'ResNet',
1947
- norm_type='bn',
1948
- freeze_at=0,
1949
- return_idx=[0, 1, 2, 3],
1950
- num_stages=4,
1951
- dcn_v2_stages=dcn_v2_stages)
1952
- else:
1953
- if with_dcn:
1954
- logging.warning(
1955
- "Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
1956
- format(backbone))
1957
- backbone = self._get_backbone(
1958
- 'ResNet',
1959
- norm_type='bn',
1960
- freeze_at=0,
1961
- return_idx=[2],
1962
- num_stages=3)
1963
-
1964
- elif 'ResNet50_vd' in backbone:
1965
- if not with_fpn:
1966
- logging.warning(
1967
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1968
- format(backbone))
1969
- with_fpn = True
1970
- backbone = self._get_backbone(
1971
- 'ResNet',
1972
- variant='d',
1973
- norm_type='bn',
1974
- freeze_at=0,
1975
- return_idx=[0, 1, 2, 3],
1976
- num_stages=4,
1977
- lr_mult_list=[0.05, 0.05, 0.1, 0.15]
1978
- if '_ssld' in backbone else [1.0, 1.0, 1.0, 1.0],
1979
- dcn_v2_stages=dcn_v2_stages)
1980
-
1981
- else:
1982
- if not with_fpn:
1983
- logging.warning(
1984
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1985
- format(backbone))
1986
- with_fpn = True
1987
- backbone = self._get_backbone(
1988
- 'ResNet',
1989
- variant='d' if '_vd' in backbone else 'b',
1990
- depth=101,
1991
- norm_type='bn',
1992
- freeze_at=0,
1993
- return_idx=[0, 1, 2, 3],
1994
- num_stages=4,
1995
- dcn_v2_stages=dcn_v2_stages)
1996
-
1997
- rpn_in_channel = backbone.out_shape[0].channels
1998
-
1999
- if with_fpn:
2000
- neck = ppdet.modeling.FPN(
2001
- in_channels=[i.channels for i in backbone.out_shape],
2002
- out_channel=fpn_num_channels,
2003
- spatial_scales=[
2004
- 1.0 / i.stride for i in backbone.out_shape
2005
- ])
2006
- rpn_in_channel = neck.out_shape[0].channels
2007
- anchor_generator_cfg = {
2008
- 'aspect_ratios': aspect_ratios,
2009
- 'anchor_sizes': anchor_sizes,
2010
- 'strides': [4, 8, 16, 32, 64]
2011
- }
2012
- train_proposal_cfg = {
2013
- 'min_size': 0.0,
2014
- 'nms_thresh': .7,
2015
- 'pre_nms_top_n': 2000,
2016
- 'post_nms_top_n': 1000,
2017
- 'topk_after_collect': True
2018
- }
2019
- test_proposal_cfg = {
2020
- 'min_size': 0.0,
2021
- 'nms_thresh': .7,
2022
- 'pre_nms_top_n': 1000
2023
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
2024
- 'post_nms_top_n': test_post_nms_top_n
2025
- }
2026
- bb_head = ppdet.modeling.TwoFCHead(
2027
- in_channel=neck.out_shape[0].channels, out_channel=1024)
2028
- bb_roi_extractor_cfg = {
2029
- 'resolution': 7,
2030
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
2031
- 'sampling_ratio': 0,
2032
- 'aligned': True
2033
- }
2034
- with_pool = False
2035
- m_head = ppdet.modeling.MaskFeat(
2036
- in_channel=neck.out_shape[0].channels,
2037
- out_channel=256,
2038
- num_convs=4)
2039
- m_roi_extractor_cfg = {
2040
- 'resolution': 14,
2041
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
2042
- 'sampling_ratio': 0,
2043
- 'aligned': True
2044
- }
2045
- mask_assigner = MaskAssigner(
2046
- num_classes=num_classes, mask_resolution=28)
2047
- share_bbox_feat = False
2048
-
2049
- else:
2050
- neck = None
2051
- anchor_generator_cfg = {
2052
- 'aspect_ratios': aspect_ratios,
2053
- 'anchor_sizes': anchor_sizes,
2054
- 'strides': [16]
2055
- }
2056
- train_proposal_cfg = {
2057
- 'min_size': 0.0,
2058
- 'nms_thresh': .7,
2059
- 'pre_nms_top_n': 12000,
2060
- 'post_nms_top_n': 2000,
2061
- 'topk_after_collect': False
2062
- }
2063
- test_proposal_cfg = {
2064
- 'min_size': 0.0,
2065
- 'nms_thresh': .7,
2066
- 'pre_nms_top_n': 6000
2067
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
2068
- 'post_nms_top_n': test_post_nms_top_n
2069
- }
2070
- bb_head = ppdet.modeling.Res5Head()
2071
- bb_roi_extractor_cfg = {
2072
- 'resolution': 14,
2073
- 'spatial_scale':
2074
- [1. / i.stride for i in backbone.out_shape],
2075
- 'sampling_ratio': 0,
2076
- 'aligned': True
2077
- }
2078
- with_pool = True
2079
- m_head = ppdet.modeling.MaskFeat(
2080
- in_channel=bb_head.out_shape[0].channels,
2081
- out_channel=256,
2082
- num_convs=0)
2083
- m_roi_extractor_cfg = {
2084
- 'resolution': 14,
2085
- 'spatial_scale':
2086
- [1. / i.stride for i in backbone.out_shape],
2087
- 'sampling_ratio': 0,
2088
- 'aligned': True
2089
- }
2090
- mask_assigner = MaskAssigner(
2091
- num_classes=num_classes, mask_resolution=14)
2092
- share_bbox_feat = True
2093
-
2094
- rpn_target_assign_cfg = {
2095
- 'batch_size_per_im': rpn_batch_size_per_im,
2096
- 'fg_fraction': rpn_fg_fraction,
2097
- 'negative_overlap': .3,
2098
- 'positive_overlap': .7,
2099
- 'use_random': True
2100
- }
2101
-
2102
- rpn_head = ppdet.modeling.RPNHead(
2103
- anchor_generator=anchor_generator_cfg,
2104
- rpn_target_assign=rpn_target_assign_cfg,
2105
- train_proposal=train_proposal_cfg,
2106
- test_proposal=test_proposal_cfg,
2107
- in_channel=rpn_in_channel)
2108
-
2109
- bbox_assigner = BBoxAssigner(num_classes=num_classes)
2110
-
2111
- bbox_head = ppdet.modeling.BBoxHead(
2112
- head=bb_head,
2113
- in_channel=bb_head.out_shape[0].channels,
2114
- roi_extractor=bb_roi_extractor_cfg,
2115
- with_pool=with_pool,
2116
- bbox_assigner=bbox_assigner,
2117
- num_classes=num_classes)
2118
-
2119
- mask_head = ppdet.modeling.MaskHead(
2120
- head=m_head,
2121
- roi_extractor=m_roi_extractor_cfg,
2122
- mask_assigner=mask_assigner,
2123
- share_bbox_feat=share_bbox_feat,
2124
- num_classes=num_classes)
2125
-
2126
- bbox_post_process = ppdet.modeling.BBoxPostProcess(
2127
- num_classes=num_classes,
2128
- decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
2129
- nms=ppdet.modeling.MultiClassNMS(
2130
- score_threshold=score_threshold,
2131
- keep_top_k=keep_top_k,
2132
- nms_threshold=nms_threshold))
2133
-
2134
- mask_post_process = ppdet.modeling.MaskPostProcess(
2135
- binary_thresh=.5)
2136
-
2137
- params.update({
2138
- 'backbone': backbone,
2139
- 'neck': neck,
2140
- 'rpn_head': rpn_head,
2141
- 'bbox_head': bbox_head,
2142
- 'mask_head': mask_head,
2143
- 'bbox_post_process': bbox_post_process,
2144
- 'mask_post_process': mask_post_process
2145
- })
2146
- self.with_fpn = with_fpn
2147
- super(MaskRCNN, self).__init__(
2148
- model_name='MaskRCNN', num_classes=num_classes, **params)
2149
-
2150
- def train(self,
2151
- num_epochs,
2152
- train_dataset,
2153
- train_batch_size=64,
2154
- eval_dataset=None,
2155
- optimizer=None,
2156
- save_interval_epochs=1,
2157
- log_interval_steps=10,
2158
- save_dir='output',
2159
- pretrain_weights='IMAGENET',
2160
- learning_rate=.001,
2161
- warmup_steps=0,
2162
- warmup_start_lr=0.0,
2163
- lr_decay_epochs=(216, 243),
2164
- lr_decay_gamma=0.1,
2165
- metric=None,
2166
- use_ema=False,
2167
- early_stop=False,
2168
- early_stop_patience=5,
2169
- use_vdl=True,
2170
- resume_checkpoint=None):
2171
- """
2172
- Train the model.
2173
- Args:
2174
- num_epochs(int): The number of epochs.
2175
- train_dataset(paddlex.dataset): Training dataset.
2176
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
2177
- eval_dataset(paddlex.dataset, optional):
2178
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
2179
- optimizer(paddle.optimizer.Optimizer or None, optional):
2180
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
2181
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
2182
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
2183
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
2184
- pretrain_weights(str or None, optional):
2185
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
2186
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
2187
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
2188
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
2189
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
2190
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
2191
- metric({'VOC', 'COCO', None}, optional):
2192
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
2193
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
2194
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
2195
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
2196
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
2197
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
2198
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
2199
- `pretrain_weights` can be set simultaneously. Defaults to None.
2200
- """
2201
- if train_dataset.pos_num < len(train_dataset.file_list):
2202
- train_dataset.num_workers = 0
2203
- if train_batch_size != 1:
2204
- train_batch_size = 1
2205
- logging.warning(
2206
- "Training RCNN models with negative samples only support batch size equals to 1 "
2207
- "on a single gpu/cpu card, `train_batch_size` is forcibly set to 1."
2208
- )
2209
- nranks = paddle.distributed.get_world_size()
2210
- local_rank = paddle.distributed.get_rank()
2211
- # single card training
2212
- if nranks < 2 or local_rank == 0:
2213
- super(MaskRCNN, self).train(
2214
- num_epochs, train_dataset, train_batch_size, eval_dataset,
2215
- optimizer, save_interval_epochs, log_interval_steps,
2216
- save_dir, pretrain_weights, learning_rate, warmup_steps,
2217
- warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric,
2218
- use_ema, early_stop, early_stop_patience, use_vdl,
2219
- resume_checkpoint)
2220
- else:
2221
- super(MaskRCNN, self).train(
2222
- num_epochs, train_dataset, train_batch_size, eval_dataset,
2223
- optimizer, save_interval_epochs, log_interval_steps, save_dir,
2224
- pretrain_weights, learning_rate, warmup_steps, warmup_start_lr,
2225
- lr_decay_epochs, lr_decay_gamma, metric, use_ema, early_stop,
2226
- early_stop_patience, use_vdl, resume_checkpoint)
2227
-
2228
- def _compose_batch_transform(self, transforms, mode='train'):
2229
- if mode == 'train':
2230
- default_batch_transforms = [
2231
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
2232
- ]
2233
- collate_batch = False
2234
- else:
2235
- default_batch_transforms = [
2236
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
2237
- ]
2238
- collate_batch = True
2239
- custom_batch_transforms = []
2240
- for i, op in enumerate(transforms.transforms):
2241
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
2242
- if mode != 'train':
2243
- raise Exception(
2244
- "{} cannot be present in the {} transforms. ".format(
2245
- op.__class__.__name__, mode) +
2246
- "Please check the {} transforms.".format(mode))
2247
- custom_batch_transforms.insert(0, copy.deepcopy(op))
2248
-
2249
- batch_transforms = BatchCompose(
2250
- custom_batch_transforms + default_batch_transforms,
2251
- collate_batch=collate_batch)
2252
-
2253
- return batch_transforms
2254
-
2255
- def _fix_transforms_shape(self, image_shape):
2256
- if getattr(self, 'test_transforms', None):
2257
- has_resize_op = False
2258
- resize_op_idx = -1
2259
- normalize_op_idx = len(self.test_transforms.transforms)
2260
- for idx, op in enumerate(self.test_transforms.transforms):
2261
- name = op.__class__.__name__
2262
- if name == 'ResizeByShort':
2263
- has_resize_op = True
2264
- resize_op_idx = idx
2265
- if name == 'Normalize':
2266
- normalize_op_idx = idx
2267
-
2268
- if not has_resize_op:
2269
- self.test_transforms.transforms.insert(
2270
- normalize_op_idx,
2271
- Resize(
2272
- target_size=image_shape,
2273
- keep_ratio=True,
2274
- interp='CUBIC'))
2275
- else:
2276
- self.test_transforms.transforms[resize_op_idx] = Resize(
2277
- target_size=image_shape, keep_ratio=True, interp='CUBIC')
2278
- self.test_transforms.transforms.append(
2279
- Padding(im_padding_value=[0., 0., 0.]))
2280
-
2281
- def _get_test_inputs(self, image_shape):
2282
- if image_shape is not None:
2283
- image_shape = self._check_image_shape(image_shape)
2284
- self._fix_transforms_shape(image_shape[-2:])
2285
- else:
2286
- image_shape = [None, 3, -1, -1]
2287
- if self.with_fpn:
2288
- self.test_transforms.transforms.append(
2289
- Padding(im_padding_value=[0., 0., 0.]))
2290
- self.fixed_input_shape = image_shape
2291
-
2292
- return self._define_input_spec(image_shape)