paddlex 2.1.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1786) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +35 -19
  3. paddlex/__main__.py +39 -0
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
  6. paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  7. paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
  8. paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
  9. paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
  10. paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  11. paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
  12. paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  13. paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  14. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  15. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  16. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  17. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  18. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  19. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
  20. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
  21. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
  22. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  23. paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
  24. paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
  25. paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
  26. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  27. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  28. paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
  29. paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
  30. paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
  31. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  32. paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
  33. paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
  34. paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
  35. paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
  36. paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
  37. paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
  38. paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
  39. paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
  40. paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
  41. paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
  42. paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
  43. paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
  44. paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
  45. paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
  46. paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
  47. paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
  48. paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
  49. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  50. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  51. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  52. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  53. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  54. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  55. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  56. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  57. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  58. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  59. paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
  60. paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  61. paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
  62. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  63. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  64. paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
  65. paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
  66. paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
  67. paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
  68. paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
  69. paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
  70. paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
  71. paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
  72. paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
  73. paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
  74. paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
  75. paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
  76. paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
  77. paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
  78. paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
  79. paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
  80. paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
  81. paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
  82. paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
  83. paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
  84. paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
  85. paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
  86. paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
  87. paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
  88. paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
  89. paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
  90. paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
  91. paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
  92. paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
  93. paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
  94. paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
  95. paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
  96. paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
  97. paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
  98. paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
  99. paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
  100. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  101. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  102. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  103. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  104. paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  105. paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  106. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
  107. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  108. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  109. paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  110. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  111. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  112. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  113. paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  114. paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
  115. paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
  116. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  117. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  118. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  119. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  120. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  121. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  122. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  123. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  124. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  125. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  126. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  127. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  128. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  129. paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  130. paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
  131. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  132. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  133. paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
  134. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  135. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  136. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  137. paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
  138. paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
  139. paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
  140. paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
  141. paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
  142. paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
  143. paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
  144. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
  145. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
  146. paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  147. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  148. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  149. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  150. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  151. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  152. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  153. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  154. paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
  155. paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
  156. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  157. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  158. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  159. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  160. paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
  161. paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
  162. paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  163. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  164. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  165. paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  166. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  167. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  168. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  169. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  170. paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  171. paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  172. paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  173. paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  174. paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  175. paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
  176. paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
  177. paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
  178. paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
  179. paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
  180. paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
  181. paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
  182. paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
  183. paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
  184. paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
  185. paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
  186. paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
  187. paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
  188. paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
  189. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  190. paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  191. paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  192. paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  193. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  194. paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
  195. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  196. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  197. paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  198. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  199. paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
  200. paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
  201. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  202. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  203. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  204. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  205. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  206. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  207. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  208. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  209. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  210. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  211. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  212. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  213. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  214. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  215. paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
  216. paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
  217. paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
  218. paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
  219. paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
  220. paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
  221. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  222. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  223. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  224. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  225. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  226. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  227. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  228. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  229. paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
  230. paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
  231. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  232. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  233. paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  234. paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
  235. paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
  236. paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
  237. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  238. paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  239. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  240. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  241. paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
  242. paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
  243. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  244. paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  245. paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  246. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  247. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  248. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  249. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  250. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  251. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  252. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  253. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  254. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  255. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  256. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  257. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  258. paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  259. paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  260. paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  261. paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  262. paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  263. paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
  264. paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
  265. paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
  266. paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
  267. paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
  268. paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
  269. paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
  270. paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
  271. paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  272. paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  273. paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  274. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  275. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  276. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  277. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  278. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  279. paddlex/configs/pipelines/OCR.yaml +45 -0
  280. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +151 -0
  281. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +237 -0
  282. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  283. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  284. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  285. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  286. paddlex/configs/pipelines/doc_understanding.yaml +9 -0
  287. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  288. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  289. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  290. paddlex/configs/pipelines/image_classification.yaml +10 -0
  291. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  292. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  293. paddlex/configs/pipelines/layout_parsing.yaml +102 -0
  294. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  295. paddlex/configs/pipelines/object_detection.yaml +10 -0
  296. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  297. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  298. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  299. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  300. paddlex/configs/pipelines/seal_recognition.yaml +52 -0
  301. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  302. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  303. paddlex/configs/pipelines/table_recognition.yaml +57 -0
  304. paddlex/configs/pipelines/table_recognition_v2.yaml +82 -0
  305. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  306. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  307. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  308. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  309. paddlex/configs/pipelines/video_classification.yaml +9 -0
  310. paddlex/configs/pipelines/video_detection.yaml +10 -0
  311. paddlex/constants.py +17 -0
  312. paddlex/engine.py +56 -0
  313. paddlex/hpip_links.html +31 -0
  314. paddlex/inference/__init__.py +19 -0
  315. paddlex/inference/common/__init__.py +13 -0
  316. paddlex/inference/common/batch_sampler/__init__.py +21 -0
  317. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
  318. paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
  319. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
  320. paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
  321. paddlex/inference/common/batch_sampler/image_batch_sampler.py +121 -0
  322. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
  323. paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
  324. paddlex/inference/common/reader/__init__.py +19 -0
  325. paddlex/inference/common/reader/audio_reader.py +46 -0
  326. paddlex/inference/common/reader/det_3d_reader.py +241 -0
  327. paddlex/inference/common/reader/image_reader.py +73 -0
  328. paddlex/inference/common/reader/ts_reader.py +46 -0
  329. paddlex/inference/common/reader/video_reader.py +42 -0
  330. paddlex/inference/common/result/__init__.py +29 -0
  331. paddlex/inference/common/result/base_cv_result.py +41 -0
  332. paddlex/inference/common/result/base_result.py +72 -0
  333. paddlex/inference/common/result/base_ts_result.py +41 -0
  334. paddlex/inference/common/result/base_video_result.py +36 -0
  335. paddlex/inference/common/result/mixin.py +709 -0
  336. paddlex/inference/models/__init__.py +86 -0
  337. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  338. paddlex/inference/models/anomaly_detection/predictor.py +135 -0
  339. paddlex/inference/models/anomaly_detection/processors.py +53 -0
  340. paddlex/inference/models/anomaly_detection/result.py +71 -0
  341. paddlex/inference/models/base/__init__.py +15 -0
  342. paddlex/inference/models/base/predictor/__init__.py +15 -0
  343. paddlex/inference/models/base/predictor/base_predictor.py +414 -0
  344. paddlex/inference/models/common/__init__.py +26 -0
  345. paddlex/inference/models/common/static_infer.py +801 -0
  346. paddlex/inference/models/common/tokenizer/__init__.py +21 -0
  347. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  348. paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
  349. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
  350. paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
  351. paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
  352. paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
  353. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
  354. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
  355. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  356. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  357. paddlex/inference/models/common/ts/__init__.py +15 -0
  358. paddlex/inference/models/common/ts/funcs.py +540 -0
  359. paddlex/inference/models/common/ts/processors.py +322 -0
  360. paddlex/inference/models/common/vision/__init__.py +23 -0
  361. paddlex/inference/models/common/vision/funcs.py +98 -0
  362. paddlex/inference/models/common/vision/processors.py +285 -0
  363. paddlex/inference/models/common/vlm/__init__.py +13 -0
  364. paddlex/inference/models/common/vlm/activations.py +189 -0
  365. paddlex/inference/models/common/vlm/bert_padding.py +127 -0
  366. paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
  367. paddlex/inference/models/common/vlm/distributed.py +229 -0
  368. paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
  369. paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
  370. paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
  371. paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
  372. paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
  373. paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
  374. paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
  375. paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
  376. paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
  377. paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
  378. paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
  379. paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
  380. paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
  381. paddlex/inference/models/common/vlm/utils.py +109 -0
  382. paddlex/inference/models/doc_vlm/__init__.py +15 -0
  383. paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
  384. paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
  385. paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
  386. paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
  387. paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
  388. paddlex/inference/models/doc_vlm/predictor.py +253 -0
  389. paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
  390. paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
  391. paddlex/inference/models/doc_vlm/processors/common.py +561 -0
  392. paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
  393. paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
  394. paddlex/inference/models/doc_vlm/result.py +21 -0
  395. paddlex/inference/models/face_feature/__init__.py +15 -0
  396. paddlex/inference/models/face_feature/predictor.py +66 -0
  397. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  398. paddlex/inference/models/formula_recognition/predictor.py +193 -0
  399. paddlex/inference/models/formula_recognition/processors.py +1015 -0
  400. paddlex/inference/models/formula_recognition/result.py +411 -0
  401. paddlex/inference/models/image_classification/__init__.py +15 -0
  402. paddlex/inference/models/image_classification/predictor.py +172 -0
  403. paddlex/inference/models/image_classification/processors.py +89 -0
  404. paddlex/inference/models/image_classification/result.py +93 -0
  405. paddlex/inference/models/image_feature/__init__.py +15 -0
  406. paddlex/inference/models/image_feature/predictor.py +146 -0
  407. paddlex/inference/models/image_feature/processors.py +31 -0
  408. paddlex/inference/models/image_feature/result.py +32 -0
  409. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  410. paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
  411. paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
  412. paddlex/inference/models/image_multilabel_classification/result.py +96 -0
  413. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  414. paddlex/inference/models/image_unwarping/predictor.py +97 -0
  415. paddlex/inference/models/image_unwarping/processors.py +92 -0
  416. paddlex/inference/models/image_unwarping/result.py +47 -0
  417. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  418. paddlex/inference/models/instance_segmentation/predictor.py +202 -0
  419. paddlex/inference/models/instance_segmentation/processors.py +102 -0
  420. paddlex/inference/models/instance_segmentation/result.py +162 -0
  421. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  422. paddlex/inference/models/keypoint_detection/predictor.py +190 -0
  423. paddlex/inference/models/keypoint_detection/processors.py +367 -0
  424. paddlex/inference/models/keypoint_detection/result.py +197 -0
  425. paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
  426. paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
  427. paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
  428. paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
  429. paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
  430. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  431. paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
  432. paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
  433. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  434. paddlex/inference/models/object_detection/__init__.py +15 -0
  435. paddlex/inference/models/object_detection/predictor.py +344 -0
  436. paddlex/inference/models/object_detection/processors.py +885 -0
  437. paddlex/inference/models/object_detection/result.py +114 -0
  438. paddlex/inference/models/object_detection/utils.py +70 -0
  439. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  440. paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
  441. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
  442. paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
  443. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
  444. paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
  445. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  446. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
  447. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  448. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  449. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  450. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
  451. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  452. paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
  453. paddlex/inference/models/semantic_segmentation/processors.py +117 -0
  454. paddlex/inference/models/semantic_segmentation/result.py +73 -0
  455. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  456. paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
  457. paddlex/inference/models/table_structure_recognition/processors.py +229 -0
  458. paddlex/inference/models/table_structure_recognition/result.py +63 -0
  459. paddlex/inference/models/text_detection/__init__.py +15 -0
  460. paddlex/inference/models/text_detection/predictor.py +191 -0
  461. paddlex/inference/models/text_detection/processors.py +538 -0
  462. paddlex/inference/models/text_detection/result.py +46 -0
  463. paddlex/inference/models/text_recognition/__init__.py +15 -0
  464. paddlex/inference/models/text_recognition/predictor.py +98 -0
  465. paddlex/inference/models/text_recognition/processors.py +245 -0
  466. paddlex/inference/models/text_recognition/result.py +76 -0
  467. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  468. paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
  469. paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
  470. paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
  471. paddlex/inference/models/ts_classification/__init__.py +15 -0
  472. paddlex/inference/models/ts_classification/predictor.py +122 -0
  473. paddlex/inference/models/ts_classification/processors.py +122 -0
  474. paddlex/inference/models/ts_classification/result.py +87 -0
  475. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  476. paddlex/inference/models/ts_forecasting/predictor.py +154 -0
  477. paddlex/inference/models/ts_forecasting/processors.py +158 -0
  478. paddlex/inference/models/ts_forecasting/result.py +96 -0
  479. paddlex/inference/models/video_classification/__init__.py +15 -0
  480. paddlex/inference/models/video_classification/predictor.py +141 -0
  481. paddlex/inference/models/video_classification/processors.py +409 -0
  482. paddlex/inference/models/video_classification/result.py +96 -0
  483. paddlex/inference/models/video_detection/__init__.py +15 -0
  484. paddlex/inference/models/video_detection/predictor.py +129 -0
  485. paddlex/inference/models/video_detection/processors.py +463 -0
  486. paddlex/inference/models/video_detection/result.py +109 -0
  487. paddlex/inference/pipelines/__init__.py +239 -0
  488. paddlex/inference/pipelines/_parallel.py +172 -0
  489. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  490. paddlex/inference/pipelines/anomaly_detection/pipeline.py +82 -0
  491. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  492. paddlex/inference/pipelines/attribute_recognition/pipeline.py +120 -0
  493. paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
  494. paddlex/inference/pipelines/base.py +156 -0
  495. paddlex/inference/pipelines/components/__init__.py +29 -0
  496. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  497. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  498. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  499. paddlex/inference/pipelines/components/common/__init__.py +19 -0
  500. paddlex/inference/pipelines/components/common/base_operator.py +37 -0
  501. paddlex/inference/pipelines/components/common/base_result.py +66 -0
  502. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
  503. paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
  504. paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
  505. paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
  506. paddlex/inference/pipelines/components/common/warp_image.py +50 -0
  507. paddlex/inference/pipelines/components/faisser.py +357 -0
  508. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  509. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  510. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
  511. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  512. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  513. paddlex/inference/pipelines/components/retriever/base.py +228 -0
  514. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  515. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
  516. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  517. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  518. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  519. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +209 -0
  520. paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
  521. paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
  522. paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
  523. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  524. paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
  525. paddlex/inference/pipelines/face_recognition/result.py +44 -0
  526. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  527. paddlex/inference/pipelines/formula_recognition/pipeline.py +347 -0
  528. paddlex/inference/pipelines/formula_recognition/result.py +282 -0
  529. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  530. paddlex/inference/pipelines/image_classification/pipeline.py +90 -0
  531. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  532. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +97 -0
  533. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  534. paddlex/inference/pipelines/instance_segmentation/pipeline.py +91 -0
  535. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  536. paddlex/inference/pipelines/keypoint_detection/pipeline.py +158 -0
  537. paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
  538. paddlex/inference/pipelines/layout_parsing/pipeline.py +568 -0
  539. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +1382 -0
  540. paddlex/inference/pipelines/layout_parsing/result.py +191 -0
  541. paddlex/inference/pipelines/layout_parsing/result_v2.py +745 -0
  542. paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
  543. paddlex/inference/pipelines/layout_parsing/utils.py +951 -0
  544. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
  545. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1143 -0
  546. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +562 -0
  547. paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
  548. paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
  549. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  550. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
  551. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  552. paddlex/inference/pipelines/object_detection/pipeline.py +115 -0
  553. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  554. paddlex/inference/pipelines/ocr/pipeline.py +463 -0
  555. paddlex/inference/pipelines/ocr/result.py +255 -0
  556. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  557. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
  558. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  559. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
  560. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  561. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
  562. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +781 -0
  563. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +992 -0
  564. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  565. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
  566. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  567. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  568. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +95 -0
  569. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  570. paddlex/inference/pipelines/seal_recognition/pipeline.py +335 -0
  571. paddlex/inference/pipelines/seal_recognition/result.py +89 -0
  572. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  573. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +95 -0
  574. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  575. paddlex/inference/pipelines/small_object_detection/pipeline.py +95 -0
  576. paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
  577. paddlex/inference/pipelines/table_recognition/pipeline.py +486 -0
  578. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +1395 -0
  579. paddlex/inference/pipelines/table_recognition/result.py +218 -0
  580. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
  581. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +488 -0
  582. paddlex/inference/pipelines/table_recognition/utils.py +44 -0
  583. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  584. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
  585. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  586. paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
  587. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  588. paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
  589. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  590. paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
  591. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  592. paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
  593. paddlex/inference/serving/__init__.py +17 -0
  594. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  595. paddlex/inference/serving/basic_serving/_app.py +221 -0
  596. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
  597. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  598. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +104 -0
  599. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  600. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
  601. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
  602. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
  603. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
  604. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
  605. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
  606. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
  607. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
  608. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
  609. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
  610. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +117 -0
  611. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
  612. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
  613. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
  614. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
  615. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
  616. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
  617. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
  618. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +193 -0
  619. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +223 -0
  620. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
  621. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +143 -0
  622. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
  623. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
  624. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
  625. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
  626. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
  627. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +113 -0
  628. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
  629. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
  630. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
  631. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
  632. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
  633. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
  634. paddlex/inference/serving/basic_serving/_server.py +40 -0
  635. paddlex/inference/serving/infra/__init__.py +13 -0
  636. paddlex/inference/serving/infra/config.py +36 -0
  637. paddlex/inference/serving/infra/models.py +79 -0
  638. paddlex/inference/serving/infra/storage.py +180 -0
  639. paddlex/inference/serving/infra/utils.py +285 -0
  640. paddlex/inference/serving/schemas/__init__.py +13 -0
  641. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  642. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  643. paddlex/inference/serving/schemas/doc_understanding.py +78 -0
  644. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  645. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  646. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  647. paddlex/inference/serving/schemas/image_classification.py +45 -0
  648. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  649. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  650. paddlex/inference/serving/schemas/layout_parsing.py +71 -0
  651. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  652. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  653. paddlex/inference/serving/schemas/object_detection.py +52 -0
  654. paddlex/inference/serving/schemas/ocr.py +60 -0
  655. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  656. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  657. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  658. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +133 -0
  659. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +150 -0
  660. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  661. paddlex/inference/serving/schemas/pp_structurev3.py +88 -0
  662. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  663. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  664. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  665. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  666. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  667. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  668. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  669. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  670. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  671. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  672. paddlex/inference/serving/schemas/table_recognition_v2.py +69 -0
  673. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  674. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  675. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  676. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  677. paddlex/inference/serving/schemas/video_classification.py +44 -0
  678. paddlex/inference/serving/schemas/video_detection.py +56 -0
  679. paddlex/inference/utils/__init__.py +13 -0
  680. paddlex/inference/utils/benchmark.py +379 -0
  681. paddlex/inference/utils/color_map.py +123 -0
  682. paddlex/inference/utils/get_pipeline_path.py +27 -0
  683. paddlex/inference/utils/hpi.py +254 -0
  684. paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
  685. paddlex/inference/utils/io/__init__.py +36 -0
  686. paddlex/inference/utils/io/readers.py +504 -0
  687. paddlex/inference/utils/io/style.py +381 -0
  688. paddlex/inference/utils/io/tablepyxl.py +157 -0
  689. paddlex/inference/utils/io/writers.py +458 -0
  690. paddlex/inference/utils/model_paths.py +48 -0
  691. paddlex/inference/utils/new_ir_blocklist.py +27 -0
  692. paddlex/inference/utils/official_models.py +367 -0
  693. paddlex/inference/utils/pp_option.py +339 -0
  694. paddlex/inference/utils/trt_blocklist.py +43 -0
  695. paddlex/inference/utils/trt_config.py +420 -0
  696. paddlex/model.py +131 -0
  697. paddlex/modules/__init__.py +115 -0
  698. paddlex/modules/anomaly_detection/__init__.py +18 -0
  699. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +94 -0
  700. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  701. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  702. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  703. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +233 -0
  704. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  705. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  706. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +76 -0
  707. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  708. paddlex/modules/anomaly_detection/exportor.py +22 -0
  709. paddlex/modules/anomaly_detection/model_list.py +16 -0
  710. paddlex/modules/anomaly_detection/trainer.py +70 -0
  711. paddlex/modules/base/__init__.py +18 -0
  712. paddlex/modules/base/build_model.py +33 -0
  713. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  714. paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
  715. paddlex/modules/base/dataset_checker/utils.py +108 -0
  716. paddlex/modules/base/evaluator.py +170 -0
  717. paddlex/modules/base/exportor.py +145 -0
  718. paddlex/modules/base/trainer.py +144 -0
  719. paddlex/modules/base/utils/__init__.py +13 -0
  720. paddlex/modules/base/utils/cinn_setting.py +89 -0
  721. paddlex/modules/base/utils/coco_eval.py +94 -0
  722. paddlex/modules/base/utils/topk_eval.py +118 -0
  723. paddlex/modules/doc_vlm/__init__.py +18 -0
  724. paddlex/modules/doc_vlm/dataset_checker.py +29 -0
  725. paddlex/modules/doc_vlm/evaluator.py +29 -0
  726. paddlex/modules/doc_vlm/exportor.py +29 -0
  727. paddlex/modules/doc_vlm/model_list.py +16 -0
  728. paddlex/modules/doc_vlm/trainer.py +41 -0
  729. paddlex/modules/face_recognition/__init__.py +18 -0
  730. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  731. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  732. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +172 -0
  733. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  734. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  735. paddlex/modules/face_recognition/evaluator.py +52 -0
  736. paddlex/modules/face_recognition/exportor.py +22 -0
  737. paddlex/modules/face_recognition/model_list.py +15 -0
  738. paddlex/modules/face_recognition/trainer.py +75 -0
  739. paddlex/modules/formula_recognition/__init__.py +18 -0
  740. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  741. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  742. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
  743. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
  744. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  745. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  746. paddlex/modules/formula_recognition/evaluator.py +80 -0
  747. paddlex/modules/formula_recognition/exportor.py +22 -0
  748. paddlex/modules/formula_recognition/model_list.py +23 -0
  749. paddlex/modules/formula_recognition/trainer.py +123 -0
  750. paddlex/modules/general_recognition/__init__.py +18 -0
  751. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  752. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  753. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +96 -0
  754. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +99 -0
  755. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +100 -0
  756. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  757. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  758. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +147 -0
  759. paddlex/modules/general_recognition/evaluator.py +31 -0
  760. paddlex/modules/general_recognition/exportor.py +22 -0
  761. paddlex/modules/general_recognition/model_list.py +19 -0
  762. paddlex/modules/general_recognition/trainer.py +52 -0
  763. paddlex/modules/image_classification/__init__.py +18 -0
  764. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  765. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  766. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +92 -0
  767. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  768. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  769. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  770. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  771. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  772. paddlex/modules/image_classification/evaluator.py +43 -0
  773. paddlex/modules/image_classification/exportor.py +22 -0
  774. paddlex/modules/image_classification/model_list.py +99 -0
  775. paddlex/modules/image_classification/trainer.py +82 -0
  776. paddlex/modules/image_unwarping/__init__.py +13 -0
  777. paddlex/modules/image_unwarping/model_list.py +17 -0
  778. paddlex/modules/instance_segmentation/__init__.py +18 -0
  779. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +107 -0
  780. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  781. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  782. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +95 -0
  783. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  784. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +122 -0
  785. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  786. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +223 -0
  787. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  788. paddlex/modules/instance_segmentation/exportor.py +22 -0
  789. paddlex/modules/instance_segmentation/model_list.py +33 -0
  790. paddlex/modules/instance_segmentation/trainer.py +31 -0
  791. paddlex/modules/keypoint_detection/__init__.py +18 -0
  792. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  793. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  794. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  795. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  796. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
  797. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  798. paddlex/modules/keypoint_detection/exportor.py +22 -0
  799. paddlex/modules/keypoint_detection/model_list.py +16 -0
  800. paddlex/modules/keypoint_detection/trainer.py +39 -0
  801. paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
  802. paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
  803. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  804. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  805. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
  806. paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
  807. paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
  808. paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
  809. paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
  810. paddlex/modules/multilabel_classification/__init__.py +18 -0
  811. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  812. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  813. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +94 -0
  814. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  815. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +120 -0
  816. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  817. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  818. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +149 -0
  819. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  820. paddlex/modules/multilabel_classification/exportor.py +22 -0
  821. paddlex/modules/multilabel_classification/model_list.py +24 -0
  822. paddlex/modules/multilabel_classification/trainer.py +85 -0
  823. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  824. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  825. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  826. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  827. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  828. paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
  829. paddlex/modules/object_detection/__init__.py +18 -0
  830. paddlex/modules/object_detection/dataset_checker/__init__.py +106 -0
  831. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  832. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  833. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  834. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +438 -0
  835. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +123 -0
  836. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  837. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +193 -0
  838. paddlex/modules/object_detection/evaluator.py +57 -0
  839. paddlex/modules/object_detection/exportor.py +22 -0
  840. paddlex/modules/object_detection/model_list.py +86 -0
  841. paddlex/modules/object_detection/trainer.py +98 -0
  842. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  843. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  844. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  845. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  846. paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
  847. paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
  848. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  849. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  850. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  851. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  852. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  853. paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
  854. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  855. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +109 -0
  856. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  857. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +76 -0
  858. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  859. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +165 -0
  860. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  861. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  862. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +75 -0
  863. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  864. paddlex/modules/semantic_segmentation/exportor.py +31 -0
  865. paddlex/modules/semantic_segmentation/model_list.py +37 -0
  866. paddlex/modules/semantic_segmentation/trainer.py +72 -0
  867. paddlex/modules/table_recognition/__init__.py +18 -0
  868. paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
  869. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  870. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +59 -0
  871. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  872. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  873. paddlex/modules/table_recognition/evaluator.py +43 -0
  874. paddlex/modules/table_recognition/exportor.py +22 -0
  875. paddlex/modules/table_recognition/model_list.py +21 -0
  876. paddlex/modules/table_recognition/trainer.py +67 -0
  877. paddlex/modules/text_detection/__init__.py +18 -0
  878. paddlex/modules/text_detection/dataset_checker/__init__.py +107 -0
  879. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  880. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +220 -0
  881. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
  882. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  883. paddlex/modules/text_detection/evaluator.py +41 -0
  884. paddlex/modules/text_detection/exportor.py +22 -0
  885. paddlex/modules/text_detection/model_list.py +26 -0
  886. paddlex/modules/text_detection/trainer.py +65 -0
  887. paddlex/modules/text_recognition/__init__.py +18 -0
  888. paddlex/modules/text_recognition/dataset_checker/__init__.py +125 -0
  889. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  890. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +162 -0
  891. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +104 -0
  892. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  893. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  894. paddlex/modules/text_recognition/evaluator.py +64 -0
  895. paddlex/modules/text_recognition/exportor.py +22 -0
  896. paddlex/modules/text_recognition/model_list.py +36 -0
  897. paddlex/modules/text_recognition/trainer.py +105 -0
  898. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  899. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +111 -0
  900. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  901. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  902. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  903. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +74 -0
  904. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  905. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  906. paddlex/modules/ts_anomaly_detection/exportor.py +44 -0
  907. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  908. paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
  909. paddlex/modules/ts_classification/__init__.py +19 -0
  910. paddlex/modules/ts_classification/dataset_checker/__init__.py +111 -0
  911. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  912. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +77 -0
  913. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  914. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +74 -0
  915. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  916. paddlex/modules/ts_classification/evaluator.py +66 -0
  917. paddlex/modules/ts_classification/exportor.py +44 -0
  918. paddlex/modules/ts_classification/model_list.py +18 -0
  919. paddlex/modules/ts_classification/trainer.py +108 -0
  920. paddlex/modules/ts_forecast/__init__.py +19 -0
  921. paddlex/modules/ts_forecast/dataset_checker/__init__.py +111 -0
  922. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  923. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  924. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  925. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +73 -0
  926. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  927. paddlex/modules/ts_forecast/evaluator.py +66 -0
  928. paddlex/modules/ts_forecast/exportor.py +44 -0
  929. paddlex/modules/ts_forecast/model_list.py +24 -0
  930. paddlex/modules/ts_forecast/trainer.py +108 -0
  931. paddlex/modules/video_classification/__init__.py +18 -0
  932. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  933. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  934. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  935. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
  936. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  937. paddlex/modules/video_classification/evaluator.py +44 -0
  938. paddlex/modules/video_classification/exportor.py +22 -0
  939. paddlex/modules/video_classification/model_list.py +19 -0
  940. paddlex/modules/video_classification/trainer.py +88 -0
  941. paddlex/modules/video_detection/__init__.py +18 -0
  942. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  943. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  944. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
  945. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
  946. paddlex/modules/video_detection/evaluator.py +42 -0
  947. paddlex/modules/video_detection/exportor.py +22 -0
  948. paddlex/modules/video_detection/model_list.py +15 -0
  949. paddlex/modules/video_detection/trainer.py +82 -0
  950. paddlex/ops/__init__.py +152 -0
  951. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
  952. paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
  953. paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
  954. paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
  955. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
  956. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
  957. paddlex/ops/setup.py +37 -0
  958. paddlex/ops/voxel/voxelize_op.cc +194 -0
  959. paddlex/ops/voxel/voxelize_op.cu +346 -0
  960. paddlex/paddlex_cli.py +476 -0
  961. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  962. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  963. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  964. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  965. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  966. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  967. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
  968. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  969. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  970. paddlex/repo_apis/PaddleClas_api/cls/config.py +595 -0
  971. paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
  972. paddlex/repo_apis/PaddleClas_api/cls/register.py +907 -0
  973. paddlex/repo_apis/PaddleClas_api/cls/runner.py +218 -0
  974. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  975. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  976. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +20 -0
  977. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  978. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +50 -0
  979. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  980. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  981. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  982. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +457 -0
  983. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
  984. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +262 -0
  985. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +225 -0
  986. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  987. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +540 -0
  988. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +429 -0
  989. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +245 -0
  990. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1135 -0
  991. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +225 -0
  992. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  993. paddlex/repo_apis/PaddleOCR_api/__init__.py +22 -0
  994. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  995. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  996. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
  997. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +398 -0
  998. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +99 -0
  999. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
  1000. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  1001. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  1002. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  1003. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +70 -0
  1004. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  1005. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  1006. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  1007. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  1008. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +107 -0
  1009. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  1010. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  1011. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +564 -0
  1012. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +398 -0
  1013. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +216 -0
  1014. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +239 -0
  1015. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  1016. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  1017. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  1018. paddlex/repo_apis/PaddleSeg_api/seg/config.py +183 -0
  1019. paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
  1020. paddlex/repo_apis/PaddleSeg_api/seg/register.py +272 -0
  1021. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +261 -0
  1022. paddlex/repo_apis/PaddleTS_api/__init__.py +20 -0
  1023. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  1024. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +88 -0
  1025. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  1026. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  1027. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  1028. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +244 -0
  1029. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
  1030. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  1031. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  1032. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +72 -0
  1033. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  1034. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  1035. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  1036. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +136 -0
  1037. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  1038. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  1039. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  1040. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  1041. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
  1042. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  1043. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
  1044. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
  1045. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  1046. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
  1047. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  1048. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
  1049. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
  1050. paddlex/repo_apis/__init__.py +13 -0
  1051. paddlex/repo_apis/base/__init__.py +22 -0
  1052. paddlex/repo_apis/base/config.py +237 -0
  1053. paddlex/repo_apis/base/model.py +563 -0
  1054. paddlex/repo_apis/base/register.py +135 -0
  1055. paddlex/repo_apis/base/runner.py +390 -0
  1056. paddlex/repo_apis/base/utils/__init__.py +13 -0
  1057. paddlex/repo_apis/base/utils/arg.py +64 -0
  1058. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  1059. paddlex/repo_manager/__init__.py +17 -0
  1060. paddlex/repo_manager/core.py +253 -0
  1061. paddlex/repo_manager/meta.py +180 -0
  1062. paddlex/repo_manager/repo.py +425 -0
  1063. paddlex/repo_manager/utils.py +148 -0
  1064. paddlex/utils/__init__.py +1 -12
  1065. paddlex/utils/cache.py +146 -0
  1066. paddlex/utils/config.py +216 -0
  1067. paddlex/utils/custom_device_list.py +311 -0
  1068. paddlex/utils/deps.py +249 -0
  1069. paddlex/utils/device.py +195 -0
  1070. paddlex/utils/download.py +168 -182
  1071. paddlex/utils/env.py +32 -45
  1072. paddlex/utils/errors/__init__.py +17 -0
  1073. paddlex/utils/errors/dataset_checker.py +78 -0
  1074. paddlex/utils/errors/others.py +138 -0
  1075. paddlex/utils/file_interface.py +211 -0
  1076. paddlex/utils/flags.py +70 -0
  1077. paddlex/utils/fonts/__init__.py +97 -0
  1078. paddlex/utils/func_register.py +41 -0
  1079. paddlex/utils/install.py +87 -0
  1080. paddlex/utils/interactive_get_pipeline.py +55 -0
  1081. paddlex/utils/lazy_loader.py +68 -0
  1082. paddlex/utils/logging.py +140 -33
  1083. paddlex/utils/misc.py +201 -0
  1084. paddlex/utils/pipeline_arguments.py +719 -0
  1085. paddlex/utils/result_saver.py +58 -0
  1086. paddlex/utils/subclass_register.py +99 -0
  1087. paddlex/version.py +55 -0
  1088. paddlex-3.0.0.dist-info/METADATA +1168 -0
  1089. paddlex-3.0.0.dist-info/RECORD +1093 -0
  1090. paddlex-3.0.0.dist-info/WHEEL +5 -0
  1091. paddlex-3.0.0.dist-info/entry_points.txt +2 -0
  1092. paddlex-3.0.0.dist-info/licenses/LICENSE +169 -0
  1093. paddlex-3.0.0.dist-info/top_level.txt +1 -0
  1094. PaddleClas/__init__.py +0 -16
  1095. PaddleClas/deploy/__init__.py +0 -1
  1096. PaddleClas/deploy/paddleserving/__init__.py +0 -0
  1097. PaddleClas/deploy/paddleserving/classification_web_service.py +0 -74
  1098. PaddleClas/deploy/paddleserving/cpu_utilization.py +0 -4
  1099. PaddleClas/deploy/paddleserving/pipeline_http_client.py +0 -20
  1100. PaddleClas/deploy/paddleserving/pipeline_rpc_client.py +0 -33
  1101. PaddleClas/deploy/paddleserving/recognition/__init__.py +0 -0
  1102. PaddleClas/deploy/paddleserving/recognition/pipeline_http_client.py +0 -21
  1103. PaddleClas/deploy/paddleserving/recognition/pipeline_rpc_client.py +0 -34
  1104. PaddleClas/deploy/paddleserving/recognition/recognition_web_service.py +0 -209
  1105. PaddleClas/deploy/python/__init__.py +0 -0
  1106. PaddleClas/deploy/python/build_gallery.py +0 -214
  1107. PaddleClas/deploy/python/det_preprocess.py +0 -205
  1108. PaddleClas/deploy/python/postprocess.py +0 -161
  1109. PaddleClas/deploy/python/predict_cls.py +0 -142
  1110. PaddleClas/deploy/python/predict_det.py +0 -158
  1111. PaddleClas/deploy/python/predict_rec.py +0 -138
  1112. PaddleClas/deploy/python/predict_system.py +0 -144
  1113. PaddleClas/deploy/python/preprocess.py +0 -337
  1114. PaddleClas/deploy/utils/__init__.py +0 -5
  1115. PaddleClas/deploy/utils/config.py +0 -197
  1116. PaddleClas/deploy/utils/draw_bbox.py +0 -61
  1117. PaddleClas/deploy/utils/encode_decode.py +0 -31
  1118. PaddleClas/deploy/utils/get_image_list.py +0 -49
  1119. PaddleClas/deploy/utils/logger.py +0 -120
  1120. PaddleClas/deploy/utils/predictor.py +0 -71
  1121. PaddleClas/deploy/vector_search/__init__.py +0 -1
  1122. PaddleClas/deploy/vector_search/interface.py +0 -272
  1123. PaddleClas/deploy/vector_search/test.py +0 -34
  1124. PaddleClas/hubconf.py +0 -788
  1125. PaddleClas/paddleclas.py +0 -552
  1126. PaddleClas/ppcls/__init__.py +0 -20
  1127. PaddleClas/ppcls/arch/__init__.py +0 -127
  1128. PaddleClas/ppcls/arch/backbone/__init__.py +0 -80
  1129. PaddleClas/ppcls/arch/backbone/base/__init__.py +0 -0
  1130. PaddleClas/ppcls/arch/backbone/base/theseus_layer.py +0 -126
  1131. PaddleClas/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1132. PaddleClas/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1133. PaddleClas/ppcls/arch/backbone/legendary_models/hrnet.py +0 -744
  1134. PaddleClas/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1135. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1136. PaddleClas/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1137. PaddleClas/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1138. PaddleClas/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1139. PaddleClas/ppcls/arch/backbone/legendary_models/vgg.py +0 -231
  1140. PaddleClas/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1141. PaddleClas/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1142. PaddleClas/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1143. PaddleClas/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1144. PaddleClas/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1145. PaddleClas/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1146. PaddleClas/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1147. PaddleClas/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1148. PaddleClas/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1149. PaddleClas/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1150. PaddleClas/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1151. PaddleClas/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1152. PaddleClas/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1153. PaddleClas/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1154. PaddleClas/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1155. PaddleClas/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1156. PaddleClas/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1157. PaddleClas/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1158. PaddleClas/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1159. PaddleClas/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1160. PaddleClas/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1161. PaddleClas/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1162. PaddleClas/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1163. PaddleClas/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1164. PaddleClas/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1165. PaddleClas/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1166. PaddleClas/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1167. PaddleClas/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1168. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1169. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1170. PaddleClas/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1171. PaddleClas/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1172. PaddleClas/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1173. PaddleClas/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1174. PaddleClas/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1175. PaddleClas/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1176. PaddleClas/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1177. PaddleClas/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1178. PaddleClas/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1179. PaddleClas/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1180. PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1181. PaddleClas/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1182. PaddleClas/ppcls/arch/gears/__init__.py +0 -32
  1183. PaddleClas/ppcls/arch/gears/arcmargin.py +0 -72
  1184. PaddleClas/ppcls/arch/gears/circlemargin.py +0 -59
  1185. PaddleClas/ppcls/arch/gears/cosmargin.py +0 -55
  1186. PaddleClas/ppcls/arch/gears/fc.py +0 -35
  1187. PaddleClas/ppcls/arch/gears/identity_head.py +0 -9
  1188. PaddleClas/ppcls/arch/gears/vehicle_neck.py +0 -52
  1189. PaddleClas/ppcls/arch/utils.py +0 -53
  1190. PaddleClas/ppcls/data/__init__.py +0 -144
  1191. PaddleClas/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1192. PaddleClas/ppcls/data/dataloader/__init__.py +0 -9
  1193. PaddleClas/ppcls/data/dataloader/common_dataset.py +0 -84
  1194. PaddleClas/ppcls/data/dataloader/dali.py +0 -319
  1195. PaddleClas/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1196. PaddleClas/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1197. PaddleClas/ppcls/data/dataloader/logo_dataset.py +0 -46
  1198. PaddleClas/ppcls/data/dataloader/mix_dataset.py +0 -49
  1199. PaddleClas/ppcls/data/dataloader/mix_sampler.py +0 -79
  1200. PaddleClas/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1201. PaddleClas/ppcls/data/dataloader/pk_sampler.py +0 -105
  1202. PaddleClas/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1203. PaddleClas/ppcls/data/postprocess/__init__.py +0 -41
  1204. PaddleClas/ppcls/data/postprocess/topk.py +0 -85
  1205. PaddleClas/ppcls/data/preprocess/__init__.py +0 -100
  1206. PaddleClas/ppcls/data/preprocess/batch_ops/__init__.py +0 -1
  1207. PaddleClas/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1208. PaddleClas/ppcls/data/preprocess/ops/__init__.py +0 -1
  1209. PaddleClas/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1210. PaddleClas/ppcls/data/preprocess/ops/cutout.py +0 -41
  1211. PaddleClas/ppcls/data/preprocess/ops/fmix.py +0 -217
  1212. PaddleClas/ppcls/data/preprocess/ops/functional.py +0 -138
  1213. PaddleClas/ppcls/data/preprocess/ops/grid.py +0 -89
  1214. PaddleClas/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1215. PaddleClas/ppcls/data/preprocess/ops/operators.py +0 -384
  1216. PaddleClas/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1217. PaddleClas/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1218. PaddleClas/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1219. PaddleClas/ppcls/data/utils/__init__.py +0 -13
  1220. PaddleClas/ppcls/data/utils/get_image_list.py +0 -49
  1221. PaddleClas/ppcls/engine/__init__.py +0 -0
  1222. PaddleClas/ppcls/engine/engine.py +0 -436
  1223. PaddleClas/ppcls/engine/evaluation/__init__.py +0 -16
  1224. PaddleClas/ppcls/engine/evaluation/classification.py +0 -143
  1225. PaddleClas/ppcls/engine/evaluation/retrieval.py +0 -169
  1226. PaddleClas/ppcls/engine/slim/__init__.py +0 -16
  1227. PaddleClas/ppcls/engine/slim/prune.py +0 -66
  1228. PaddleClas/ppcls/engine/slim/quant.py +0 -55
  1229. PaddleClas/ppcls/engine/train/__init__.py +0 -14
  1230. PaddleClas/ppcls/engine/train/train.py +0 -79
  1231. PaddleClas/ppcls/engine/train/utils.py +0 -72
  1232. PaddleClas/ppcls/loss/__init__.py +0 -65
  1233. PaddleClas/ppcls/loss/celoss.py +0 -67
  1234. PaddleClas/ppcls/loss/centerloss.py +0 -54
  1235. PaddleClas/ppcls/loss/comfunc.py +0 -45
  1236. PaddleClas/ppcls/loss/deephashloss.py +0 -92
  1237. PaddleClas/ppcls/loss/distanceloss.py +0 -43
  1238. PaddleClas/ppcls/loss/distillationloss.py +0 -141
  1239. PaddleClas/ppcls/loss/dmlloss.py +0 -46
  1240. PaddleClas/ppcls/loss/emlloss.py +0 -97
  1241. PaddleClas/ppcls/loss/googlenetloss.py +0 -41
  1242. PaddleClas/ppcls/loss/msmloss.py +0 -78
  1243. PaddleClas/ppcls/loss/multilabelloss.py +0 -43
  1244. PaddleClas/ppcls/loss/npairsloss.py +0 -38
  1245. PaddleClas/ppcls/loss/pairwisecosface.py +0 -55
  1246. PaddleClas/ppcls/loss/supconloss.py +0 -108
  1247. PaddleClas/ppcls/loss/trihardloss.py +0 -82
  1248. PaddleClas/ppcls/loss/triplet.py +0 -137
  1249. PaddleClas/ppcls/metric/__init__.py +0 -51
  1250. PaddleClas/ppcls/metric/metrics.py +0 -308
  1251. PaddleClas/ppcls/optimizer/__init__.py +0 -72
  1252. PaddleClas/ppcls/optimizer/learning_rate.py +0 -326
  1253. PaddleClas/ppcls/optimizer/optimizer.py +0 -207
  1254. PaddleClas/ppcls/utils/__init__.py +0 -27
  1255. PaddleClas/ppcls/utils/check.py +0 -151
  1256. PaddleClas/ppcls/utils/config.py +0 -210
  1257. PaddleClas/ppcls/utils/download.py +0 -319
  1258. PaddleClas/ppcls/utils/ema.py +0 -63
  1259. PaddleClas/ppcls/utils/logger.py +0 -137
  1260. PaddleClas/ppcls/utils/metrics.py +0 -107
  1261. PaddleClas/ppcls/utils/misc.py +0 -63
  1262. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  1263. PaddleClas/ppcls/utils/profiler.py +0 -111
  1264. PaddleClas/ppcls/utils/save_load.py +0 -136
  1265. PaddleClas/setup.py +0 -58
  1266. PaddleClas/tools/__init__.py +0 -15
  1267. PaddleClas/tools/eval.py +0 -31
  1268. PaddleClas/tools/export_model.py +0 -34
  1269. PaddleClas/tools/infer.py +0 -31
  1270. PaddleClas/tools/train.py +0 -32
  1271. paddlex/cls.py +0 -82
  1272. paddlex/command.py +0 -215
  1273. paddlex/cv/__init__.py +0 -17
  1274. paddlex/cv/datasets/__init__.py +0 -18
  1275. paddlex/cv/datasets/coco.py +0 -208
  1276. paddlex/cv/datasets/imagenet.py +0 -88
  1277. paddlex/cv/datasets/seg_dataset.py +0 -91
  1278. paddlex/cv/datasets/voc.py +0 -445
  1279. paddlex/cv/models/__init__.py +0 -18
  1280. paddlex/cv/models/base.py +0 -631
  1281. paddlex/cv/models/classifier.py +0 -989
  1282. paddlex/cv/models/detector.py +0 -2292
  1283. paddlex/cv/models/load_model.py +0 -148
  1284. paddlex/cv/models/segmenter.py +0 -768
  1285. paddlex/cv/models/slim/__init__.py +0 -13
  1286. paddlex/cv/models/slim/prune.py +0 -55
  1287. paddlex/cv/models/utils/__init__.py +0 -13
  1288. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  1289. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -476
  1290. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  1291. paddlex/cv/models/utils/infer_nets.py +0 -45
  1292. paddlex/cv/models/utils/seg_metrics.py +0 -62
  1293. paddlex/cv/models/utils/visualize.py +0 -399
  1294. paddlex/cv/transforms/__init__.py +0 -46
  1295. paddlex/cv/transforms/batch_operators.py +0 -286
  1296. paddlex/cv/transforms/box_utils.py +0 -41
  1297. paddlex/cv/transforms/functions.py +0 -193
  1298. paddlex/cv/transforms/operators.py +0 -1402
  1299. paddlex/deploy.py +0 -268
  1300. paddlex/det.py +0 -49
  1301. paddlex/paddleseg/__init__.py +0 -17
  1302. paddlex/paddleseg/core/__init__.py +0 -20
  1303. paddlex/paddleseg/core/infer.py +0 -289
  1304. paddlex/paddleseg/core/predict.py +0 -145
  1305. paddlex/paddleseg/core/train.py +0 -258
  1306. paddlex/paddleseg/core/val.py +0 -172
  1307. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  1308. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  1309. paddlex/paddleseg/cvlibs/config.py +0 -359
  1310. paddlex/paddleseg/cvlibs/manager.py +0 -142
  1311. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  1312. paddlex/paddleseg/datasets/__init__.py +0 -21
  1313. paddlex/paddleseg/datasets/ade.py +0 -112
  1314. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  1315. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  1316. paddlex/paddleseg/datasets/dataset.py +0 -164
  1317. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  1318. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  1319. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  1320. paddlex/paddleseg/datasets/voc.py +0 -113
  1321. paddlex/paddleseg/models/__init__.py +0 -39
  1322. paddlex/paddleseg/models/ann.py +0 -436
  1323. paddlex/paddleseg/models/attention_unet.py +0 -189
  1324. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  1325. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  1326. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  1327. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  1328. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  1329. paddlex/paddleseg/models/bisenet.py +0 -311
  1330. paddlex/paddleseg/models/danet.py +0 -220
  1331. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  1332. paddlex/paddleseg/models/deeplab.py +0 -258
  1333. paddlex/paddleseg/models/dnlnet.py +0 -231
  1334. paddlex/paddleseg/models/emanet.py +0 -219
  1335. paddlex/paddleseg/models/fast_scnn.py +0 -318
  1336. paddlex/paddleseg/models/fcn.py +0 -135
  1337. paddlex/paddleseg/models/gcnet.py +0 -223
  1338. paddlex/paddleseg/models/gscnn.py +0 -357
  1339. paddlex/paddleseg/models/hardnet.py +0 -309
  1340. paddlex/paddleseg/models/isanet.py +0 -202
  1341. paddlex/paddleseg/models/layers/__init__.py +0 -19
  1342. paddlex/paddleseg/models/layers/activation.py +0 -73
  1343. paddlex/paddleseg/models/layers/attention.py +0 -146
  1344. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  1345. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  1346. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  1347. paddlex/paddleseg/models/losses/__init__.py +0 -27
  1348. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  1349. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  1350. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  1351. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  1352. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  1353. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  1354. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  1355. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  1356. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  1357. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  1358. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  1359. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  1360. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  1361. paddlex/paddleseg/models/ocrnet.py +0 -248
  1362. paddlex/paddleseg/models/pspnet.py +0 -147
  1363. paddlex/paddleseg/models/sfnet.py +0 -236
  1364. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  1365. paddlex/paddleseg/models/u2net.py +0 -574
  1366. paddlex/paddleseg/models/unet.py +0 -155
  1367. paddlex/paddleseg/models/unet_3plus.py +0 -316
  1368. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  1369. paddlex/paddleseg/transforms/__init__.py +0 -16
  1370. paddlex/paddleseg/transforms/functional.py +0 -161
  1371. paddlex/paddleseg/transforms/transforms.py +0 -937
  1372. paddlex/paddleseg/utils/__init__.py +0 -22
  1373. paddlex/paddleseg/utils/config_check.py +0 -60
  1374. paddlex/paddleseg/utils/download.py +0 -163
  1375. paddlex/paddleseg/utils/env/__init__.py +0 -16
  1376. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  1377. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  1378. paddlex/paddleseg/utils/logger.py +0 -48
  1379. paddlex/paddleseg/utils/metrics.py +0 -146
  1380. paddlex/paddleseg/utils/progbar.py +0 -212
  1381. paddlex/paddleseg/utils/timer.py +0 -53
  1382. paddlex/paddleseg/utils/utils.py +0 -120
  1383. paddlex/paddleseg/utils/visualize.py +0 -90
  1384. paddlex/ppcls/__init__.py +0 -20
  1385. paddlex/ppcls/arch/__init__.py +0 -127
  1386. paddlex/ppcls/arch/backbone/__init__.py +0 -80
  1387. paddlex/ppcls/arch/backbone/base/__init__.py +0 -0
  1388. paddlex/ppcls/arch/backbone/base/theseus_layer.py +0 -130
  1389. paddlex/ppcls/arch/backbone/legendary_models/__init__.py +0 -6
  1390. paddlex/ppcls/arch/backbone/legendary_models/esnet.py +0 -355
  1391. paddlex/ppcls/arch/backbone/legendary_models/hrnet.py +0 -748
  1392. paddlex/ppcls/arch/backbone/legendary_models/inception_v3.py +0 -539
  1393. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v1.py +0 -234
  1394. paddlex/ppcls/arch/backbone/legendary_models/mobilenet_v3.py +0 -561
  1395. paddlex/ppcls/arch/backbone/legendary_models/pp_lcnet.py +0 -399
  1396. paddlex/ppcls/arch/backbone/legendary_models/resnet.py +0 -534
  1397. paddlex/ppcls/arch/backbone/legendary_models/vgg.py +0 -235
  1398. paddlex/ppcls/arch/backbone/model_zoo/__init__.py +0 -0
  1399. paddlex/ppcls/arch/backbone/model_zoo/alexnet.py +0 -168
  1400. paddlex/ppcls/arch/backbone/model_zoo/cspnet.py +0 -376
  1401. paddlex/ppcls/arch/backbone/model_zoo/darknet.py +0 -197
  1402. paddlex/ppcls/arch/backbone/model_zoo/densenet.py +0 -344
  1403. paddlex/ppcls/arch/backbone/model_zoo/distilled_vision_transformer.py +0 -272
  1404. paddlex/ppcls/arch/backbone/model_zoo/dla.py +0 -528
  1405. paddlex/ppcls/arch/backbone/model_zoo/dpn.py +0 -451
  1406. paddlex/ppcls/arch/backbone/model_zoo/efficientnet.py +0 -976
  1407. paddlex/ppcls/arch/backbone/model_zoo/ghostnet.py +0 -363
  1408. paddlex/ppcls/arch/backbone/model_zoo/googlenet.py +0 -229
  1409. paddlex/ppcls/arch/backbone/model_zoo/gvt.py +0 -693
  1410. paddlex/ppcls/arch/backbone/model_zoo/hardnet.py +0 -293
  1411. paddlex/ppcls/arch/backbone/model_zoo/inception_v4.py +0 -477
  1412. paddlex/ppcls/arch/backbone/model_zoo/levit.py +0 -589
  1413. paddlex/ppcls/arch/backbone/model_zoo/mixnet.py +0 -815
  1414. paddlex/ppcls/arch/backbone/model_zoo/mobilenet_v2.py +0 -287
  1415. paddlex/ppcls/arch/backbone/model_zoo/rednet.py +0 -203
  1416. paddlex/ppcls/arch/backbone/model_zoo/regnet.py +0 -431
  1417. paddlex/ppcls/arch/backbone/model_zoo/repvgg.py +0 -422
  1418. paddlex/ppcls/arch/backbone/model_zoo/res2net.py +0 -264
  1419. paddlex/ppcls/arch/backbone/model_zoo/res2net_vd.py +0 -305
  1420. paddlex/ppcls/arch/backbone/model_zoo/resnest.py +0 -740
  1421. paddlex/ppcls/arch/backbone/model_zoo/resnet_vc.py +0 -309
  1422. paddlex/ppcls/arch/backbone/model_zoo/resnext.py +0 -298
  1423. paddlex/ppcls/arch/backbone/model_zoo/resnext101_wsl.py +0 -490
  1424. paddlex/ppcls/arch/backbone/model_zoo/resnext_vd.py +0 -317
  1425. paddlex/ppcls/arch/backbone/model_zoo/rexnet.py +0 -281
  1426. paddlex/ppcls/arch/backbone/model_zoo/se_resnet_vd.py +0 -390
  1427. paddlex/ppcls/arch/backbone/model_zoo/se_resnext.py +0 -364
  1428. paddlex/ppcls/arch/backbone/model_zoo/se_resnext_vd.py +0 -309
  1429. paddlex/ppcls/arch/backbone/model_zoo/shufflenet_v2.py +0 -362
  1430. paddlex/ppcls/arch/backbone/model_zoo/squeezenet.py +0 -194
  1431. paddlex/ppcls/arch/backbone/model_zoo/swin_transformer.py +0 -857
  1432. paddlex/ppcls/arch/backbone/model_zoo/tnt.py +0 -385
  1433. paddlex/ppcls/arch/backbone/model_zoo/vision_transformer.py +0 -495
  1434. paddlex/ppcls/arch/backbone/model_zoo/xception.py +0 -377
  1435. paddlex/ppcls/arch/backbone/model_zoo/xception_deeplab.py +0 -421
  1436. paddlex/ppcls/arch/backbone/variant_models/__init__.py +0 -3
  1437. paddlex/ppcls/arch/backbone/variant_models/pp_lcnet_variant.py +0 -29
  1438. paddlex/ppcls/arch/backbone/variant_models/resnet_variant.py +0 -23
  1439. paddlex/ppcls/arch/backbone/variant_models/vgg_variant.py +0 -28
  1440. paddlex/ppcls/arch/gears/__init__.py +0 -32
  1441. paddlex/ppcls/arch/gears/arcmargin.py +0 -72
  1442. paddlex/ppcls/arch/gears/circlemargin.py +0 -59
  1443. paddlex/ppcls/arch/gears/cosmargin.py +0 -55
  1444. paddlex/ppcls/arch/gears/fc.py +0 -35
  1445. paddlex/ppcls/arch/gears/identity_head.py +0 -9
  1446. paddlex/ppcls/arch/gears/vehicle_neck.py +0 -52
  1447. paddlex/ppcls/arch/utils.py +0 -53
  1448. paddlex/ppcls/data/__init__.py +0 -144
  1449. paddlex/ppcls/data/dataloader/DistributedRandomIdentitySampler.py +0 -90
  1450. paddlex/ppcls/data/dataloader/__init__.py +0 -9
  1451. paddlex/ppcls/data/dataloader/common_dataset.py +0 -84
  1452. paddlex/ppcls/data/dataloader/dali.py +0 -319
  1453. paddlex/ppcls/data/dataloader/icartoon_dataset.py +0 -36
  1454. paddlex/ppcls/data/dataloader/imagenet_dataset.py +0 -38
  1455. paddlex/ppcls/data/dataloader/logo_dataset.py +0 -46
  1456. paddlex/ppcls/data/dataloader/mix_dataset.py +0 -49
  1457. paddlex/ppcls/data/dataloader/mix_sampler.py +0 -79
  1458. paddlex/ppcls/data/dataloader/multilabel_dataset.py +0 -59
  1459. paddlex/ppcls/data/dataloader/pk_sampler.py +0 -105
  1460. paddlex/ppcls/data/dataloader/vehicle_dataset.py +0 -138
  1461. paddlex/ppcls/data/postprocess/__init__.py +0 -41
  1462. paddlex/ppcls/data/postprocess/topk.py +0 -85
  1463. paddlex/ppcls/data/preprocess/__init__.py +0 -100
  1464. paddlex/ppcls/data/preprocess/batch_ops/__init__.py +0 -0
  1465. paddlex/ppcls/data/preprocess/batch_ops/batch_operators.py +0 -231
  1466. paddlex/ppcls/data/preprocess/ops/__init__.py +0 -0
  1467. paddlex/ppcls/data/preprocess/ops/autoaugment.py +0 -264
  1468. paddlex/ppcls/data/preprocess/ops/cutout.py +0 -41
  1469. paddlex/ppcls/data/preprocess/ops/fmix.py +0 -217
  1470. paddlex/ppcls/data/preprocess/ops/functional.py +0 -141
  1471. paddlex/ppcls/data/preprocess/ops/grid.py +0 -89
  1472. paddlex/ppcls/data/preprocess/ops/hide_and_seek.py +0 -44
  1473. paddlex/ppcls/data/preprocess/ops/operators.py +0 -384
  1474. paddlex/ppcls/data/preprocess/ops/randaugment.py +0 -106
  1475. paddlex/ppcls/data/preprocess/ops/random_erasing.py +0 -90
  1476. paddlex/ppcls/data/preprocess/ops/timm_autoaugment.py +0 -877
  1477. paddlex/ppcls/data/utils/__init__.py +0 -13
  1478. paddlex/ppcls/data/utils/get_image_list.py +0 -49
  1479. paddlex/ppcls/engine/__init__.py +0 -0
  1480. paddlex/ppcls/engine/engine.py +0 -436
  1481. paddlex/ppcls/engine/evaluation/__init__.py +0 -16
  1482. paddlex/ppcls/engine/evaluation/classification.py +0 -143
  1483. paddlex/ppcls/engine/evaluation/retrieval.py +0 -169
  1484. paddlex/ppcls/engine/slim/__init__.py +0 -16
  1485. paddlex/ppcls/engine/slim/prune.py +0 -66
  1486. paddlex/ppcls/engine/slim/quant.py +0 -55
  1487. paddlex/ppcls/engine/train/__init__.py +0 -14
  1488. paddlex/ppcls/engine/train/train.py +0 -79
  1489. paddlex/ppcls/engine/train/utils.py +0 -72
  1490. paddlex/ppcls/loss/__init__.py +0 -65
  1491. paddlex/ppcls/loss/celoss.py +0 -67
  1492. paddlex/ppcls/loss/centerloss.py +0 -54
  1493. paddlex/ppcls/loss/comfunc.py +0 -45
  1494. paddlex/ppcls/loss/deephashloss.py +0 -96
  1495. paddlex/ppcls/loss/distanceloss.py +0 -43
  1496. paddlex/ppcls/loss/distillationloss.py +0 -141
  1497. paddlex/ppcls/loss/dmlloss.py +0 -46
  1498. paddlex/ppcls/loss/emlloss.py +0 -97
  1499. paddlex/ppcls/loss/googlenetloss.py +0 -42
  1500. paddlex/ppcls/loss/msmloss.py +0 -78
  1501. paddlex/ppcls/loss/multilabelloss.py +0 -43
  1502. paddlex/ppcls/loss/npairsloss.py +0 -38
  1503. paddlex/ppcls/loss/pairwisecosface.py +0 -59
  1504. paddlex/ppcls/loss/supconloss.py +0 -108
  1505. paddlex/ppcls/loss/trihardloss.py +0 -82
  1506. paddlex/ppcls/loss/triplet.py +0 -137
  1507. paddlex/ppcls/metric/__init__.py +0 -51
  1508. paddlex/ppcls/metric/metrics.py +0 -308
  1509. paddlex/ppcls/optimizer/__init__.py +0 -72
  1510. paddlex/ppcls/optimizer/learning_rate.py +0 -326
  1511. paddlex/ppcls/optimizer/optimizer.py +0 -208
  1512. paddlex/ppcls/utils/__init__.py +0 -27
  1513. paddlex/ppcls/utils/check.py +0 -151
  1514. paddlex/ppcls/utils/config.py +0 -210
  1515. paddlex/ppcls/utils/download.py +0 -319
  1516. paddlex/ppcls/utils/ema.py +0 -63
  1517. paddlex/ppcls/utils/logger.py +0 -137
  1518. paddlex/ppcls/utils/metrics.py +0 -112
  1519. paddlex/ppcls/utils/misc.py +0 -63
  1520. paddlex/ppcls/utils/model_zoo.py +0 -213
  1521. paddlex/ppcls/utils/profiler.py +0 -111
  1522. paddlex/ppcls/utils/save_load.py +0 -136
  1523. paddlex/ppdet/__init__.py +0 -16
  1524. paddlex/ppdet/core/__init__.py +0 -15
  1525. paddlex/ppdet/core/config/__init__.py +0 -13
  1526. paddlex/ppdet/core/config/schema.py +0 -248
  1527. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1528. paddlex/ppdet/core/workspace.py +0 -278
  1529. paddlex/ppdet/data/__init__.py +0 -21
  1530. paddlex/ppdet/data/crop_utils/__init__.py +0 -13
  1531. paddlex/ppdet/data/crop_utils/annotation_cropper.py +0 -585
  1532. paddlex/ppdet/data/crop_utils/chip_box_utils.py +0 -170
  1533. paddlex/ppdet/data/reader.py +0 -302
  1534. paddlex/ppdet/data/shm_utils.py +0 -67
  1535. paddlex/ppdet/data/source/__init__.py +0 -29
  1536. paddlex/ppdet/data/source/category.py +0 -904
  1537. paddlex/ppdet/data/source/coco.py +0 -251
  1538. paddlex/ppdet/data/source/dataset.py +0 -197
  1539. paddlex/ppdet/data/source/keypoint_coco.py +0 -669
  1540. paddlex/ppdet/data/source/mot.py +0 -636
  1541. paddlex/ppdet/data/source/sniper_coco.py +0 -191
  1542. paddlex/ppdet/data/source/voc.py +0 -231
  1543. paddlex/ppdet/data/source/widerface.py +0 -180
  1544. paddlex/ppdet/data/transform/__init__.py +0 -28
  1545. paddlex/ppdet/data/transform/atss_assigner.py +0 -270
  1546. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1591
  1547. paddlex/ppdet/data/transform/batch_operators.py +0 -1080
  1548. paddlex/ppdet/data/transform/gridmask_utils.py +0 -86
  1549. paddlex/ppdet/data/transform/keypoint_operators.py +0 -868
  1550. paddlex/ppdet/data/transform/mot_operators.py +0 -628
  1551. paddlex/ppdet/data/transform/op_helper.py +0 -498
  1552. paddlex/ppdet/data/transform/operators.py +0 -3025
  1553. paddlex/ppdet/engine/__init__.py +0 -30
  1554. paddlex/ppdet/engine/callbacks.py +0 -340
  1555. paddlex/ppdet/engine/env.py +0 -50
  1556. paddlex/ppdet/engine/export_utils.py +0 -177
  1557. paddlex/ppdet/engine/tracker.py +0 -538
  1558. paddlex/ppdet/engine/trainer.py +0 -723
  1559. paddlex/ppdet/metrics/__init__.py +0 -29
  1560. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1561. paddlex/ppdet/metrics/json_results.py +0 -149
  1562. paddlex/ppdet/metrics/keypoint_metrics.py +0 -401
  1563. paddlex/ppdet/metrics/map_utils.py +0 -444
  1564. paddlex/ppdet/metrics/mcmot_metrics.py +0 -470
  1565. paddlex/ppdet/metrics/metrics.py +0 -434
  1566. paddlex/ppdet/metrics/mot_metrics.py +0 -1236
  1567. paddlex/ppdet/metrics/munkres.py +0 -428
  1568. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1569. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1570. paddlex/ppdet/model_zoo/model_zoo.py +0 -84
  1571. paddlex/ppdet/modeling/__init__.py +0 -45
  1572. paddlex/ppdet/modeling/architectures/__init__.py +0 -51
  1573. paddlex/ppdet/modeling/architectures/blazeface.py +0 -91
  1574. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1575. paddlex/ppdet/modeling/architectures/centernet.py +0 -108
  1576. paddlex/ppdet/modeling/architectures/deepsort.py +0 -69
  1577. paddlex/ppdet/modeling/architectures/detr.py +0 -93
  1578. paddlex/ppdet/modeling/architectures/fairmot.py +0 -100
  1579. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1580. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1581. paddlex/ppdet/modeling/architectures/gfl.py +0 -87
  1582. paddlex/ppdet/modeling/architectures/jde.py +0 -111
  1583. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -287
  1584. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -267
  1585. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1586. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -128
  1587. paddlex/ppdet/modeling/architectures/picodet.py +0 -91
  1588. paddlex/ppdet/modeling/architectures/s2anet.py +0 -102
  1589. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1590. paddlex/ppdet/modeling/architectures/sparse_rcnn.py +0 -99
  1591. paddlex/ppdet/modeling/architectures/ssd.py +0 -93
  1592. paddlex/ppdet/modeling/architectures/tood.py +0 -78
  1593. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1594. paddlex/ppdet/modeling/architectures/yolo.py +0 -124
  1595. paddlex/ppdet/modeling/assigners/__init__.py +0 -23
  1596. paddlex/ppdet/modeling/assigners/atss_assigner.py +0 -211
  1597. paddlex/ppdet/modeling/assigners/simota_assigner.py +0 -262
  1598. paddlex/ppdet/modeling/assigners/task_aligned_assigner.py +0 -158
  1599. paddlex/ppdet/modeling/assigners/utils.py +0 -195
  1600. paddlex/ppdet/modeling/backbones/__init__.py +0 -49
  1601. paddlex/ppdet/modeling/backbones/blazenet.py +0 -323
  1602. paddlex/ppdet/modeling/backbones/darknet.py +0 -340
  1603. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1604. paddlex/ppdet/modeling/backbones/esnet.py +0 -290
  1605. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -470
  1606. paddlex/ppdet/modeling/backbones/hardnet.py +0 -224
  1607. paddlex/ppdet/modeling/backbones/hrnet.py +0 -727
  1608. paddlex/ppdet/modeling/backbones/lcnet.py +0 -259
  1609. paddlex/ppdet/modeling/backbones/lite_hrnet.py +0 -886
  1610. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -418
  1611. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -483
  1612. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1613. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1614. paddlex/ppdet/modeling/backbones/resnet.py +0 -613
  1615. paddlex/ppdet/modeling/backbones/senet.py +0 -139
  1616. paddlex/ppdet/modeling/backbones/shufflenet_v2.py +0 -246
  1617. paddlex/ppdet/modeling/backbones/swin_transformer.py +0 -743
  1618. paddlex/ppdet/modeling/backbones/vgg.py +0 -210
  1619. paddlex/ppdet/modeling/bbox_utils.py +0 -778
  1620. paddlex/ppdet/modeling/heads/__init__.py +0 -53
  1621. paddlex/ppdet/modeling/heads/bbox_head.py +0 -377
  1622. paddlex/ppdet/modeling/heads/cascade_head.py +0 -284
  1623. paddlex/ppdet/modeling/heads/centernet_head.py +0 -292
  1624. paddlex/ppdet/modeling/heads/detr_head.py +0 -368
  1625. paddlex/ppdet/modeling/heads/face_head.py +0 -110
  1626. paddlex/ppdet/modeling/heads/fcos_head.py +0 -259
  1627. paddlex/ppdet/modeling/heads/gfl_head.py +0 -487
  1628. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1629. paddlex/ppdet/modeling/heads/mask_head.py +0 -250
  1630. paddlex/ppdet/modeling/heads/pico_head.py +0 -278
  1631. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1632. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -1056
  1633. paddlex/ppdet/modeling/heads/simota_head.py +0 -506
  1634. paddlex/ppdet/modeling/heads/solov2_head.py +0 -560
  1635. paddlex/ppdet/modeling/heads/sparsercnn_head.py +0 -375
  1636. paddlex/ppdet/modeling/heads/ssd_head.py +0 -215
  1637. paddlex/ppdet/modeling/heads/tood_head.py +0 -366
  1638. paddlex/ppdet/modeling/heads/ttf_head.py +0 -316
  1639. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1640. paddlex/ppdet/modeling/initializer.py +0 -317
  1641. paddlex/ppdet/modeling/keypoint_utils.py +0 -342
  1642. paddlex/ppdet/modeling/layers.py +0 -1430
  1643. paddlex/ppdet/modeling/losses/__init__.py +0 -43
  1644. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -68
  1645. paddlex/ppdet/modeling/losses/detr_loss.py +0 -233
  1646. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1647. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1648. paddlex/ppdet/modeling/losses/gfocal_loss.py +0 -217
  1649. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -47
  1650. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1651. paddlex/ppdet/modeling/losses/jde_loss.py +0 -193
  1652. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -229
  1653. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1654. paddlex/ppdet/modeling/losses/sparsercnn_loss.py +0 -425
  1655. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -170
  1656. paddlex/ppdet/modeling/losses/varifocal_loss.py +0 -152
  1657. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1658. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1659. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1660. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1661. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -144
  1662. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1663. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1664. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1665. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -297
  1666. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -156
  1667. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -188
  1668. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -277
  1669. paddlex/ppdet/modeling/mot/utils.py +0 -263
  1670. paddlex/ppdet/modeling/mot/visualization.py +0 -150
  1671. paddlex/ppdet/modeling/necks/__init__.py +0 -30
  1672. paddlex/ppdet/modeling/necks/bifpn.py +0 -302
  1673. paddlex/ppdet/modeling/necks/blazeface_fpn.py +0 -216
  1674. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -426
  1675. paddlex/ppdet/modeling/necks/csp_pan.py +0 -364
  1676. paddlex/ppdet/modeling/necks/fpn.py +0 -231
  1677. paddlex/ppdet/modeling/necks/hrfpn.py +0 -126
  1678. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -242
  1679. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -988
  1680. paddlex/ppdet/modeling/ops.py +0 -1611
  1681. paddlex/ppdet/modeling/post_process.py +0 -731
  1682. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1683. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1684. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -77
  1685. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -260
  1686. paddlex/ppdet/modeling/proposal_generator/target.py +0 -681
  1687. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -491
  1688. paddlex/ppdet/modeling/reid/__init__.py +0 -25
  1689. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -225
  1690. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -214
  1691. paddlex/ppdet/modeling/reid/pplcnet_embedding.py +0 -282
  1692. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -144
  1693. paddlex/ppdet/modeling/reid/resnet.py +0 -310
  1694. paddlex/ppdet/modeling/shape_spec.py +0 -25
  1695. paddlex/ppdet/modeling/transformers/__init__.py +0 -25
  1696. paddlex/ppdet/modeling/transformers/deformable_transformer.py +0 -517
  1697. paddlex/ppdet/modeling/transformers/detr_transformer.py +0 -353
  1698. paddlex/ppdet/modeling/transformers/matchers.py +0 -127
  1699. paddlex/ppdet/modeling/transformers/position_encoding.py +0 -108
  1700. paddlex/ppdet/modeling/transformers/utils.py +0 -110
  1701. paddlex/ppdet/optimizer.py +0 -335
  1702. paddlex/ppdet/slim/__init__.py +0 -82
  1703. paddlex/ppdet/slim/distill.py +0 -110
  1704. paddlex/ppdet/slim/prune.py +0 -85
  1705. paddlex/ppdet/slim/quant.py +0 -84
  1706. paddlex/ppdet/slim/unstructured_prune.py +0 -66
  1707. paddlex/ppdet/utils/__init__.py +0 -13
  1708. paddlex/ppdet/utils/check.py +0 -112
  1709. paddlex/ppdet/utils/checkpoint.py +0 -226
  1710. paddlex/ppdet/utils/cli.py +0 -151
  1711. paddlex/ppdet/utils/colormap.py +0 -58
  1712. paddlex/ppdet/utils/download.py +0 -558
  1713. paddlex/ppdet/utils/logger.py +0 -70
  1714. paddlex/ppdet/utils/profiler.py +0 -111
  1715. paddlex/ppdet/utils/stats.py +0 -94
  1716. paddlex/ppdet/utils/visualizer.py +0 -321
  1717. paddlex/ppdet/utils/voc_utils.py +0 -86
  1718. paddlex/seg.py +0 -41
  1719. paddlex/tools/__init__.py +0 -17
  1720. paddlex/tools/anchor_clustering/__init__.py +0 -15
  1721. paddlex/tools/anchor_clustering/yolo_cluster.py +0 -178
  1722. paddlex/tools/convert.py +0 -52
  1723. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1724. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1725. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1726. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1727. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1728. paddlex/tools/dataset_split/__init__.py +0 -23
  1729. paddlex/tools/dataset_split/coco_split.py +0 -69
  1730. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1731. paddlex/tools/dataset_split/seg_split.py +0 -96
  1732. paddlex/tools/dataset_split/utils.py +0 -75
  1733. paddlex/tools/dataset_split/voc_split.py +0 -91
  1734. paddlex/tools/split.py +0 -41
  1735. paddlex/utils/checkpoint.py +0 -492
  1736. paddlex/utils/shm.py +0 -67
  1737. paddlex/utils/stats.py +0 -68
  1738. paddlex/utils/utils.py +0 -229
  1739. paddlex-2.1.0.data/data/paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1740. paddlex-2.1.0.dist-info/LICENSE +0 -201
  1741. paddlex-2.1.0.dist-info/METADATA +0 -32
  1742. paddlex-2.1.0.dist-info/RECORD +0 -698
  1743. paddlex-2.1.0.dist-info/WHEEL +0 -5
  1744. paddlex-2.1.0.dist-info/entry_points.txt +0 -4
  1745. paddlex-2.1.0.dist-info/top_level.txt +0 -3
  1746. paddlex_restful/__init__.py +0 -15
  1747. paddlex_restful/command.py +0 -63
  1748. paddlex_restful/restful/__init__.py +0 -15
  1749. paddlex_restful/restful/app.py +0 -969
  1750. paddlex_restful/restful/dataset/__init__.py +0 -13
  1751. paddlex_restful/restful/dataset/cls_dataset.py +0 -159
  1752. paddlex_restful/restful/dataset/dataset.py +0 -266
  1753. paddlex_restful/restful/dataset/datasetbase.py +0 -86
  1754. paddlex_restful/restful/dataset/det_dataset.py +0 -190
  1755. paddlex_restful/restful/dataset/ins_seg_dataset.py +0 -312
  1756. paddlex_restful/restful/dataset/operate.py +0 -155
  1757. paddlex_restful/restful/dataset/seg_dataset.py +0 -222
  1758. paddlex_restful/restful/dataset/utils.py +0 -267
  1759. paddlex_restful/restful/demo.py +0 -202
  1760. paddlex_restful/restful/dir.py +0 -45
  1761. paddlex_restful/restful/model.py +0 -312
  1762. paddlex_restful/restful/project/__init__.py +0 -13
  1763. paddlex_restful/restful/project/evaluate/__init__.py +0 -13
  1764. paddlex_restful/restful/project/evaluate/classification.py +0 -126
  1765. paddlex_restful/restful/project/evaluate/detection.py +0 -789
  1766. paddlex_restful/restful/project/evaluate/draw_pred_result.py +0 -181
  1767. paddlex_restful/restful/project/evaluate/segmentation.py +0 -122
  1768. paddlex_restful/restful/project/operate.py +0 -931
  1769. paddlex_restful/restful/project/project.py +0 -143
  1770. paddlex_restful/restful/project/prune/__init__.py +0 -13
  1771. paddlex_restful/restful/project/prune/classification.py +0 -32
  1772. paddlex_restful/restful/project/prune/detection.py +0 -48
  1773. paddlex_restful/restful/project/prune/segmentation.py +0 -34
  1774. paddlex_restful/restful/project/task.py +0 -884
  1775. paddlex_restful/restful/project/train/__init__.py +0 -13
  1776. paddlex_restful/restful/project/train/classification.py +0 -141
  1777. paddlex_restful/restful/project/train/detection.py +0 -263
  1778. paddlex_restful/restful/project/train/params.py +0 -432
  1779. paddlex_restful/restful/project/train/params_v2.py +0 -326
  1780. paddlex_restful/restful/project/train/segmentation.py +0 -191
  1781. paddlex_restful/restful/project/visualize.py +0 -244
  1782. paddlex_restful/restful/system.py +0 -102
  1783. paddlex_restful/restful/templates/paddlex_restful_demo.html +0 -5205
  1784. paddlex_restful/restful/utils.py +0 -841
  1785. paddlex_restful/restful/workspace.py +0 -343
  1786. paddlex_restful/restful/workspace_pb2.py +0 -1411
@@ -1,1591 +0,0 @@
1
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # Reference:
15
- # https://github.com/tensorflow/tpu/blob/master/models/official/detection/utils/autoaugment_utils.py
16
- """AutoAugment util file."""
17
-
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import inspect
23
- import math
24
- from PIL import Image, ImageEnhance
25
- import numpy as np
26
- import cv2
27
- from copy import deepcopy
28
-
29
- # This signifies the max integer that the controller RNN could predict for the
30
- # augmentation scheme.
31
- _MAX_LEVEL = 10.
32
-
33
- # Represents an invalid bounding box that is used for checking for padding
34
- # lists of bounding box coordinates for a few augmentation operations
35
- _INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]]
36
-
37
-
38
- def policy_v0():
39
- """Autoaugment policy that was used in AutoAugment Detection Paper."""
40
- # Each tuple is an augmentation operation of the form
41
- # (operation, probability, magnitude). Each element in policy is a
42
- # sub-policy that will be applied sequentially on the image.
43
- policy = [
44
- [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
45
- [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
46
- [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
47
- [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
48
- [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
49
- ]
50
- return policy
51
-
52
-
53
- def policy_v1():
54
- """Autoaugment policy that was used in AutoAugment Detection Paper."""
55
- # Each tuple is an augmentation operation of the form
56
- # (operation, probability, magnitude). Each element in policy is a
57
- # sub-policy that will be applied sequentially on the image.
58
- policy = [
59
- [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
60
- [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
61
- [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
62
- [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
63
- [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
64
- [('Color', 0.0, 0), ('ShearX_Only_BBoxes', 0.8, 4)],
65
- [('ShearY_Only_BBoxes', 0.8, 2), ('Flip_Only_BBoxes', 0.0, 10)],
66
- [('Equalize', 0.6, 10), ('TranslateX_BBox', 0.2, 2)],
67
- [('Color', 1.0, 10), ('TranslateY_Only_BBoxes', 0.4, 6)],
68
- [('Rotate_BBox', 0.8, 10), ('Contrast', 0.0, 10)], # ,
69
- [('Cutout', 0.2, 2), ('Brightness', 0.8, 10)],
70
- [('Color', 1.0, 6), ('Equalize', 1.0, 2)],
71
- [('Cutout_Only_BBoxes', 0.4, 6), ('TranslateY_Only_BBoxes', 0.8, 2)],
72
- [('Color', 0.2, 8), ('Rotate_BBox', 0.8, 10)],
73
- [('Sharpness', 0.4, 4), ('TranslateY_Only_BBoxes', 0.0, 4)],
74
- [('Sharpness', 1.0, 4), ('SolarizeAdd', 0.4, 4)],
75
- [('Rotate_BBox', 1.0, 8), ('Sharpness', 0.2, 8)],
76
- [('ShearY_BBox', 0.6, 10), ('Equalize_Only_BBoxes', 0.6, 8)],
77
- [('ShearX_BBox', 0.2, 6), ('TranslateY_Only_BBoxes', 0.2, 10)],
78
- [('SolarizeAdd', 0.6, 8), ('Brightness', 0.8, 10)],
79
- ]
80
- return policy
81
-
82
-
83
- def policy_vtest():
84
- """Autoaugment test policy for debugging."""
85
- # Each tuple is an augmentation operation of the form
86
- # (operation, probability, magnitude). Each element in policy is a
87
- # sub-policy that will be applied sequentially on the image.
88
- policy = [[('TranslateX_BBox', 1.0, 4), ('Equalize', 1.0, 10)], ]
89
- return policy
90
-
91
-
92
- def policy_v2():
93
- """Additional policy that performs well on object detection."""
94
- # Each tuple is an augmentation operation of the form
95
- # (operation, probability, magnitude). Each element in policy is a
96
- # sub-policy that will be applied sequentially on the image.
97
- policy = [
98
- [('Color', 0.0, 6), ('Cutout', 0.6, 8), ('Sharpness', 0.4, 8)],
99
- [('Rotate_BBox', 0.4, 8), ('Sharpness', 0.4, 2),
100
- ('Rotate_BBox', 0.8, 10)],
101
- [('TranslateY_BBox', 1.0, 8), ('AutoContrast', 0.8, 2)],
102
- [('AutoContrast', 0.4, 6), ('ShearX_BBox', 0.8, 8),
103
- ('Brightness', 0.0, 10)],
104
- [('SolarizeAdd', 0.2, 6), ('Contrast', 0.0, 10),
105
- ('AutoContrast', 0.6, 0)],
106
- [('Cutout', 0.2, 0), ('Solarize', 0.8, 8), ('Color', 1.0, 4)],
107
- [('TranslateY_BBox', 0.0, 4), ('Equalize', 0.6, 8),
108
- ('Solarize', 0.0, 10)],
109
- [('TranslateY_BBox', 0.2, 2), ('ShearY_BBox', 0.8, 8),
110
- ('Rotate_BBox', 0.8, 8)],
111
- [('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)],
112
- [('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6),
113
- ('Rotate_BBox', 0.6, 6)],
114
- [('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4),
115
- ('Cutout', 0.2, 8)],
116
- [('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6),
117
- ('ShearY_BBox', 0.6, 8)],
118
- [('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2),
119
- ('Brightness', 0.2, 2)],
120
- [('TranslateY_BBox', 0.4, 8), ('Solarize', 0.4, 6),
121
- ('SolarizeAdd', 0.2, 10)],
122
- [('Contrast', 1.0, 10), ('SolarizeAdd', 0.2, 8), ('Equalize', 0.2, 4)],
123
- ]
124
- return policy
125
-
126
-
127
- def policy_v3():
128
- """"Additional policy that performs well on object detection."""
129
- # Each tuple is an augmentation operation of the form
130
- # (operation, probability, magnitude). Each element in policy is a
131
- # sub-policy that will be applied sequentially on the image.
132
- policy = [
133
- [('Posterize', 0.8, 2), ('TranslateX_BBox', 1.0, 8)],
134
- [('BBox_Cutout', 0.2, 10), ('Sharpness', 1.0, 8)],
135
- [('Rotate_BBox', 0.6, 8), ('Rotate_BBox', 0.8, 10)],
136
- [('Equalize', 0.8, 10), ('AutoContrast', 0.2, 10)],
137
- [('SolarizeAdd', 0.2, 2), ('TranslateY_BBox', 0.2, 8)],
138
- [('Sharpness', 0.0, 2), ('Color', 0.4, 8)],
139
- [('Equalize', 1.0, 8), ('TranslateY_BBox', 1.0, 8)],
140
- [('Posterize', 0.6, 2), ('Rotate_BBox', 0.0, 10)],
141
- [('AutoContrast', 0.6, 0), ('Rotate_BBox', 1.0, 6)],
142
- [('Equalize', 0.0, 4), ('Cutout', 0.8, 10)],
143
- [('Brightness', 1.0, 2), ('TranslateY_BBox', 1.0, 6)],
144
- [('Contrast', 0.0, 2), ('ShearY_BBox', 0.8, 0)],
145
- [('AutoContrast', 0.8, 10), ('Contrast', 0.2, 10)],
146
- [('Rotate_BBox', 1.0, 10), ('Cutout', 1.0, 10)],
147
- [('SolarizeAdd', 0.8, 6), ('Equalize', 0.8, 8)],
148
- ]
149
- return policy
150
-
151
-
152
- def _equal(val1, val2, eps=1e-8):
153
- return abs(val1 - val2) <= eps
154
-
155
-
156
- def blend(image1, image2, factor):
157
- """Blend image1 and image2 using 'factor'.
158
-
159
- Factor can be above 0.0. A value of 0.0 means only image1 is used.
160
- A value of 1.0 means only image2 is used. A value between 0.0 and
161
- 1.0 means we linearly interpolate the pixel values between the two
162
- images. A value greater than 1.0 "extrapolates" the difference
163
- between the two pixel values, and we clip the results to values
164
- between 0 and 255.
165
-
166
- Args:
167
- image1: An image Tensor of type uint8.
168
- image2: An image Tensor of type uint8.
169
- factor: A floating point value above 0.0.
170
-
171
- Returns:
172
- A blended image Tensor of type uint8.
173
- """
174
- if factor == 0.0:
175
- return image1
176
- if factor == 1.0:
177
- return image2
178
-
179
- image1 = image1.astype(np.float32)
180
- image2 = image2.astype(np.float32)
181
-
182
- difference = image2 - image1
183
- scaled = factor * difference
184
-
185
- # Do addition in float.
186
- temp = image1 + scaled
187
-
188
- # Interpolate
189
- if factor > 0.0 and factor < 1.0:
190
- # Interpolation means we always stay within 0 and 255.
191
- return temp.astype(np.uint8)
192
-
193
- # Extrapolate:
194
- #
195
- # We need to clip and then cast.
196
- return np.clip(temp, a_min=0, a_max=255).astype(np.uint8)
197
-
198
-
199
- def cutout(image, pad_size, replace=0):
200
- """Apply cutout (https://arxiv.org/abs/1708.04552) to image.
201
-
202
- This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
203
- a random location within `img`. The pixel values filled in will be of the
204
- value `replace`. The located where the mask will be applied is randomly
205
- chosen uniformly over the whole image.
206
-
207
- Args:
208
- image: An image Tensor of type uint8.
209
- pad_size: Specifies how big the zero mask that will be generated is that
210
- is applied to the image. The mask will be of size
211
- (2*pad_size x 2*pad_size).
212
- replace: What pixel value to fill in the image in the area that has
213
- the cutout mask applied to it.
214
-
215
- Returns:
216
- An image Tensor that is of type uint8.
217
- Example:
218
- img = cv2.imread( "/home/vis/gry/train/img_data/test.jpg", cv2.COLOR_BGR2RGB )
219
- new_img = cutout(img, pad_size=50, replace=0)
220
- """
221
- image_height, image_width = image.shape[0], image.shape[1]
222
-
223
- cutout_center_height = np.random.randint(low=0, high=image_height)
224
- cutout_center_width = np.random.randint(low=0, high=image_width)
225
-
226
- lower_pad = np.maximum(0, cutout_center_height - pad_size)
227
- upper_pad = np.maximum(0, image_height - cutout_center_height - pad_size)
228
- left_pad = np.maximum(0, cutout_center_width - pad_size)
229
- right_pad = np.maximum(0, image_width - cutout_center_width - pad_size)
230
-
231
- cutout_shape = [
232
- image_height - (lower_pad + upper_pad),
233
- image_width - (left_pad + right_pad)
234
- ]
235
- padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
236
- mask = np.pad(np.zeros(
237
- cutout_shape, dtype=image.dtype),
238
- padding_dims,
239
- 'constant',
240
- constant_values=1)
241
- mask = np.expand_dims(mask, -1)
242
- mask = np.tile(mask, [1, 1, 3])
243
- image = np.where(
244
- np.equal(mask, 0),
245
- np.ones_like(
246
- image, dtype=image.dtype) * replace,
247
- image)
248
- return image.astype(np.uint8)
249
-
250
-
251
- def solarize(image, threshold=128):
252
- # For each pixel in the image, select the pixel
253
- # if the value is less than the threshold.
254
- # Otherwise, subtract 255 from the pixel.
255
- return np.where(image < threshold, image, 255 - image)
256
-
257
-
258
- def solarize_add(image, addition=0, threshold=128):
259
- # For each pixel in the image less than threshold
260
- # we add 'addition' amount to it and then clip the
261
- # pixel value to be between 0 and 255. The value
262
- # of 'addition' is between -128 and 128.
263
- added_image = image.astype(np.int64) + addition
264
- added_image = np.clip(added_image, a_min=0, a_max=255).astype(np.uint8)
265
- return np.where(image < threshold, added_image, image)
266
-
267
-
268
- def color(image, factor):
269
- """use cv2 to deal"""
270
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
271
- degenerate = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
272
- return blend(degenerate, image, factor)
273
-
274
-
275
- # refer to https://github.com/4uiiurz1/pytorch-auto-augment/blob/024b2eac4140c38df8342f09998e307234cafc80/auto_augment.py#L197
276
- def contrast(img, factor):
277
- img = ImageEnhance.Contrast(Image.fromarray(img)).enhance(factor)
278
- return np.array(img)
279
-
280
-
281
- def brightness(image, factor):
282
- """Equivalent of PIL Brightness."""
283
- degenerate = np.zeros_like(image)
284
- return blend(degenerate, image, factor)
285
-
286
-
287
- def posterize(image, bits):
288
- """Equivalent of PIL Posterize."""
289
- shift = 8 - bits
290
- return np.left_shift(np.right_shift(image, shift), shift)
291
-
292
-
293
- def rotate(image, degrees, replace):
294
- """Rotates the image by degrees either clockwise or counterclockwise.
295
-
296
- Args:
297
- image: An image Tensor of type uint8.
298
- degrees: Float, a scalar angle in degrees to rotate all images by. If
299
- degrees is positive the image will be rotated clockwise otherwise it will
300
- be rotated counterclockwise.
301
- replace: A one or three value 1D tensor to fill empty pixels caused by
302
- the rotate operation.
303
-
304
- Returns:
305
- The rotated version of image.
306
- """
307
- image = wrap(image)
308
- image = Image.fromarray(image)
309
- image = image.rotate(degrees)
310
- image = np.array(image, dtype=np.uint8)
311
- return unwrap(image, replace)
312
-
313
-
314
- def random_shift_bbox(image,
315
- bbox,
316
- pixel_scaling,
317
- replace,
318
- new_min_bbox_coords=None):
319
- """Move the bbox and the image content to a slightly new random location.
320
-
321
- Args:
322
- image: 3D uint8 Tensor.
323
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
324
- of type float that represents the normalized coordinates between 0 and 1.
325
- The potential values for the new min corner of the bbox will be between
326
- [old_min - pixel_scaling * bbox_height/2,
327
- old_min - pixel_scaling * bbox_height/2].
328
- pixel_scaling: A float between 0 and 1 that specifies the pixel range
329
- that the new bbox location will be sampled from.
330
- replace: A one or three value 1D tensor to fill empty pixels.
331
- new_min_bbox_coords: If not None, then this is a tuple that specifies the
332
- (min_y, min_x) coordinates of the new bbox. Normally this is randomly
333
- specified, but this allows it to be manually set. The coordinates are
334
- the absolute coordinates between 0 and image height/width and are int32.
335
-
336
- Returns:
337
- The new image that will have the shifted bbox location in it along with
338
- the new bbox that contains the new coordinates.
339
- """
340
- # Obtains image height and width and create helper clip functions.
341
- image_height, image_width = image.shape[0], image.shape[1]
342
- image_height = float(image_height)
343
- image_width = float(image_width)
344
-
345
- def clip_y(val):
346
- return np.clip(val, a_min=0, a_max=image_height - 1).astype(np.int32)
347
-
348
- def clip_x(val):
349
- return np.clip(val, a_min=0, a_max=image_width - 1).astype(np.int32)
350
-
351
- # Convert bbox to pixel coordinates.
352
- min_y = int(image_height * bbox[0])
353
- min_x = int(image_width * bbox[1])
354
- max_y = clip_y(image_height * bbox[2])
355
- max_x = clip_x(image_width * bbox[3])
356
-
357
- bbox_height, bbox_width = (max_y - min_y + 1, max_x - min_x + 1)
358
- image_height = int(image_height)
359
- image_width = int(image_width)
360
-
361
- # Select the new min/max bbox ranges that are used for sampling the
362
- # new min x/y coordinates of the shifted bbox.
363
- minval_y = clip_y(min_y - np.int32(pixel_scaling * float(bbox_height) /
364
- 2.0))
365
- maxval_y = clip_y(min_y + np.int32(pixel_scaling * float(bbox_height) /
366
- 2.0))
367
- minval_x = clip_x(min_x - np.int32(pixel_scaling * float(bbox_width) /
368
- 2.0))
369
- maxval_x = clip_x(min_x + np.int32(pixel_scaling * float(bbox_width) /
370
- 2.0))
371
-
372
- # Sample and calculate the new unclipped min/max coordinates of the new bbox.
373
- if new_min_bbox_coords is None:
374
- unclipped_new_min_y = np.random.randint(
375
- low=minval_y, high=maxval_y, dtype=np.int32)
376
- unclipped_new_min_x = np.random.randint(
377
- low=minval_x, high=maxval_x, dtype=np.int32)
378
- else:
379
- unclipped_new_min_y, unclipped_new_min_x = (
380
- clip_y(new_min_bbox_coords[0]), clip_x(new_min_bbox_coords[1]))
381
- unclipped_new_max_y = unclipped_new_min_y + bbox_height - 1
382
- unclipped_new_max_x = unclipped_new_min_x + bbox_width - 1
383
-
384
- # Determine if any of the new bbox was shifted outside the current image.
385
- # This is used for determining if any of the original bbox content should be
386
- # discarded.
387
- new_min_y, new_min_x, new_max_y, new_max_x = (
388
- clip_y(unclipped_new_min_y), clip_x(unclipped_new_min_x),
389
- clip_y(unclipped_new_max_y), clip_x(unclipped_new_max_x))
390
- shifted_min_y = (new_min_y - unclipped_new_min_y) + min_y
391
- shifted_max_y = max_y - (unclipped_new_max_y - new_max_y)
392
- shifted_min_x = (new_min_x - unclipped_new_min_x) + min_x
393
- shifted_max_x = max_x - (unclipped_new_max_x - new_max_x)
394
-
395
- # Create the new bbox tensor by converting pixel integer values to floats.
396
- new_bbox = np.stack([
397
- float(new_min_y) / float(image_height), float(new_min_x) /
398
- float(image_width), float(new_max_y) / float(image_height),
399
- float(new_max_x) / float(image_width)
400
- ])
401
-
402
- # Copy the contents in the bbox and fill the old bbox location
403
- # with gray (128).
404
- bbox_content = image[shifted_min_y:shifted_max_y + 1, shifted_min_x:
405
- shifted_max_x + 1, :]
406
-
407
- def mask_and_add_image(min_y_, min_x_, max_y_, max_x_, mask,
408
- content_tensor, image_):
409
- """Applies mask to bbox region in image then adds content_tensor to it."""
410
- mask = np.pad(mask, [[min_y_, (image_height - 1) - max_y_],
411
- [min_x_, (image_width - 1) - max_x_], [0, 0]],
412
- 'constant',
413
- constant_values=1)
414
-
415
- content_tensor = np.pad(content_tensor,
416
- [[min_y_, (image_height - 1) - max_y_],
417
- [min_x_, (image_width - 1) - max_x_], [0, 0]],
418
- 'constant',
419
- constant_values=0)
420
- return image_ * mask + content_tensor
421
-
422
- # Zero out original bbox location.
423
- mask = np.zeros_like(image)[min_y:max_y + 1, min_x:max_x + 1, :]
424
- grey_tensor = np.zeros_like(mask) + replace[0]
425
- image = mask_and_add_image(min_y, min_x, max_y, max_x, mask, grey_tensor,
426
- image)
427
-
428
- # Fill in bbox content to new bbox location.
429
- mask = np.zeros_like(bbox_content)
430
- image = mask_and_add_image(new_min_y, new_min_x, new_max_y, new_max_x,
431
- mask, bbox_content, image)
432
-
433
- return image.astype(np.uint8), new_bbox
434
-
435
-
436
- def _clip_bbox(min_y, min_x, max_y, max_x):
437
- """Clip bounding box coordinates between 0 and 1.
438
-
439
- Args:
440
- min_y: Normalized bbox coordinate of type float between 0 and 1.
441
- min_x: Normalized bbox coordinate of type float between 0 and 1.
442
- max_y: Normalized bbox coordinate of type float between 0 and 1.
443
- max_x: Normalized bbox coordinate of type float between 0 and 1.
444
-
445
- Returns:
446
- Clipped coordinate values between 0 and 1.
447
- """
448
- min_y = np.clip(min_y, a_min=0, a_max=1.0)
449
- min_x = np.clip(min_x, a_min=0, a_max=1.0)
450
- max_y = np.clip(max_y, a_min=0, a_max=1.0)
451
- max_x = np.clip(max_x, a_min=0, a_max=1.0)
452
- return min_y, min_x, max_y, max_x
453
-
454
-
455
- def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05):
456
- """Adjusts bbox coordinates to make sure the area is > 0.
457
-
458
- Args:
459
- min_y: Normalized bbox coordinate of type float between 0 and 1.
460
- min_x: Normalized bbox coordinate of type float between 0 and 1.
461
- max_y: Normalized bbox coordinate of type float between 0 and 1.
462
- max_x: Normalized bbox coordinate of type float between 0 and 1.
463
- delta: Float, this is used to create a gap of size 2 * delta between
464
- bbox min/max coordinates that are the same on the boundary.
465
- This prevents the bbox from having an area of zero.
466
-
467
- Returns:
468
- Tuple of new bbox coordinates between 0 and 1 that will now have a
469
- guaranteed area > 0.
470
- """
471
- height = max_y - min_y
472
- width = max_x - min_x
473
-
474
- def _adjust_bbox_boundaries(min_coord, max_coord):
475
- # Make sure max is never 0 and min is never 1.
476
- max_coord = np.maximum(max_coord, 0.0 + delta)
477
- min_coord = np.minimum(min_coord, 1.0 - delta)
478
- return min_coord, max_coord
479
-
480
- if _equal(height, 0):
481
- min_y, max_y = _adjust_bbox_boundaries(min_y, max_y)
482
-
483
- if _equal(width, 0):
484
- min_x, max_x = _adjust_bbox_boundaries(min_x, max_x)
485
-
486
- return min_y, min_x, max_y, max_x
487
-
488
-
489
- def _scale_bbox_only_op_probability(prob):
490
- """Reduce the probability of the bbox-only operation.
491
-
492
- Probability is reduced so that we do not distort the content of too many
493
- bounding boxes that are close to each other. The value of 3.0 was a chosen
494
- hyper parameter when designing the autoaugment algorithm that we found
495
- empirically to work well.
496
-
497
- Args:
498
- prob: Float that is the probability of applying the bbox-only operation.
499
-
500
- Returns:
501
- Reduced probability.
502
- """
503
- return prob / 3.0
504
-
505
-
506
- def _apply_bbox_augmentation(image, bbox, augmentation_func, *args):
507
- """Applies augmentation_func to the subsection of image indicated by bbox.
508
-
509
- Args:
510
- image: 3D uint8 Tensor.
511
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
512
- of type float that represents the normalized coordinates between 0 and 1.
513
- augmentation_func: Augmentation function that will be applied to the
514
- subsection of image.
515
- *args: Additional parameters that will be passed into augmentation_func
516
- when it is called.
517
-
518
- Returns:
519
- A modified version of image, where the bbox location in the image will
520
- have `ugmentation_func applied to it.
521
- """
522
- image_height = image.shape[0]
523
- image_width = image.shape[1]
524
-
525
- min_y = int(image_height * bbox[0])
526
- min_x = int(image_width * bbox[1])
527
- max_y = int(image_height * bbox[2])
528
- max_x = int(image_width * bbox[3])
529
-
530
- # Clip to be sure the max values do not fall out of range.
531
- max_y = np.minimum(max_y, image_height - 1)
532
- max_x = np.minimum(max_x, image_width - 1)
533
-
534
- # Get the sub-tensor that is the image within the bounding box region.
535
- bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :]
536
-
537
- # Apply the augmentation function to the bbox portion of the image.
538
- augmented_bbox_content = augmentation_func(bbox_content, *args)
539
-
540
- # Pad the augmented_bbox_content and the mask to match the shape of original
541
- # image.
542
- augmented_bbox_content = np.pad(
543
- augmented_bbox_content, [[min_y, (image_height - 1) - max_y],
544
- [min_x, (image_width - 1) - max_x], [0, 0]],
545
- 'constant',
546
- constant_values=1)
547
-
548
- # Create a mask that will be used to zero out a part of the original image.
549
- mask_tensor = np.zeros_like(bbox_content)
550
-
551
- mask_tensor = np.pad(mask_tensor,
552
- [[min_y, (image_height - 1) - max_y],
553
- [min_x, (image_width - 1) - max_x], [0, 0]],
554
- 'constant',
555
- constant_values=1)
556
- # Replace the old bbox content with the new augmented content.
557
- image = image * mask_tensor + augmented_bbox_content
558
- return image.astype(np.uint8)
559
-
560
-
561
- def _concat_bbox(bbox, bboxes):
562
- """Helper function that concates bbox to bboxes along the first dimension."""
563
-
564
- # Note if all elements in bboxes are -1 (_INVALID_BOX), then this means
565
- # we discard bboxes and start the bboxes Tensor with the current bbox.
566
- bboxes_sum_check = np.sum(bboxes)
567
- bbox = np.expand_dims(bbox, 0)
568
- # This check will be true when it is an _INVALID_BOX
569
- if _equal(bboxes_sum_check, -4):
570
- bboxes = bbox
571
- else:
572
- bboxes = np.concatenate([bboxes, bbox], 0)
573
- return bboxes
574
-
575
-
576
- def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob,
577
- augmentation_func, func_changes_bbox,
578
- *args):
579
- """Applies _apply_bbox_augmentation with probability prob.
580
-
581
- Args:
582
- image: 3D uint8 Tensor.
583
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
584
- of type float that represents the normalized coordinates between 0 and 1.
585
- new_bboxes: 2D Tensor that is a list of the bboxes in the image after they
586
- have been altered by aug_func. These will only be changed when
587
- func_changes_bbox is set to true. Each bbox has 4 elements
588
- (min_y, min_x, max_y, max_x) of type float that are the normalized
589
- bbox coordinates between 0 and 1.
590
- prob: Float that is the probability of applying _apply_bbox_augmentation.
591
- augmentation_func: Augmentation function that will be applied to the
592
- subsection of image.
593
- func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
594
- to image.
595
- *args: Additional parameters that will be passed into augmentation_func
596
- when it is called.
597
-
598
- Returns:
599
- A tuple. Fist element is a modified version of image, where the bbox
600
- location in the image will have augmentation_func applied to it if it is
601
- chosen to be called with probability `prob`. The second element is a
602
- Tensor of Tensors of length 4 that will contain the altered bbox after
603
- applying augmentation_func.
604
- """
605
- should_apply_op = (np.random.rand() + prob >= 1)
606
- if func_changes_bbox:
607
- if should_apply_op:
608
- augmented_image, bbox = augmentation_func(image, bbox, *args)
609
- else:
610
- augmented_image, bbox = (image, bbox)
611
- else:
612
- if should_apply_op:
613
- augmented_image = _apply_bbox_augmentation(
614
- image, bbox, augmentation_func, *args)
615
- else:
616
- augmented_image = image
617
- new_bboxes = _concat_bbox(bbox, new_bboxes)
618
- return augmented_image.astype(np.uint8), new_bboxes
619
-
620
-
621
- def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func,
622
- func_changes_bbox, *args):
623
- """Applies aug_func to the image for each bbox in bboxes.
624
-
625
- Args:
626
- image: 3D uint8 Tensor.
627
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
628
- has 4 elements (min_y, min_x, max_y, max_x) of type float.
629
- prob: Float that is the probability of applying aug_func to a specific
630
- bounding box within the image.
631
- aug_func: Augmentation function that will be applied to the
632
- subsections of image indicated by the bbox values in bboxes.
633
- func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
634
- to image.
635
- *args: Additional parameters that will be passed into augmentation_func
636
- when it is called.
637
-
638
- Returns:
639
- A modified version of image, where each bbox location in the image will
640
- have augmentation_func applied to it if it is chosen to be called with
641
- probability prob independently across all bboxes. Also the final
642
- bboxes are returned that will be unchanged if func_changes_bbox is set to
643
- false and if true, the new altered ones will be returned.
644
- """
645
- # Will keep track of the new altered bboxes after aug_func is repeatedly
646
- # applied. The -1 values are a dummy value and this first Tensor will be
647
- # removed upon appending the first real bbox.
648
- new_bboxes = np.array(_INVALID_BOX)
649
-
650
- # If the bboxes are empty, then just give it _INVALID_BOX. The result
651
- # will be thrown away.
652
- bboxes = np.array((_INVALID_BOX)) if bboxes.size == 0 else bboxes
653
-
654
- assert bboxes.shape[1] == 4, "bboxes.shape[1] must be 4!!!!"
655
-
656
- # pylint:disable=g-long-lambda
657
- # pylint:disable=line-too-long
658
- wrapped_aug_func = lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper(_image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args)
659
- # pylint:enable=g-long-lambda
660
- # pylint:enable=line-too-long
661
-
662
- # Setup the while_loop.
663
- num_bboxes = bboxes.shape[0] # We loop until we go over all bboxes.
664
- idx = 0 # Counter for the while loop.
665
-
666
- # Conditional function when to end the loop once we go over all bboxes
667
- # images_and_bboxes contain (_image, _new_bboxes)
668
- def cond(_idx, _images_and_bboxes):
669
- return _idx < num_bboxes
670
-
671
- # Shuffle the bboxes so that the augmentation order is not deterministic if
672
- # we are not changing the bboxes with aug_func.
673
- # if not func_changes_bbox:
674
- # print(bboxes)
675
- # loop_bboxes = np.take(bboxes,np.random.permutation(bboxes.shape[0]),axis=0)
676
- # print(loop_bboxes)
677
- # else:
678
- # loop_bboxes = bboxes
679
- # we can not shuffle the bbox because it does not contain class information here
680
- loop_bboxes = deepcopy(bboxes)
681
-
682
- # Main function of while_loop where we repeatedly apply augmentation on the
683
- # bboxes in the image.
684
- # pylint:disable=g-long-lambda
685
- body = lambda _idx, _images_and_bboxes: [
686
- _idx + 1, wrapped_aug_func(_images_and_bboxes[0],
687
- loop_bboxes[_idx],
688
- _images_and_bboxes[1])]
689
- while (cond(idx, (image, new_bboxes))):
690
- idx, (image, new_bboxes) = body(idx, (image, new_bboxes))
691
-
692
- # Either return the altered bboxes or the original ones depending on if
693
- # we altered them in anyway.
694
- if func_changes_bbox:
695
- final_bboxes = new_bboxes
696
- else:
697
- final_bboxes = bboxes
698
- return image, final_bboxes
699
-
700
-
701
- def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func,
702
- func_changes_bbox, *args):
703
- """Checks to be sure num bboxes > 0 before calling inner function."""
704
- num_bboxes = len(bboxes)
705
- new_image = deepcopy(image)
706
- new_bboxes = deepcopy(bboxes)
707
- if num_bboxes != 0:
708
- new_image, new_bboxes = _apply_multi_bbox_augmentation(
709
- new_image, new_bboxes, prob, aug_func, func_changes_bbox, *args)
710
- return new_image, new_bboxes
711
-
712
-
713
- def rotate_only_bboxes(image, bboxes, prob, degrees, replace):
714
- """Apply rotate to each bbox in the image with probability prob."""
715
- func_changes_bbox = False
716
- prob = _scale_bbox_only_op_probability(prob)
717
- return _apply_multi_bbox_augmentation_wrapper(
718
- image, bboxes, prob, rotate, func_changes_bbox, degrees, replace)
719
-
720
-
721
- def shear_x_only_bboxes(image, bboxes, prob, level, replace):
722
- """Apply shear_x to each bbox in the image with probability prob."""
723
- func_changes_bbox = False
724
- prob = _scale_bbox_only_op_probability(prob)
725
- return _apply_multi_bbox_augmentation_wrapper(
726
- image, bboxes, prob, shear_x, func_changes_bbox, level, replace)
727
-
728
-
729
- def shear_y_only_bboxes(image, bboxes, prob, level, replace):
730
- """Apply shear_y to each bbox in the image with probability prob."""
731
- func_changes_bbox = False
732
- prob = _scale_bbox_only_op_probability(prob)
733
- return _apply_multi_bbox_augmentation_wrapper(
734
- image, bboxes, prob, shear_y, func_changes_bbox, level, replace)
735
-
736
-
737
- def translate_x_only_bboxes(image, bboxes, prob, pixels, replace):
738
- """Apply translate_x to each bbox in the image with probability prob."""
739
- func_changes_bbox = False
740
- prob = _scale_bbox_only_op_probability(prob)
741
- return _apply_multi_bbox_augmentation_wrapper(
742
- image, bboxes, prob, translate_x, func_changes_bbox, pixels, replace)
743
-
744
-
745
- def translate_y_only_bboxes(image, bboxes, prob, pixels, replace):
746
- """Apply translate_y to each bbox in the image with probability prob."""
747
- func_changes_bbox = False
748
- prob = _scale_bbox_only_op_probability(prob)
749
- return _apply_multi_bbox_augmentation_wrapper(
750
- image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace)
751
-
752
-
753
- def flip_only_bboxes(image, bboxes, prob):
754
- """Apply flip_lr to each bbox in the image with probability prob."""
755
- func_changes_bbox = False
756
- prob = _scale_bbox_only_op_probability(prob)
757
- return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob,
758
- np.fliplr, func_changes_bbox)
759
-
760
-
761
- def solarize_only_bboxes(image, bboxes, prob, threshold):
762
- """Apply solarize to each bbox in the image with probability prob."""
763
- func_changes_bbox = False
764
- prob = _scale_bbox_only_op_probability(prob)
765
- return _apply_multi_bbox_augmentation_wrapper(
766
- image, bboxes, prob, solarize, func_changes_bbox, threshold)
767
-
768
-
769
- def equalize_only_bboxes(image, bboxes, prob):
770
- """Apply equalize to each bbox in the image with probability prob."""
771
- func_changes_bbox = False
772
- prob = _scale_bbox_only_op_probability(prob)
773
- return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob,
774
- equalize, func_changes_bbox)
775
-
776
-
777
- def cutout_only_bboxes(image, bboxes, prob, pad_size, replace):
778
- """Apply cutout to each bbox in the image with probability prob."""
779
- func_changes_bbox = False
780
- prob = _scale_bbox_only_op_probability(prob)
781
- return _apply_multi_bbox_augmentation_wrapper(
782
- image, bboxes, prob, cutout, func_changes_bbox, pad_size, replace)
783
-
784
-
785
- def _rotate_bbox(bbox, image_height, image_width, degrees):
786
- """Rotates the bbox coordinated by degrees.
787
-
788
- Args:
789
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
790
- of type float that represents the normalized coordinates between 0 and 1.
791
- image_height: Int, height of the image.
792
- image_width: Int, height of the image.
793
- degrees: Float, a scalar angle in degrees to rotate all images by. If
794
- degrees is positive the image will be rotated clockwise otherwise it will
795
- be rotated counterclockwise.
796
-
797
- Returns:
798
- A tensor of the same shape as bbox, but now with the rotated coordinates.
799
- """
800
- image_height, image_width = (float(image_height), float(image_width))
801
-
802
- # Convert from degrees to radians.
803
- degrees_to_radians = math.pi / 180.0
804
- radians = degrees * degrees_to_radians
805
-
806
- # Translate the bbox to the center of the image and turn the normalized 0-1
807
- # coordinates to absolute pixel locations.
808
- # Y coordinates are made negative as the y axis of images goes down with
809
- # increasing pixel values, so we negate to make sure x axis and y axis points
810
- # are in the traditionally positive direction.
811
- min_y = -int(image_height * (bbox[0] - 0.5))
812
- min_x = int(image_width * (bbox[1] - 0.5))
813
- max_y = -int(image_height * (bbox[2] - 0.5))
814
- max_x = int(image_width * (bbox[3] - 0.5))
815
- coordinates = np.stack([[min_y, min_x], [min_y, max_x], [max_y, min_x],
816
- [max_y, max_x]]).astype(np.float32)
817
- # Rotate the coordinates according to the rotation matrix clockwise if
818
- # radians is positive, else negative
819
- rotation_matrix = np.stack([[math.cos(radians), math.sin(radians)],
820
- [-math.sin(radians), math.cos(radians)]])
821
- new_coords = np.matmul(rotation_matrix,
822
- np.transpose(coordinates)).astype(np.int32)
823
-
824
- # Find min/max values and convert them back to normalized 0-1 floats.
825
- min_y = -(float(np.max(new_coords[0, :])) / image_height - 0.5)
826
- min_x = float(np.min(new_coords[1, :])) / image_width + 0.5
827
- max_y = -(float(np.min(new_coords[0, :])) / image_height - 0.5)
828
- max_x = float(np.max(new_coords[1, :])) / image_width + 0.5
829
-
830
- # Clip the bboxes to be sure the fall between [0, 1].
831
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
832
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
833
- return np.stack([min_y, min_x, max_y, max_x])
834
-
835
-
836
- def rotate_with_bboxes(image, bboxes, degrees, replace):
837
- # Rotate the image.
838
- image = rotate(image, degrees, replace)
839
-
840
- # Convert bbox coordinates to pixel values.
841
- image_height, image_width = image.shape[:2]
842
- # pylint:disable=g-long-lambda
843
- wrapped_rotate_bbox = lambda bbox: _rotate_bbox(bbox, image_height, image_width, degrees)
844
- # pylint:enable=g-long-lambda
845
- new_bboxes = np.zeros_like(bboxes)
846
- for idx in range(len(bboxes)):
847
- new_bboxes[idx] = wrapped_rotate_bbox(bboxes[idx])
848
- return image, new_bboxes
849
-
850
-
851
- def translate_x(image, pixels, replace):
852
- """Equivalent of PIL Translate in X dimension."""
853
- image = Image.fromarray(wrap(image))
854
- image = image.transform(image.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0))
855
- return unwrap(np.array(image), replace)
856
-
857
-
858
- def translate_y(image, pixels, replace):
859
- """Equivalent of PIL Translate in Y dimension."""
860
- image = Image.fromarray(wrap(image))
861
- image = image.transform(image.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels))
862
- return unwrap(np.array(image), replace)
863
-
864
-
865
- def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal):
866
- """Shifts the bbox coordinates by pixels.
867
-
868
- Args:
869
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
870
- of type float that represents the normalized coordinates between 0 and 1.
871
- image_height: Int, height of the image.
872
- image_width: Int, width of the image.
873
- pixels: An int. How many pixels to shift the bbox.
874
- shift_horizontal: Boolean. If true then shift in X dimension else shift in
875
- Y dimension.
876
-
877
- Returns:
878
- A tensor of the same shape as bbox, but now with the shifted coordinates.
879
- """
880
- pixels = int(pixels)
881
- # Convert bbox to integer pixel locations.
882
- min_y = int(float(image_height) * bbox[0])
883
- min_x = int(float(image_width) * bbox[1])
884
- max_y = int(float(image_height) * bbox[2])
885
- max_x = int(float(image_width) * bbox[3])
886
-
887
- if shift_horizontal:
888
- min_x = np.maximum(0, min_x - pixels)
889
- max_x = np.minimum(image_width, max_x - pixels)
890
- else:
891
- min_y = np.maximum(0, min_y - pixels)
892
- max_y = np.minimum(image_height, max_y - pixels)
893
-
894
- # Convert bbox back to floats.
895
- min_y = float(min_y) / float(image_height)
896
- min_x = float(min_x) / float(image_width)
897
- max_y = float(max_y) / float(image_height)
898
- max_x = float(max_x) / float(image_width)
899
-
900
- # Clip the bboxes to be sure the fall between [0, 1].
901
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
902
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
903
- return np.stack([min_y, min_x, max_y, max_x])
904
-
905
-
906
- def translate_bbox(image, bboxes, pixels, replace, shift_horizontal):
907
- """Equivalent of PIL Translate in X/Y dimension that shifts image and bbox.
908
-
909
- Args:
910
- image: 3D uint8 Tensor.
911
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
912
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
913
- between [0, 1].
914
- pixels: An int. How many pixels to shift the image and bboxes
915
- replace: A one or three value 1D tensor to fill empty pixels.
916
- shift_horizontal: Boolean. If true then shift in X dimension else shift in
917
- Y dimension.
918
-
919
- Returns:
920
- A tuple containing a 3D uint8 Tensor that will be the result of translating
921
- image by pixels. The second element of the tuple is bboxes, where now
922
- the coordinates will be shifted to reflect the shifted image.
923
- """
924
- if shift_horizontal:
925
- image = translate_x(image, pixels, replace)
926
- else:
927
- image = translate_y(image, pixels, replace)
928
-
929
- # Convert bbox coordinates to pixel values.
930
- image_height, image_width = image.shape[0], image.shape[1]
931
- # pylint:disable=g-long-lambda
932
- wrapped_shift_bbox = lambda bbox: _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal)
933
- # pylint:enable=g-long-lambda
934
- new_bboxes = deepcopy(bboxes)
935
- num_bboxes = len(bboxes)
936
- for idx in range(num_bboxes):
937
- new_bboxes[idx] = wrapped_shift_bbox(bboxes[idx])
938
- return image.astype(np.uint8), new_bboxes
939
-
940
-
941
- def shear_x(image, level, replace):
942
- """Equivalent of PIL Shearing in X dimension."""
943
- # Shear parallel to x axis is a projective transform
944
- # with a matrix form of:
945
- # [1 level
946
- # 0 1].
947
- image = Image.fromarray(wrap(image))
948
- image = image.transform(image.size, Image.AFFINE, (1, level, 0, 0, 1, 0))
949
- return unwrap(np.array(image), replace)
950
-
951
-
952
- def shear_y(image, level, replace):
953
- """Equivalent of PIL Shearing in Y dimension."""
954
- # Shear parallel to y axis is a projective transform
955
- # with a matrix form of:
956
- # [1 0
957
- # level 1].
958
- image = Image.fromarray(wrap(image))
959
- image = image.transform(image.size, Image.AFFINE, (1, 0, 0, level, 1, 0))
960
- return unwrap(np.array(image), replace)
961
-
962
-
963
- def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal):
964
- """Shifts the bbox according to how the image was sheared.
965
-
966
- Args:
967
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
968
- of type float that represents the normalized coordinates between 0 and 1.
969
- image_height: Int, height of the image.
970
- image_width: Int, height of the image.
971
- level: Float. How much to shear the image.
972
- shear_horizontal: If true then shear in X dimension else shear in
973
- the Y dimension.
974
-
975
- Returns:
976
- A tensor of the same shape as bbox, but now with the shifted coordinates.
977
- """
978
- image_height, image_width = (float(image_height), float(image_width))
979
-
980
- # Change bbox coordinates to be pixels.
981
- min_y = int(image_height * bbox[0])
982
- min_x = int(image_width * bbox[1])
983
- max_y = int(image_height * bbox[2])
984
- max_x = int(image_width * bbox[3])
985
- coordinates = np.stack(
986
- [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
987
- coordinates = coordinates.astype(np.float32)
988
-
989
- # Shear the coordinates according to the translation matrix.
990
- if shear_horizontal:
991
- translation_matrix = np.stack([[1, 0], [-level, 1]])
992
- else:
993
- translation_matrix = np.stack([[1, -level], [0, 1]])
994
- translation_matrix = translation_matrix.astype(np.float32)
995
- new_coords = np.matmul(translation_matrix,
996
- np.transpose(coordinates)).astype(np.int32)
997
-
998
- # Find min/max values and convert them back to floats.
999
- min_y = float(np.min(new_coords[0, :])) / image_height
1000
- min_x = float(np.min(new_coords[1, :])) / image_width
1001
- max_y = float(np.max(new_coords[0, :])) / image_height
1002
- max_x = float(np.max(new_coords[1, :])) / image_width
1003
-
1004
- # Clip the bboxes to be sure the fall between [0, 1].
1005
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
1006
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
1007
- return np.stack([min_y, min_x, max_y, max_x])
1008
-
1009
-
1010
- def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal):
1011
- """Applies Shear Transformation to the image and shifts the bboxes.
1012
-
1013
- Args:
1014
- image: 3D uint8 Tensor.
1015
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
1016
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
1017
- between [0, 1].
1018
- level: Float. How much to shear the image. This value will be between
1019
- -0.3 to 0.3.
1020
- replace: A one or three value 1D tensor to fill empty pixels.
1021
- shear_horizontal: Boolean. If true then shear in X dimension else shear in
1022
- the Y dimension.
1023
-
1024
- Returns:
1025
- A tuple containing a 3D uint8 Tensor that will be the result of shearing
1026
- image by level. The second element of the tuple is bboxes, where now
1027
- the coordinates will be shifted to reflect the sheared image.
1028
- """
1029
- if shear_horizontal:
1030
- image = shear_x(image, level, replace)
1031
- else:
1032
- image = shear_y(image, level, replace)
1033
-
1034
- # Convert bbox coordinates to pixel values.
1035
- image_height, image_width = image.shape[:2]
1036
- # pylint:disable=g-long-lambda
1037
- wrapped_shear_bbox = lambda bbox: _shear_bbox(bbox, image_height, image_width, level, shear_horizontal)
1038
- # pylint:enable=g-long-lambda
1039
- new_bboxes = deepcopy(bboxes)
1040
- num_bboxes = len(bboxes)
1041
- for idx in range(num_bboxes):
1042
- new_bboxes[idx] = wrapped_shear_bbox(bboxes[idx])
1043
- return image.astype(np.uint8), new_bboxes
1044
-
1045
-
1046
- def autocontrast(image):
1047
- """Implements Autocontrast function from PIL.
1048
-
1049
- Args:
1050
- image: A 3D uint8 tensor.
1051
-
1052
- Returns:
1053
- The image after it has had autocontrast applied to it and will be of type
1054
- uint8.
1055
- """
1056
-
1057
- def scale_channel(image):
1058
- """Scale the 2D image using the autocontrast rule."""
1059
- # A possibly cheaper version can be done using cumsum/unique_with_counts
1060
- # over the histogram values, rather than iterating over the entire image.
1061
- # to compute mins and maxes.
1062
- lo = float(np.min(image))
1063
- hi = float(np.max(image))
1064
-
1065
- # Scale the image, making the lowest value 0 and the highest value 255.
1066
- def scale_values(im):
1067
- scale = 255.0 / (hi - lo)
1068
- offset = -lo * scale
1069
- im = im.astype(np.float32) * scale + offset
1070
- img = np.clip(im, a_min=0, a_max=255.0)
1071
- return im.astype(np.uint8)
1072
-
1073
- result = scale_values(image) if hi > lo else image
1074
- return result
1075
-
1076
- # Assumes RGB for now. Scales each channel independently
1077
- # and then stacks the result.
1078
- s1 = scale_channel(image[:, :, 0])
1079
- s2 = scale_channel(image[:, :, 1])
1080
- s3 = scale_channel(image[:, :, 2])
1081
- image = np.stack([s1, s2, s3], 2)
1082
- return image
1083
-
1084
-
1085
- def sharpness(image, factor):
1086
- """Implements Sharpness function from PIL."""
1087
- orig_image = image
1088
- image = image.astype(np.float32)
1089
- # Make image 4D for conv operation.
1090
- # SMOOTH PIL Kernel.
1091
- kernel = np.array(
1092
- [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=np.float32) / 13.
1093
- result = cv2.filter2D(image, -1, kernel).astype(np.uint8)
1094
-
1095
- # Blend the final result.
1096
- return blend(result, orig_image, factor)
1097
-
1098
-
1099
- def equalize(image):
1100
- """Implements Equalize function from PIL using."""
1101
-
1102
- def scale_channel(im, c):
1103
- """Scale the data in the channel to implement equalize."""
1104
- im = im[:, :, c].astype(np.int32)
1105
- # Compute the histogram of the image channel.
1106
- histo, _ = np.histogram(im, range=[0, 255], bins=256)
1107
-
1108
- # For the purposes of computing the step, filter out the nonzeros.
1109
- nonzero = np.where(np.not_equal(histo, 0))
1110
- nonzero_histo = np.reshape(np.take(histo, nonzero), [-1])
1111
- step = (np.sum(nonzero_histo) - nonzero_histo[-1]) // 255
1112
-
1113
- def build_lut(histo, step):
1114
- # Compute the cumulative sum, shifting by step // 2
1115
- # and then normalization by step.
1116
- lut = (np.cumsum(histo) + (step // 2)) // step
1117
- # Shift lut, prepending with 0.
1118
- lut = np.concatenate([[0], lut[:-1]], 0)
1119
- # Clip the counts to be in range. This is done
1120
- # in the C code for image.point.
1121
- return np.clip(lut, a_min=0, a_max=255).astype(np.uint8)
1122
-
1123
- # If step is zero, return the original image. Otherwise, build
1124
- # lut from the full histogram and step and then index from it.
1125
- if step == 0:
1126
- result = im
1127
- else:
1128
- result = np.take(build_lut(histo, step), im)
1129
-
1130
- return result.astype(np.uint8)
1131
-
1132
- # Assumes RGB for now. Scales each channel independently
1133
- # and then stacks the result.
1134
- s1 = scale_channel(image, 0)
1135
- s2 = scale_channel(image, 1)
1136
- s3 = scale_channel(image, 2)
1137
- image = np.stack([s1, s2, s3], 2)
1138
- return image
1139
-
1140
-
1141
- def wrap(image):
1142
- """Returns 'image' with an extra channel set to all 1s."""
1143
- shape = image.shape
1144
- extended_channel = 255 * np.ones([shape[0], shape[1], 1], image.dtype)
1145
- extended = np.concatenate([image, extended_channel], 2).astype(image.dtype)
1146
- return extended
1147
-
1148
-
1149
- def unwrap(image, replace):
1150
- """Unwraps an image produced by wrap.
1151
-
1152
- Where there is a 0 in the last channel for every spatial position,
1153
- the rest of the three channels in that spatial dimension are grayed
1154
- (set to 128). Operations like translate and shear on a wrapped
1155
- Tensor will leave 0s in empty locations. Some transformations look
1156
- at the intensity of values to do preprocessing, and we want these
1157
- empty pixels to assume the 'average' value, rather than pure black.
1158
-
1159
-
1160
- Args:
1161
- image: A 3D Image Tensor with 4 channels.
1162
- replace: A one or three value 1D tensor to fill empty pixels.
1163
-
1164
- Returns:
1165
- image: A 3D image Tensor with 3 channels.
1166
- """
1167
- image_shape = image.shape
1168
- # Flatten the spatial dimensions.
1169
- flattened_image = np.reshape(image, [-1, image_shape[2]])
1170
-
1171
- # Find all pixels where the last channel is zero.
1172
- alpha_channel = flattened_image[:, 3]
1173
-
1174
- replace = np.concatenate([replace, np.ones([1], image.dtype)], 0)
1175
-
1176
- # Where they are zero, fill them in with 'replace'.
1177
- alpha_channel = np.reshape(alpha_channel, (-1, 1))
1178
- alpha_channel = np.tile(alpha_channel, reps=(1, flattened_image.shape[1]))
1179
-
1180
- flattened_image = np.where(
1181
- np.equal(alpha_channel, 0),
1182
- np.ones_like(
1183
- flattened_image, dtype=image.dtype) * replace,
1184
- flattened_image)
1185
-
1186
- image = np.reshape(flattened_image, image_shape)
1187
- image = image[:, :, :3]
1188
- return image.astype(np.uint8)
1189
-
1190
-
1191
- def _cutout_inside_bbox(image, bbox, pad_fraction):
1192
- """Generates cutout mask and the mean pixel value of the bbox.
1193
-
1194
- First a location is randomly chosen within the image as the center where the
1195
- cutout mask will be applied. Note this can be towards the boundaries of the
1196
- image, so the full cutout mask may not be applied.
1197
-
1198
- Args:
1199
- image: 3D uint8 Tensor.
1200
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
1201
- of type float that represents the normalized coordinates between 0 and 1.
1202
- pad_fraction: Float that specifies how large the cutout mask should be in
1203
- in reference to the size of the original bbox. If pad_fraction is 0.25,
1204
- then the cutout mask will be of shape
1205
- (0.25 * bbox height, 0.25 * bbox width).
1206
-
1207
- Returns:
1208
- A tuple. Fist element is a tensor of the same shape as image where each
1209
- element is either a 1 or 0 that is used to determine where the image
1210
- will have cutout applied. The second element is the mean of the pixels
1211
- in the image where the bbox is located.
1212
- mask value: [0,1]
1213
- """
1214
- image_height, image_width = image.shape[0], image.shape[1]
1215
- # Transform from shape [1, 4] to [4].
1216
- bbox = np.squeeze(bbox)
1217
-
1218
- min_y = int(float(image_height) * bbox[0])
1219
- min_x = int(float(image_width) * bbox[1])
1220
- max_y = int(float(image_height) * bbox[2])
1221
- max_x = int(float(image_width) * bbox[3])
1222
-
1223
- # Calculate the mean pixel values in the bounding box, which will be used
1224
- # to fill the cutout region.
1225
- mean = np.mean(image[min_y:max_y + 1, min_x:max_x + 1], axis=(0, 1))
1226
- # Cutout mask will be size pad_size_heigh * 2 by pad_size_width * 2 if the
1227
- # region lies entirely within the bbox.
1228
- box_height = max_y - min_y + 1
1229
- box_width = max_x - min_x + 1
1230
- pad_size_height = int(pad_fraction * (box_height / 2))
1231
- pad_size_width = int(pad_fraction * (box_width / 2))
1232
-
1233
- # Sample the center location in the image where the zero mask will be applied.
1234
- cutout_center_height = np.random.randint(min_y, max_y + 1, dtype=np.int32)
1235
- cutout_center_width = np.random.randint(min_x, max_x + 1, dtype=np.int32)
1236
-
1237
- lower_pad = np.maximum(0, cutout_center_height - pad_size_height)
1238
- upper_pad = np.maximum(
1239
- 0, image_height - cutout_center_height - pad_size_height)
1240
- left_pad = np.maximum(0, cutout_center_width - pad_size_width)
1241
- right_pad = np.maximum(0,
1242
- image_width - cutout_center_width - pad_size_width)
1243
-
1244
- cutout_shape = [
1245
- image_height - (lower_pad + upper_pad),
1246
- image_width - (left_pad + right_pad)
1247
- ]
1248
- padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
1249
-
1250
- mask = np.pad(np.zeros(
1251
- cutout_shape, dtype=image.dtype),
1252
- padding_dims,
1253
- 'constant',
1254
- constant_values=1)
1255
-
1256
- mask = np.expand_dims(mask, 2)
1257
- mask = np.tile(mask, [1, 1, 3])
1258
- return mask, mean
1259
-
1260
-
1261
- def bbox_cutout(image, bboxes, pad_fraction, replace_with_mean):
1262
- """Applies cutout to the image according to bbox information.
1263
-
1264
- This is a cutout variant that using bbox information to make more informed
1265
- decisions on where to place the cutout mask.
1266
-
1267
- Args:
1268
- image: 3D uint8 Tensor.
1269
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
1270
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
1271
- between [0, 1].
1272
- pad_fraction: Float that specifies how large the cutout mask should be in
1273
- in reference to the size of the original bbox. If pad_fraction is 0.25,
1274
- then the cutout mask will be of shape
1275
- (0.25 * bbox height, 0.25 * bbox width).
1276
- replace_with_mean: Boolean that specified what value should be filled in
1277
- where the cutout mask is applied. Since the incoming image will be of
1278
- uint8 and will not have had any mean normalization applied, by default
1279
- we set the value to be 128. If replace_with_mean is True then we find
1280
- the mean pixel values across the channel dimension and use those to fill
1281
- in where the cutout mask is applied.
1282
-
1283
- Returns:
1284
- A tuple. First element is a tensor of the same shape as image that has
1285
- cutout applied to it. Second element is the bboxes that were passed in
1286
- that will be unchanged.
1287
- """
1288
-
1289
- def apply_bbox_cutout(image, bboxes, pad_fraction):
1290
- """Applies cutout to a single bounding box within image."""
1291
- # Choose a single bounding box to apply cutout to.
1292
- random_index = np.random.randint(0, bboxes.shape[0], dtype=np.int32)
1293
- # Select the corresponding bbox and apply cutout.
1294
- chosen_bbox = np.take(bboxes, random_index, axis=0)
1295
- mask, mean = _cutout_inside_bbox(image, chosen_bbox, pad_fraction)
1296
-
1297
- # When applying cutout we either set the pixel value to 128 or to the mean
1298
- # value inside the bbox.
1299
- replace = mean if replace_with_mean else [128] * 3
1300
-
1301
- # Apply the cutout mask to the image. Where the mask is 0 we fill it with
1302
- # `replace`.
1303
- image = np.where(
1304
- np.equal(mask, 0),
1305
- np.ones_like(
1306
- image, dtype=image.dtype) * replace,
1307
- image).astype(image.dtype)
1308
- return image
1309
-
1310
- # Check to see if there are boxes, if so then apply boxcutout.
1311
- if len(bboxes) != 0:
1312
- image = apply_bbox_cutout(image, bboxes, pad_fraction)
1313
-
1314
- return image, bboxes
1315
-
1316
-
1317
- NAME_TO_FUNC = {
1318
- 'AutoContrast': autocontrast,
1319
- 'Equalize': equalize,
1320
- 'Posterize': posterize,
1321
- 'Solarize': solarize,
1322
- 'SolarizeAdd': solarize_add,
1323
- 'Color': color,
1324
- 'Contrast': contrast,
1325
- 'Brightness': brightness,
1326
- 'Sharpness': sharpness,
1327
- 'Cutout': cutout,
1328
- 'BBox_Cutout': bbox_cutout,
1329
- 'Rotate_BBox': rotate_with_bboxes,
1330
- # pylint:disable=g-long-lambda
1331
- 'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
1332
- image, bboxes, pixels, replace, shift_horizontal=True),
1333
- 'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
1334
- image, bboxes, pixels, replace, shift_horizontal=False),
1335
- 'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
1336
- image, bboxes, level, replace, shear_horizontal=True),
1337
- 'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
1338
- image, bboxes, level, replace, shear_horizontal=False),
1339
- # pylint:enable=g-long-lambda
1340
- 'Rotate_Only_BBoxes': rotate_only_bboxes,
1341
- 'ShearX_Only_BBoxes': shear_x_only_bboxes,
1342
- 'ShearY_Only_BBoxes': shear_y_only_bboxes,
1343
- 'TranslateX_Only_BBoxes': translate_x_only_bboxes,
1344
- 'TranslateY_Only_BBoxes': translate_y_only_bboxes,
1345
- 'Flip_Only_BBoxes': flip_only_bboxes,
1346
- 'Solarize_Only_BBoxes': solarize_only_bboxes,
1347
- 'Equalize_Only_BBoxes': equalize_only_bboxes,
1348
- 'Cutout_Only_BBoxes': cutout_only_bboxes,
1349
- }
1350
-
1351
-
1352
- def _randomly_negate_tensor(tensor):
1353
- """With 50% prob turn the tensor negative."""
1354
- should_flip = np.floor(np.random.rand() + 0.5) >= 1
1355
- final_tensor = tensor if should_flip else -tensor
1356
- return final_tensor
1357
-
1358
-
1359
- def _rotate_level_to_arg(level):
1360
- level = (level / _MAX_LEVEL) * 30.
1361
- level = _randomly_negate_tensor(level)
1362
- return (level, )
1363
-
1364
-
1365
- def _shrink_level_to_arg(level):
1366
- """Converts level to ratio by which we shrink the image content."""
1367
- if level == 0:
1368
- return (1.0, ) # if level is zero, do not shrink the image
1369
- # Maximum shrinking ratio is 2.9.
1370
- level = 2. / (_MAX_LEVEL / level) + 0.9
1371
- return (level, )
1372
-
1373
-
1374
- def _enhance_level_to_arg(level):
1375
- return ((level / _MAX_LEVEL) * 1.8 + 0.1, )
1376
-
1377
-
1378
- def _shear_level_to_arg(level):
1379
- level = (level / _MAX_LEVEL) * 0.3
1380
- # Flip level to negative with 50% chance.
1381
- level = _randomly_negate_tensor(level)
1382
- return (level, )
1383
-
1384
-
1385
- def _translate_level_to_arg(level, translate_const):
1386
- level = (level / _MAX_LEVEL) * float(translate_const)
1387
- # Flip level to negative with 50% chance.
1388
- level = _randomly_negate_tensor(level)
1389
- return (level, )
1390
-
1391
-
1392
- def _bbox_cutout_level_to_arg(level, hparams):
1393
- cutout_pad_fraction = (
1394
- level / _MAX_LEVEL) * 0.75 # hparams.cutout_max_pad_fraction
1395
- return (cutout_pad_fraction,
1396
- False) # hparams.cutout_bbox_replace_with_mean
1397
-
1398
-
1399
- def level_to_arg(hparams):
1400
- return {
1401
- 'AutoContrast': lambda level: (),
1402
- 'Equalize': lambda level: (),
1403
- 'Posterize': lambda level: (int((level / _MAX_LEVEL) * 4), ),
1404
- 'Solarize': lambda level: (int((level / _MAX_LEVEL) * 256), ),
1405
- 'SolarizeAdd': lambda level: (int((level / _MAX_LEVEL) * 110), ),
1406
- 'Color': _enhance_level_to_arg,
1407
- 'Contrast': _enhance_level_to_arg,
1408
- 'Brightness': _enhance_level_to_arg,
1409
- 'Sharpness': _enhance_level_to_arg,
1410
- 'Cutout':
1411
- lambda level: (int((level / _MAX_LEVEL) * 100), ), # hparams.cutout_const=100
1412
- # pylint:disable=g-long-lambda
1413
- 'BBox_Cutout': lambda level: _bbox_cutout_level_to_arg(level, hparams),
1414
- 'TranslateX_BBox':
1415
- lambda level: _translate_level_to_arg(level, 250), # hparams.translate_const=250
1416
- 'TranslateY_BBox':
1417
- lambda level: _translate_level_to_arg(level, 250), # hparams.translate_cons
1418
- # pylint:enable=g-long-lambda
1419
- 'ShearX_BBox': _shear_level_to_arg,
1420
- 'ShearY_BBox': _shear_level_to_arg,
1421
- 'Rotate_BBox': _rotate_level_to_arg,
1422
- 'Rotate_Only_BBoxes': _rotate_level_to_arg,
1423
- 'ShearX_Only_BBoxes': _shear_level_to_arg,
1424
- 'ShearY_Only_BBoxes': _shear_level_to_arg,
1425
- # pylint:disable=g-long-lambda
1426
- 'TranslateX_Only_BBoxes':
1427
- lambda level: _translate_level_to_arg(level, 120), # hparams.translate_bbox_const
1428
- 'TranslateY_Only_BBoxes':
1429
- lambda level: _translate_level_to_arg(level, 120), # hparams.translate_bbox_const
1430
- # pylint:enable=g-long-lambda
1431
- 'Flip_Only_BBoxes': lambda level: (),
1432
- 'Solarize_Only_BBoxes':
1433
- lambda level: (int((level / _MAX_LEVEL) * 256), ),
1434
- 'Equalize_Only_BBoxes': lambda level: (),
1435
- # pylint:disable=g-long-lambda
1436
- 'Cutout_Only_BBoxes':
1437
- lambda level: (int((level / _MAX_LEVEL) * 50), ), # hparams.cutout_bbox_const
1438
- # pylint:enable=g-long-lambda
1439
- }
1440
-
1441
-
1442
- def bbox_wrapper(func):
1443
- """Adds a bboxes function argument to func and returns unchanged bboxes."""
1444
-
1445
- def wrapper(images, bboxes, *args, **kwargs):
1446
- return (func(images, *args, **kwargs), bboxes)
1447
-
1448
- return wrapper
1449
-
1450
-
1451
- def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams):
1452
- """Return the function that corresponds to `name` and update `level` param."""
1453
- func = NAME_TO_FUNC[name]
1454
- args = level_to_arg(augmentation_hparams)[name](level)
1455
-
1456
- # Check to see if prob is passed into function. This is used for operations
1457
- # where we alter bboxes independently.
1458
- # pytype:disable=wrong-arg-types
1459
- if 'prob' in inspect.getfullargspec(func)[0]:
1460
- args = tuple([prob] + list(args))
1461
- # pytype:enable=wrong-arg-types
1462
-
1463
- # Add in replace arg if it is required for the function that is being called.
1464
- if 'replace' in inspect.getfullargspec(func)[0]:
1465
- # Make sure replace is the final argument
1466
- assert 'replace' == inspect.getfullargspec(func)[0][-1]
1467
- args = tuple(list(args) + [replace_value])
1468
-
1469
- # Add bboxes as the second positional argument for the function if it does
1470
- # not already exist.
1471
- if 'bboxes' not in inspect.getfullargspec(func)[0]:
1472
- func = bbox_wrapper(func)
1473
- return (func, prob, args)
1474
-
1475
-
1476
- def _apply_func_with_prob(func, image, args, prob, bboxes):
1477
- """Apply `func` to image w/ `args` as input with probability `prob`."""
1478
- assert isinstance(args, tuple)
1479
- assert 'bboxes' == inspect.getfullargspec(func)[0][1]
1480
-
1481
- # If prob is a function argument, then this randomness is being handled
1482
- # inside the function, so make sure it is always called.
1483
- if 'prob' in inspect.getfullargspec(func)[0]:
1484
- prob = 1.0
1485
-
1486
- # Apply the function with probability `prob`.
1487
- should_apply_op = np.floor(np.random.rand() + 0.5) >= 1
1488
- if should_apply_op:
1489
- augmented_image, augmented_bboxes = func(image, bboxes, *args)
1490
- else:
1491
- augmented_image, augmented_bboxes = (image, bboxes)
1492
- return augmented_image, augmented_bboxes
1493
-
1494
-
1495
- def select_and_apply_random_policy(policies, image, bboxes):
1496
- """Select a random policy from `policies` and apply it to `image`."""
1497
- policy_to_select = np.random.randint(0, len(policies), dtype=np.int32)
1498
- # policy_to_select = 6 # for test
1499
- for (i, policy) in enumerate(policies):
1500
- if i == policy_to_select:
1501
- image, bboxes = policy(image, bboxes)
1502
- return (image, bboxes)
1503
-
1504
-
1505
- def build_and_apply_nas_policy(policies, image, bboxes, augmentation_hparams):
1506
- """Build a policy from the given policies passed in and apply to image.
1507
-
1508
- Args:
1509
- policies: list of lists of tuples in the form `(func, prob, level)`, `func`
1510
- is a string name of the augmentation function, `prob` is the probability
1511
- of applying the `func` operation, `level` is the input argument for
1512
- `func`.
1513
- image: numpy array that the resulting policy will be applied to.
1514
- bboxes:
1515
- augmentation_hparams: Hparams associated with the NAS learned policy.
1516
-
1517
- Returns:
1518
- A version of image that now has data augmentation applied to it based on
1519
- the `policies` pass into the function. Additionally, returns bboxes if
1520
- a value for them is passed in that is not None
1521
- """
1522
- replace_value = [128, 128, 128]
1523
-
1524
- # func is the string name of the augmentation function, prob is the
1525
- # probability of applying the operation and level is the parameter associated
1526
-
1527
- # tf_policies are functions that take in an image and return an augmented
1528
- # image.
1529
- tf_policies = []
1530
- for policy in policies:
1531
- tf_policy = []
1532
- # Link string name to the correct python function and make sure the correct
1533
- # argument is passed into that function.
1534
- for policy_info in policy:
1535
- policy_info = list(
1536
- policy_info) + [replace_value, augmentation_hparams]
1537
-
1538
- tf_policy.append(_parse_policy_info(*policy_info))
1539
- # Now build the tf policy that will apply the augmentation procedue
1540
- # on image.
1541
- def make_final_policy(tf_policy_):
1542
- def final_policy(image_, bboxes_):
1543
- for func, prob, args in tf_policy_:
1544
- image_, bboxes_ = _apply_func_with_prob(func, image_, args,
1545
- prob, bboxes_)
1546
- return image_, bboxes_
1547
-
1548
- return final_policy
1549
-
1550
- tf_policies.append(make_final_policy(tf_policy))
1551
-
1552
- augmented_images, augmented_bboxes = select_and_apply_random_policy(
1553
- tf_policies, image, bboxes)
1554
- # If no bounding boxes were specified, then just return the images.
1555
- return (augmented_images, augmented_bboxes)
1556
-
1557
-
1558
- # TODO(barretzoph): Add in ArXiv link once paper is out.
1559
- def distort_image_with_autoaugment(image, bboxes, augmentation_name):
1560
- """Applies the AutoAugment policy to `image` and `bboxes`.
1561
-
1562
- Args:
1563
- image: `Tensor` of shape [height, width, 3] representing an image.
1564
- bboxes: `Tensor` of shape [N, 4] representing ground truth boxes that are
1565
- normalized between [0, 1].
1566
- augmentation_name: The name of the AutoAugment policy to use. The available
1567
- options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for
1568
- all of the results in the paper and was found to achieve the best results
1569
- on the COCO dataset. `v1`, `v2` and `v3` are additional good policies
1570
- found on the COCO dataset that have slight variation in what operations
1571
- were used during the search procedure along with how many operations are
1572
- applied in parallel to a single image (2 vs 3).
1573
-
1574
- Returns:
1575
- A tuple containing the augmented versions of `image` and `bboxes`.
1576
- """
1577
- available_policies = {
1578
- 'v0': policy_v0,
1579
- 'v1': policy_v1,
1580
- 'v2': policy_v2,
1581
- 'v3': policy_v3,
1582
- 'test': policy_vtest
1583
- }
1584
- if augmentation_name not in available_policies:
1585
- raise ValueError('Invalid augmentation_name: {}'.format(
1586
- augmentation_name))
1587
-
1588
- policy = available_policies[augmentation_name]()
1589
- augmentation_hparams = {}
1590
- return build_and_apply_nas_policy(policy, image, bboxes,
1591
- augmentation_hparams)