paddlex 2.1.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1786) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +35 -19
  3. paddlex/__main__.py +39 -0
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
  6. paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  7. paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
  8. paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
  9. paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
  10. paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  11. paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
  12. paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  13. paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  14. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  15. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  16. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  17. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  18. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  19. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
  20. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
  21. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
  22. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  23. paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
  24. paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
  25. paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
  26. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  27. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  28. paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
  29. paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
  30. paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
  31. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  32. paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
  33. paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
  34. paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
  35. paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
  36. paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
  37. paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
  38. paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
  39. paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
  40. paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
  41. paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
  42. paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
  43. paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
  44. paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
  45. paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
  46. paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
  47. paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
  48. paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
  49. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  50. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  51. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  52. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  53. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  54. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  55. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  56. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  57. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  58. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  59. paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
  60. paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  61. paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
  62. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  63. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  64. paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
  65. paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
  66. paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
  67. paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
  68. paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
  69. paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
  70. paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
  71. paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
  72. paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
  73. paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
  74. paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
  75. paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
  76. paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
  77. paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
  78. paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
  79. paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
  80. paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
  81. paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
  82. paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
  83. paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
  84. paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
  85. paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
  86. paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
  87. paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
  88. paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
  89. paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
  90. paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
  91. paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
  92. paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
  93. paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
  94. paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
  95. paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
  96. paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
  97. paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
  98. paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
  99. paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
  100. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  101. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  102. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  103. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  104. paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  105. paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  106. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
  107. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  108. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  109. paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  110. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  111. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  112. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  113. paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  114. paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
  115. paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
  116. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  117. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  118. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  119. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  120. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  121. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  122. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  123. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  124. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  125. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  126. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  127. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  128. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  129. paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  130. paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
  131. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  132. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  133. paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
  134. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  135. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  136. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  137. paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
  138. paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
  139. paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
  140. paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
  141. paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
  142. paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
  143. paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
  144. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
  145. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
  146. paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  147. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  148. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  149. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  150. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  151. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  152. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  153. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  154. paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
  155. paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
  156. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  157. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  158. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  159. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  160. paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
  161. paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
  162. paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  163. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  164. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  165. paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  166. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  167. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  168. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  169. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  170. paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  171. paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  172. paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  173. paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  174. paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  175. paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
  176. paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
  177. paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
  178. paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
  179. paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
  180. paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
  181. paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
  182. paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
  183. paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
  184. paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
  185. paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
  186. paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
  187. paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
  188. paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
  189. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  190. paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  191. paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  192. paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  193. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  194. paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
  195. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  196. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  197. paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  198. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  199. paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
  200. paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
  201. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  202. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  203. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  204. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  205. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  206. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  207. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  208. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  209. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  210. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  211. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  212. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  213. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  214. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  215. paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
  216. paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
  217. paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
  218. paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
  219. paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
  220. paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
  221. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  222. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  223. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  224. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  225. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  226. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  227. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  228. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  229. paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
  230. paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
  231. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  232. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  233. paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  234. paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
  235. paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
  236. paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
  237. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  238. paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  239. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  240. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  241. paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
  242. paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
  243. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  244. paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  245. paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  246. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  247. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  248. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  249. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  250. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  251. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  252. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  253. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  254. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  255. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  256. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  257. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  258. paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  259. paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  260. paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  261. paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  262. paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  263. paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
  264. paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
  265. paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
  266. paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
  267. paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
  268. paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
  269. paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
  270. paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
  271. paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  272. paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  273. paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  274. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  275. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  276. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  277. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  278. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  279. paddlex/configs/pipelines/OCR.yaml +45 -0
  280. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +151 -0
  281. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +237 -0
  282. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  283. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  284. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  285. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  286. paddlex/configs/pipelines/doc_understanding.yaml +9 -0
  287. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  288. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  289. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  290. paddlex/configs/pipelines/image_classification.yaml +10 -0
  291. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  292. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  293. paddlex/configs/pipelines/layout_parsing.yaml +102 -0
  294. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  295. paddlex/configs/pipelines/object_detection.yaml +10 -0
  296. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  297. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  298. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  299. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  300. paddlex/configs/pipelines/seal_recognition.yaml +52 -0
  301. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  302. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  303. paddlex/configs/pipelines/table_recognition.yaml +57 -0
  304. paddlex/configs/pipelines/table_recognition_v2.yaml +82 -0
  305. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  306. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  307. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  308. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  309. paddlex/configs/pipelines/video_classification.yaml +9 -0
  310. paddlex/configs/pipelines/video_detection.yaml +10 -0
  311. paddlex/constants.py +17 -0
  312. paddlex/engine.py +56 -0
  313. paddlex/hpip_links.html +31 -0
  314. paddlex/inference/__init__.py +19 -0
  315. paddlex/inference/common/__init__.py +13 -0
  316. paddlex/inference/common/batch_sampler/__init__.py +21 -0
  317. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
  318. paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
  319. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
  320. paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
  321. paddlex/inference/common/batch_sampler/image_batch_sampler.py +121 -0
  322. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
  323. paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
  324. paddlex/inference/common/reader/__init__.py +19 -0
  325. paddlex/inference/common/reader/audio_reader.py +46 -0
  326. paddlex/inference/common/reader/det_3d_reader.py +241 -0
  327. paddlex/inference/common/reader/image_reader.py +73 -0
  328. paddlex/inference/common/reader/ts_reader.py +46 -0
  329. paddlex/inference/common/reader/video_reader.py +42 -0
  330. paddlex/inference/common/result/__init__.py +29 -0
  331. paddlex/inference/common/result/base_cv_result.py +41 -0
  332. paddlex/inference/common/result/base_result.py +72 -0
  333. paddlex/inference/common/result/base_ts_result.py +41 -0
  334. paddlex/inference/common/result/base_video_result.py +36 -0
  335. paddlex/inference/common/result/mixin.py +709 -0
  336. paddlex/inference/models/__init__.py +86 -0
  337. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  338. paddlex/inference/models/anomaly_detection/predictor.py +135 -0
  339. paddlex/inference/models/anomaly_detection/processors.py +53 -0
  340. paddlex/inference/models/anomaly_detection/result.py +71 -0
  341. paddlex/inference/models/base/__init__.py +15 -0
  342. paddlex/inference/models/base/predictor/__init__.py +15 -0
  343. paddlex/inference/models/base/predictor/base_predictor.py +414 -0
  344. paddlex/inference/models/common/__init__.py +26 -0
  345. paddlex/inference/models/common/static_infer.py +801 -0
  346. paddlex/inference/models/common/tokenizer/__init__.py +21 -0
  347. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  348. paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
  349. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
  350. paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
  351. paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
  352. paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
  353. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
  354. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
  355. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  356. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  357. paddlex/inference/models/common/ts/__init__.py +15 -0
  358. paddlex/inference/models/common/ts/funcs.py +540 -0
  359. paddlex/inference/models/common/ts/processors.py +322 -0
  360. paddlex/inference/models/common/vision/__init__.py +23 -0
  361. paddlex/inference/models/common/vision/funcs.py +98 -0
  362. paddlex/inference/models/common/vision/processors.py +285 -0
  363. paddlex/inference/models/common/vlm/__init__.py +13 -0
  364. paddlex/inference/models/common/vlm/activations.py +189 -0
  365. paddlex/inference/models/common/vlm/bert_padding.py +127 -0
  366. paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
  367. paddlex/inference/models/common/vlm/distributed.py +229 -0
  368. paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
  369. paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
  370. paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
  371. paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
  372. paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
  373. paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
  374. paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
  375. paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
  376. paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
  377. paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
  378. paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
  379. paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
  380. paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
  381. paddlex/inference/models/common/vlm/utils.py +109 -0
  382. paddlex/inference/models/doc_vlm/__init__.py +15 -0
  383. paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
  384. paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
  385. paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
  386. paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
  387. paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
  388. paddlex/inference/models/doc_vlm/predictor.py +253 -0
  389. paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
  390. paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
  391. paddlex/inference/models/doc_vlm/processors/common.py +561 -0
  392. paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
  393. paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
  394. paddlex/inference/models/doc_vlm/result.py +21 -0
  395. paddlex/inference/models/face_feature/__init__.py +15 -0
  396. paddlex/inference/models/face_feature/predictor.py +66 -0
  397. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  398. paddlex/inference/models/formula_recognition/predictor.py +193 -0
  399. paddlex/inference/models/formula_recognition/processors.py +1015 -0
  400. paddlex/inference/models/formula_recognition/result.py +411 -0
  401. paddlex/inference/models/image_classification/__init__.py +15 -0
  402. paddlex/inference/models/image_classification/predictor.py +172 -0
  403. paddlex/inference/models/image_classification/processors.py +89 -0
  404. paddlex/inference/models/image_classification/result.py +93 -0
  405. paddlex/inference/models/image_feature/__init__.py +15 -0
  406. paddlex/inference/models/image_feature/predictor.py +146 -0
  407. paddlex/inference/models/image_feature/processors.py +31 -0
  408. paddlex/inference/models/image_feature/result.py +32 -0
  409. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  410. paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
  411. paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
  412. paddlex/inference/models/image_multilabel_classification/result.py +96 -0
  413. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  414. paddlex/inference/models/image_unwarping/predictor.py +97 -0
  415. paddlex/inference/models/image_unwarping/processors.py +92 -0
  416. paddlex/inference/models/image_unwarping/result.py +47 -0
  417. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  418. paddlex/inference/models/instance_segmentation/predictor.py +202 -0
  419. paddlex/inference/models/instance_segmentation/processors.py +102 -0
  420. paddlex/inference/models/instance_segmentation/result.py +162 -0
  421. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  422. paddlex/inference/models/keypoint_detection/predictor.py +190 -0
  423. paddlex/inference/models/keypoint_detection/processors.py +367 -0
  424. paddlex/inference/models/keypoint_detection/result.py +197 -0
  425. paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
  426. paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
  427. paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
  428. paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
  429. paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
  430. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  431. paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
  432. paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
  433. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  434. paddlex/inference/models/object_detection/__init__.py +15 -0
  435. paddlex/inference/models/object_detection/predictor.py +344 -0
  436. paddlex/inference/models/object_detection/processors.py +885 -0
  437. paddlex/inference/models/object_detection/result.py +114 -0
  438. paddlex/inference/models/object_detection/utils.py +70 -0
  439. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  440. paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
  441. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
  442. paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
  443. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
  444. paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
  445. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  446. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
  447. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  448. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  449. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  450. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
  451. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  452. paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
  453. paddlex/inference/models/semantic_segmentation/processors.py +117 -0
  454. paddlex/inference/models/semantic_segmentation/result.py +73 -0
  455. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  456. paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
  457. paddlex/inference/models/table_structure_recognition/processors.py +229 -0
  458. paddlex/inference/models/table_structure_recognition/result.py +63 -0
  459. paddlex/inference/models/text_detection/__init__.py +15 -0
  460. paddlex/inference/models/text_detection/predictor.py +191 -0
  461. paddlex/inference/models/text_detection/processors.py +538 -0
  462. paddlex/inference/models/text_detection/result.py +46 -0
  463. paddlex/inference/models/text_recognition/__init__.py +15 -0
  464. paddlex/inference/models/text_recognition/predictor.py +98 -0
  465. paddlex/inference/models/text_recognition/processors.py +245 -0
  466. paddlex/inference/models/text_recognition/result.py +76 -0
  467. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  468. paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
  469. paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
  470. paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
  471. paddlex/inference/models/ts_classification/__init__.py +15 -0
  472. paddlex/inference/models/ts_classification/predictor.py +122 -0
  473. paddlex/inference/models/ts_classification/processors.py +122 -0
  474. paddlex/inference/models/ts_classification/result.py +87 -0
  475. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  476. paddlex/inference/models/ts_forecasting/predictor.py +154 -0
  477. paddlex/inference/models/ts_forecasting/processors.py +158 -0
  478. paddlex/inference/models/ts_forecasting/result.py +96 -0
  479. paddlex/inference/models/video_classification/__init__.py +15 -0
  480. paddlex/inference/models/video_classification/predictor.py +141 -0
  481. paddlex/inference/models/video_classification/processors.py +409 -0
  482. paddlex/inference/models/video_classification/result.py +96 -0
  483. paddlex/inference/models/video_detection/__init__.py +15 -0
  484. paddlex/inference/models/video_detection/predictor.py +129 -0
  485. paddlex/inference/models/video_detection/processors.py +463 -0
  486. paddlex/inference/models/video_detection/result.py +109 -0
  487. paddlex/inference/pipelines/__init__.py +239 -0
  488. paddlex/inference/pipelines/_parallel.py +172 -0
  489. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  490. paddlex/inference/pipelines/anomaly_detection/pipeline.py +82 -0
  491. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  492. paddlex/inference/pipelines/attribute_recognition/pipeline.py +120 -0
  493. paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
  494. paddlex/inference/pipelines/base.py +156 -0
  495. paddlex/inference/pipelines/components/__init__.py +29 -0
  496. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  497. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  498. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  499. paddlex/inference/pipelines/components/common/__init__.py +19 -0
  500. paddlex/inference/pipelines/components/common/base_operator.py +37 -0
  501. paddlex/inference/pipelines/components/common/base_result.py +66 -0
  502. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
  503. paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
  504. paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
  505. paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
  506. paddlex/inference/pipelines/components/common/warp_image.py +50 -0
  507. paddlex/inference/pipelines/components/faisser.py +357 -0
  508. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  509. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  510. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
  511. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  512. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  513. paddlex/inference/pipelines/components/retriever/base.py +228 -0
  514. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  515. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
  516. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  517. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  518. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  519. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +209 -0
  520. paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
  521. paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
  522. paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
  523. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  524. paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
  525. paddlex/inference/pipelines/face_recognition/result.py +44 -0
  526. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  527. paddlex/inference/pipelines/formula_recognition/pipeline.py +347 -0
  528. paddlex/inference/pipelines/formula_recognition/result.py +282 -0
  529. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  530. paddlex/inference/pipelines/image_classification/pipeline.py +90 -0
  531. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  532. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +97 -0
  533. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  534. paddlex/inference/pipelines/instance_segmentation/pipeline.py +91 -0
  535. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  536. paddlex/inference/pipelines/keypoint_detection/pipeline.py +158 -0
  537. paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
  538. paddlex/inference/pipelines/layout_parsing/pipeline.py +568 -0
  539. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +1382 -0
  540. paddlex/inference/pipelines/layout_parsing/result.py +191 -0
  541. paddlex/inference/pipelines/layout_parsing/result_v2.py +745 -0
  542. paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
  543. paddlex/inference/pipelines/layout_parsing/utils.py +951 -0
  544. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
  545. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1143 -0
  546. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +562 -0
  547. paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
  548. paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
  549. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  550. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
  551. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  552. paddlex/inference/pipelines/object_detection/pipeline.py +115 -0
  553. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  554. paddlex/inference/pipelines/ocr/pipeline.py +463 -0
  555. paddlex/inference/pipelines/ocr/result.py +255 -0
  556. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  557. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
  558. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  559. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
  560. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  561. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
  562. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +781 -0
  563. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +992 -0
  564. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  565. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
  566. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  567. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  568. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +95 -0
  569. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  570. paddlex/inference/pipelines/seal_recognition/pipeline.py +335 -0
  571. paddlex/inference/pipelines/seal_recognition/result.py +89 -0
  572. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  573. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +95 -0
  574. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  575. paddlex/inference/pipelines/small_object_detection/pipeline.py +95 -0
  576. paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
  577. paddlex/inference/pipelines/table_recognition/pipeline.py +486 -0
  578. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +1395 -0
  579. paddlex/inference/pipelines/table_recognition/result.py +218 -0
  580. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
  581. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +488 -0
  582. paddlex/inference/pipelines/table_recognition/utils.py +44 -0
  583. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  584. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
  585. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  586. paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
  587. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  588. paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
  589. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  590. paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
  591. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  592. paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
  593. paddlex/inference/serving/__init__.py +17 -0
  594. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  595. paddlex/inference/serving/basic_serving/_app.py +221 -0
  596. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
  597. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  598. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +104 -0
  599. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  600. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
  601. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
  602. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
  603. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
  604. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
  605. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
  606. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
  607. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
  608. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
  609. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
  610. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +117 -0
  611. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
  612. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
  613. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
  614. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
  615. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
  616. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
  617. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
  618. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +193 -0
  619. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +223 -0
  620. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
  621. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +143 -0
  622. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
  623. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
  624. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
  625. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
  626. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
  627. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +113 -0
  628. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
  629. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
  630. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
  631. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
  632. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
  633. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
  634. paddlex/inference/serving/basic_serving/_server.py +40 -0
  635. paddlex/inference/serving/infra/__init__.py +13 -0
  636. paddlex/inference/serving/infra/config.py +36 -0
  637. paddlex/inference/serving/infra/models.py +79 -0
  638. paddlex/inference/serving/infra/storage.py +180 -0
  639. paddlex/inference/serving/infra/utils.py +285 -0
  640. paddlex/inference/serving/schemas/__init__.py +13 -0
  641. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  642. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  643. paddlex/inference/serving/schemas/doc_understanding.py +78 -0
  644. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  645. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  646. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  647. paddlex/inference/serving/schemas/image_classification.py +45 -0
  648. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  649. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  650. paddlex/inference/serving/schemas/layout_parsing.py +71 -0
  651. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  652. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  653. paddlex/inference/serving/schemas/object_detection.py +52 -0
  654. paddlex/inference/serving/schemas/ocr.py +60 -0
  655. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  656. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  657. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  658. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +133 -0
  659. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +150 -0
  660. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  661. paddlex/inference/serving/schemas/pp_structurev3.py +88 -0
  662. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  663. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  664. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  665. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  666. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  667. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  668. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  669. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  670. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  671. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  672. paddlex/inference/serving/schemas/table_recognition_v2.py +69 -0
  673. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  674. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  675. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  676. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  677. paddlex/inference/serving/schemas/video_classification.py +44 -0
  678. paddlex/inference/serving/schemas/video_detection.py +56 -0
  679. paddlex/inference/utils/__init__.py +13 -0
  680. paddlex/inference/utils/benchmark.py +379 -0
  681. paddlex/inference/utils/color_map.py +123 -0
  682. paddlex/inference/utils/get_pipeline_path.py +27 -0
  683. paddlex/inference/utils/hpi.py +254 -0
  684. paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
  685. paddlex/inference/utils/io/__init__.py +36 -0
  686. paddlex/inference/utils/io/readers.py +504 -0
  687. paddlex/inference/utils/io/style.py +381 -0
  688. paddlex/inference/utils/io/tablepyxl.py +157 -0
  689. paddlex/inference/utils/io/writers.py +458 -0
  690. paddlex/inference/utils/model_paths.py +48 -0
  691. paddlex/inference/utils/new_ir_blocklist.py +27 -0
  692. paddlex/inference/utils/official_models.py +367 -0
  693. paddlex/inference/utils/pp_option.py +339 -0
  694. paddlex/inference/utils/trt_blocklist.py +43 -0
  695. paddlex/inference/utils/trt_config.py +420 -0
  696. paddlex/model.py +131 -0
  697. paddlex/modules/__init__.py +115 -0
  698. paddlex/modules/anomaly_detection/__init__.py +18 -0
  699. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +94 -0
  700. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  701. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  702. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  703. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +233 -0
  704. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  705. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  706. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +76 -0
  707. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  708. paddlex/modules/anomaly_detection/exportor.py +22 -0
  709. paddlex/modules/anomaly_detection/model_list.py +16 -0
  710. paddlex/modules/anomaly_detection/trainer.py +70 -0
  711. paddlex/modules/base/__init__.py +18 -0
  712. paddlex/modules/base/build_model.py +33 -0
  713. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  714. paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
  715. paddlex/modules/base/dataset_checker/utils.py +108 -0
  716. paddlex/modules/base/evaluator.py +170 -0
  717. paddlex/modules/base/exportor.py +145 -0
  718. paddlex/modules/base/trainer.py +144 -0
  719. paddlex/modules/base/utils/__init__.py +13 -0
  720. paddlex/modules/base/utils/cinn_setting.py +89 -0
  721. paddlex/modules/base/utils/coco_eval.py +94 -0
  722. paddlex/modules/base/utils/topk_eval.py +118 -0
  723. paddlex/modules/doc_vlm/__init__.py +18 -0
  724. paddlex/modules/doc_vlm/dataset_checker.py +29 -0
  725. paddlex/modules/doc_vlm/evaluator.py +29 -0
  726. paddlex/modules/doc_vlm/exportor.py +29 -0
  727. paddlex/modules/doc_vlm/model_list.py +16 -0
  728. paddlex/modules/doc_vlm/trainer.py +41 -0
  729. paddlex/modules/face_recognition/__init__.py +18 -0
  730. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  731. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  732. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +172 -0
  733. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  734. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  735. paddlex/modules/face_recognition/evaluator.py +52 -0
  736. paddlex/modules/face_recognition/exportor.py +22 -0
  737. paddlex/modules/face_recognition/model_list.py +15 -0
  738. paddlex/modules/face_recognition/trainer.py +75 -0
  739. paddlex/modules/formula_recognition/__init__.py +18 -0
  740. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  741. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  742. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
  743. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
  744. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  745. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  746. paddlex/modules/formula_recognition/evaluator.py +80 -0
  747. paddlex/modules/formula_recognition/exportor.py +22 -0
  748. paddlex/modules/formula_recognition/model_list.py +23 -0
  749. paddlex/modules/formula_recognition/trainer.py +123 -0
  750. paddlex/modules/general_recognition/__init__.py +18 -0
  751. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  752. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  753. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +96 -0
  754. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +99 -0
  755. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +100 -0
  756. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  757. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  758. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +147 -0
  759. paddlex/modules/general_recognition/evaluator.py +31 -0
  760. paddlex/modules/general_recognition/exportor.py +22 -0
  761. paddlex/modules/general_recognition/model_list.py +19 -0
  762. paddlex/modules/general_recognition/trainer.py +52 -0
  763. paddlex/modules/image_classification/__init__.py +18 -0
  764. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  765. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  766. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +92 -0
  767. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  768. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  769. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  770. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  771. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  772. paddlex/modules/image_classification/evaluator.py +43 -0
  773. paddlex/modules/image_classification/exportor.py +22 -0
  774. paddlex/modules/image_classification/model_list.py +99 -0
  775. paddlex/modules/image_classification/trainer.py +82 -0
  776. paddlex/modules/image_unwarping/__init__.py +13 -0
  777. paddlex/modules/image_unwarping/model_list.py +17 -0
  778. paddlex/modules/instance_segmentation/__init__.py +18 -0
  779. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +107 -0
  780. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  781. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  782. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +95 -0
  783. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  784. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +122 -0
  785. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  786. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +223 -0
  787. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  788. paddlex/modules/instance_segmentation/exportor.py +22 -0
  789. paddlex/modules/instance_segmentation/model_list.py +33 -0
  790. paddlex/modules/instance_segmentation/trainer.py +31 -0
  791. paddlex/modules/keypoint_detection/__init__.py +18 -0
  792. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  793. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  794. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  795. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  796. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
  797. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  798. paddlex/modules/keypoint_detection/exportor.py +22 -0
  799. paddlex/modules/keypoint_detection/model_list.py +16 -0
  800. paddlex/modules/keypoint_detection/trainer.py +39 -0
  801. paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
  802. paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
  803. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  804. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  805. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
  806. paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
  807. paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
  808. paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
  809. paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
  810. paddlex/modules/multilabel_classification/__init__.py +18 -0
  811. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  812. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  813. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +94 -0
  814. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  815. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +120 -0
  816. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  817. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  818. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +149 -0
  819. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  820. paddlex/modules/multilabel_classification/exportor.py +22 -0
  821. paddlex/modules/multilabel_classification/model_list.py +24 -0
  822. paddlex/modules/multilabel_classification/trainer.py +85 -0
  823. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  824. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  825. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  826. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  827. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  828. paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
  829. paddlex/modules/object_detection/__init__.py +18 -0
  830. paddlex/modules/object_detection/dataset_checker/__init__.py +106 -0
  831. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  832. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  833. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  834. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +438 -0
  835. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +123 -0
  836. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  837. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +193 -0
  838. paddlex/modules/object_detection/evaluator.py +57 -0
  839. paddlex/modules/object_detection/exportor.py +22 -0
  840. paddlex/modules/object_detection/model_list.py +86 -0
  841. paddlex/modules/object_detection/trainer.py +98 -0
  842. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  843. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  844. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  845. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  846. paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
  847. paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
  848. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  849. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  850. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  851. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  852. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  853. paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
  854. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  855. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +109 -0
  856. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  857. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +76 -0
  858. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  859. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +165 -0
  860. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  861. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  862. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +75 -0
  863. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  864. paddlex/modules/semantic_segmentation/exportor.py +31 -0
  865. paddlex/modules/semantic_segmentation/model_list.py +37 -0
  866. paddlex/modules/semantic_segmentation/trainer.py +72 -0
  867. paddlex/modules/table_recognition/__init__.py +18 -0
  868. paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
  869. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  870. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +59 -0
  871. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  872. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  873. paddlex/modules/table_recognition/evaluator.py +43 -0
  874. paddlex/modules/table_recognition/exportor.py +22 -0
  875. paddlex/modules/table_recognition/model_list.py +21 -0
  876. paddlex/modules/table_recognition/trainer.py +67 -0
  877. paddlex/modules/text_detection/__init__.py +18 -0
  878. paddlex/modules/text_detection/dataset_checker/__init__.py +107 -0
  879. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  880. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +220 -0
  881. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
  882. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  883. paddlex/modules/text_detection/evaluator.py +41 -0
  884. paddlex/modules/text_detection/exportor.py +22 -0
  885. paddlex/modules/text_detection/model_list.py +26 -0
  886. paddlex/modules/text_detection/trainer.py +65 -0
  887. paddlex/modules/text_recognition/__init__.py +18 -0
  888. paddlex/modules/text_recognition/dataset_checker/__init__.py +125 -0
  889. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  890. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +162 -0
  891. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +104 -0
  892. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  893. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  894. paddlex/modules/text_recognition/evaluator.py +64 -0
  895. paddlex/modules/text_recognition/exportor.py +22 -0
  896. paddlex/modules/text_recognition/model_list.py +36 -0
  897. paddlex/modules/text_recognition/trainer.py +105 -0
  898. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  899. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +111 -0
  900. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  901. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  902. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  903. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +74 -0
  904. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  905. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  906. paddlex/modules/ts_anomaly_detection/exportor.py +44 -0
  907. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  908. paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
  909. paddlex/modules/ts_classification/__init__.py +19 -0
  910. paddlex/modules/ts_classification/dataset_checker/__init__.py +111 -0
  911. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  912. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +77 -0
  913. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  914. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +74 -0
  915. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  916. paddlex/modules/ts_classification/evaluator.py +66 -0
  917. paddlex/modules/ts_classification/exportor.py +44 -0
  918. paddlex/modules/ts_classification/model_list.py +18 -0
  919. paddlex/modules/ts_classification/trainer.py +108 -0
  920. paddlex/modules/ts_forecast/__init__.py +19 -0
  921. paddlex/modules/ts_forecast/dataset_checker/__init__.py +111 -0
  922. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  923. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  924. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  925. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +73 -0
  926. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  927. paddlex/modules/ts_forecast/evaluator.py +66 -0
  928. paddlex/modules/ts_forecast/exportor.py +44 -0
  929. paddlex/modules/ts_forecast/model_list.py +24 -0
  930. paddlex/modules/ts_forecast/trainer.py +108 -0
  931. paddlex/modules/video_classification/__init__.py +18 -0
  932. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  933. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  934. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  935. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
  936. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  937. paddlex/modules/video_classification/evaluator.py +44 -0
  938. paddlex/modules/video_classification/exportor.py +22 -0
  939. paddlex/modules/video_classification/model_list.py +19 -0
  940. paddlex/modules/video_classification/trainer.py +88 -0
  941. paddlex/modules/video_detection/__init__.py +18 -0
  942. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  943. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  944. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
  945. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
  946. paddlex/modules/video_detection/evaluator.py +42 -0
  947. paddlex/modules/video_detection/exportor.py +22 -0
  948. paddlex/modules/video_detection/model_list.py +15 -0
  949. paddlex/modules/video_detection/trainer.py +82 -0
  950. paddlex/ops/__init__.py +152 -0
  951. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
  952. paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
  953. paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
  954. paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
  955. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
  956. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
  957. paddlex/ops/setup.py +37 -0
  958. paddlex/ops/voxel/voxelize_op.cc +194 -0
  959. paddlex/ops/voxel/voxelize_op.cu +346 -0
  960. paddlex/paddlex_cli.py +476 -0
  961. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  962. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  963. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  964. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  965. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  966. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  967. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
  968. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  969. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  970. paddlex/repo_apis/PaddleClas_api/cls/config.py +595 -0
  971. paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
  972. paddlex/repo_apis/PaddleClas_api/cls/register.py +907 -0
  973. paddlex/repo_apis/PaddleClas_api/cls/runner.py +218 -0
  974. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  975. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  976. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +20 -0
  977. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  978. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +50 -0
  979. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  980. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  981. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  982. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +457 -0
  983. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
  984. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +262 -0
  985. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +225 -0
  986. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  987. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +540 -0
  988. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +429 -0
  989. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +245 -0
  990. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1135 -0
  991. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +225 -0
  992. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  993. paddlex/repo_apis/PaddleOCR_api/__init__.py +22 -0
  994. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  995. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  996. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
  997. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +398 -0
  998. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +99 -0
  999. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
  1000. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  1001. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  1002. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  1003. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +70 -0
  1004. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  1005. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  1006. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  1007. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  1008. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +107 -0
  1009. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  1010. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  1011. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +564 -0
  1012. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +398 -0
  1013. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +216 -0
  1014. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +239 -0
  1015. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  1016. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  1017. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  1018. paddlex/repo_apis/PaddleSeg_api/seg/config.py +183 -0
  1019. paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
  1020. paddlex/repo_apis/PaddleSeg_api/seg/register.py +272 -0
  1021. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +261 -0
  1022. paddlex/repo_apis/PaddleTS_api/__init__.py +20 -0
  1023. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  1024. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +88 -0
  1025. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  1026. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  1027. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  1028. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +244 -0
  1029. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
  1030. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  1031. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  1032. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +72 -0
  1033. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  1034. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  1035. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  1036. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +136 -0
  1037. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  1038. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  1039. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  1040. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  1041. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
  1042. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  1043. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
  1044. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
  1045. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  1046. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
  1047. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  1048. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
  1049. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
  1050. paddlex/repo_apis/__init__.py +13 -0
  1051. paddlex/repo_apis/base/__init__.py +22 -0
  1052. paddlex/repo_apis/base/config.py +237 -0
  1053. paddlex/repo_apis/base/model.py +563 -0
  1054. paddlex/repo_apis/base/register.py +135 -0
  1055. paddlex/repo_apis/base/runner.py +390 -0
  1056. paddlex/repo_apis/base/utils/__init__.py +13 -0
  1057. paddlex/repo_apis/base/utils/arg.py +64 -0
  1058. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  1059. paddlex/repo_manager/__init__.py +17 -0
  1060. paddlex/repo_manager/core.py +253 -0
  1061. paddlex/repo_manager/meta.py +180 -0
  1062. paddlex/repo_manager/repo.py +425 -0
  1063. paddlex/repo_manager/utils.py +148 -0
  1064. paddlex/utils/__init__.py +1 -12
  1065. paddlex/utils/cache.py +146 -0
  1066. paddlex/utils/config.py +216 -0
  1067. paddlex/utils/custom_device_list.py +311 -0
  1068. paddlex/utils/deps.py +249 -0
  1069. paddlex/utils/device.py +195 -0
  1070. paddlex/utils/download.py +168 -182
  1071. paddlex/utils/env.py +32 -45
  1072. paddlex/utils/errors/__init__.py +17 -0
  1073. paddlex/utils/errors/dataset_checker.py +78 -0
  1074. paddlex/utils/errors/others.py +138 -0
  1075. paddlex/utils/file_interface.py +211 -0
  1076. paddlex/utils/flags.py +70 -0
  1077. paddlex/utils/fonts/__init__.py +97 -0
  1078. paddlex/utils/func_register.py +41 -0
  1079. paddlex/utils/install.py +87 -0
  1080. paddlex/utils/interactive_get_pipeline.py +55 -0
  1081. paddlex/utils/lazy_loader.py +68 -0
  1082. paddlex/utils/logging.py +140 -33
  1083. paddlex/utils/misc.py +201 -0
  1084. paddlex/utils/pipeline_arguments.py +719 -0
  1085. paddlex/utils/result_saver.py +58 -0
  1086. paddlex/utils/subclass_register.py +99 -0
  1087. paddlex/version.py +55 -0
  1088. paddlex-3.0.0.dist-info/METADATA +1168 -0
  1089. paddlex-3.0.0.dist-info/RECORD +1093 -0
  1090. paddlex-3.0.0.dist-info/WHEEL +5 -0
  1091. paddlex-3.0.0.dist-info/entry_points.txt +2 -0
  1092. paddlex-3.0.0.dist-info/licenses/LICENSE +169 -0
  1093. paddlex-3.0.0.dist-info/top_level.txt +1 -0
  1094. PaddleClas/__init__.py +0 -16
  1095. PaddleClas/deploy/__init__.py +0 -1
  1096. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  1097. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  1098. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  1099. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  1100. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  1101. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  1102. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  1103. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  1104. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  1105. PaddleClas/deploy/python/__init__.py +0 -0
  1106. PaddleClas/deploy/python/build_gallery.py +0 -214
  1107. PaddleClas/deploy/python/det_preprocess.py +0 -205
  1108. PaddleClas/deploy/python/postprocess.py +0 -161
  1109. PaddleClas/deploy/python/predict_cls.py +0 -142
  1110. PaddleClas/deploy/python/predict_det.py +0 -158
  1111. PaddleClas/deploy/python/predict_rec.py +0 -138
  1112. PaddleClas/deploy/python/predict_system.py +0 -144
  1113. PaddleClas/deploy/python/preprocess.py +0 -337
  1114. PaddleClas/deploy/utils/__init__.py +0 -5
  1115. PaddleClas/deploy/utils/config.py +0 -197
  1116. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  1117. PaddleClas/deploy/utils/encode_decode.py +0 -31
  1118. PaddleClas/deploy/utils/get_image_list.py +0 -49
  1119. PaddleClas/deploy/utils/logger.py +0 -120
  1120. PaddleClas/deploy/utils/predictor.py +0 -71
  1121. PaddleClas/deploy/vector_search/__init__.py +0 -1
  1122. PaddleClas/deploy/vector_search/interface.py +0 -272
  1123. PaddleClas/deploy/vector_search/test.py +0 -34
  1124. PaddleClas/hubconf.py +0 -788
  1125. PaddleClas/paddleclas.py +0 -552
  1126. PaddleClas/ppcls/__init__.py +0 -20
  1127. PaddleClas/ppcls/arch/__init__.py +0 -127
  1128. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  1129. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  1130. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  1131. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1132. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1133. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  1134. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1135. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1136. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1137. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1138. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1139. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  1140. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1141. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1142. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1143. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1144. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1145. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1146. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1147. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1148. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1149. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1150. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1151. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1152. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1153. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1154. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1155. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1156. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1157. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1158. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1159. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1160. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1161. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1162. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1163. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1164. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1165. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1166. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1167. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1168. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1169. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1170. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1171. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1172. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1173. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1174. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1175. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1176. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1177. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1178. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1179. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1180. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1181. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1182. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  1183. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  1184. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  1185. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  1186. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  1187. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  1188. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  1189. PaddleClas/ppcls/arch/utils.py +0 -53
  1190. PaddleClas/ppcls/data/__init__.py +0 -144
  1191. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1192. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  1193. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  1194. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  1195. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1196. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1197. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  1198. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  1199. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  1200. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1201. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  1202. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1203. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  1204. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  1205. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  1206. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  1207. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1208. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  1209. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1210. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  1211. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  1212. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  1213. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  1214. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1215. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  1216. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1217. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1218. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1219. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  1220. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  1221. PaddleClas/ppcls/engine/__init__.py +0 -0
  1222. PaddleClas/ppcls/engine/engine.py +0 -436
  1223. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  1224. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  1225. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  1226. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  1227. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  1228. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  1229. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  1230. PaddleClas/ppcls/engine/train/train.py +0 -79
  1231. PaddleClas/ppcls/engine/train/utils.py +0 -72
  1232. PaddleClas/ppcls/loss/__init__.py +0 -65
  1233. PaddleClas/ppcls/loss/celoss.py +0 -67
  1234. PaddleClas/ppcls/loss/centerloss.py +0 -54
  1235. PaddleClas/ppcls/loss/comfunc.py +0 -45
  1236. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  1237. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  1238. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  1239. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  1240. PaddleClas/ppcls/loss/emlloss.py +0 -97
  1241. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  1242. PaddleClas/ppcls/loss/msmloss.py +0 -78
  1243. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  1244. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  1245. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  1246. PaddleClas/ppcls/loss/supconloss.py +0 -108
  1247. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  1248. PaddleClas/ppcls/loss/triplet.py +0 -137
  1249. PaddleClas/ppcls/metric/__init__.py +0 -51
  1250. PaddleClas/ppcls/metric/metrics.py +0 -308
  1251. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  1252. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  1253. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  1254. PaddleClas/ppcls/utils/__init__.py +0 -27
  1255. PaddleClas/ppcls/utils/check.py +0 -151
  1256. PaddleClas/ppcls/utils/config.py +0 -210
  1257. PaddleClas/ppcls/utils/download.py +0 -319
  1258. PaddleClas/ppcls/utils/ema.py +0 -63
  1259. PaddleClas/ppcls/utils/logger.py +0 -137
  1260. PaddleClas/ppcls/utils/metrics.py +0 -107
  1261. PaddleClas/ppcls/utils/misc.py +0 -63
  1262. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  1263. PaddleClas/ppcls/utils/profiler.py +0 -111
  1264. PaddleClas/ppcls/utils/save_load.py +0 -136
  1265. PaddleClas/setup.py +0 -58
  1266. PaddleClas/tools/__init__.py +0 -15
  1267. PaddleClas/tools/eval.py +0 -31
  1268. PaddleClas/tools/export_model.py +0 -34
  1269. PaddleClas/tools/infer.py +0 -31
  1270. PaddleClas/tools/train.py +0 -32
  1271. paddlex/cls.py +0 -82
  1272. paddlex/command.py +0 -215
  1273. paddlex/cv/__init__.py +0 -17
  1274. paddlex/cv/datasets/__init__.py +0 -18
  1275. paddlex/cv/datasets/coco.py +0 -208
  1276. paddlex/cv/datasets/imagenet.py +0 -88
  1277. paddlex/cv/datasets/seg_dataset.py +0 -91
  1278. paddlex/cv/datasets/voc.py +0 -445
  1279. paddlex/cv/models/__init__.py +0 -18
  1280. paddlex/cv/models/base.py +0 -631
  1281. paddlex/cv/models/classifier.py +0 -989
  1282. paddlex/cv/models/detector.py +0 -2292
  1283. paddlex/cv/models/load_model.py +0 -148
  1284. paddlex/cv/models/segmenter.py +0 -768
  1285. paddlex/cv/models/slim/__init__.py +0 -13
  1286. paddlex/cv/models/slim/prune.py +0 -55
  1287. paddlex/cv/models/utils/__init__.py +0 -13
  1288. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  1289. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  1290. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  1291. paddlex/cv/models/utils/infer_nets.py +0 -45
  1292. paddlex/cv/models/utils/seg_metrics.py +0 -62
  1293. paddlex/cv/models/utils/visualize.py +0 -399
  1294. paddlex/cv/transforms/__init__.py +0 -46
  1295. paddlex/cv/transforms/batch_operators.py +0 -286
  1296. paddlex/cv/transforms/box_utils.py +0 -41
  1297. paddlex/cv/transforms/functions.py +0 -193
  1298. paddlex/cv/transforms/operators.py +0 -1402
  1299. paddlex/deploy.py +0 -268
  1300. paddlex/det.py +0 -49
  1301. paddlex/paddleseg/__init__.py +0 -17
  1302. paddlex/paddleseg/core/__init__.py +0 -20
  1303. paddlex/paddleseg/core/infer.py +0 -289
  1304. paddlex/paddleseg/core/predict.py +0 -145
  1305. paddlex/paddleseg/core/train.py +0 -258
  1306. paddlex/paddleseg/core/val.py +0 -172
  1307. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  1308. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  1309. paddlex/paddleseg/cvlibs/config.py +0 -359
  1310. paddlex/paddleseg/cvlibs/manager.py +0 -142
  1311. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  1312. paddlex/paddleseg/datasets/__init__.py +0 -21
  1313. paddlex/paddleseg/datasets/ade.py +0 -112
  1314. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  1315. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  1316. paddlex/paddleseg/datasets/dataset.py +0 -164
  1317. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  1318. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  1319. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  1320. paddlex/paddleseg/datasets/voc.py +0 -113
  1321. paddlex/paddleseg/models/__init__.py +0 -39
  1322. paddlex/paddleseg/models/ann.py +0 -436
  1323. paddlex/paddleseg/models/attention_unet.py +0 -189
  1324. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  1325. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  1326. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  1327. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  1328. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  1329. paddlex/paddleseg/models/bisenet.py +0 -311
  1330. paddlex/paddleseg/models/danet.py +0 -220
  1331. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  1332. paddlex/paddleseg/models/deeplab.py +0 -258
  1333. paddlex/paddleseg/models/dnlnet.py +0 -231
  1334. paddlex/paddleseg/models/emanet.py +0 -219
  1335. paddlex/paddleseg/models/fast_scnn.py +0 -318
  1336. paddlex/paddleseg/models/fcn.py +0 -135
  1337. paddlex/paddleseg/models/gcnet.py +0 -223
  1338. paddlex/paddleseg/models/gscnn.py +0 -357
  1339. paddlex/paddleseg/models/hardnet.py +0 -309
  1340. paddlex/paddleseg/models/isanet.py +0 -202
  1341. paddlex/paddleseg/models/layers/__init__.py +0 -19
  1342. paddlex/paddleseg/models/layers/activation.py +0 -73
  1343. paddlex/paddleseg/models/layers/attention.py +0 -146
  1344. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  1345. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  1346. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  1347. paddlex/paddleseg/models/losses/__init__.py +0 -27
  1348. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  1349. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  1350. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  1351. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  1352. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  1353. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  1354. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  1355. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  1356. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  1357. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  1358. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  1359. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  1360. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  1361. paddlex/paddleseg/models/ocrnet.py +0 -248
  1362. paddlex/paddleseg/models/pspnet.py +0 -147
  1363. paddlex/paddleseg/models/sfnet.py +0 -236
  1364. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  1365. paddlex/paddleseg/models/u2net.py +0 -574
  1366. paddlex/paddleseg/models/unet.py +0 -155
  1367. paddlex/paddleseg/models/unet_3plus.py +0 -316
  1368. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  1369. paddlex/paddleseg/transforms/__init__.py +0 -16
  1370. paddlex/paddleseg/transforms/functional.py +0 -161
  1371. paddlex/paddleseg/transforms/transforms.py +0 -937
  1372. paddlex/paddleseg/utils/__init__.py +0 -22
  1373. paddlex/paddleseg/utils/config_check.py +0 -60
  1374. paddlex/paddleseg/utils/download.py +0 -163
  1375. paddlex/paddleseg/utils/env/__init__.py +0 -16
  1376. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  1377. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  1378. paddlex/paddleseg/utils/logger.py +0 -48
  1379. paddlex/paddleseg/utils/metrics.py +0 -146
  1380. paddlex/paddleseg/utils/progbar.py +0 -212
  1381. paddlex/paddleseg/utils/timer.py +0 -53
  1382. paddlex/paddleseg/utils/utils.py +0 -120
  1383. paddlex/paddleseg/utils/visualize.py +0 -90
  1384. paddlex/ppcls/__init__.py +0 -20
  1385. paddlex/ppcls/arch/__init__.py +0 -127
  1386. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  1387. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  1388. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  1389. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1390. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1391. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  1392. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1393. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1394. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1395. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1396. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1397. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  1398. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1399. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1400. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1401. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1402. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1403. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1404. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1405. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1406. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1407. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1408. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1409. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1410. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1411. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1412. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1413. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1414. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1415. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1416. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1417. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1418. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1419. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1420. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1421. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1422. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1423. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1424. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1425. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1426. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1427. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1428. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1429. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1430. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1431. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1432. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1433. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1434. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1435. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1436. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1437. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1438. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1439. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1440. paddlex/ppcls/arch/gears/__init__.py +0 -32
  1441. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  1442. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  1443. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  1444. paddlex/ppcls/arch/gears/fc.py +0 -35
  1445. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  1446. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1447. paddlex/ppcls/arch/utils.py +0 -53
  1448. paddlex/ppcls/data/__init__.py +0 -144
  1449. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1450. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1451. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1452. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1453. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1454. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1455. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1456. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1457. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1458. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1459. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1460. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1461. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1462. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1463. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1464. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1465. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1466. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1467. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1468. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1469. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1470. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1471. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1472. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1473. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1474. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1475. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1476. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1477. paddlex/ppcls/data/utils/__init__.py +0 -13
  1478. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1479. paddlex/ppcls/engine/__init__.py +0 -0
  1480. paddlex/ppcls/engine/engine.py +0 -436
  1481. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1482. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1483. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1484. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1485. paddlex/ppcls/engine/slim/prune.py +0 -66
  1486. paddlex/ppcls/engine/slim/quant.py +0 -55
  1487. paddlex/ppcls/engine/train/__init__.py +0 -14
  1488. paddlex/ppcls/engine/train/train.py +0 -79
  1489. paddlex/ppcls/engine/train/utils.py +0 -72
  1490. paddlex/ppcls/loss/__init__.py +0 -65
  1491. paddlex/ppcls/loss/celoss.py +0 -67
  1492. paddlex/ppcls/loss/centerloss.py +0 -54
  1493. paddlex/ppcls/loss/comfunc.py +0 -45
  1494. paddlex/ppcls/loss/deephashloss.py +0 -96
  1495. paddlex/ppcls/loss/distanceloss.py +0 -43
  1496. paddlex/ppcls/loss/distillationloss.py +0 -141
  1497. paddlex/ppcls/loss/dmlloss.py +0 -46
  1498. paddlex/ppcls/loss/emlloss.py +0 -97
  1499. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1500. paddlex/ppcls/loss/msmloss.py +0 -78
  1501. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1502. paddlex/ppcls/loss/npairsloss.py +0 -38
  1503. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1504. paddlex/ppcls/loss/supconloss.py +0 -108
  1505. paddlex/ppcls/loss/trihardloss.py +0 -82
  1506. paddlex/ppcls/loss/triplet.py +0 -137
  1507. paddlex/ppcls/metric/__init__.py +0 -51
  1508. paddlex/ppcls/metric/metrics.py +0 -308
  1509. paddlex/ppcls/optimizer/__init__.py +0 -72
  1510. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1511. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1512. paddlex/ppcls/utils/__init__.py +0 -27
  1513. paddlex/ppcls/utils/check.py +0 -151
  1514. paddlex/ppcls/utils/config.py +0 -210
  1515. paddlex/ppcls/utils/download.py +0 -319
  1516. paddlex/ppcls/utils/ema.py +0 -63
  1517. paddlex/ppcls/utils/logger.py +0 -137
  1518. paddlex/ppcls/utils/metrics.py +0 -112
  1519. paddlex/ppcls/utils/misc.py +0 -63
  1520. paddlex/ppcls/utils/model_zoo.py +0 -213
  1521. paddlex/ppcls/utils/profiler.py +0 -111
  1522. paddlex/ppcls/utils/save_load.py +0 -136
  1523. paddlex/ppdet/__init__.py +0 -16
  1524. paddlex/ppdet/core/__init__.py +0 -15
  1525. paddlex/ppdet/core/config/__init__.py +0 -13
  1526. paddlex/ppdet/core/config/schema.py +0 -248
  1527. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1528. paddlex/ppdet/core/workspace.py +0 -278
  1529. paddlex/ppdet/data/__init__.py +0 -21
  1530. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1531. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1532. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1533. paddlex/ppdet/data/reader.py +0 -302
  1534. paddlex/ppdet/data/shm_utils.py +0 -67
  1535. paddlex/ppdet/data/source/__init__.py +0 -29
  1536. paddlex/ppdet/data/source/category.py +0 -904
  1537. paddlex/ppdet/data/source/coco.py +0 -251
  1538. paddlex/ppdet/data/source/dataset.py +0 -197
  1539. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1540. paddlex/ppdet/data/source/mot.py +0 -636
  1541. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1542. paddlex/ppdet/data/source/voc.py +0 -231
  1543. paddlex/ppdet/data/source/widerface.py +0 -180
  1544. paddlex/ppdet/data/transform/__init__.py +0 -28
  1545. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1546. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1547. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1548. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1549. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1550. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1551. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1552. paddlex/ppdet/data/transform/operators.py +0 -3025
  1553. paddlex/ppdet/engine/__init__.py +0 -30
  1554. paddlex/ppdet/engine/callbacks.py +0 -340
  1555. paddlex/ppdet/engine/env.py +0 -50
  1556. paddlex/ppdet/engine/export_utils.py +0 -177
  1557. paddlex/ppdet/engine/tracker.py +0 -538
  1558. paddlex/ppdet/engine/trainer.py +0 -723
  1559. paddlex/ppdet/metrics/__init__.py +0 -29
  1560. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1561. paddlex/ppdet/metrics/json_results.py +0 -149
  1562. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1563. paddlex/ppdet/metrics/map_utils.py +0 -444
  1564. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1565. paddlex/ppdet/metrics/metrics.py +0 -434
  1566. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1567. paddlex/ppdet/metrics/munkres.py +0 -428
  1568. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1569. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1570. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1571. paddlex/ppdet/modeling/__init__.py +0 -45
  1572. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1573. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1574. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1575. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1576. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1577. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1578. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1579. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1580. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1581. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1582. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1583. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1584. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1585. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1586. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1587. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1588. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1589. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1590. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1591. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1592. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1593. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1594. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1595. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1596. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1597. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1598. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1599. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1600. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1601. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1602. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1603. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1604. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1605. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1606. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1607. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1608. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1609. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1610. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1611. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1612. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1613. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1614. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1615. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1616. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1617. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1618. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1619. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1620. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1621. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1622. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1623. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1624. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1625. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1626. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1627. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1628. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1629. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1630. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1631. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1632. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1633. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1634. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1635. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1636. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1637. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1638. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1639. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1640. paddlex/ppdet/modeling/initializer.py +0 -317
  1641. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1642. paddlex/ppdet/modeling/layers.py +0 -1430
  1643. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1644. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1645. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1646. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1647. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1648. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1649. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1650. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1651. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1652. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1653. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1654. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1655. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1656. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1657. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1658. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1659. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1660. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1661. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1662. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1663. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1664. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1665. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1666. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1667. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1668. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1669. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1670. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1671. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1672. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1673. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1674. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1675. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1676. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1677. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1678. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1679. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1680. paddlex/ppdet/modeling/ops.py +0 -1611
  1681. paddlex/ppdet/modeling/post_process.py +0 -731
  1682. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1683. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1684. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1685. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1686. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1687. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1688. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1689. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1690. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1691. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1692. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1693. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1694. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1695. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1696. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1697. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1698. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1699. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1700. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1701. paddlex/ppdet/optimizer.py +0 -335
  1702. paddlex/ppdet/slim/__init__.py +0 -82
  1703. paddlex/ppdet/slim/distill.py +0 -110
  1704. paddlex/ppdet/slim/prune.py +0 -85
  1705. paddlex/ppdet/slim/quant.py +0 -84
  1706. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1707. paddlex/ppdet/utils/__init__.py +0 -13
  1708. paddlex/ppdet/utils/check.py +0 -112
  1709. paddlex/ppdet/utils/checkpoint.py +0 -226
  1710. paddlex/ppdet/utils/cli.py +0 -151
  1711. paddlex/ppdet/utils/colormap.py +0 -58
  1712. paddlex/ppdet/utils/download.py +0 -558
  1713. paddlex/ppdet/utils/logger.py +0 -70
  1714. paddlex/ppdet/utils/profiler.py +0 -111
  1715. paddlex/ppdet/utils/stats.py +0 -94
  1716. paddlex/ppdet/utils/visualizer.py +0 -321
  1717. paddlex/ppdet/utils/voc_utils.py +0 -86
  1718. paddlex/seg.py +0 -41
  1719. paddlex/tools/__init__.py +0 -17
  1720. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1721. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1722. paddlex/tools/convert.py +0 -52
  1723. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1724. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1725. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1726. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1727. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1728. paddlex/tools/dataset_split/__init__.py +0 -23
  1729. paddlex/tools/dataset_split/coco_split.py +0 -69
  1730. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1731. paddlex/tools/dataset_split/seg_split.py +0 -96
  1732. paddlex/tools/dataset_split/utils.py +0 -75
  1733. paddlex/tools/dataset_split/voc_split.py +0 -91
  1734. paddlex/tools/split.py +0 -41
  1735. paddlex/utils/checkpoint.py +0 -492
  1736. paddlex/utils/shm.py +0 -67
  1737. paddlex/utils/stats.py +0 -68
  1738. paddlex/utils/utils.py +0 -229
  1739. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1740. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1741. paddlex-2.1.0.dist-info/METADATA +0 -32
  1742. paddlex-2.1.0.dist-info/RECORD +0 -698
  1743. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1744. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1745. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1746. paddlex_restful/__init__.py +0 -15
  1747. paddlex_restful/command.py +0 -63
  1748. paddlex_restful/restful/__init__.py +0 -15
  1749. paddlex_restful/restful/app.py +0 -969
  1750. paddlex_restful/restful/dataset/__init__.py +0 -13
  1751. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1752. paddlex_restful/restful/dataset/dataset.py +0 -266
  1753. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1754. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1755. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1756. paddlex_restful/restful/dataset/operate.py +0 -155
  1757. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1758. paddlex_restful/restful/dataset/utils.py +0 -267
  1759. paddlex_restful/restful/demo.py +0 -202
  1760. paddlex_restful/restful/dir.py +0 -45
  1761. paddlex_restful/restful/model.py +0 -312
  1762. paddlex_restful/restful/project/__init__.py +0 -13
  1763. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1764. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1765. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1766. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1767. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1768. paddlex_restful/restful/project/operate.py +0 -931
  1769. paddlex_restful/restful/project/project.py +0 -143
  1770. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1771. paddlex_restful/restful/project/prune/classification.py +0 -32
  1772. paddlex_restful/restful/project/prune/detection.py +0 -48
  1773. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1774. paddlex_restful/restful/project/task.py +0 -884
  1775. paddlex_restful/restful/project/train/__init__.py +0 -13
  1776. paddlex_restful/restful/project/train/classification.py +0 -141
  1777. paddlex_restful/restful/project/train/detection.py +0 -263
  1778. paddlex_restful/restful/project/train/params.py +0 -432
  1779. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1780. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1781. paddlex_restful/restful/project/visualize.py +0 -244
  1782. paddlex_restful/restful/system.py +0 -102
  1783. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1784. paddlex_restful/restful/utils.py +0 -841
  1785. paddlex_restful/restful/workspace.py +0 -343
  1786. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,1611 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import paddle
16
- import paddle.nn.functional as F
17
- import paddle.nn as nn
18
- from paddle import ParamAttr
19
- from paddle.regularizer import L2Decay
20
-
21
- from paddle.fluid.framework import Variable, in_dygraph_mode
22
- from paddle.fluid import core
23
- from paddle.fluid.layer_helper import LayerHelper
24
- from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
25
-
26
- __all__ = [
27
- 'roi_pool',
28
- 'roi_align',
29
- 'prior_box',
30
- 'generate_proposals',
31
- 'iou_similarity',
32
- 'box_coder',
33
- 'yolo_box',
34
- 'multiclass_nms',
35
- 'distribute_fpn_proposals',
36
- 'collect_fpn_proposals',
37
- 'matrix_nms',
38
- 'batch_norm',
39
- 'mish',
40
- ]
41
-
42
-
43
- def mish(x):
44
- return x * paddle.tanh(F.softplus(x))
45
-
46
-
47
- def batch_norm(ch,
48
- norm_type='bn',
49
- norm_decay=0.,
50
- freeze_norm=False,
51
- initializer=None,
52
- data_format='NCHW'):
53
- if norm_type == 'sync_bn':
54
- batch_norm = nn.SyncBatchNorm
55
- else:
56
- batch_norm = nn.BatchNorm2D
57
-
58
- norm_lr = 0. if freeze_norm else 1.
59
- weight_attr = ParamAttr(
60
- initializer=initializer,
61
- learning_rate=norm_lr,
62
- regularizer=L2Decay(norm_decay),
63
- trainable=False if freeze_norm else True)
64
- bias_attr = ParamAttr(
65
- learning_rate=norm_lr,
66
- regularizer=L2Decay(norm_decay),
67
- trainable=False if freeze_norm else True)
68
-
69
- norm_layer = batch_norm(
70
- ch,
71
- weight_attr=weight_attr,
72
- bias_attr=bias_attr,
73
- data_format=data_format)
74
-
75
- norm_params = norm_layer.parameters()
76
- if freeze_norm:
77
- for param in norm_params:
78
- param.stop_gradient = True
79
-
80
- return norm_layer
81
-
82
-
83
- @paddle.jit.not_to_static
84
- def roi_pool(input,
85
- rois,
86
- output_size,
87
- spatial_scale=1.0,
88
- rois_num=None,
89
- name=None):
90
- """
91
-
92
- This operator implements the roi_pooling layer.
93
- Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
94
-
95
- The operator has three steps:
96
-
97
- 1. Dividing each region proposal into equal-sized sections with output_size(h, w);
98
- 2. Finding the largest value in each section;
99
- 3. Copying these max values to the output buffer.
100
-
101
- For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
102
-
103
- Args:
104
- input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
105
- where N is the batch size, C is the input channel, H is Height, W is weight.
106
- The data type is float32 or float64.
107
- rois (Tensor): ROIs (Regions of Interest) to pool over.
108
- 2D-Tensor or 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1.
109
- Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates,
110
- and (x2, y2) is the bottom right coordinates.
111
- output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
112
- spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
113
- rois_num (Tensor): The number of RoIs in each image. Default: None
114
- name(str, optional): For detailed information, please refer
115
- to :ref:`api_guide_Name`. Usually name is no need to set and
116
- None by default.
117
-
118
-
119
- Returns:
120
- Tensor: The pooled feature, 4D-Tensor with the shape of [num_rois, C, output_size[0], output_size[1]].
121
-
122
-
123
- Examples:
124
-
125
- .. code-block:: python
126
-
127
- import paddle
128
- from paddlex.ppdet.modeling import ops
129
- paddle.enable_static()
130
-
131
- x = paddle.static.data(
132
- name='data', shape=[None, 256, 32, 32], dtype='float32')
133
- rois = paddle.static.data(
134
- name='rois', shape=[None, 4], dtype='float32')
135
- rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
136
-
137
- pool_out = ops.roi_pool(
138
- input=x,
139
- rois=rois,
140
- output_size=(1, 1),
141
- spatial_scale=1.0,
142
- rois_num=rois_num)
143
- """
144
- check_type(output_size, 'output_size', (int, tuple), 'roi_pool')
145
- if isinstance(output_size, int):
146
- output_size = (output_size, output_size)
147
-
148
- pooled_height, pooled_width = output_size
149
- if in_dygraph_mode():
150
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
151
- pool_out, argmaxes = core.ops.roi_pool(
152
- input, rois, rois_num, "pooled_height", pooled_height,
153
- "pooled_width", pooled_width, "spatial_scale", spatial_scale)
154
- return pool_out, argmaxes
155
-
156
- else:
157
- check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool')
158
- check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool')
159
- helper = LayerHelper('roi_pool', **locals())
160
- dtype = helper.input_dtype()
161
- pool_out = helper.create_variable_for_type_inference(dtype)
162
- argmaxes = helper.create_variable_for_type_inference(dtype='int32')
163
-
164
- inputs = {
165
- "X": input,
166
- "ROIs": rois,
167
- }
168
- if rois_num is not None:
169
- inputs['RoisNum'] = rois_num
170
- helper.append_op(
171
- type="roi_pool",
172
- inputs=inputs,
173
- outputs={"Out": pool_out,
174
- "Argmax": argmaxes},
175
- attrs={
176
- "pooled_height": pooled_height,
177
- "pooled_width": pooled_width,
178
- "spatial_scale": spatial_scale
179
- })
180
- return pool_out, argmaxes
181
-
182
-
183
- @paddle.jit.not_to_static
184
- def roi_align(input,
185
- rois,
186
- output_size,
187
- spatial_scale=1.0,
188
- sampling_ratio=-1,
189
- rois_num=None,
190
- aligned=True,
191
- name=None):
192
- """
193
-
194
- Region of interest align (also known as RoI align) is to perform
195
- bilinear interpolation on inputs of nonuniform sizes to obtain
196
- fixed-size feature maps (e.g. 7*7)
197
-
198
- Dividing each region proposal into equal-sized sections with
199
- the pooled_width and pooled_height. Location remains the origin
200
- result.
201
-
202
- In each ROI bin, the value of the four regularly sampled locations
203
- are computed directly through bilinear interpolation. The output is
204
- the mean of four locations.
205
- Thus avoid the misaligned problem.
206
-
207
- Args:
208
- input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W],
209
- where N is the batch size, C is the input channel, H is Height, W is weight.
210
- The data type is float32 or float64.
211
- rois (Tensor): ROIs (Regions of Interest) to pool over.It should be
212
- a 2-D Tensor or 2-D LoDTensor of shape (num_rois, 4), the lod level is 1.
213
- The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...],
214
- (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
215
- output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size.
216
- spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords
217
- from their input scale to the scale used when pooling. Default: 1.0
218
- sampling_ratio(int32, optional): number of sampling points in the interpolation grid.
219
- If <=0, then grid points are adaptive to roi_width and pooled_w, likewise for height. Default: -1
220
- rois_num (Tensor): The number of RoIs in each image. Default: None
221
- name(str, optional): For detailed information, please refer
222
- to :ref:`api_guide_Name`. Usually name is no need to set and
223
- None by default.
224
-
225
- Returns:
226
- Tensor:
227
-
228
- Output: The output of ROIAlignOp is a 4-D tensor with shape (num_rois, channels, pooled_h, pooled_w). The data type is float32 or float64.
229
-
230
-
231
- Examples:
232
- .. code-block:: python
233
-
234
- import paddle
235
- from paddlex.ppdet.modeling import ops
236
- paddle.enable_static()
237
-
238
- x = paddle.static.data(
239
- name='data', shape=[None, 256, 32, 32], dtype='float32')
240
- rois = paddle.static.data(
241
- name='rois', shape=[None, 4], dtype='float32')
242
- rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
243
- align_out = ops.roi_align(input=x,
244
- rois=rois,
245
- ouput_size=(7, 7),
246
- spatial_scale=0.5,
247
- sampling_ratio=-1,
248
- rois_num=rois_num)
249
- """
250
- check_type(output_size, 'output_size', (int, tuple), 'roi_align')
251
- if isinstance(output_size, int):
252
- output_size = (output_size, output_size)
253
-
254
- pooled_height, pooled_width = output_size
255
-
256
- if in_dygraph_mode():
257
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
258
- align_out = core.ops.roi_align(
259
- input, rois, rois_num, "pooled_height", pooled_height,
260
- "pooled_width", pooled_width, "spatial_scale", spatial_scale,
261
- "sampling_ratio", sampling_ratio, "aligned", aligned)
262
- return align_out
263
-
264
- else:
265
- check_variable_and_dtype(input, 'input', ['float32', 'float64'],
266
- 'roi_align')
267
- check_variable_and_dtype(rois, 'rois', ['float32', 'float64'],
268
- 'roi_align')
269
- helper = LayerHelper('roi_align', **locals())
270
- dtype = helper.input_dtype()
271
- align_out = helper.create_variable_for_type_inference(dtype)
272
- inputs = {
273
- "X": input,
274
- "ROIs": rois,
275
- }
276
- if rois_num is not None:
277
- inputs['RoisNum'] = rois_num
278
- helper.append_op(
279
- type="roi_align",
280
- inputs=inputs,
281
- outputs={"Out": align_out},
282
- attrs={
283
- "pooled_height": pooled_height,
284
- "pooled_width": pooled_width,
285
- "spatial_scale": spatial_scale,
286
- "sampling_ratio": sampling_ratio,
287
- "aligned": aligned,
288
- })
289
- return align_out
290
-
291
-
292
- @paddle.jit.not_to_static
293
- def iou_similarity(x, y, box_normalized=True, name=None):
294
- """
295
- Computes intersection-over-union (IOU) between two box lists.
296
- Box list 'X' should be a LoDTensor and 'Y' is a common Tensor,
297
- boxes in 'Y' are shared by all instance of the batched inputs of X.
298
- Given two boxes A and B, the calculation of IOU is as follows:
299
-
300
- $$
301
- IOU(A, B) =
302
- \\frac{area(A\\cap B)}{area(A)+area(B)-area(A\\cap B)}
303
- $$
304
-
305
- Args:
306
- x (Tensor): Box list X is a 2-D Tensor with shape [N, 4] holds N
307
- boxes, each box is represented as [xmin, ymin, xmax, ymax],
308
- the shape of X is [N, 4]. [xmin, ymin] is the left top
309
- coordinate of the box if the input is image feature map, they
310
- are close to the origin of the coordinate system.
311
- [xmax, ymax] is the right bottom coordinate of the box.
312
- The data type is float32 or float64.
313
- y (Tensor): Box list Y holds M boxes, each box is represented as
314
- [xmin, ymin, xmax, ymax], the shape of X is [N, 4].
315
- [xmin, ymin] is the left top coordinate of the box if the
316
- input is image feature map, and [xmax, ymax] is the right
317
- bottom coordinate of the box. The data type is float32 or float64.
318
- box_normalized(bool): Whether treat the priorbox as a normalized box.
319
- Set true by default.
320
- name(str, optional): For detailed information, please refer
321
- to :ref:`api_guide_Name`. Usually name is no need to set and
322
- None by default.
323
-
324
- Returns:
325
- Tensor: The output of iou_similarity op, a tensor with shape [N, M]
326
- representing pairwise iou scores. The data type is same with x.
327
-
328
- Examples:
329
- .. code-block:: python
330
-
331
- import paddle
332
- from paddlex.ppdet.modeling import ops
333
- paddle.enable_static()
334
-
335
- x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
336
- y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
337
- iou = ops.iou_similarity(x=x, y=y)
338
- """
339
-
340
- if in_dygraph_mode():
341
- out = core.ops.iou_similarity(x, y, 'box_normalized', box_normalized)
342
- return out
343
- else:
344
- helper = LayerHelper("iou_similarity", **locals())
345
- out = helper.create_variable_for_type_inference(dtype=x.dtype)
346
-
347
- helper.append_op(
348
- type="iou_similarity",
349
- inputs={"X": x,
350
- "Y": y},
351
- attrs={"box_normalized": box_normalized},
352
- outputs={"Out": out})
353
- return out
354
-
355
-
356
- @paddle.jit.not_to_static
357
- def collect_fpn_proposals(multi_rois,
358
- multi_scores,
359
- min_level,
360
- max_level,
361
- post_nms_top_n,
362
- rois_num_per_level=None,
363
- name=None):
364
- """
365
-
366
- **This OP only supports LoDTensor as input**. Concat multi-level RoIs
367
- (Region of Interest) and select N RoIs with respect to multi_scores.
368
- This operation performs the following steps:
369
-
370
- 1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
371
- 2. Concat multi-level RoIs and scores
372
- 3. Sort scores and select post_nms_top_n scores
373
- 4. Gather RoIs by selected indices from scores
374
- 5. Re-sort RoIs by corresponding batch_id
375
-
376
- Args:
377
- multi_rois(list): List of RoIs to collect. Element in list is 2-D
378
- LoDTensor with shape [N, 4] and data type is float32 or float64,
379
- N is the number of RoIs.
380
- multi_scores(list): List of scores of RoIs to collect. Element in list
381
- is 2-D LoDTensor with shape [N, 1] and data type is float32 or
382
- float64, N is the number of RoIs.
383
- min_level(int): The lowest level of FPN layer to collect
384
- max_level(int): The highest level of FPN layer to collect
385
- post_nms_top_n(int): The number of selected RoIs
386
- rois_num_per_level(list, optional): The List of RoIs' numbers.
387
- Each element is 1-D Tensor which contains the RoIs' number of each
388
- image on each level and the shape is [B] and data type is
389
- int32, B is the number of images. If it is not None then return
390
- a 1-D Tensor contains the output RoIs' number of each image and
391
- the shape is [B]. Default: None
392
- name(str, optional): For detailed information, please refer
393
- to :ref:`api_guide_Name`. Usually name is no need to set and
394
- None by default.
395
-
396
- Returns:
397
- Variable:
398
-
399
- fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
400
- float32 or float64. Selected RoIs.
401
-
402
- rois_num(Tensor): 1-D Tensor contains the RoIs's number of each
403
- image. The shape is [B] and data type is int32. B is the number of
404
- images.
405
-
406
- Examples:
407
- .. code-block:: python
408
-
409
- import paddle
410
- from paddlex.ppdet.modeling import ops
411
- paddle.enable_static()
412
- multi_rois = []
413
- multi_scores = []
414
- for i in range(4):
415
- multi_rois.append(paddle.static.data(
416
- name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
417
- for i in range(4):
418
- multi_scores.append(paddle.static.data(
419
- name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
420
-
421
- fpn_rois = ops.collect_fpn_proposals(
422
- multi_rois=multi_rois,
423
- multi_scores=multi_scores,
424
- min_level=2,
425
- max_level=5,
426
- post_nms_top_n=2000)
427
- """
428
- check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
429
- check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
430
- num_lvl = max_level - min_level + 1
431
- input_rois = multi_rois[:num_lvl]
432
- input_scores = multi_scores[:num_lvl]
433
-
434
- if in_dygraph_mode():
435
- assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
436
- attrs = ('post_nms_topN', post_nms_top_n)
437
- output_rois, rois_num = core.ops.collect_fpn_proposals(
438
- input_rois, input_scores, rois_num_per_level, *attrs)
439
- return output_rois, rois_num
440
-
441
- else:
442
- helper = LayerHelper('collect_fpn_proposals', **locals())
443
- dtype = helper.input_dtype('multi_rois')
444
- check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
445
- 'collect_fpn_proposals')
446
- output_rois = helper.create_variable_for_type_inference(dtype)
447
- output_rois.stop_gradient = True
448
-
449
- inputs = {
450
- 'MultiLevelRois': input_rois,
451
- 'MultiLevelScores': input_scores,
452
- }
453
- outputs = {'FpnRois': output_rois}
454
- if rois_num_per_level is not None:
455
- inputs['MultiLevelRoIsNum'] = rois_num_per_level
456
- rois_num = helper.create_variable_for_type_inference(dtype='int32')
457
- rois_num.stop_gradient = True
458
- outputs['RoisNum'] = rois_num
459
- helper.append_op(
460
- type='collect_fpn_proposals',
461
- inputs=inputs,
462
- outputs=outputs,
463
- attrs={'post_nms_topN': post_nms_top_n})
464
- return output_rois, rois_num
465
-
466
-
467
- @paddle.jit.not_to_static
468
- def distribute_fpn_proposals(fpn_rois,
469
- min_level,
470
- max_level,
471
- refer_level,
472
- refer_scale,
473
- pixel_offset=False,
474
- rois_num=None,
475
- name=None):
476
- r"""
477
-
478
- **This op only takes LoDTensor as input.** In Feature Pyramid Networks
479
- (FPN) models, it is needed to distribute all proposals into different FPN
480
- level, with respect to scale of the proposals, the referring scale and the
481
- referring level. Besides, to restore the order of proposals, we return an
482
- array which indicates the original index of rois in current proposals.
483
- To compute FPN level for each roi, the formula is given as follows:
484
-
485
- .. math::
486
-
487
- roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
488
-
489
- level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
490
-
491
- where BBoxArea is a function to compute the area of each roi.
492
-
493
- Args:
494
-
495
- fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is
496
- float32 or float64. The input fpn_rois.
497
- min_level(int32): The lowest level of FPN layer where the proposals come
498
- from.
499
- max_level(int32): The highest level of FPN layer where the proposals
500
- come from.
501
- refer_level(int32): The referring level of FPN layer with specified scale.
502
- refer_scale(int32): The referring scale of FPN layer with specified level.
503
- rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
504
- The shape is [B] and data type is int32. B is the number of images.
505
- If it is not None then return a list of 1-D Tensor. Each element
506
- is the output RoIs' number of each image on the corresponding level
507
- and the shape is [B]. None by default.
508
- name(str, optional): For detailed information, please refer
509
- to :ref:`api_guide_Name`. Usually name is no need to set and
510
- None by default.
511
-
512
- Returns:
513
- Tuple:
514
-
515
- multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4]
516
- and data type of float32 and float64. The length is
517
- max_level-min_level+1. The proposals in each FPN level.
518
-
519
- restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is
520
- the number of total rois. The data type is int32. It is
521
- used to restore the order of fpn_rois.
522
-
523
- rois_num_per_level(List): A list of 1-D Tensor and each Tensor is
524
- the RoIs' number in each image on the corresponding level. The shape
525
- is [B] and data type of int32. B is the number of images
526
-
527
-
528
- Examples:
529
- .. code-block:: python
530
-
531
- import paddle
532
- from paddlex.ppdet.modeling import ops
533
- paddle.enable_static()
534
- fpn_rois = paddle.static.data(
535
- name='data', shape=[None, 4], dtype='float32', lod_level=1)
536
- multi_rois, restore_ind = ops.distribute_fpn_proposals(
537
- fpn_rois=fpn_rois,
538
- min_level=2,
539
- max_level=5,
540
- refer_level=4,
541
- refer_scale=224)
542
- """
543
- num_lvl = max_level - min_level + 1
544
-
545
- if in_dygraph_mode():
546
- assert rois_num is not None, "rois_num should not be None in dygraph mode."
547
- attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
548
- refer_level, 'refer_scale', refer_scale, 'pixel_offset',
549
- pixel_offset)
550
- multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals(
551
- fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
552
- return multi_rois, restore_ind, rois_num_per_level
553
-
554
- else:
555
- check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
556
- 'distribute_fpn_proposals')
557
- helper = LayerHelper('distribute_fpn_proposals', **locals())
558
- dtype = helper.input_dtype('fpn_rois')
559
- multi_rois = [
560
- helper.create_variable_for_type_inference(dtype)
561
- for i in range(num_lvl)
562
- ]
563
-
564
- restore_ind = helper.create_variable_for_type_inference(dtype='int32')
565
-
566
- inputs = {'FpnRois': fpn_rois}
567
- outputs = {
568
- 'MultiFpnRois': multi_rois,
569
- 'RestoreIndex': restore_ind,
570
- }
571
-
572
- if rois_num is not None:
573
- inputs['RoisNum'] = rois_num
574
- rois_num_per_level = [
575
- helper.create_variable_for_type_inference(dtype='int32')
576
- for i in range(num_lvl)
577
- ]
578
- outputs['MultiLevelRoIsNum'] = rois_num_per_level
579
-
580
- helper.append_op(
581
- type='distribute_fpn_proposals',
582
- inputs=inputs,
583
- outputs=outputs,
584
- attrs={
585
- 'min_level': min_level,
586
- 'max_level': max_level,
587
- 'refer_level': refer_level,
588
- 'refer_scale': refer_scale,
589
- 'pixel_offset': pixel_offset
590
- })
591
- return multi_rois, restore_ind, rois_num_per_level
592
-
593
-
594
- @paddle.jit.not_to_static
595
- def yolo_box(
596
- x,
597
- origin_shape,
598
- anchors,
599
- class_num,
600
- conf_thresh,
601
- downsample_ratio,
602
- clip_bbox=True,
603
- scale_x_y=1.,
604
- name=None, ):
605
- """
606
-
607
- This operator generates YOLO detection boxes from output of YOLOv3 network.
608
-
609
- The output of previous network is in shape [N, C, H, W], while H and W
610
- should be the same, H and W specify the grid size, each grid point predict
611
- given number boxes, this given number, which following will be represented as S,
612
- is specified by the number of anchors. In the second dimension(the channel
613
- dimension), C should be equal to S * (5 + class_num), class_num is the object
614
- category number of source dataset(such as 80 in coco dataset), so the
615
- second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
616
- also includes confidence score of the box and class one-hot key of each anchor
617
- box.
618
- Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box
619
- predictions should be as follows:
620
- $$
621
- b_x = \\sigma(t_x) + c_x
622
- $$
623
- $$
624
- b_y = \\sigma(t_y) + c_y
625
- $$
626
- $$
627
- b_w = p_w e^{t_w}
628
- $$
629
- $$
630
- b_h = p_h e^{t_h}
631
- $$
632
- in the equation above, :math:`c_x, c_y` is the left top corner of current grid
633
- and :math:`p_w, p_h` is specified by anchors.
634
- The logistic regression value of the 5th channel of each anchor prediction boxes
635
- represents the confidence score of each prediction box, and the logistic
636
- regression value of the last :attr:`class_num` channels of each anchor prediction
637
- boxes represents the classifcation scores. Boxes with confidence scores less than
638
- :attr:`conf_thresh` should be ignored, and box final scores is the product of
639
- confidence scores and classification scores.
640
- $$
641
- score_{pred} = score_{conf} * score_{class}
642
- $$
643
-
644
- Args:
645
- x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with shape of [N, C, H, W].
646
- The second dimension(C) stores box locations, confidence score and
647
- classification one-hot keys of each anchor box. Generally, X should be the output of YOLOv3 network.
648
- The data type is float32 or float64.
649
- origin_shape (Tensor): The image size tensor of YoloBox operator, This is a 2-D tensor with shape of [N, 2].
650
- This tensor holds height and width of each input image used for resizing output box in input image
651
- scale. The data type is int32.
652
- anchors (list|tuple): The anchor width and height, it will be parsed pair by pair.
653
- class_num (int): The number of classes to predict.
654
- conf_thresh (float): The confidence scores threshold of detection boxes. Boxes with confidence scores
655
- under threshold should be ignored.
656
- downsample_ratio (int): The downsample ratio from network input to YoloBox operator input,
657
- so 32, 16, 8 should be set for the first, second, and thrid YoloBox operators.
658
- clip_bbox (bool): Whether clip output bonding box in Input(ImgSize) boundary. Default true.
659
- scale_x_y (float): Scale the center point of decoded bounding box. Default 1.0.
660
- name (string): The default value is None. Normally there is no need
661
- for user to set this property. For more information,
662
- please refer to :ref:`api_guide_Name`
663
-
664
- Returns:
665
- boxes Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes, N is the batch num,
666
- M is output box number, and the 3rd dimension stores [xmin, ymin, xmax, ymax] coordinates of boxes.
667
- scores Tensor: A 3-D tensor with shape [N, M, :attr:`class_num`], the coordinates of boxes, N is the batch num,
668
- M is output box number.
669
-
670
- Raises:
671
- TypeError: Attr anchors of yolo box must be list or tuple
672
- TypeError: Attr class_num of yolo box must be an integer
673
- TypeError: Attr conf_thresh of yolo box must be a float number
674
-
675
- Examples:
676
-
677
- .. code-block:: python
678
-
679
- import paddle
680
- from paddlex.ppdet.modeling import ops
681
-
682
- paddle.enable_static()
683
- x = paddle.static.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
684
- img_size = paddle.static.data(name='img_size',shape=[None, 2],dtype='int64')
685
- anchors = [10, 13, 16, 30, 33, 23]
686
- boxes,scores = ops.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors,
687
- conf_thresh=0.01, downsample_ratio=32)
688
- """
689
- helper = LayerHelper('yolo_box', **locals())
690
-
691
- if not isinstance(anchors, list) and not isinstance(anchors, tuple):
692
- raise TypeError("Attr anchors of yolo_box must be list or tuple")
693
- if not isinstance(class_num, int):
694
- raise TypeError("Attr class_num of yolo_box must be an integer")
695
- if not isinstance(conf_thresh, float):
696
- raise TypeError(
697
- "Attr ignore_thresh of yolo_box must be a float number")
698
-
699
- if in_dygraph_mode():
700
- attrs = ('anchors', anchors, 'class_num', class_num, 'conf_thresh',
701
- conf_thresh, 'downsample_ratio', downsample_ratio,
702
- 'clip_bbox', clip_bbox, 'scale_x_y', scale_x_y)
703
- boxes, scores = core.ops.yolo_box(x, origin_shape, *attrs)
704
- return boxes, scores
705
- else:
706
- boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
707
- scores = helper.create_variable_for_type_inference(dtype=x.dtype)
708
-
709
- attrs = {
710
- "anchors": anchors,
711
- "class_num": class_num,
712
- "conf_thresh": conf_thresh,
713
- "downsample_ratio": downsample_ratio,
714
- "clip_bbox": clip_bbox,
715
- "scale_x_y": scale_x_y,
716
- }
717
-
718
- helper.append_op(
719
- type='yolo_box',
720
- inputs={
721
- "X": x,
722
- "ImgSize": origin_shape,
723
- },
724
- outputs={
725
- 'Boxes': boxes,
726
- 'Scores': scores,
727
- },
728
- attrs=attrs)
729
- return boxes, scores
730
-
731
-
732
- @paddle.jit.not_to_static
733
- def prior_box(input,
734
- image,
735
- min_sizes,
736
- max_sizes=None,
737
- aspect_ratios=[1.],
738
- variance=[0.1, 0.1, 0.2, 0.2],
739
- flip=False,
740
- clip=False,
741
- steps=[0.0, 0.0],
742
- offset=0.5,
743
- min_max_aspect_ratios_order=False,
744
- name=None):
745
- """
746
-
747
- This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
748
- Each position of the input produce N prior boxes, N is determined by
749
- the count of min_sizes, max_sizes and aspect_ratios, The size of the
750
- box is in range(min_size, max_size) interval, which is generated in
751
- sequence according to the aspect_ratios.
752
-
753
- Parameters:
754
- input(Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
755
- image(Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
756
- the data type should be float32 or float64.
757
- min_sizes(list|tuple|float): the min sizes of generated prior boxes.
758
- max_sizes(list|tuple|None): the max sizes of generated prior boxes.
759
- Default: None.
760
- aspect_ratios(list|tuple|float): the aspect ratios of generated
761
- prior boxes. Default: [1.].
762
- variance(list|tuple): the variances to be encoded in prior boxes.
763
- Default:[0.1, 0.1, 0.2, 0.2].
764
- flip(bool): Whether to flip aspect ratios. Default:False.
765
- clip(bool): Whether to clip out-of-boundary boxes. Default: False.
766
- step(list|tuple): Prior boxes step across width and height, If
767
- step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
768
- height or weight of the input will be automatically calculated.
769
- Default: [0., 0.]
770
- offset(float): Prior boxes center offset. Default: 0.5
771
- min_max_aspect_ratios_order(bool): If set True, the output prior box is
772
- in order of [min, max, aspect_ratios], which is consistent with
773
- Caffe. Please note, this order affects the weights order of
774
- convolution layer followed by and does not affect the final
775
- detection results. Default: False.
776
- name(str, optional): The default value is None. Normally there is no need for
777
- user to set this property. For more information, please refer to :ref:`api_guide_Name`
778
-
779
- Returns:
780
- Tuple: A tuple with two Variable (boxes, variances)
781
-
782
- boxes(Tensor): the output prior boxes of PriorBox.
783
- 4-D tensor, the layout is [H, W, num_priors, 4].
784
- H is the height of input, W is the width of input,
785
- num_priors is the total box count of each position of input.
786
-
787
- variances(Tensor): the expanded variances of PriorBox.
788
- 4-D tensor, the layput is [H, W, num_priors, 4].
789
- H is the height of input, W is the width of input
790
- num_priors is the total box count of each position of input
791
-
792
- Examples:
793
- .. code-block:: python
794
-
795
- import paddle
796
- from paddlex.ppdet.modeling import ops
797
-
798
- paddle.enable_static()
799
- input = paddle.static.data(name="input", shape=[None,3,6,9])
800
- image = paddle.static.data(name="image", shape=[None,3,9,12])
801
- box, var = ops.prior_box(
802
- input=input,
803
- image=image,
804
- min_sizes=[100.],
805
- clip=True,
806
- flip=True)
807
- """
808
- helper = LayerHelper("prior_box", **locals())
809
- dtype = helper.input_dtype()
810
- check_variable_and_dtype(
811
- input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
812
-
813
- def _is_list_or_tuple_(data):
814
- return (isinstance(data, list) or isinstance(data, tuple))
815
-
816
- if not _is_list_or_tuple_(min_sizes):
817
- min_sizes = [min_sizes]
818
- if not _is_list_or_tuple_(aspect_ratios):
819
- aspect_ratios = [aspect_ratios]
820
- if not (_is_list_or_tuple_(steps) and len(steps) == 2):
821
- raise ValueError('steps should be a list or tuple ',
822
- 'with length 2, (step_width, step_height).')
823
-
824
- min_sizes = list(map(float, min_sizes))
825
- aspect_ratios = list(map(float, aspect_ratios))
826
- steps = list(map(float, steps))
827
-
828
- cur_max_sizes = None
829
- if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
830
- if not _is_list_or_tuple_(max_sizes):
831
- max_sizes = [max_sizes]
832
- cur_max_sizes = max_sizes
833
-
834
- if in_dygraph_mode():
835
- attrs = ('min_sizes', min_sizes, 'aspect_ratios', aspect_ratios,
836
- 'variances', variance, 'flip', flip, 'clip', clip, 'step_w',
837
- steps[0], 'step_h', steps[1], 'offset', offset,
838
- 'min_max_aspect_ratios_order', min_max_aspect_ratios_order)
839
- if cur_max_sizes is not None:
840
- attrs += ('max_sizes', cur_max_sizes)
841
- box, var = core.ops.prior_box(input, image, *attrs)
842
- return box, var
843
- else:
844
- attrs = {
845
- 'min_sizes': min_sizes,
846
- 'aspect_ratios': aspect_ratios,
847
- 'variances': variance,
848
- 'flip': flip,
849
- 'clip': clip,
850
- 'step_w': steps[0],
851
- 'step_h': steps[1],
852
- 'offset': offset,
853
- 'min_max_aspect_ratios_order': min_max_aspect_ratios_order
854
- }
855
-
856
- if cur_max_sizes is not None:
857
- attrs['max_sizes'] = cur_max_sizes
858
-
859
- box = helper.create_variable_for_type_inference(dtype)
860
- var = helper.create_variable_for_type_inference(dtype)
861
- helper.append_op(
862
- type="prior_box",
863
- inputs={"Input": input,
864
- "Image": image},
865
- outputs={"Boxes": box,
866
- "Variances": var},
867
- attrs=attrs, )
868
- box.stop_gradient = True
869
- var.stop_gradient = True
870
- return box, var
871
-
872
-
873
- @paddle.jit.not_to_static
874
- def multiclass_nms(bboxes,
875
- scores,
876
- score_threshold,
877
- nms_top_k,
878
- keep_top_k,
879
- nms_threshold=0.3,
880
- normalized=True,
881
- nms_eta=1.,
882
- background_label=-1,
883
- return_index=False,
884
- return_rois_num=True,
885
- rois_num=None,
886
- name=None):
887
- """
888
- This operator is to do multi-class non maximum suppression (NMS) on
889
- boxes and scores.
890
- In the NMS step, this operator greedily selects a subset of detection bounding
891
- boxes that have high scores larger than score_threshold, if providing this
892
- threshold, then selects the largest nms_top_k confidences scores if nms_top_k
893
- is larger than -1. Then this operator pruns away boxes that have high IOU
894
- (intersection over union) overlap with already selected boxes by adaptive
895
- threshold NMS based on parameters of nms_threshold and nms_eta.
896
- Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
897
- per image if keep_top_k is larger than -1.
898
- Args:
899
- bboxes (Tensor): Two types of bboxes are supported:
900
- 1. (Tensor) A 3-D Tensor with shape
901
- [N, M, 4 or 8 16 24 32] represents the
902
- predicted locations of M bounding bboxes,
903
- N is the batch size. Each bounding box has four
904
- coordinate values and the layout is
905
- [xmin, ymin, xmax, ymax], when box size equals to 4.
906
- 2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
907
- M is the number of bounding boxes, C is the
908
- class number
909
- scores (Tensor): Two types of scores are supported:
910
- 1. (Tensor) A 3-D Tensor with shape [N, C, M]
911
- represents the predicted confidence predictions.
912
- N is the batch size, C is the class number, M is
913
- number of bounding boxes. For each category there
914
- are total M scores which corresponding M bounding
915
- boxes. Please note, M is equal to the 2nd dimension
916
- of BBoxes.
917
- 2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
918
- M is the number of bbox, C is the class number.
919
- In this case, input BBoxes should be the second
920
- case with shape [M, C, 4].
921
- background_label (int): The index of background label, the background
922
- label will be ignored. If set to -1, then all
923
- categories will be considered. Default: 0
924
- score_threshold (float): Threshold to filter out bounding boxes with
925
- low confidence score. If not provided,
926
- consider all boxes.
927
- nms_top_k (int): Maximum number of detections to be kept according to
928
- the confidences after the filtering detections based
929
- on score_threshold.
930
- nms_threshold (float): The threshold to be used in NMS. Default: 0.3
931
- nms_eta (float): The threshold to be used in NMS. Default: 1.0
932
- keep_top_k (int): Number of total bboxes to be kept per image after NMS
933
- step. -1 means keeping all bboxes after NMS step.
934
- normalized (bool): Whether detections are normalized. Default: True
935
- return_index(bool): Whether return selected index. Default: False
936
- rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image.
937
- The shape is [B] and data type is int32. B is the number of images.
938
- If it is not None then return a list of 1-D Tensor. Each element
939
- is the output RoIs' number of each image on the corresponding level
940
- and the shape is [B]. None by default.
941
- name(str): Name of the multiclass nms op. Default: None.
942
- Returns:
943
- A tuple with two Variables: (Out, Index) if return_index is True,
944
- otherwise, a tuple with one Variable(Out) is returned.
945
- Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
946
- Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
947
- or A 2-D LoDTensor with shape [No, 10] represents the detections.
948
- Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
949
- x4, y4]. No is the total number of detections.
950
- If all images have not detected results, all elements in LoD will be
951
- 0, and output tensor is empty (None).
952
- Index: Only return when return_index is True. A 2-D LoDTensor with
953
- shape [No, 1] represents the selected index which type is Integer.
954
- The index is the absolute value cross batches. No is the same number
955
- as Out. If the index is used to gather other attribute such as age,
956
- one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
957
- N is the batch size and M is the number of boxes.
958
- Examples:
959
- .. code-block:: python
960
-
961
- import paddle
962
- from paddlex.ppdet.modeling import ops
963
- boxes = paddle.static.data(name='bboxes', shape=[81, 4],
964
- dtype='float32', lod_level=1)
965
- scores = paddle.static.data(name='scores', shape=[81],
966
- dtype='float32', lod_level=1)
967
- out, index = ops.multiclass_nms(bboxes=boxes,
968
- scores=scores,
969
- background_label=0,
970
- score_threshold=0.5,
971
- nms_top_k=400,
972
- nms_threshold=0.3,
973
- keep_top_k=200,
974
- normalized=False,
975
- return_index=True)
976
- """
977
- helper = LayerHelper('multiclass_nms3', **locals())
978
-
979
- if in_dygraph_mode():
980
- attrs = ('background_label', background_label, 'score_threshold',
981
- score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
982
- nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
983
- 'normalized', normalized)
984
- output, index, nms_rois_num = core.ops.multiclass_nms3(
985
- bboxes, scores, rois_num, *attrs)
986
- if not return_index:
987
- index = None
988
- return output, nms_rois_num, index
989
-
990
- else:
991
- output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
992
- index = helper.create_variable_for_type_inference(dtype='int32')
993
-
994
- inputs = {'BBoxes': bboxes, 'Scores': scores}
995
- outputs = {'Out': output, 'Index': index}
996
-
997
- if rois_num is not None:
998
- inputs['RoisNum'] = rois_num
999
-
1000
- if return_rois_num:
1001
- nms_rois_num = helper.create_variable_for_type_inference(
1002
- dtype='int32')
1003
- outputs['NmsRoisNum'] = nms_rois_num
1004
-
1005
- helper.append_op(
1006
- type="multiclass_nms3",
1007
- inputs=inputs,
1008
- attrs={
1009
- 'background_label': background_label,
1010
- 'score_threshold': score_threshold,
1011
- 'nms_top_k': nms_top_k,
1012
- 'nms_threshold': nms_threshold,
1013
- 'keep_top_k': keep_top_k,
1014
- 'nms_eta': nms_eta,
1015
- 'normalized': normalized
1016
- },
1017
- outputs=outputs)
1018
- output.stop_gradient = True
1019
- index.stop_gradient = True
1020
- if not return_index:
1021
- index = None
1022
- if not return_rois_num:
1023
- nms_rois_num = None
1024
-
1025
- return output, nms_rois_num, index
1026
-
1027
-
1028
- @paddle.jit.not_to_static
1029
- def matrix_nms(bboxes,
1030
- scores,
1031
- score_threshold,
1032
- post_threshold,
1033
- nms_top_k,
1034
- keep_top_k,
1035
- use_gaussian=False,
1036
- gaussian_sigma=2.,
1037
- background_label=0,
1038
- normalized=True,
1039
- return_index=False,
1040
- return_rois_num=True,
1041
- name=None):
1042
- """
1043
- **Matrix NMS**
1044
- This operator does matrix non maximum suppression (NMS).
1045
- First selects a subset of candidate bounding boxes that have higher scores
1046
- than score_threshold (if provided), then the top k candidate is selected if
1047
- nms_top_k is larger than -1. Score of the remaining candidate are then
1048
- decayed according to the Matrix NMS scheme.
1049
- Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
1050
- per image if keep_top_k is larger than -1.
1051
- Args:
1052
- bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the
1053
- predicted locations of M bounding bboxes,
1054
- N is the batch size. Each bounding box has four
1055
- coordinate values and the layout is
1056
- [xmin, ymin, xmax, ymax], when box size equals to 4.
1057
- The data type is float32 or float64.
1058
- scores (Tensor): A 3-D Tensor with shape [N, C, M]
1059
- represents the predicted confidence predictions.
1060
- N is the batch size, C is the class number, M is
1061
- number of bounding boxes. For each category there
1062
- are total M scores which corresponding M bounding
1063
- boxes. Please note, M is equal to the 2nd dimension
1064
- of BBoxes. The data type is float32 or float64.
1065
- score_threshold (float): Threshold to filter out bounding boxes with
1066
- low confidence score.
1067
- post_threshold (float): Threshold to filter out bounding boxes with
1068
- low confidence score AFTER decaying.
1069
- nms_top_k (int): Maximum number of detections to be kept according to
1070
- the confidences after the filtering detections based
1071
- on score_threshold.
1072
- keep_top_k (int): Number of total bboxes to be kept per image after NMS
1073
- step. -1 means keeping all bboxes after NMS step.
1074
- use_gaussian (bool): Use Gaussian as the decay function. Default: False
1075
- gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
1076
- background_label (int): The index of background label, the background
1077
- label will be ignored. If set to -1, then all
1078
- categories will be considered. Default: 0
1079
- normalized (bool): Whether detections are normalized. Default: True
1080
- return_index(bool): Whether return selected index. Default: False
1081
- return_rois_num(bool): whether return rois_num. Default: True
1082
- name(str): Name of the matrix nms op. Default: None.
1083
- Returns:
1084
- A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True,
1085
- otherwise, a tuple with two Tensor (Out, RoisNum) is returned.
1086
- Out (Tensor): A 2-D Tensor with shape [No, 6] containing the
1087
- detection results.
1088
- Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
1089
- (After version 1.3, when no boxes detected, the lod is changed
1090
- from {0} to {1})
1091
- Index (Tensor): A 2-D Tensor with shape [No, 1] containing the
1092
- selected indices, which are absolute values cross batches.
1093
- rois_num (Tensor): A 1-D Tensor with shape [N] containing
1094
- the number of detected boxes in each image.
1095
- Examples:
1096
- .. code-block:: python
1097
- import paddle
1098
- from paddlex.ppdet.modeling import ops
1099
- boxes = paddle.static.data(name='bboxes', shape=[None,81, 4],
1100
- dtype='float32', lod_level=1)
1101
- scores = paddle.static.data(name='scores', shape=[None,81],
1102
- dtype='float32', lod_level=1)
1103
- out = ops.matrix_nms(bboxes=boxes, scores=scores, background_label=0,
1104
- score_threshold=0.5, post_threshold=0.1,
1105
- nms_top_k=400, keep_top_k=200, normalized=False)
1106
- """
1107
- check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
1108
- 'matrix_nms')
1109
- check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
1110
- 'matrix_nms')
1111
- check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
1112
- check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
1113
- check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
1114
- check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
1115
- check_type(normalized, 'normalized', bool, 'matrix_nms')
1116
- check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
1117
- check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
1118
- check_type(background_label, 'background_label', int, 'matrix_nms')
1119
-
1120
- if in_dygraph_mode():
1121
- attrs = ('background_label', background_label, 'score_threshold',
1122
- score_threshold, 'post_threshold', post_threshold,
1123
- 'nms_top_k', nms_top_k, 'gaussian_sigma', gaussian_sigma,
1124
- 'use_gaussian', use_gaussian, 'keep_top_k', keep_top_k,
1125
- 'normalized', normalized)
1126
- out, index, rois_num = core.ops.matrix_nms(bboxes, scores, *attrs)
1127
- if not return_index:
1128
- index = None
1129
- if not return_rois_num:
1130
- rois_num = None
1131
- return out, rois_num, index
1132
- else:
1133
- helper = LayerHelper('matrix_nms', **locals())
1134
- output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
1135
- index = helper.create_variable_for_type_inference(dtype='int32')
1136
- outputs = {'Out': output, 'Index': index}
1137
- if return_rois_num:
1138
- rois_num = helper.create_variable_for_type_inference(dtype='int32')
1139
- outputs['RoisNum'] = rois_num
1140
-
1141
- helper.append_op(
1142
- type="matrix_nms",
1143
- inputs={'BBoxes': bboxes,
1144
- 'Scores': scores},
1145
- attrs={
1146
- 'background_label': background_label,
1147
- 'score_threshold': score_threshold,
1148
- 'post_threshold': post_threshold,
1149
- 'nms_top_k': nms_top_k,
1150
- 'gaussian_sigma': gaussian_sigma,
1151
- 'use_gaussian': use_gaussian,
1152
- 'keep_top_k': keep_top_k,
1153
- 'normalized': normalized
1154
- },
1155
- outputs=outputs)
1156
- output.stop_gradient = True
1157
-
1158
- if not return_index:
1159
- index = None
1160
- if not return_rois_num:
1161
- rois_num = None
1162
- return output, rois_num, index
1163
-
1164
-
1165
- def bipartite_match(dist_matrix,
1166
- match_type=None,
1167
- dist_threshold=None,
1168
- name=None):
1169
- """
1170
-
1171
- This operator implements a greedy bipartite matching algorithm, which is
1172
- used to obtain the matching with the maximum distance based on the input
1173
- distance matrix. For input 2D matrix, the bipartite matching algorithm can
1174
- find the matched column for each row (matched means the largest distance),
1175
- also can find the matched row for each column. And this operator only
1176
- calculate matched indices from column to row. For each instance,
1177
- the number of matched indices is the column number of the input distance
1178
- matrix. **The OP only supports CPU**.
1179
-
1180
- There are two outputs, matched indices and distance.
1181
- A simple description, this algorithm matched the best (maximum distance)
1182
- row entity to the column entity and the matched indices are not duplicated
1183
- in each row of ColToRowMatchIndices. If the column entity is not matched
1184
- any row entity, set -1 in ColToRowMatchIndices.
1185
-
1186
- NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1187
- If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
1188
- If Tensor, the height of ColToRowMatchIndices is 1.
1189
-
1190
- NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
1191
- layer. Please consider to use :code:`ssd_loss` instead.
1192
-
1193
- Args:
1194
- dist_matrix(Tensor): This input is a 2-D LoDTensor with shape
1195
- [K, M]. The data type is float32 or float64. It is pair-wise
1196
- distance matrix between the entities represented by each row and
1197
- each column. For example, assumed one entity is A with shape [K],
1198
- another entity is B with shape [M]. The dist_matrix[i][j] is the
1199
- distance between A[i] and B[j]. The bigger the distance is, the
1200
- better matching the pairs are. NOTE: This tensor can contain LoD
1201
- information to represent a batch of inputs. One instance of this
1202
- batch can contain different numbers of entities.
1203
- match_type(str, optional): The type of matching method, should be
1204
- 'bipartite' or 'per_prediction'. None ('bipartite') by default.
1205
- dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1206
- this threshold is to determine the extra matching bboxes based
1207
- on the maximum distance, 0.5 by default.
1208
- name(str, optional): For detailed information, please refer
1209
- to :ref:`api_guide_Name`. Usually name is no need to set and
1210
- None by default.
1211
-
1212
- Returns:
1213
- Tuple:
1214
-
1215
- matched_indices(Tensor): A 2-D Tensor with shape [N, M]. The data
1216
- type is int32. N is the batch size. If match_indices[i][j] is -1, it
1217
- means B[j] does not match any entity in i-th instance.
1218
- Otherwise, it means B[j] is matched to row
1219
- match_indices[i][j] in i-th instance. The row number of
1220
- i-th instance is saved in match_indices[i][j].
1221
-
1222
- matched_distance(Tensor): A 2-D Tensor with shape [N, M]. The data
1223
- type is float32. N is batch size. If match_indices[i][j] is -1,
1224
- match_distance[i][j] is also -1.0. Otherwise, assumed
1225
- match_distance[i][j] = d, and the row offsets of each instance
1226
- are called LoD. Then match_distance[i][j] =
1227
- dist_matrix[d+LoD[i]][j].
1228
-
1229
- Examples:
1230
-
1231
- .. code-block:: python
1232
- import paddle
1233
- from paddlex.ppdet.modeling import ops
1234
- from paddlex.ppdet.modeling.utils import iou_similarity
1235
-
1236
- paddle.enable_static()
1237
-
1238
- x = paddle.static.data(name='x', shape=[None, 4], dtype='float32')
1239
- y = paddle.static.data(name='y', shape=[None, 4], dtype='float32')
1240
- iou = iou_similarity(x=x, y=y)
1241
- matched_indices, matched_dist = ops.bipartite_match(iou)
1242
- """
1243
- check_variable_and_dtype(dist_matrix, 'dist_matrix',
1244
- ['float32', 'float64'], 'bipartite_match')
1245
-
1246
- if in_dygraph_mode():
1247
- match_indices, match_distance = core.ops.bipartite_match(
1248
- dist_matrix, "match_type", match_type, "dist_threshold",
1249
- dist_threshold)
1250
- return match_indices, match_distance
1251
-
1252
- helper = LayerHelper('bipartite_match', **locals())
1253
- match_indices = helper.create_variable_for_type_inference(dtype='int32')
1254
- match_distance = helper.create_variable_for_type_inference(
1255
- dtype=dist_matrix.dtype)
1256
- helper.append_op(
1257
- type='bipartite_match',
1258
- inputs={'DistMat': dist_matrix},
1259
- attrs={
1260
- 'match_type': match_type,
1261
- 'dist_threshold': dist_threshold,
1262
- },
1263
- outputs={
1264
- 'ColToRowMatchIndices': match_indices,
1265
- 'ColToRowMatchDist': match_distance
1266
- })
1267
- return match_indices, match_distance
1268
-
1269
-
1270
- @paddle.jit.not_to_static
1271
- def box_coder(prior_box,
1272
- prior_box_var,
1273
- target_box,
1274
- code_type="encode_center_size",
1275
- box_normalized=True,
1276
- axis=0,
1277
- name=None):
1278
- r"""
1279
- **Box Coder Layer**
1280
- Encode/Decode the target bounding box with the priorbox information.
1281
-
1282
- The Encoding schema described below:
1283
- .. math::
1284
- ox = (tx - px) / pw / pxv
1285
- oy = (ty - py) / ph / pyv
1286
- ow = \log(\abs(tw / pw)) / pwv
1287
- oh = \log(\abs(th / ph)) / phv
1288
- The Decoding schema described below:
1289
-
1290
- .. math::
1291
-
1292
- ox = (pw * pxv * tx * + px) - tw / 2
1293
- oy = (ph * pyv * ty * + py) - th / 2
1294
- ow = \exp(pwv * tw) * pw + tw / 2
1295
- oh = \exp(phv * th) * ph + th / 2
1296
- where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
1297
- width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
1298
- the priorbox's (anchor) center coordinates, width and height. `pxv`,
1299
- `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
1300
- `ow`, `oh` denote the encoded/decoded coordinates, width and height.
1301
- During Box Decoding, two modes for broadcast are supported. Say target
1302
- box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
1303
- [M, 4]. Then prior box will broadcast to target box along the
1304
- assigned axis.
1305
-
1306
- Args:
1307
- prior_box(Tensor): Box list prior_box is a 2-D Tensor with shape
1308
- [M, 4] holds M boxes and data type is float32 or float64. Each box
1309
- is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
1310
- left top coordinate of the anchor box, if the input is image feature
1311
- map, they are close to the origin of the coordinate system.
1312
- [xmax, ymax] is the right bottom coordinate of the anchor box.
1313
- prior_box_var(List|Tensor|None): prior_box_var supports three types
1314
- of input. One is Tensor with shape [M, 4] which holds M group and
1315
- data type is float32 or float64. The second is list consist of
1316
- 4 elements shared by all boxes and data type is float32 or float64.
1317
- Other is None and not involved in calculation.
1318
- target_box(Tensor): This input can be a 2-D LoDTensor with shape
1319
- [N, 4] when code_type is 'encode_center_size'. This input also can
1320
- be a 3-D Tensor with shape [N, M, 4] when code_type is
1321
- 'decode_center_size'. Each box is represented as
1322
- [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
1323
- code_type(str): The code type used with the target box. It can be
1324
- `encode_center_size` or `decode_center_size`. `encode_center_size`
1325
- by default.
1326
- box_normalized(bool): Whether treat the priorbox as a normalized box.
1327
- Set true by default.
1328
- axis(int): Which axis in PriorBox to broadcast for box decode,
1329
- for example, if axis is 0 and TargetBox has shape [N, M, 4] and
1330
- PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
1331
- for decoding. It is only valid when code type is
1332
- `decode_center_size`. Set 0 by default.
1333
- name(str, optional): For detailed information, please refer
1334
- to :ref:`api_guide_Name`. Usually name is no need to set and
1335
- None by default.
1336
-
1337
- Returns:
1338
- Tensor:
1339
- output_box(Tensor): When code_type is 'encode_center_size', the
1340
- output tensor of box_coder_op with shape [N, M, 4] representing the
1341
- result of N target boxes encoded with M Prior boxes and variances.
1342
- When code_type is 'decode_center_size', N represents the batch size
1343
- and M represents the number of decoded boxes.
1344
-
1345
- Examples:
1346
-
1347
- .. code-block:: python
1348
-
1349
- import paddle
1350
- from paddlex.ppdet.modeling import ops
1351
- paddle.enable_static()
1352
- # For encode
1353
- prior_box_encode = paddle.static.data(name='prior_box_encode',
1354
- shape=[512, 4],
1355
- dtype='float32')
1356
- target_box_encode = paddle.static.data(name='target_box_encode',
1357
- shape=[81, 4],
1358
- dtype='float32')
1359
- output_encode = ops.box_coder(prior_box=prior_box_encode,
1360
- prior_box_var=[0.1,0.1,0.2,0.2],
1361
- target_box=target_box_encode,
1362
- code_type="encode_center_size")
1363
- # For decode
1364
- prior_box_decode = paddle.static.data(name='prior_box_decode',
1365
- shape=[512, 4],
1366
- dtype='float32')
1367
- target_box_decode = paddle.static.data(name='target_box_decode',
1368
- shape=[512, 81, 4],
1369
- dtype='float32')
1370
- output_decode = ops.box_coder(prior_box=prior_box_decode,
1371
- prior_box_var=[0.1,0.1,0.2,0.2],
1372
- target_box=target_box_decode,
1373
- code_type="decode_center_size",
1374
- box_normalized=False,
1375
- axis=1)
1376
- """
1377
- check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
1378
- 'box_coder')
1379
- check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
1380
- 'box_coder')
1381
-
1382
- if in_dygraph_mode():
1383
- if isinstance(prior_box_var, Variable):
1384
- output_box = core.ops.box_coder(
1385
- prior_box, prior_box_var, target_box, "code_type", code_type,
1386
- "box_normalized", box_normalized, "axis", axis)
1387
-
1388
- elif isinstance(prior_box_var, list):
1389
- output_box = core.ops.box_coder(
1390
- prior_box, None, target_box, "code_type", code_type,
1391
- "box_normalized", box_normalized, "axis", axis, "variance",
1392
- prior_box_var)
1393
- else:
1394
- raise TypeError(
1395
- "Input variance of box_coder must be Variable or list")
1396
- return output_box
1397
- else:
1398
- helper = LayerHelper("box_coder", **locals())
1399
-
1400
- output_box = helper.create_variable_for_type_inference(
1401
- dtype=prior_box.dtype)
1402
-
1403
- inputs = {"PriorBox": prior_box, "TargetBox": target_box}
1404
- attrs = {
1405
- "code_type": code_type,
1406
- "box_normalized": box_normalized,
1407
- "axis": axis
1408
- }
1409
- if isinstance(prior_box_var, Variable):
1410
- inputs['PriorBoxVar'] = prior_box_var
1411
- elif isinstance(prior_box_var, list):
1412
- attrs['variance'] = prior_box_var
1413
- else:
1414
- raise TypeError(
1415
- "Input variance of box_coder must be Variable or list")
1416
- helper.append_op(
1417
- type="box_coder",
1418
- inputs=inputs,
1419
- attrs=attrs,
1420
- outputs={"OutputBox": output_box})
1421
- return output_box
1422
-
1423
-
1424
- @paddle.jit.not_to_static
1425
- def generate_proposals(scores,
1426
- bbox_deltas,
1427
- im_shape,
1428
- anchors,
1429
- variances,
1430
- pre_nms_top_n=6000,
1431
- post_nms_top_n=1000,
1432
- nms_thresh=0.5,
1433
- min_size=0.1,
1434
- eta=1.0,
1435
- pixel_offset=False,
1436
- return_rois_num=False,
1437
- name=None):
1438
- """
1439
- **Generate proposal Faster-RCNN**
1440
- This operation proposes RoIs according to each box with their
1441
- probability to be a foreground object and
1442
- the box can be calculated by anchors. Bbox_deltais and scores
1443
- to be an object are the output of RPN. Final proposals
1444
- could be used to train detection net.
1445
- For generating proposals, this operation performs following steps:
1446
- 1. Transposes and resizes scores and bbox_deltas in size of
1447
- (H*W*A, 1) and (H*W*A, 4)
1448
- 2. Calculate box locations as proposals candidates.
1449
- 3. Clip boxes to image
1450
- 4. Remove predicted boxes with small area.
1451
- 5. Apply NMS to get final proposals as output.
1452
- Args:
1453
- scores(Tensor): A 4-D Tensor with shape [N, A, H, W] represents
1454
- the probability for each box to be an object.
1455
- N is batch size, A is number of anchors, H and W are height and
1456
- width of the feature map. The data type must be float32.
1457
- bbox_deltas(Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
1458
- represents the difference between predicted box location and
1459
- anchor location. The data type must be float32.
1460
- im_shape(Tensor): A 2-D Tensor with shape [N, 2] represents H, W, the
1461
- origin image size or input size. The data type can be float32 or
1462
- float64.
1463
- anchors(Tensor): A 4-D Tensor represents the anchors with a layout
1464
- of [H, W, A, 4]. H and W are height and width of the feature map,
1465
- num_anchors is the box count of each position. Each anchor is
1466
- in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
1467
- variances(Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
1468
- [H, W, num_priors, 4]. Each variance is in
1469
- (xcenter, ycenter, w, h) format. The data type must be float32.
1470
- pre_nms_top_n(float): Number of total bboxes to be kept per
1471
- image before NMS. The data type must be float32. `6000` by default.
1472
- post_nms_top_n(float): Number of total bboxes to be kept per
1473
- image after NMS. The data type must be float32. `1000` by default.
1474
- nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
1475
- min_size(float): Remove predicted boxes with either height or
1476
- width < min_size. The data type must be float32. `0.1` by default.
1477
- eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
1478
- `adaptive_threshold = adaptive_threshold * eta` in each iteration.
1479
- return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
1480
- num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
1481
- the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model.
1482
- 'False' by default.
1483
- name(str, optional): For detailed information, please refer
1484
- to :ref:`api_guide_Name`. Usually name is no need to set and
1485
- None by default.
1486
-
1487
- Returns:
1488
- tuple:
1489
- A tuple with format ``(rpn_rois, rpn_roi_probs)``.
1490
- - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
1491
- - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
1492
-
1493
- Examples:
1494
- .. code-block:: python
1495
-
1496
- import paddle
1497
- from paddlex.ppdet.modeling import ops
1498
- paddle.enable_static()
1499
- scores = paddle.static.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
1500
- bbox_deltas = paddle.static.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
1501
- im_shape = paddle.static.data(name='im_shape', shape=[None, 2], dtype='float32')
1502
- anchors = paddle.static.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
1503
- variances = paddle.static.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
1504
- rois, roi_probs = ops.generate_proposals(scores, bbox_deltas,
1505
- im_shape, anchors, variances)
1506
- """
1507
- if in_dygraph_mode():
1508
- assert return_rois_num, "return_rois_num should be True in dygraph mode."
1509
- attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN',
1510
- post_nms_top_n, 'nms_thresh', nms_thresh, 'min_size',
1511
- min_size, 'eta', eta, 'pixel_offset', pixel_offset)
1512
- rpn_rois, rpn_roi_probs, rpn_rois_num = core.ops.generate_proposals_v2(
1513
- scores, bbox_deltas, im_shape, anchors, variances, *attrs)
1514
- return rpn_rois, rpn_roi_probs, rpn_rois_num
1515
-
1516
- else:
1517
- helper = LayerHelper('generate_proposals_v2', **locals())
1518
-
1519
- check_variable_and_dtype(scores, 'scores', ['float32'],
1520
- 'generate_proposals_v2')
1521
- check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
1522
- 'generate_proposals_v2')
1523
- check_variable_and_dtype(im_shape, 'im_shape', ['float32', 'float64'],
1524
- 'generate_proposals_v2')
1525
- check_variable_and_dtype(anchors, 'anchors', ['float32'],
1526
- 'generate_proposals_v2')
1527
- check_variable_and_dtype(variances, 'variances', ['float32'],
1528
- 'generate_proposals_v2')
1529
-
1530
- rpn_rois = helper.create_variable_for_type_inference(
1531
- dtype=bbox_deltas.dtype)
1532
- rpn_roi_probs = helper.create_variable_for_type_inference(
1533
- dtype=scores.dtype)
1534
- outputs = {
1535
- 'RpnRois': rpn_rois,
1536
- 'RpnRoiProbs': rpn_roi_probs,
1537
- }
1538
- if return_rois_num:
1539
- rpn_rois_num = helper.create_variable_for_type_inference(
1540
- dtype='int32')
1541
- rpn_rois_num.stop_gradient = True
1542
- outputs['RpnRoisNum'] = rpn_rois_num
1543
-
1544
- helper.append_op(
1545
- type="generate_proposals_v2",
1546
- inputs={
1547
- 'Scores': scores,
1548
- 'BboxDeltas': bbox_deltas,
1549
- 'ImShape': im_shape,
1550
- 'Anchors': anchors,
1551
- 'Variances': variances
1552
- },
1553
- attrs={
1554
- 'pre_nms_topN': pre_nms_top_n,
1555
- 'post_nms_topN': post_nms_top_n,
1556
- 'nms_thresh': nms_thresh,
1557
- 'min_size': min_size,
1558
- 'eta': eta,
1559
- 'pixel_offset': pixel_offset
1560
- },
1561
- outputs=outputs)
1562
- rpn_rois.stop_gradient = True
1563
- rpn_roi_probs.stop_gradient = True
1564
-
1565
- return rpn_rois, rpn_roi_probs, rpn_rois_num
1566
-
1567
-
1568
- def sigmoid_cross_entropy_with_logits(input,
1569
- label,
1570
- ignore_index=-100,
1571
- normalize=False):
1572
- output = F.binary_cross_entropy_with_logits(input, label, reduction='none')
1573
- mask_tensor = paddle.cast(label != ignore_index, 'float32')
1574
- output = paddle.multiply(output, mask_tensor)
1575
- if normalize:
1576
- sum_valid_mask = paddle.sum(mask_tensor)
1577
- output = output / sum_valid_mask
1578
- return output
1579
-
1580
-
1581
- def smooth_l1(input,
1582
- label,
1583
- inside_weight=None,
1584
- outside_weight=None,
1585
- sigma=None):
1586
- input_new = paddle.multiply(input, inside_weight)
1587
- label_new = paddle.multiply(label, inside_weight)
1588
- delta = 1 / (sigma * sigma)
1589
- out = F.smooth_l1_loss(input_new, label_new, reduction='none', delta=delta)
1590
- out = paddle.multiply(out, outside_weight)
1591
- out = out / delta
1592
- out = paddle.reshape(out, shape=[out.shape[0], -1])
1593
- out = paddle.sum(out, axis=1)
1594
- return out
1595
-
1596
-
1597
- def channel_shuffle(x, groups):
1598
- batch_size, num_channels, height, width = x.shape[0:4]
1599
- assert num_channels % groups == 0, 'num_channels should be divisible by groups'
1600
- channels_per_group = num_channels // groups
1601
- x = paddle.reshape(
1602
- x=x, shape=[batch_size, groups, channels_per_group, height, width])
1603
- x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])
1604
- x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
1605
- return x
1606
-
1607
-
1608
- def get_static_shape(tensor):
1609
- shape = paddle.shape(tensor)
1610
- shape.stop_gradient = True
1611
- return shape