paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -0
- paddlex/__init__.py +35 -18
- paddlex/__main__.py +39 -0
- paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
- paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
- paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
- paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
- paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
- paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
- paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
- paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
- paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
- paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
- paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
- paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
- paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
- paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
- paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
- paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
- paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
- paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
- paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
- paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
- paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
- paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
- paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
- paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
- paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
- paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
- paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
- paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
- paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
- paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
- paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
- paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
- paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
- paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
- paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
- paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
- paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
- paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
- paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
- paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
- paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
- paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
- paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
- paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
- paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
- paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
- paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
- paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
- paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
- paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
- paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
- paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
- paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
- paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
- paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
- paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
- paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
- paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
- paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
- paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
- paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
- paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
- paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
- paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
- paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
- paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
- paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
- paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
- paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
- paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
- paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
- paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
- paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
- paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
- paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
- paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
- paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
- paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
- paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
- paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
- paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
- paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
- paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
- paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
- paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
- paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
- paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
- paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
- paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
- paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
- paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
- paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
- paddlex/configs/pipelines/OCR.yaml +45 -0
- paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +151 -0
- paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +237 -0
- paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
- paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
- paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
- paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
- paddlex/configs/pipelines/doc_understanding.yaml +9 -0
- paddlex/configs/pipelines/face_recognition.yaml +18 -0
- paddlex/configs/pipelines/formula_recognition.yaml +39 -0
- paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
- paddlex/configs/pipelines/image_classification.yaml +10 -0
- paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
- paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
- paddlex/configs/pipelines/layout_parsing.yaml +102 -0
- paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
- paddlex/configs/pipelines/object_detection.yaml +10 -0
- paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
- paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
- paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
- paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
- paddlex/configs/pipelines/seal_recognition.yaml +52 -0
- paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
- paddlex/configs/pipelines/small_object_detection.yaml +10 -0
- paddlex/configs/pipelines/table_recognition.yaml +57 -0
- paddlex/configs/pipelines/table_recognition_v2.yaml +82 -0
- paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
- paddlex/configs/pipelines/ts_classification.yaml +8 -0
- paddlex/configs/pipelines/ts_forecast.yaml +8 -0
- paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
- paddlex/configs/pipelines/video_classification.yaml +9 -0
- paddlex/configs/pipelines/video_detection.yaml +10 -0
- paddlex/constants.py +17 -0
- paddlex/engine.py +56 -0
- paddlex/hpip_links.html +31 -0
- paddlex/inference/__init__.py +19 -0
- paddlex/inference/common/__init__.py +13 -0
- paddlex/inference/common/batch_sampler/__init__.py +21 -0
- paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
- paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
- paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
- paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
- paddlex/inference/common/batch_sampler/image_batch_sampler.py +121 -0
- paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
- paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
- paddlex/inference/common/reader/__init__.py +19 -0
- paddlex/inference/common/reader/audio_reader.py +46 -0
- paddlex/inference/common/reader/det_3d_reader.py +241 -0
- paddlex/inference/common/reader/image_reader.py +73 -0
- paddlex/inference/common/reader/ts_reader.py +46 -0
- paddlex/inference/common/reader/video_reader.py +42 -0
- paddlex/inference/common/result/__init__.py +29 -0
- paddlex/inference/common/result/base_cv_result.py +41 -0
- paddlex/inference/common/result/base_result.py +72 -0
- paddlex/inference/common/result/base_ts_result.py +41 -0
- paddlex/inference/common/result/base_video_result.py +36 -0
- paddlex/inference/common/result/mixin.py +709 -0
- paddlex/inference/models/__init__.py +86 -0
- paddlex/inference/models/anomaly_detection/__init__.py +15 -0
- paddlex/inference/models/anomaly_detection/predictor.py +135 -0
- paddlex/inference/models/anomaly_detection/processors.py +53 -0
- paddlex/inference/models/anomaly_detection/result.py +71 -0
- paddlex/inference/models/base/__init__.py +15 -0
- paddlex/inference/models/base/predictor/__init__.py +15 -0
- paddlex/inference/models/base/predictor/base_predictor.py +414 -0
- paddlex/inference/models/common/__init__.py +26 -0
- paddlex/inference/models/common/static_infer.py +801 -0
- paddlex/inference/models/common/tokenizer/__init__.py +21 -0
- paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
- paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
- paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
- paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
- paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
- paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
- paddlex/inference/models/common/tokenizer/utils.py +66 -0
- paddlex/inference/models/common/tokenizer/vocab.py +647 -0
- paddlex/inference/models/common/ts/__init__.py +15 -0
- paddlex/inference/models/common/ts/funcs.py +540 -0
- paddlex/inference/models/common/ts/processors.py +322 -0
- paddlex/inference/models/common/vision/__init__.py +23 -0
- paddlex/inference/models/common/vision/funcs.py +98 -0
- paddlex/inference/models/common/vision/processors.py +285 -0
- paddlex/inference/models/common/vlm/__init__.py +13 -0
- paddlex/inference/models/common/vlm/activations.py +189 -0
- paddlex/inference/models/common/vlm/bert_padding.py +127 -0
- paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
- paddlex/inference/models/common/vlm/distributed.py +229 -0
- paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
- paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
- paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
- paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
- paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
- paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
- paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
- paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
- paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
- paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
- paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
- paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
- paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
- paddlex/inference/models/common/vlm/utils.py +109 -0
- paddlex/inference/models/doc_vlm/__init__.py +15 -0
- paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
- paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
- paddlex/inference/models/doc_vlm/predictor.py +253 -0
- paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
- paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
- paddlex/inference/models/doc_vlm/processors/common.py +561 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
- paddlex/inference/models/doc_vlm/result.py +21 -0
- paddlex/inference/models/face_feature/__init__.py +15 -0
- paddlex/inference/models/face_feature/predictor.py +66 -0
- paddlex/inference/models/formula_recognition/__init__.py +15 -0
- paddlex/inference/models/formula_recognition/predictor.py +193 -0
- paddlex/inference/models/formula_recognition/processors.py +1015 -0
- paddlex/inference/models/formula_recognition/result.py +411 -0
- paddlex/inference/models/image_classification/__init__.py +15 -0
- paddlex/inference/models/image_classification/predictor.py +172 -0
- paddlex/inference/models/image_classification/processors.py +89 -0
- paddlex/inference/models/image_classification/result.py +93 -0
- paddlex/inference/models/image_feature/__init__.py +15 -0
- paddlex/inference/models/image_feature/predictor.py +146 -0
- paddlex/inference/models/image_feature/processors.py +31 -0
- paddlex/inference/models/image_feature/result.py +32 -0
- paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
- paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
- paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
- paddlex/inference/models/image_multilabel_classification/result.py +96 -0
- paddlex/inference/models/image_unwarping/__init__.py +15 -0
- paddlex/inference/models/image_unwarping/predictor.py +97 -0
- paddlex/inference/models/image_unwarping/processors.py +92 -0
- paddlex/inference/models/image_unwarping/result.py +47 -0
- paddlex/inference/models/instance_segmentation/__init__.py +15 -0
- paddlex/inference/models/instance_segmentation/predictor.py +202 -0
- paddlex/inference/models/instance_segmentation/processors.py +102 -0
- paddlex/inference/models/instance_segmentation/result.py +162 -0
- paddlex/inference/models/keypoint_detection/__init__.py +15 -0
- paddlex/inference/models/keypoint_detection/predictor.py +190 -0
- paddlex/inference/models/keypoint_detection/processors.py +367 -0
- paddlex/inference/models/keypoint_detection/result.py +197 -0
- paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
- paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
- paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
- paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
- paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
- paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
- paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
- paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
- paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
- paddlex/inference/models/object_detection/__init__.py +15 -0
- paddlex/inference/models/object_detection/predictor.py +344 -0
- paddlex/inference/models/object_detection/processors.py +885 -0
- paddlex/inference/models/object_detection/result.py +114 -0
- paddlex/inference/models/object_detection/utils.py +70 -0
- paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
- paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
- paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
- paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
- paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
- paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
- paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
- paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
- paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
- paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
- paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
- paddlex/inference/models/semantic_segmentation/processors.py +117 -0
- paddlex/inference/models/semantic_segmentation/result.py +73 -0
- paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
- paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
- paddlex/inference/models/table_structure_recognition/processors.py +229 -0
- paddlex/inference/models/table_structure_recognition/result.py +63 -0
- paddlex/inference/models/text_detection/__init__.py +15 -0
- paddlex/inference/models/text_detection/predictor.py +191 -0
- paddlex/inference/models/text_detection/processors.py +538 -0
- paddlex/inference/models/text_detection/result.py +46 -0
- paddlex/inference/models/text_recognition/__init__.py +15 -0
- paddlex/inference/models/text_recognition/predictor.py +98 -0
- paddlex/inference/models/text_recognition/processors.py +245 -0
- paddlex/inference/models/text_recognition/result.py +76 -0
- paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
- paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
- paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
- paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
- paddlex/inference/models/ts_classification/__init__.py +15 -0
- paddlex/inference/models/ts_classification/predictor.py +122 -0
- paddlex/inference/models/ts_classification/processors.py +122 -0
- paddlex/inference/models/ts_classification/result.py +87 -0
- paddlex/inference/models/ts_forecasting/__init__.py +15 -0
- paddlex/inference/models/ts_forecasting/predictor.py +154 -0
- paddlex/inference/models/ts_forecasting/processors.py +158 -0
- paddlex/inference/models/ts_forecasting/result.py +96 -0
- paddlex/inference/models/video_classification/__init__.py +15 -0
- paddlex/inference/models/video_classification/predictor.py +141 -0
- paddlex/inference/models/video_classification/processors.py +409 -0
- paddlex/inference/models/video_classification/result.py +96 -0
- paddlex/inference/models/video_detection/__init__.py +15 -0
- paddlex/inference/models/video_detection/predictor.py +129 -0
- paddlex/inference/models/video_detection/processors.py +463 -0
- paddlex/inference/models/video_detection/result.py +109 -0
- paddlex/inference/pipelines/__init__.py +239 -0
- paddlex/inference/pipelines/_parallel.py +172 -0
- paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
- paddlex/inference/pipelines/anomaly_detection/pipeline.py +82 -0
- paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/attribute_recognition/pipeline.py +120 -0
- paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
- paddlex/inference/pipelines/base.py +156 -0
- paddlex/inference/pipelines/components/__init__.py +29 -0
- paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
- paddlex/inference/pipelines/components/chat_server/base.py +39 -0
- paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
- paddlex/inference/pipelines/components/common/__init__.py +19 -0
- paddlex/inference/pipelines/components/common/base_operator.py +37 -0
- paddlex/inference/pipelines/components/common/base_result.py +66 -0
- paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
- paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
- paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
- paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
- paddlex/inference/pipelines/components/common/warp_image.py +50 -0
- paddlex/inference/pipelines/components/faisser.py +357 -0
- paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
- paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
- paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
- paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
- paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
- paddlex/inference/pipelines/components/retriever/base.py +228 -0
- paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
- paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
- paddlex/inference/pipelines/components/utils/__init__.py +13 -0
- paddlex/inference/pipelines/components/utils/mixin.py +206 -0
- paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
- paddlex/inference/pipelines/doc_preprocessor/pipeline.py +209 -0
- paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
- paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
- paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
- paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
- paddlex/inference/pipelines/face_recognition/result.py +44 -0
- paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/formula_recognition/pipeline.py +347 -0
- paddlex/inference/pipelines/formula_recognition/result.py +282 -0
- paddlex/inference/pipelines/image_classification/__init__.py +15 -0
- paddlex/inference/pipelines/image_classification/pipeline.py +90 -0
- paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
- paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +97 -0
- paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/instance_segmentation/pipeline.py +91 -0
- paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
- paddlex/inference/pipelines/keypoint_detection/pipeline.py +158 -0
- paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
- paddlex/inference/pipelines/layout_parsing/pipeline.py +568 -0
- paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +1382 -0
- paddlex/inference/pipelines/layout_parsing/result.py +191 -0
- paddlex/inference/pipelines/layout_parsing/result_v2.py +745 -0
- paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
- paddlex/inference/pipelines/layout_parsing/utils.py +951 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1143 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +562 -0
- paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
- paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
- paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
- paddlex/inference/pipelines/object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/object_detection/pipeline.py +115 -0
- paddlex/inference/pipelines/ocr/__init__.py +15 -0
- paddlex/inference/pipelines/ocr/pipeline.py +463 -0
- paddlex/inference/pipelines/ocr/result.py +255 -0
- paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
- paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
- paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
- paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +781 -0
- paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +992 -0
- paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
- paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
- paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
- paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/rotated_object_detection/pipeline.py +95 -0
- paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/seal_recognition/pipeline.py +335 -0
- paddlex/inference/pipelines/seal_recognition/result.py +89 -0
- paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
- paddlex/inference/pipelines/semantic_segmentation/pipeline.py +95 -0
- paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
- paddlex/inference/pipelines/small_object_detection/pipeline.py +95 -0
- paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
- paddlex/inference/pipelines/table_recognition/pipeline.py +486 -0
- paddlex/inference/pipelines/table_recognition/pipeline_v2.py +1395 -0
- paddlex/inference/pipelines/table_recognition/result.py +218 -0
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +488 -0
- paddlex/inference/pipelines/table_recognition/utils.py +44 -0
- paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
- paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
- paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
- paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
- paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
- paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
- paddlex/inference/pipelines/video_classification/__init__.py +15 -0
- paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
- paddlex/inference/pipelines/video_detection/__init__.py +15 -0
- paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
- paddlex/inference/serving/__init__.py +17 -0
- paddlex/inference/serving/basic_serving/__init__.py +18 -0
- paddlex/inference/serving/basic_serving/_app.py +221 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +104 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +117 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +193 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +223 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +143 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +113 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
- paddlex/inference/serving/basic_serving/_server.py +40 -0
- paddlex/inference/serving/infra/__init__.py +13 -0
- paddlex/inference/serving/infra/config.py +36 -0
- paddlex/inference/serving/infra/models.py +79 -0
- paddlex/inference/serving/infra/storage.py +180 -0
- paddlex/inference/serving/infra/utils.py +285 -0
- paddlex/inference/serving/schemas/__init__.py +13 -0
- paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
- paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
- paddlex/inference/serving/schemas/doc_understanding.py +78 -0
- paddlex/inference/serving/schemas/face_recognition.py +124 -0
- paddlex/inference/serving/schemas/formula_recognition.py +56 -0
- paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
- paddlex/inference/serving/schemas/image_classification.py +45 -0
- paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
- paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
- paddlex/inference/serving/schemas/layout_parsing.py +71 -0
- paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
- paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
- paddlex/inference/serving/schemas/object_detection.py +52 -0
- paddlex/inference/serving/schemas/ocr.py +60 -0
- paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
- paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
- paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
- paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +133 -0
- paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +150 -0
- paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
- paddlex/inference/serving/schemas/pp_structurev3.py +88 -0
- paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
- paddlex/inference/serving/schemas/seal_recognition.py +62 -0
- paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
- paddlex/inference/serving/schemas/shared/__init__.py +13 -0
- paddlex/inference/serving/schemas/shared/classification.py +23 -0
- paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
- paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
- paddlex/inference/serving/schemas/shared/ocr.py +25 -0
- paddlex/inference/serving/schemas/small_object_detection.py +52 -0
- paddlex/inference/serving/schemas/table_recognition.py +64 -0
- paddlex/inference/serving/schemas/table_recognition_v2.py +69 -0
- paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
- paddlex/inference/serving/schemas/ts_classification.py +38 -0
- paddlex/inference/serving/schemas/ts_forecast.py +37 -0
- paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
- paddlex/inference/serving/schemas/video_classification.py +44 -0
- paddlex/inference/serving/schemas/video_detection.py +56 -0
- paddlex/inference/utils/__init__.py +13 -0
- paddlex/inference/utils/benchmark.py +379 -0
- paddlex/inference/utils/color_map.py +123 -0
- paddlex/inference/utils/get_pipeline_path.py +27 -0
- paddlex/inference/utils/hpi.py +254 -0
- paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
- paddlex/inference/utils/io/__init__.py +36 -0
- paddlex/inference/utils/io/readers.py +504 -0
- paddlex/inference/utils/io/style.py +381 -0
- paddlex/inference/utils/io/tablepyxl.py +157 -0
- paddlex/inference/utils/io/writers.py +458 -0
- paddlex/inference/utils/model_paths.py +48 -0
- paddlex/inference/utils/new_ir_blocklist.py +27 -0
- paddlex/inference/utils/official_models.py +367 -0
- paddlex/inference/utils/pp_option.py +339 -0
- paddlex/inference/utils/trt_blocklist.py +43 -0
- paddlex/inference/utils/trt_config.py +420 -0
- paddlex/model.py +131 -0
- paddlex/modules/__init__.py +115 -0
- paddlex/modules/anomaly_detection/__init__.py +18 -0
- paddlex/modules/anomaly_detection/dataset_checker/__init__.py +94 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +233 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +76 -0
- paddlex/modules/anomaly_detection/evaluator.py +58 -0
- paddlex/modules/anomaly_detection/exportor.py +22 -0
- paddlex/modules/anomaly_detection/model_list.py +16 -0
- paddlex/modules/anomaly_detection/trainer.py +70 -0
- paddlex/modules/base/__init__.py +18 -0
- paddlex/modules/base/build_model.py +33 -0
- paddlex/modules/base/dataset_checker/__init__.py +16 -0
- paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
- paddlex/modules/base/dataset_checker/utils.py +108 -0
- paddlex/modules/base/evaluator.py +170 -0
- paddlex/modules/base/exportor.py +145 -0
- paddlex/modules/base/trainer.py +144 -0
- paddlex/modules/base/utils/__init__.py +13 -0
- paddlex/modules/base/utils/cinn_setting.py +89 -0
- paddlex/modules/base/utils/coco_eval.py +94 -0
- paddlex/modules/base/utils/topk_eval.py +118 -0
- paddlex/modules/doc_vlm/__init__.py +18 -0
- paddlex/modules/doc_vlm/dataset_checker.py +29 -0
- paddlex/modules/doc_vlm/evaluator.py +29 -0
- paddlex/modules/doc_vlm/exportor.py +29 -0
- paddlex/modules/doc_vlm/model_list.py +16 -0
- paddlex/modules/doc_vlm/trainer.py +41 -0
- paddlex/modules/face_recognition/__init__.py +18 -0
- paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +172 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +153 -0
- paddlex/modules/face_recognition/evaluator.py +52 -0
- paddlex/modules/face_recognition/exportor.py +22 -0
- paddlex/modules/face_recognition/model_list.py +15 -0
- paddlex/modules/face_recognition/trainer.py +75 -0
- paddlex/modules/formula_recognition/__init__.py +18 -0
- paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
- paddlex/modules/formula_recognition/evaluator.py +80 -0
- paddlex/modules/formula_recognition/exportor.py +22 -0
- paddlex/modules/formula_recognition/model_list.py +23 -0
- paddlex/modules/formula_recognition/trainer.py +123 -0
- paddlex/modules/general_recognition/__init__.py +18 -0
- paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +96 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +99 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +100 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +147 -0
- paddlex/modules/general_recognition/evaluator.py +31 -0
- paddlex/modules/general_recognition/exportor.py +22 -0
- paddlex/modules/general_recognition/model_list.py +19 -0
- paddlex/modules/general_recognition/trainer.py +52 -0
- paddlex/modules/image_classification/__init__.py +18 -0
- paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +92 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
- paddlex/modules/image_classification/evaluator.py +43 -0
- paddlex/modules/image_classification/exportor.py +22 -0
- paddlex/modules/image_classification/model_list.py +99 -0
- paddlex/modules/image_classification/trainer.py +82 -0
- paddlex/modules/image_unwarping/__init__.py +13 -0
- paddlex/modules/image_unwarping/model_list.py +17 -0
- paddlex/modules/instance_segmentation/__init__.py +18 -0
- paddlex/modules/instance_segmentation/dataset_checker/__init__.py +107 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +82 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +95 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +122 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +223 -0
- paddlex/modules/instance_segmentation/evaluator.py +32 -0
- paddlex/modules/instance_segmentation/exportor.py +22 -0
- paddlex/modules/instance_segmentation/model_list.py +33 -0
- paddlex/modules/instance_segmentation/trainer.py +31 -0
- paddlex/modules/keypoint_detection/__init__.py +18 -0
- paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
- paddlex/modules/keypoint_detection/evaluator.py +41 -0
- paddlex/modules/keypoint_detection/exportor.py +22 -0
- paddlex/modules/keypoint_detection/model_list.py +16 -0
- paddlex/modules/keypoint_detection/trainer.py +39 -0
- paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
- paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
- paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
- paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
- paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
- paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
- paddlex/modules/multilabel_classification/__init__.py +18 -0
- paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +94 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +120 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +149 -0
- paddlex/modules/multilabel_classification/evaluator.py +43 -0
- paddlex/modules/multilabel_classification/exportor.py +22 -0
- paddlex/modules/multilabel_classification/model_list.py +24 -0
- paddlex/modules/multilabel_classification/trainer.py +85 -0
- paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
- paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
- paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
- paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
- paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
- paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
- paddlex/modules/object_detection/__init__.py +18 -0
- paddlex/modules/object_detection/dataset_checker/__init__.py +106 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +438 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +123 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +193 -0
- paddlex/modules/object_detection/evaluator.py +57 -0
- paddlex/modules/object_detection/exportor.py +22 -0
- paddlex/modules/object_detection/model_list.py +86 -0
- paddlex/modules/object_detection/trainer.py +98 -0
- paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
- paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
- paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
- paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
- paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
- paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
- paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
- paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
- paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
- paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
- paddlex/modules/semantic_segmentation/__init__.py +18 -0
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +109 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +76 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +165 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +75 -0
- paddlex/modules/semantic_segmentation/evaluator.py +58 -0
- paddlex/modules/semantic_segmentation/exportor.py +31 -0
- paddlex/modules/semantic_segmentation/model_list.py +37 -0
- paddlex/modules/semantic_segmentation/trainer.py +72 -0
- paddlex/modules/table_recognition/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +59 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
- paddlex/modules/table_recognition/evaluator.py +43 -0
- paddlex/modules/table_recognition/exportor.py +22 -0
- paddlex/modules/table_recognition/model_list.py +21 -0
- paddlex/modules/table_recognition/trainer.py +67 -0
- paddlex/modules/text_detection/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/__init__.py +107 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +220 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
- paddlex/modules/text_detection/evaluator.py +41 -0
- paddlex/modules/text_detection/exportor.py +22 -0
- paddlex/modules/text_detection/model_list.py +26 -0
- paddlex/modules/text_detection/trainer.py +65 -0
- paddlex/modules/text_recognition/__init__.py +18 -0
- paddlex/modules/text_recognition/dataset_checker/__init__.py +125 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +162 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +104 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
- paddlex/modules/text_recognition/evaluator.py +64 -0
- paddlex/modules/text_recognition/exportor.py +22 -0
- paddlex/modules/text_recognition/model_list.py +36 -0
- paddlex/modules/text_recognition/trainer.py +105 -0
- paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +111 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +74 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
- paddlex/modules/ts_anomaly_detection/exportor.py +44 -0
- paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
- paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
- paddlex/modules/ts_classification/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/__init__.py +111 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +77 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +74 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
- paddlex/modules/ts_classification/evaluator.py +66 -0
- paddlex/modules/ts_classification/exportor.py +44 -0
- paddlex/modules/ts_classification/model_list.py +18 -0
- paddlex/modules/ts_classification/trainer.py +108 -0
- paddlex/modules/ts_forecast/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/__init__.py +111 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +73 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_forecast/evaluator.py +66 -0
- paddlex/modules/ts_forecast/exportor.py +44 -0
- paddlex/modules/ts_forecast/model_list.py +24 -0
- paddlex/modules/ts_forecast/trainer.py +108 -0
- paddlex/modules/video_classification/__init__.py +18 -0
- paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
- paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/video_classification/evaluator.py +44 -0
- paddlex/modules/video_classification/exportor.py +22 -0
- paddlex/modules/video_classification/model_list.py +19 -0
- paddlex/modules/video_classification/trainer.py +88 -0
- paddlex/modules/video_detection/__init__.py +18 -0
- paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
- paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
- paddlex/modules/video_detection/evaluator.py +42 -0
- paddlex/modules/video_detection/exportor.py +22 -0
- paddlex/modules/video_detection/model_list.py +15 -0
- paddlex/modules/video_detection/trainer.py +82 -0
- paddlex/ops/__init__.py +152 -0
- paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
- paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
- paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
- paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
- paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
- paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
- paddlex/ops/setup.py +37 -0
- paddlex/ops/voxel/voxelize_op.cc +194 -0
- paddlex/ops/voxel/voxelize_op.cu +346 -0
- paddlex/paddlex_cli.py +476 -0
- paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
- paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
- paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
- paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleClas_api/cls/config.py +595 -0
- paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
- paddlex/repo_apis/PaddleClas_api/cls/register.py +907 -0
- paddlex/repo_apis/PaddleClas_api/cls/runner.py +218 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +20 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +50 -0
- paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +457 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +262 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +225 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +540 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +429 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +245 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1135 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +225 -0
- paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
- paddlex/repo_apis/PaddleOCR_api/__init__.py +22 -0
- paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +398 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +99 -0
- paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +70 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +107 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +564 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +398 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +216 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +239 -0
- paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
- paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/seg/config.py +183 -0
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
- paddlex/repo_apis/PaddleSeg_api/seg/register.py +272 -0
- paddlex/repo_apis/PaddleSeg_api/seg/runner.py +261 -0
- paddlex/repo_apis/PaddleTS_api/__init__.py +20 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +88 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/config.py +244 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +72 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +136 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
- paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
- paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
- paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
- paddlex/repo_apis/__init__.py +13 -0
- paddlex/repo_apis/base/__init__.py +22 -0
- paddlex/repo_apis/base/config.py +237 -0
- paddlex/repo_apis/base/model.py +563 -0
- paddlex/repo_apis/base/register.py +135 -0
- paddlex/repo_apis/base/runner.py +390 -0
- paddlex/repo_apis/base/utils/__init__.py +13 -0
- paddlex/repo_apis/base/utils/arg.py +64 -0
- paddlex/repo_apis/base/utils/subprocess.py +107 -0
- paddlex/repo_manager/__init__.py +17 -0
- paddlex/repo_manager/core.py +253 -0
- paddlex/repo_manager/meta.py +180 -0
- paddlex/repo_manager/repo.py +425 -0
- paddlex/repo_manager/utils.py +148 -0
- paddlex/utils/__init__.py +1 -12
- paddlex/utils/cache.py +146 -0
- paddlex/utils/config.py +216 -0
- paddlex/utils/custom_device_list.py +311 -0
- paddlex/utils/deps.py +249 -0
- paddlex/utils/device.py +195 -0
- paddlex/utils/download.py +168 -182
- paddlex/utils/env.py +31 -48
- paddlex/utils/errors/__init__.py +17 -0
- paddlex/utils/errors/dataset_checker.py +78 -0
- paddlex/utils/errors/others.py +138 -0
- paddlex/utils/file_interface.py +211 -0
- paddlex/utils/flags.py +70 -0
- paddlex/utils/fonts/__init__.py +97 -0
- paddlex/utils/func_register.py +41 -0
- paddlex/utils/install.py +87 -0
- paddlex/utils/interactive_get_pipeline.py +55 -0
- paddlex/utils/lazy_loader.py +68 -0
- paddlex/utils/logging.py +140 -33
- paddlex/utils/misc.py +201 -0
- paddlex/utils/pipeline_arguments.py +719 -0
- paddlex/utils/result_saver.py +58 -0
- paddlex/utils/subclass_register.py +99 -0
- paddlex/version.py +55 -0
- paddlex-3.0.0.dist-info/METADATA +1168 -0
- paddlex-3.0.0.dist-info/RECORD +1093 -0
- paddlex-3.0.0.dist-info/WHEEL +5 -0
- paddlex-3.0.0.dist-info/entry_points.txt +2 -0
- paddlex-3.0.0.dist-info/licenses/LICENSE +169 -0
- paddlex-3.0.0.dist-info/top_level.txt +1 -0
- PaddleClas/__init__.py +0 -16
- PaddleClas/paddleclas.py +0 -375
- PaddleClas/ppcls/__init__.py +0 -20
- PaddleClas/ppcls/data/__init__.py +0 -15
- PaddleClas/ppcls/data/imaug/__init__.py +0 -94
- PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
- PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
- PaddleClas/ppcls/data/imaug/cutout.py +0 -41
- PaddleClas/ppcls/data/imaug/fmix.py +0 -217
- PaddleClas/ppcls/data/imaug/grid.py +0 -89
- PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
- PaddleClas/ppcls/data/imaug/operators.py +0 -244
- PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
- PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
- PaddleClas/ppcls/data/reader.py +0 -318
- PaddleClas/ppcls/modeling/__init__.py +0 -20
- PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
- PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
- PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
- PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
- PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
- PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
- PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
- PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
- PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
- PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
- PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
- PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
- PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
- PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
- PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
- PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
- PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
- PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
- PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
- PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
- PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
- PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
- PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
- PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
- PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
- PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
- PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
- PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
- PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
- PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
- PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
- PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
- PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
- PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
- PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
- PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
- PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
- PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
- PaddleClas/ppcls/modeling/loss.py +0 -154
- PaddleClas/ppcls/modeling/utils.py +0 -53
- PaddleClas/ppcls/optimizer/__init__.py +0 -19
- PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
- PaddleClas/ppcls/optimizer/optimizer.py +0 -165
- PaddleClas/ppcls/utils/__init__.py +0 -27
- PaddleClas/ppcls/utils/check.py +0 -151
- PaddleClas/ppcls/utils/config.py +0 -201
- PaddleClas/ppcls/utils/logger.py +0 -120
- PaddleClas/ppcls/utils/metrics.py +0 -107
- PaddleClas/ppcls/utils/misc.py +0 -62
- PaddleClas/ppcls/utils/model_zoo.py +0 -213
- PaddleClas/ppcls/utils/save_load.py +0 -163
- PaddleClas/setup.py +0 -55
- PaddleClas/tools/__init__.py +0 -15
- PaddleClas/tools/download.py +0 -50
- PaddleClas/tools/ema.py +0 -58
- PaddleClas/tools/eval.py +0 -112
- PaddleClas/tools/export_model.py +0 -85
- PaddleClas/tools/export_serving_model.py +0 -76
- PaddleClas/tools/infer/__init__.py +0 -16
- PaddleClas/tools/infer/infer.py +0 -94
- PaddleClas/tools/infer/predict.py +0 -117
- PaddleClas/tools/infer/utils.py +0 -233
- PaddleClas/tools/program.py +0 -444
- PaddleClas/tools/test_hubserving.py +0 -113
- PaddleClas/tools/train.py +0 -141
- paddlex/cls.py +0 -76
- paddlex/command.py +0 -215
- paddlex/cv/__init__.py +0 -17
- paddlex/cv/datasets/__init__.py +0 -18
- paddlex/cv/datasets/coco.py +0 -169
- paddlex/cv/datasets/imagenet.py +0 -88
- paddlex/cv/datasets/seg_dataset.py +0 -91
- paddlex/cv/datasets/voc.py +0 -301
- paddlex/cv/models/__init__.py +0 -18
- paddlex/cv/models/base.py +0 -623
- paddlex/cv/models/classifier.py +0 -814
- paddlex/cv/models/detector.py +0 -1747
- paddlex/cv/models/load_model.py +0 -126
- paddlex/cv/models/segmenter.py +0 -673
- paddlex/cv/models/slim/__init__.py +0 -13
- paddlex/cv/models/slim/prune.py +0 -55
- paddlex/cv/models/utils/__init__.py +0 -13
- paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
- paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
- paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
- paddlex/cv/models/utils/ema.py +0 -48
- paddlex/cv/models/utils/seg_metrics.py +0 -62
- paddlex/cv/models/utils/visualize.py +0 -394
- paddlex/cv/transforms/__init__.py +0 -46
- paddlex/cv/transforms/batch_operators.py +0 -286
- paddlex/cv/transforms/box_utils.py +0 -41
- paddlex/cv/transforms/functions.py +0 -193
- paddlex/cv/transforms/operators.py +0 -1402
- paddlex/det.py +0 -43
- paddlex/paddleseg/__init__.py +0 -17
- paddlex/paddleseg/core/__init__.py +0 -20
- paddlex/paddleseg/core/infer.py +0 -289
- paddlex/paddleseg/core/predict.py +0 -145
- paddlex/paddleseg/core/train.py +0 -258
- paddlex/paddleseg/core/val.py +0 -172
- paddlex/paddleseg/cvlibs/__init__.py +0 -17
- paddlex/paddleseg/cvlibs/callbacks.py +0 -279
- paddlex/paddleseg/cvlibs/config.py +0 -359
- paddlex/paddleseg/cvlibs/manager.py +0 -142
- paddlex/paddleseg/cvlibs/param_init.py +0 -91
- paddlex/paddleseg/datasets/__init__.py +0 -21
- paddlex/paddleseg/datasets/ade.py +0 -112
- paddlex/paddleseg/datasets/cityscapes.py +0 -86
- paddlex/paddleseg/datasets/cocostuff.py +0 -79
- paddlex/paddleseg/datasets/dataset.py +0 -164
- paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
- paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
- paddlex/paddleseg/datasets/pascal_context.py +0 -80
- paddlex/paddleseg/datasets/voc.py +0 -113
- paddlex/paddleseg/models/__init__.py +0 -39
- paddlex/paddleseg/models/ann.py +0 -436
- paddlex/paddleseg/models/attention_unet.py +0 -189
- paddlex/paddleseg/models/backbones/__init__.py +0 -18
- paddlex/paddleseg/models/backbones/hrnet.py +0 -815
- paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
- paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
- paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
- paddlex/paddleseg/models/bisenet.py +0 -311
- paddlex/paddleseg/models/danet.py +0 -220
- paddlex/paddleseg/models/decoupled_segnet.py +0 -233
- paddlex/paddleseg/models/deeplab.py +0 -258
- paddlex/paddleseg/models/dnlnet.py +0 -231
- paddlex/paddleseg/models/emanet.py +0 -219
- paddlex/paddleseg/models/fast_scnn.py +0 -318
- paddlex/paddleseg/models/fcn.py +0 -135
- paddlex/paddleseg/models/gcnet.py +0 -223
- paddlex/paddleseg/models/gscnn.py +0 -357
- paddlex/paddleseg/models/hardnet.py +0 -309
- paddlex/paddleseg/models/isanet.py +0 -202
- paddlex/paddleseg/models/layers/__init__.py +0 -19
- paddlex/paddleseg/models/layers/activation.py +0 -73
- paddlex/paddleseg/models/layers/attention.py +0 -146
- paddlex/paddleseg/models/layers/layer_libs.py +0 -168
- paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
- paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
- paddlex/paddleseg/models/losses/__init__.py +0 -27
- paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
- paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
- paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
- paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
- paddlex/paddleseg/models/losses/dice_loss.py +0 -61
- paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
- paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
- paddlex/paddleseg/models/losses/l1_loss.py +0 -76
- paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
- paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
- paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
- paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
- paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
- paddlex/paddleseg/models/ocrnet.py +0 -248
- paddlex/paddleseg/models/pspnet.py +0 -147
- paddlex/paddleseg/models/sfnet.py +0 -236
- paddlex/paddleseg/models/shufflenet_slim.py +0 -268
- paddlex/paddleseg/models/u2net.py +0 -574
- paddlex/paddleseg/models/unet.py +0 -155
- paddlex/paddleseg/models/unet_3plus.py +0 -316
- paddlex/paddleseg/models/unet_plusplus.py +0 -237
- paddlex/paddleseg/transforms/__init__.py +0 -16
- paddlex/paddleseg/transforms/functional.py +0 -161
- paddlex/paddleseg/transforms/transforms.py +0 -937
- paddlex/paddleseg/utils/__init__.py +0 -22
- paddlex/paddleseg/utils/config_check.py +0 -60
- paddlex/paddleseg/utils/download.py +0 -163
- paddlex/paddleseg/utils/env/__init__.py +0 -16
- paddlex/paddleseg/utils/env/seg_env.py +0 -56
- paddlex/paddleseg/utils/env/sys_env.py +0 -122
- paddlex/paddleseg/utils/logger.py +0 -48
- paddlex/paddleseg/utils/metrics.py +0 -146
- paddlex/paddleseg/utils/progbar.py +0 -212
- paddlex/paddleseg/utils/timer.py +0 -53
- paddlex/paddleseg/utils/utils.py +0 -120
- paddlex/paddleseg/utils/visualize.py +0 -90
- paddlex/ppcls/__init__.py +0 -20
- paddlex/ppcls/data/__init__.py +0 -15
- paddlex/ppcls/data/imaug/__init__.py +0 -94
- paddlex/ppcls/data/imaug/autoaugment.py +0 -264
- paddlex/ppcls/data/imaug/batch_operators.py +0 -117
- paddlex/ppcls/data/imaug/cutout.py +0 -41
- paddlex/ppcls/data/imaug/fmix.py +0 -217
- paddlex/ppcls/data/imaug/grid.py +0 -89
- paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
- paddlex/ppcls/data/imaug/operators.py +0 -256
- paddlex/ppcls/data/imaug/randaugment.py +0 -106
- paddlex/ppcls/data/imaug/random_erasing.py +0 -55
- paddlex/ppcls/data/reader.py +0 -318
- paddlex/ppcls/modeling/__init__.py +0 -20
- paddlex/ppcls/modeling/architectures/__init__.py +0 -51
- paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
- paddlex/ppcls/modeling/architectures/darknet.py +0 -161
- paddlex/ppcls/modeling/architectures/densenet.py +0 -308
- paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
- paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
- paddlex/ppcls/modeling/architectures/dpn.py +0 -425
- paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
- paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
- paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
- paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
- paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
- paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
- paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
- paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
- paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
- paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
- paddlex/ppcls/modeling/architectures/regnet.py +0 -383
- paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
- paddlex/ppcls/modeling/architectures/res2net.py +0 -272
- paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
- paddlex/ppcls/modeling/architectures/resnest.py +0 -705
- paddlex/ppcls/modeling/architectures/resnet.py +0 -317
- paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
- paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
- paddlex/ppcls/modeling/architectures/resnext.py +0 -259
- paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
- paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
- paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
- paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
- paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
- paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
- paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
- paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
- paddlex/ppcls/modeling/architectures/vgg.py +0 -152
- paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
- paddlex/ppcls/modeling/architectures/xception.py +0 -345
- paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
- paddlex/ppcls/modeling/loss.py +0 -158
- paddlex/ppcls/modeling/utils.py +0 -53
- paddlex/ppcls/optimizer/__init__.py +0 -19
- paddlex/ppcls/optimizer/learning_rate.py +0 -159
- paddlex/ppcls/optimizer/optimizer.py +0 -165
- paddlex/ppcls/utils/__init__.py +0 -27
- paddlex/ppcls/utils/check.py +0 -151
- paddlex/ppcls/utils/config.py +0 -201
- paddlex/ppcls/utils/logger.py +0 -120
- paddlex/ppcls/utils/metrics.py +0 -112
- paddlex/ppcls/utils/misc.py +0 -62
- paddlex/ppcls/utils/model_zoo.py +0 -213
- paddlex/ppcls/utils/save_load.py +0 -163
- paddlex/ppdet/__init__.py +0 -16
- paddlex/ppdet/core/__init__.py +0 -15
- paddlex/ppdet/core/config/__init__.py +0 -13
- paddlex/ppdet/core/config/schema.py +0 -248
- paddlex/ppdet/core/config/yaml_helpers.py +0 -118
- paddlex/ppdet/core/workspace.py +0 -279
- paddlex/ppdet/data/__init__.py +0 -21
- paddlex/ppdet/data/reader.py +0 -304
- paddlex/ppdet/data/shm_utils.py +0 -67
- paddlex/ppdet/data/source/__init__.py +0 -27
- paddlex/ppdet/data/source/category.py +0 -823
- paddlex/ppdet/data/source/coco.py +0 -243
- paddlex/ppdet/data/source/dataset.py +0 -192
- paddlex/ppdet/data/source/keypoint_coco.py +0 -656
- paddlex/ppdet/data/source/mot.py +0 -360
- paddlex/ppdet/data/source/voc.py +0 -204
- paddlex/ppdet/data/source/widerface.py +0 -180
- paddlex/ppdet/data/transform/__init__.py +0 -28
- paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
- paddlex/ppdet/data/transform/batch_operators.py +0 -758
- paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
- paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
- paddlex/ppdet/data/transform/mot_operators.py +0 -636
- paddlex/ppdet/data/transform/op_helper.py +0 -468
- paddlex/ppdet/data/transform/operators.py +0 -2103
- paddlex/ppdet/engine/__init__.py +0 -29
- paddlex/ppdet/engine/callbacks.py +0 -262
- paddlex/ppdet/engine/env.py +0 -47
- paddlex/ppdet/engine/export_utils.py +0 -118
- paddlex/ppdet/engine/tracker.py +0 -425
- paddlex/ppdet/engine/trainer.py +0 -535
- paddlex/ppdet/metrics/__init__.py +0 -23
- paddlex/ppdet/metrics/coco_utils.py +0 -184
- paddlex/ppdet/metrics/json_results.py +0 -151
- paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
- paddlex/ppdet/metrics/map_utils.py +0 -396
- paddlex/ppdet/metrics/metrics.py +0 -300
- paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
- paddlex/ppdet/metrics/mot_metrics.py +0 -184
- paddlex/ppdet/metrics/widerface_utils.py +0 -393
- paddlex/ppdet/model_zoo/__init__.py +0 -18
- paddlex/ppdet/model_zoo/model_zoo.py +0 -86
- paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
- paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
- paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
- paddlex/ppdet/modeling/__init__.py +0 -41
- paddlex/ppdet/modeling/architectures/__init__.py +0 -40
- paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
- paddlex/ppdet/modeling/architectures/centernet.py +0 -103
- paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
- paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
- paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
- paddlex/ppdet/modeling/architectures/fcos.py +0 -105
- paddlex/ppdet/modeling/architectures/jde.py +0 -125
- paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
- paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
- paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
- paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
- paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
- paddlex/ppdet/modeling/architectures/solov2.py +0 -110
- paddlex/ppdet/modeling/architectures/ssd.py +0 -84
- paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
- paddlex/ppdet/modeling/architectures/yolo.py +0 -104
- paddlex/ppdet/modeling/backbones/__init__.py +0 -37
- paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
- paddlex/ppdet/modeling/backbones/darknet.py +0 -341
- paddlex/ppdet/modeling/backbones/dla.py +0 -244
- paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
- paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
- paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
- paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
- paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
- paddlex/ppdet/modeling/backbones/res2net.py +0 -358
- paddlex/ppdet/modeling/backbones/resnet.py +0 -606
- paddlex/ppdet/modeling/backbones/senet.py +0 -140
- paddlex/ppdet/modeling/backbones/vgg.py +0 -216
- paddlex/ppdet/modeling/bbox_utils.py +0 -464
- paddlex/ppdet/modeling/heads/__init__.py +0 -41
- paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
- paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
- paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
- paddlex/ppdet/modeling/heads/face_head.py +0 -113
- paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
- paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
- paddlex/ppdet/modeling/heads/mask_head.py +0 -253
- paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
- paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
- paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
- paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
- paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
- paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
- paddlex/ppdet/modeling/keypoint_utils.py +0 -302
- paddlex/ppdet/modeling/layers.py +0 -1142
- paddlex/ppdet/modeling/losses/__init__.py +0 -35
- paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
- paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
- paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
- paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
- paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
- paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
- paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
- paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
- paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
- paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
- paddlex/ppdet/modeling/mot/__init__.py +0 -25
- paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
- paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
- paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
- paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
- paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
- paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
- paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
- paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
- paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
- paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
- paddlex/ppdet/modeling/mot/utils.py +0 -181
- paddlex/ppdet/modeling/mot/visualization.py +0 -130
- paddlex/ppdet/modeling/necks/__init__.py +0 -25
- paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
- paddlex/ppdet/modeling/necks/fpn.py +0 -233
- paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
- paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
- paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
- paddlex/ppdet/modeling/ops.py +0 -1599
- paddlex/ppdet/modeling/post_process.py +0 -449
- paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
- paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
- paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
- paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
- paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
- paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
- paddlex/ppdet/modeling/reid/__init__.py +0 -23
- paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
- paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
- paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
- paddlex/ppdet/modeling/reid/resnet.py +0 -320
- paddlex/ppdet/modeling/shape_spec.py +0 -33
- paddlex/ppdet/modeling/tests/__init__.py +0 -13
- paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
- paddlex/ppdet/modeling/tests/test_base.py +0 -75
- paddlex/ppdet/modeling/tests/test_ops.py +0 -839
- paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
- paddlex/ppdet/optimizer.py +0 -285
- paddlex/ppdet/slim/__init__.py +0 -62
- paddlex/ppdet/slim/distill.py +0 -111
- paddlex/ppdet/slim/prune.py +0 -85
- paddlex/ppdet/slim/quant.py +0 -52
- paddlex/ppdet/utils/__init__.py +0 -13
- paddlex/ppdet/utils/check.py +0 -93
- paddlex/ppdet/utils/checkpoint.py +0 -216
- paddlex/ppdet/utils/cli.py +0 -151
- paddlex/ppdet/utils/colormap.py +0 -56
- paddlex/ppdet/utils/download.py +0 -477
- paddlex/ppdet/utils/logger.py +0 -71
- paddlex/ppdet/utils/stats.py +0 -95
- paddlex/ppdet/utils/visualizer.py +0 -292
- paddlex/ppdet/utils/voc_utils.py +0 -87
- paddlex/seg.py +0 -38
- paddlex/tools/__init__.py +0 -16
- paddlex/tools/convert.py +0 -52
- paddlex/tools/dataset_conversion/__init__.py +0 -24
- paddlex/tools/dataset_conversion/x2coco.py +0 -379
- paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
- paddlex/tools/dataset_conversion/x2seg.py +0 -343
- paddlex/tools/dataset_conversion/x2voc.py +0 -230
- paddlex/tools/dataset_split/__init__.py +0 -23
- paddlex/tools/dataset_split/coco_split.py +0 -69
- paddlex/tools/dataset_split/imagenet_split.py +0 -75
- paddlex/tools/dataset_split/seg_split.py +0 -96
- paddlex/tools/dataset_split/utils.py +0 -75
- paddlex/tools/dataset_split/voc_split.py +0 -91
- paddlex/tools/split.py +0 -41
- paddlex/utils/checkpoint.py +0 -439
- paddlex/utils/shm.py +0 -67
- paddlex/utils/stats.py +0 -68
- paddlex/utils/utils.py +0 -140
- paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
- paddlex-2.0.0rc4.dist-info/METADATA +0 -29
- paddlex-2.0.0rc4.dist-info/RECORD +0 -445
- paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
- paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
- paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,2103 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
# function:
|
16
|
-
# operators to process sample,
|
17
|
-
# eg: decode/resize/crop image
|
18
|
-
|
19
|
-
from __future__ import absolute_import
|
20
|
-
from __future__ import print_function
|
21
|
-
from __future__ import division
|
22
|
-
|
23
|
-
try:
|
24
|
-
from collections.abc import Sequence
|
25
|
-
except Exception:
|
26
|
-
from collections import Sequence
|
27
|
-
|
28
|
-
from numbers import Number, Integral
|
29
|
-
|
30
|
-
import uuid
|
31
|
-
import random
|
32
|
-
import math
|
33
|
-
import numpy as np
|
34
|
-
import os
|
35
|
-
import copy
|
36
|
-
|
37
|
-
import cv2
|
38
|
-
from PIL import Image, ImageEnhance, ImageDraw
|
39
|
-
|
40
|
-
from paddlex.ppdet.core.workspace import serializable
|
41
|
-
from paddlex.ppdet.modeling.layers import AnchorGrid
|
42
|
-
from paddlex.ppdet.modeling import bbox_utils
|
43
|
-
|
44
|
-
from .op_helper import (
|
45
|
-
satisfy_sample_constraint, filter_and_process, generate_sample_bbox,
|
46
|
-
clip_bbox, data_anchor_sampling, satisfy_sample_constraint_coverage,
|
47
|
-
crop_image_sampling, generate_sample_bbox_square, bbox_area_sampling,
|
48
|
-
is_poly, gaussian_radius, draw_gaussian)
|
49
|
-
|
50
|
-
from paddlex.ppdet.utils.logger import setup_logger
|
51
|
-
logger = setup_logger(__name__)
|
52
|
-
|
53
|
-
registered_ops = []
|
54
|
-
|
55
|
-
|
56
|
-
def register_op(cls):
|
57
|
-
registered_ops.append(cls.__name__)
|
58
|
-
if not hasattr(BaseOperator, cls.__name__):
|
59
|
-
setattr(BaseOperator, cls.__name__, cls)
|
60
|
-
else:
|
61
|
-
raise KeyError("The {} class has been registered.".format(
|
62
|
-
cls.__name__))
|
63
|
-
return serializable(cls)
|
64
|
-
|
65
|
-
|
66
|
-
class BboxError(ValueError):
|
67
|
-
pass
|
68
|
-
|
69
|
-
|
70
|
-
class ImageError(ValueError):
|
71
|
-
pass
|
72
|
-
|
73
|
-
|
74
|
-
class BaseOperator(object):
|
75
|
-
def __init__(self, name=None):
|
76
|
-
if name is None:
|
77
|
-
name = self.__class__.__name__
|
78
|
-
self._id = name + '_' + str(uuid.uuid4())[-6:]
|
79
|
-
|
80
|
-
def apply(self, sample, context=None):
|
81
|
-
""" Process a sample.
|
82
|
-
Args:
|
83
|
-
sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
|
84
|
-
context (dict): info about this sample processing
|
85
|
-
Returns:
|
86
|
-
result (dict): a processed sample
|
87
|
-
"""
|
88
|
-
return sample
|
89
|
-
|
90
|
-
def __call__(self, sample, context=None):
|
91
|
-
""" Process a sample.
|
92
|
-
Args:
|
93
|
-
sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
|
94
|
-
context (dict): info about this sample processing
|
95
|
-
Returns:
|
96
|
-
result (dict): a processed sample
|
97
|
-
"""
|
98
|
-
if isinstance(sample, Sequence):
|
99
|
-
for i in range(len(sample)):
|
100
|
-
sample[i] = self.apply(sample[i], context)
|
101
|
-
else:
|
102
|
-
sample = self.apply(sample, context)
|
103
|
-
return sample
|
104
|
-
|
105
|
-
def __str__(self):
|
106
|
-
return str(self._id)
|
107
|
-
|
108
|
-
|
109
|
-
@register_op
|
110
|
-
class Decode(BaseOperator):
|
111
|
-
def __init__(self):
|
112
|
-
""" Transform the image data to numpy format following the rgb format
|
113
|
-
"""
|
114
|
-
super(Decode, self).__init__()
|
115
|
-
|
116
|
-
def apply(self, sample, context=None):
|
117
|
-
""" load image if 'im_file' field is not empty but 'image' is"""
|
118
|
-
if 'image' not in sample:
|
119
|
-
with open(sample['im_file'], 'rb') as f:
|
120
|
-
sample['image'] = f.read()
|
121
|
-
sample.pop('im_file')
|
122
|
-
|
123
|
-
im = sample['image']
|
124
|
-
data = np.frombuffer(im, dtype='uint8')
|
125
|
-
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
|
126
|
-
if 'keep_ori_im' in sample and sample['keep_ori_im']:
|
127
|
-
sample['ori_image'] = im
|
128
|
-
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
129
|
-
|
130
|
-
sample['image'] = im
|
131
|
-
if 'h' not in sample:
|
132
|
-
sample['h'] = im.shape[0]
|
133
|
-
elif sample['h'] != im.shape[0]:
|
134
|
-
logger.warn(
|
135
|
-
"The actual image height: {} is not equal to the "
|
136
|
-
"height: {} in annotation, and update sample['h'] by actual "
|
137
|
-
"image height.".format(im.shape[0], sample['h']))
|
138
|
-
sample['h'] = im.shape[0]
|
139
|
-
if 'w' not in sample:
|
140
|
-
sample['w'] = im.shape[1]
|
141
|
-
elif sample['w'] != im.shape[1]:
|
142
|
-
logger.warn(
|
143
|
-
"The actual image width: {} is not equal to the "
|
144
|
-
"width: {} in annotation, and update sample['w'] by actual "
|
145
|
-
"image width.".format(im.shape[1], sample['w']))
|
146
|
-
sample['w'] = im.shape[1]
|
147
|
-
|
148
|
-
sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
|
149
|
-
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
|
150
|
-
return sample
|
151
|
-
|
152
|
-
|
153
|
-
@register_op
|
154
|
-
class Permute(BaseOperator):
|
155
|
-
def __init__(self):
|
156
|
-
"""
|
157
|
-
Change the channel to be (C, H, W)
|
158
|
-
"""
|
159
|
-
super(Permute, self).__init__()
|
160
|
-
|
161
|
-
def apply(self, sample, context=None):
|
162
|
-
im = sample['image']
|
163
|
-
im = im.transpose((2, 0, 1))
|
164
|
-
sample['image'] = im
|
165
|
-
return sample
|
166
|
-
|
167
|
-
|
168
|
-
@register_op
|
169
|
-
class Lighting(BaseOperator):
|
170
|
-
"""
|
171
|
-
Lighting the image by eigenvalues and eigenvectors
|
172
|
-
Args:
|
173
|
-
eigval (list): eigenvalues
|
174
|
-
eigvec (list): eigenvectors
|
175
|
-
alphastd (float): random weight of lighting, 0.1 by default
|
176
|
-
"""
|
177
|
-
|
178
|
-
def __init__(self, eigval, eigvec, alphastd=0.1):
|
179
|
-
super(Lighting, self).__init__()
|
180
|
-
self.alphastd = alphastd
|
181
|
-
self.eigval = np.array(eigval).astype('float32')
|
182
|
-
self.eigvec = np.array(eigvec).astype('float32')
|
183
|
-
|
184
|
-
def apply(self, sample, context=None):
|
185
|
-
alpha = np.random.normal(scale=self.alphastd, size=(3, ))
|
186
|
-
sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
|
187
|
-
return sample
|
188
|
-
|
189
|
-
|
190
|
-
@register_op
|
191
|
-
class RandomErasingImage(BaseOperator):
|
192
|
-
def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
|
193
|
-
"""
|
194
|
-
Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
|
195
|
-
Args:
|
196
|
-
prob (float): probability to carry out random erasing
|
197
|
-
lower (float): lower limit of the erasing area ratio
|
198
|
-
heigher (float): upper limit of the erasing area ratio
|
199
|
-
aspect_ratio (float): aspect ratio of the erasing region
|
200
|
-
"""
|
201
|
-
super(RandomErasingImage, self).__init__()
|
202
|
-
self.prob = prob
|
203
|
-
self.lower = lower
|
204
|
-
self.heigher = heigher
|
205
|
-
self.aspect_ratio = aspect_ratio
|
206
|
-
|
207
|
-
def apply(self, sample):
|
208
|
-
gt_bbox = sample['gt_bbox']
|
209
|
-
im = sample['image']
|
210
|
-
if not isinstance(im, np.ndarray):
|
211
|
-
raise TypeError("{}: image is not a numpy array.".format(self))
|
212
|
-
if len(im.shape) != 3:
|
213
|
-
raise ImageError("{}: image is not 3-dimensional.".format(self))
|
214
|
-
|
215
|
-
for idx in range(gt_bbox.shape[0]):
|
216
|
-
if self.prob <= np.random.rand():
|
217
|
-
continue
|
218
|
-
|
219
|
-
x1, y1, x2, y2 = gt_bbox[idx, :]
|
220
|
-
w_bbox = x2 - x1
|
221
|
-
h_bbox = y2 - y1
|
222
|
-
area = w_bbox * h_bbox
|
223
|
-
|
224
|
-
target_area = random.uniform(self.lower, self.higher) * area
|
225
|
-
aspect_ratio = random.uniform(self.aspect_ratio,
|
226
|
-
1 / self.aspect_ratio)
|
227
|
-
|
228
|
-
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
229
|
-
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
230
|
-
|
231
|
-
if w < w_bbox and h < h_bbox:
|
232
|
-
off_y1 = random.randint(0, int(h_bbox - h))
|
233
|
-
off_x1 = random.randint(0, int(w_bbox - w))
|
234
|
-
im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
|
235
|
-
x1 + off_x1 + w), :] = 0
|
236
|
-
sample['image'] = im
|
237
|
-
return sample
|
238
|
-
|
239
|
-
|
240
|
-
@register_op
|
241
|
-
class NormalizeImage(BaseOperator):
|
242
|
-
def __init__(self,
|
243
|
-
mean=[0.485, 0.456, 0.406],
|
244
|
-
std=[1, 1, 1],
|
245
|
-
is_scale=True):
|
246
|
-
"""
|
247
|
-
Args:
|
248
|
-
mean (list): the pixel mean
|
249
|
-
std (list): the pixel variance
|
250
|
-
"""
|
251
|
-
super(NormalizeImage, self).__init__()
|
252
|
-
self.mean = mean
|
253
|
-
self.std = std
|
254
|
-
self.is_scale = is_scale
|
255
|
-
if not (isinstance(self.mean, list) and isinstance(self.std, list) and
|
256
|
-
isinstance(self.is_scale, bool)):
|
257
|
-
raise TypeError("{}: input type is invalid.".format(self))
|
258
|
-
from functools import reduce
|
259
|
-
if reduce(lambda x, y: x * y, self.std) == 0:
|
260
|
-
raise ValueError('{}: std is invalid!'.format(self))
|
261
|
-
|
262
|
-
def apply(self, sample, context=None):
|
263
|
-
"""Normalize the image.
|
264
|
-
Operators:
|
265
|
-
1.(optional) Scale the image to [0,1]
|
266
|
-
2. Each pixel minus mean and is divided by std
|
267
|
-
"""
|
268
|
-
im = sample['image']
|
269
|
-
im = im.astype(np.float32, copy=False)
|
270
|
-
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
|
271
|
-
std = np.array(self.std)[np.newaxis, np.newaxis, :]
|
272
|
-
|
273
|
-
if self.is_scale:
|
274
|
-
im = im / 255.0
|
275
|
-
|
276
|
-
im -= mean
|
277
|
-
im /= std
|
278
|
-
|
279
|
-
sample['image'] = im
|
280
|
-
return sample
|
281
|
-
|
282
|
-
|
283
|
-
@register_op
|
284
|
-
class GridMask(BaseOperator):
|
285
|
-
def __init__(self,
|
286
|
-
use_h=True,
|
287
|
-
use_w=True,
|
288
|
-
rotate=1,
|
289
|
-
offset=False,
|
290
|
-
ratio=0.5,
|
291
|
-
mode=1,
|
292
|
-
prob=0.7,
|
293
|
-
upper_iter=360000):
|
294
|
-
"""
|
295
|
-
GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
|
296
|
-
Args:
|
297
|
-
use_h (bool): whether to mask vertically
|
298
|
-
use_w (boo;): whether to mask horizontally
|
299
|
-
rotate (float): angle for the mask to rotate
|
300
|
-
offset (float): mask offset
|
301
|
-
ratio (float): mask ratio
|
302
|
-
mode (int): gridmask mode
|
303
|
-
prob (float): max probability to carry out gridmask
|
304
|
-
upper_iter (int): suggested to be equal to global max_iter
|
305
|
-
"""
|
306
|
-
super(GridMask, self).__init__()
|
307
|
-
self.use_h = use_h
|
308
|
-
self.use_w = use_w
|
309
|
-
self.rotate = rotate
|
310
|
-
self.offset = offset
|
311
|
-
self.ratio = ratio
|
312
|
-
self.mode = mode
|
313
|
-
self.prob = prob
|
314
|
-
self.upper_iter = upper_iter
|
315
|
-
|
316
|
-
from .gridmask_utils import Gridmask
|
317
|
-
self.gridmask_op = Gridmask(
|
318
|
-
use_h,
|
319
|
-
use_w,
|
320
|
-
rotate=rotate,
|
321
|
-
offset=offset,
|
322
|
-
ratio=ratio,
|
323
|
-
mode=mode,
|
324
|
-
prob=prob,
|
325
|
-
upper_iter=upper_iter)
|
326
|
-
|
327
|
-
def apply(self, sample, context=None):
|
328
|
-
sample['image'] = self.gridmask_op(sample['image'],
|
329
|
-
sample['curr_iter'])
|
330
|
-
return sample
|
331
|
-
|
332
|
-
|
333
|
-
@register_op
|
334
|
-
class RandomDistort(BaseOperator):
|
335
|
-
"""Random color distortion.
|
336
|
-
Args:
|
337
|
-
hue (list): hue settings. in [lower, upper, probability] format.
|
338
|
-
saturation (list): saturation settings. in [lower, upper, probability] format.
|
339
|
-
contrast (list): contrast settings. in [lower, upper, probability] format.
|
340
|
-
brightness (list): brightness settings. in [lower, upper, probability] format.
|
341
|
-
random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
|
342
|
-
order.
|
343
|
-
count (int): the number of doing distrot
|
344
|
-
random_channel (bool): whether to swap channels randomly
|
345
|
-
"""
|
346
|
-
|
347
|
-
def __init__(self,
|
348
|
-
hue=[-18, 18, 0.5],
|
349
|
-
saturation=[0.5, 1.5, 0.5],
|
350
|
-
contrast=[0.5, 1.5, 0.5],
|
351
|
-
brightness=[0.5, 1.5, 0.5],
|
352
|
-
random_apply=True,
|
353
|
-
count=4,
|
354
|
-
random_channel=False):
|
355
|
-
super(RandomDistort, self).__init__()
|
356
|
-
self.hue = hue
|
357
|
-
self.saturation = saturation
|
358
|
-
self.contrast = contrast
|
359
|
-
self.brightness = brightness
|
360
|
-
self.random_apply = random_apply
|
361
|
-
self.count = count
|
362
|
-
self.random_channel = random_channel
|
363
|
-
|
364
|
-
def apply_hue(self, img):
|
365
|
-
low, high, prob = self.hue
|
366
|
-
if np.random.uniform(0., 1.) < prob:
|
367
|
-
return img
|
368
|
-
|
369
|
-
img = img.astype(np.float32)
|
370
|
-
# it works, but result differ from HSV version
|
371
|
-
delta = np.random.uniform(low, high)
|
372
|
-
u = np.cos(delta * np.pi)
|
373
|
-
w = np.sin(delta * np.pi)
|
374
|
-
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
|
375
|
-
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
|
376
|
-
[0.211, -0.523, 0.311]])
|
377
|
-
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
|
378
|
-
[1.0, -1.107, 1.705]])
|
379
|
-
t = np.dot(np.dot(ityiq, bt), tyiq).T
|
380
|
-
img = np.dot(img, t)
|
381
|
-
return img
|
382
|
-
|
383
|
-
def apply_saturation(self, img):
|
384
|
-
low, high, prob = self.saturation
|
385
|
-
if np.random.uniform(0., 1.) < prob:
|
386
|
-
return img
|
387
|
-
delta = np.random.uniform(low, high)
|
388
|
-
img = img.astype(np.float32)
|
389
|
-
# it works, but result differ from HSV version
|
390
|
-
gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
|
391
|
-
gray = gray.sum(axis=2, keepdims=True)
|
392
|
-
gray *= (1.0 - delta)
|
393
|
-
img *= delta
|
394
|
-
img += gray
|
395
|
-
return img
|
396
|
-
|
397
|
-
def apply_contrast(self, img):
|
398
|
-
low, high, prob = self.contrast
|
399
|
-
if np.random.uniform(0., 1.) < prob:
|
400
|
-
return img
|
401
|
-
delta = np.random.uniform(low, high)
|
402
|
-
img = img.astype(np.float32)
|
403
|
-
img *= delta
|
404
|
-
return img
|
405
|
-
|
406
|
-
def apply_brightness(self, img):
|
407
|
-
low, high, prob = self.brightness
|
408
|
-
if np.random.uniform(0., 1.) < prob:
|
409
|
-
return img
|
410
|
-
delta = np.random.uniform(low, high)
|
411
|
-
img = img.astype(np.float32)
|
412
|
-
img += delta
|
413
|
-
return img
|
414
|
-
|
415
|
-
def apply(self, sample, context=None):
|
416
|
-
img = sample['image']
|
417
|
-
if self.random_apply:
|
418
|
-
functions = [
|
419
|
-
self.apply_brightness, self.apply_contrast,
|
420
|
-
self.apply_saturation, self.apply_hue
|
421
|
-
]
|
422
|
-
distortions = np.random.permutation(functions)[:self.count]
|
423
|
-
for func in distortions:
|
424
|
-
img = func(img)
|
425
|
-
sample['image'] = img
|
426
|
-
return sample
|
427
|
-
|
428
|
-
img = self.apply_brightness(img)
|
429
|
-
mode = np.random.randint(0, 2)
|
430
|
-
|
431
|
-
if mode:
|
432
|
-
img = self.apply_contrast(img)
|
433
|
-
|
434
|
-
img = self.apply_saturation(img)
|
435
|
-
img = self.apply_hue(img)
|
436
|
-
|
437
|
-
if not mode:
|
438
|
-
img = self.apply_contrast(img)
|
439
|
-
|
440
|
-
if self.random_channel:
|
441
|
-
if np.random.randint(0, 2):
|
442
|
-
img = img[..., np.random.permutation(3)]
|
443
|
-
sample['image'] = img
|
444
|
-
return sample
|
445
|
-
|
446
|
-
|
447
|
-
@register_op
|
448
|
-
class AutoAugment(BaseOperator):
|
449
|
-
def __init__(self, autoaug_type="v1"):
|
450
|
-
"""
|
451
|
-
Args:
|
452
|
-
autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
|
453
|
-
"""
|
454
|
-
super(AutoAugment, self).__init__()
|
455
|
-
self.autoaug_type = autoaug_type
|
456
|
-
|
457
|
-
def apply(self, sample, context=None):
|
458
|
-
"""
|
459
|
-
Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
|
460
|
-
"""
|
461
|
-
im = sample['image']
|
462
|
-
gt_bbox = sample['gt_bbox']
|
463
|
-
if not isinstance(im, np.ndarray):
|
464
|
-
raise TypeError("{}: image is not a numpy array.".format(self))
|
465
|
-
if len(im.shape) != 3:
|
466
|
-
raise ImageError("{}: image is not 3-dimensional.".format(self))
|
467
|
-
if len(gt_bbox) == 0:
|
468
|
-
return sample
|
469
|
-
|
470
|
-
height, width, _ = im.shape
|
471
|
-
norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
|
472
|
-
norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
|
473
|
-
norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
|
474
|
-
norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
|
475
|
-
norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
|
476
|
-
|
477
|
-
from .autoaugment_utils import distort_image_with_autoaugment
|
478
|
-
im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
|
479
|
-
self.autoaug_type)
|
480
|
-
|
481
|
-
gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
|
482
|
-
gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
|
483
|
-
gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
|
484
|
-
gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
|
485
|
-
|
486
|
-
sample['image'] = im
|
487
|
-
sample['gt_bbox'] = gt_bbox
|
488
|
-
return sample
|
489
|
-
|
490
|
-
|
491
|
-
@register_op
|
492
|
-
class RandomFlip(BaseOperator):
|
493
|
-
def __init__(self, prob=0.5):
|
494
|
-
"""
|
495
|
-
Args:
|
496
|
-
prob (float): the probability of flipping image
|
497
|
-
"""
|
498
|
-
super(RandomFlip, self).__init__()
|
499
|
-
self.prob = prob
|
500
|
-
if not (isinstance(self.prob, float)):
|
501
|
-
raise TypeError("{}: input type is invalid.".format(self))
|
502
|
-
|
503
|
-
def apply_segm(self, segms, height, width):
|
504
|
-
def _flip_poly(poly, width):
|
505
|
-
flipped_poly = np.array(poly)
|
506
|
-
flipped_poly[0::2] = width - np.array(poly[0::2])
|
507
|
-
return flipped_poly.tolist()
|
508
|
-
|
509
|
-
def _flip_rle(rle, height, width):
|
510
|
-
if 'counts' in rle and type(rle['counts']) == list:
|
511
|
-
rle = mask_util.frPyObjects(rle, height, width)
|
512
|
-
mask = mask_util.decode(rle)
|
513
|
-
mask = mask[:, ::-1]
|
514
|
-
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
515
|
-
return rle
|
516
|
-
|
517
|
-
flipped_segms = []
|
518
|
-
for segm in segms:
|
519
|
-
if is_poly(segm):
|
520
|
-
# Polygon format
|
521
|
-
flipped_segms.append(
|
522
|
-
[_flip_poly(poly, width) for poly in segm])
|
523
|
-
else:
|
524
|
-
# RLE format
|
525
|
-
import pycocotools.mask as mask_util
|
526
|
-
flipped_segms.append(_flip_rle(segm, height, width))
|
527
|
-
return flipped_segms
|
528
|
-
|
529
|
-
def apply_keypoint(self, gt_keypoint, width):
|
530
|
-
for i in range(gt_keypoint.shape[1]):
|
531
|
-
if i % 2 == 0:
|
532
|
-
old_x = gt_keypoint[:, i].copy()
|
533
|
-
gt_keypoint[:, i] = width - old_x
|
534
|
-
return gt_keypoint
|
535
|
-
|
536
|
-
def apply_image(self, image):
|
537
|
-
return image[:, ::-1, :]
|
538
|
-
|
539
|
-
def apply_bbox(self, bbox, width):
|
540
|
-
oldx1 = bbox[:, 0].copy()
|
541
|
-
oldx2 = bbox[:, 2].copy()
|
542
|
-
bbox[:, 0] = width - oldx2
|
543
|
-
bbox[:, 2] = width - oldx1
|
544
|
-
return bbox
|
545
|
-
|
546
|
-
def apply_rbox(self, bbox, width):
|
547
|
-
oldx1 = bbox[:, 0].copy()
|
548
|
-
oldx2 = bbox[:, 2].copy()
|
549
|
-
oldx3 = bbox[:, 4].copy()
|
550
|
-
oldx4 = bbox[:, 6].copy()
|
551
|
-
bbox[:, 0] = width - oldx1
|
552
|
-
bbox[:, 2] = width - oldx2
|
553
|
-
bbox[:, 4] = width - oldx3
|
554
|
-
bbox[:, 6] = width - oldx4
|
555
|
-
bbox = [bbox_utils.get_best_begin_point_single(e) for e in bbox]
|
556
|
-
return bbox
|
557
|
-
|
558
|
-
def apply(self, sample, context=None):
|
559
|
-
"""Filp the image and bounding box.
|
560
|
-
Operators:
|
561
|
-
1. Flip the image numpy.
|
562
|
-
2. Transform the bboxes' x coordinates.
|
563
|
-
(Must judge whether the coordinates are normalized!)
|
564
|
-
3. Transform the segmentations' x coordinates.
|
565
|
-
(Must judge whether the coordinates are normalized!)
|
566
|
-
Output:
|
567
|
-
sample: the image, bounding box and segmentation part
|
568
|
-
in sample are flipped.
|
569
|
-
"""
|
570
|
-
if np.random.uniform(0, 1) < self.prob:
|
571
|
-
im = sample['image']
|
572
|
-
height, width = im.shape[:2]
|
573
|
-
im = self.apply_image(im)
|
574
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
575
|
-
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
|
576
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
577
|
-
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
|
578
|
-
width)
|
579
|
-
if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
|
580
|
-
sample['gt_keypoint'] = self.apply_keypoint(
|
581
|
-
sample['gt_keypoint'], width)
|
582
|
-
|
583
|
-
if 'semantic' in sample and sample['semantic']:
|
584
|
-
sample['semantic'] = sample['semantic'][:, ::-1]
|
585
|
-
|
586
|
-
if 'gt_segm' in sample and sample['gt_segm'].any():
|
587
|
-
sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]
|
588
|
-
|
589
|
-
if 'gt_rbox2poly' in sample and sample['gt_rbox2poly'].any():
|
590
|
-
sample['gt_rbox2poly'] = self.apply_rbox(
|
591
|
-
sample['gt_rbox2poly'], width)
|
592
|
-
|
593
|
-
sample['flipped'] = True
|
594
|
-
sample['image'] = im
|
595
|
-
return sample
|
596
|
-
|
597
|
-
|
598
|
-
@register_op
|
599
|
-
class Resize(BaseOperator):
|
600
|
-
def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
|
601
|
-
"""
|
602
|
-
Resize image to target size. if keep_ratio is True,
|
603
|
-
resize the image's long side to the maximum of target_size
|
604
|
-
if keep_ratio is False, resize the image to target size(h, w)
|
605
|
-
Args:
|
606
|
-
target_size (int|list): image target size
|
607
|
-
keep_ratio (bool): whether keep_ratio or not, default true
|
608
|
-
interp (int): the interpolation method
|
609
|
-
"""
|
610
|
-
super(Resize, self).__init__()
|
611
|
-
self.keep_ratio = keep_ratio
|
612
|
-
self.interp = interp
|
613
|
-
if not isinstance(target_size, (Integral, Sequence)):
|
614
|
-
raise TypeError(
|
615
|
-
"Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
|
616
|
-
format(type(target_size)))
|
617
|
-
if isinstance(target_size, Integral):
|
618
|
-
target_size = [target_size, target_size]
|
619
|
-
self.target_size = target_size
|
620
|
-
|
621
|
-
def apply_image(self, image, scale):
|
622
|
-
im_scale_x, im_scale_y = scale
|
623
|
-
|
624
|
-
return cv2.resize(
|
625
|
-
image,
|
626
|
-
None,
|
627
|
-
None,
|
628
|
-
fx=im_scale_x,
|
629
|
-
fy=im_scale_y,
|
630
|
-
interpolation=self.interp)
|
631
|
-
|
632
|
-
def apply_bbox(self, bbox, scale, size):
|
633
|
-
im_scale_x, im_scale_y = scale
|
634
|
-
resize_w, resize_h = size
|
635
|
-
bbox[:, 0::2] *= im_scale_x
|
636
|
-
bbox[:, 1::2] *= im_scale_y
|
637
|
-
bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
|
638
|
-
bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
|
639
|
-
return bbox
|
640
|
-
|
641
|
-
def apply_segm(self, segms, im_size, scale):
|
642
|
-
def _resize_poly(poly, im_scale_x, im_scale_y):
|
643
|
-
resized_poly = np.array(poly).astype('float32')
|
644
|
-
resized_poly[0::2] *= im_scale_x
|
645
|
-
resized_poly[1::2] *= im_scale_y
|
646
|
-
return resized_poly.tolist()
|
647
|
-
|
648
|
-
def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
|
649
|
-
if 'counts' in rle and type(rle['counts']) == list:
|
650
|
-
rle = mask_util.frPyObjects(rle, im_h, im_w)
|
651
|
-
|
652
|
-
mask = mask_util.decode(rle)
|
653
|
-
mask = cv2.resize(
|
654
|
-
image,
|
655
|
-
None,
|
656
|
-
None,
|
657
|
-
fx=im_scale_x,
|
658
|
-
fy=im_scale_y,
|
659
|
-
interpolation=self.interp)
|
660
|
-
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
661
|
-
return rle
|
662
|
-
|
663
|
-
im_h, im_w = im_size
|
664
|
-
im_scale_x, im_scale_y = scale
|
665
|
-
resized_segms = []
|
666
|
-
for segm in segms:
|
667
|
-
if is_poly(segm):
|
668
|
-
# Polygon format
|
669
|
-
resized_segms.append([
|
670
|
-
_resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
|
671
|
-
])
|
672
|
-
else:
|
673
|
-
# RLE format
|
674
|
-
import pycocotools.mask as mask_util
|
675
|
-
resized_segms.append(
|
676
|
-
_resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
|
677
|
-
|
678
|
-
return resized_segms
|
679
|
-
|
680
|
-
def apply(self, sample, context=None):
|
681
|
-
""" Resize the image numpy.
|
682
|
-
"""
|
683
|
-
im = sample['image']
|
684
|
-
if not isinstance(im, np.ndarray):
|
685
|
-
raise TypeError("{}: image type is not numpy.".format(self))
|
686
|
-
if len(im.shape) != 3:
|
687
|
-
raise ImageError('{}: image is not 3-dimensional.'.format(self))
|
688
|
-
|
689
|
-
# apply image
|
690
|
-
im_shape = im.shape
|
691
|
-
if self.keep_ratio:
|
692
|
-
|
693
|
-
im_size_min = np.min(im_shape[0:2])
|
694
|
-
im_size_max = np.max(im_shape[0:2])
|
695
|
-
|
696
|
-
target_size_min = np.min(self.target_size)
|
697
|
-
target_size_max = np.max(self.target_size)
|
698
|
-
|
699
|
-
im_scale = min(target_size_min / im_size_min,
|
700
|
-
target_size_max / im_size_max)
|
701
|
-
|
702
|
-
resize_h = im_scale * float(im_shape[0])
|
703
|
-
resize_w = im_scale * float(im_shape[1])
|
704
|
-
|
705
|
-
im_scale_x = im_scale
|
706
|
-
im_scale_y = im_scale
|
707
|
-
else:
|
708
|
-
resize_h, resize_w = self.target_size
|
709
|
-
im_scale_y = resize_h / im_shape[0]
|
710
|
-
im_scale_x = resize_w / im_shape[1]
|
711
|
-
|
712
|
-
im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
|
713
|
-
sample['image'] = im
|
714
|
-
sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
|
715
|
-
if 'scale_factor' in sample:
|
716
|
-
scale_factor = sample['scale_factor']
|
717
|
-
sample['scale_factor'] = np.asarray(
|
718
|
-
[scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
|
719
|
-
dtype=np.float32)
|
720
|
-
else:
|
721
|
-
sample['scale_factor'] = np.asarray(
|
722
|
-
[im_scale_y, im_scale_x], dtype=np.float32)
|
723
|
-
|
724
|
-
# apply bbox
|
725
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
726
|
-
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
|
727
|
-
[im_scale_x, im_scale_y],
|
728
|
-
[resize_w, resize_h])
|
729
|
-
|
730
|
-
# apply rbox
|
731
|
-
if 'gt_rbox2poly' in sample:
|
732
|
-
if np.array(sample['gt_rbox2poly']).shape[1] != 8:
|
733
|
-
logger.warn(
|
734
|
-
"gt_rbox2poly's length shoule be 8, but actually is {}".
|
735
|
-
format(len(sample['gt_rbox2poly'])))
|
736
|
-
sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'],
|
737
|
-
[im_scale_x, im_scale_y],
|
738
|
-
[resize_w, resize_h])
|
739
|
-
|
740
|
-
# apply polygon
|
741
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
742
|
-
sample['gt_poly'] = self.apply_segm(
|
743
|
-
sample['gt_poly'], im_shape[:2], [im_scale_x, im_scale_y])
|
744
|
-
|
745
|
-
# apply semantic
|
746
|
-
if 'semantic' in sample and sample['semantic']:
|
747
|
-
semantic = sample['semantic']
|
748
|
-
semantic = cv2.resize(
|
749
|
-
semantic.astype('float32'),
|
750
|
-
None,
|
751
|
-
None,
|
752
|
-
fx=im_scale_x,
|
753
|
-
fy=im_scale_y,
|
754
|
-
interpolation=self.interp)
|
755
|
-
semantic = np.asarray(semantic).astype('int32')
|
756
|
-
semantic = np.expand_dims(semantic, 0)
|
757
|
-
sample['semantic'] = semantic
|
758
|
-
|
759
|
-
# apply gt_segm
|
760
|
-
if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
|
761
|
-
masks = [
|
762
|
-
cv2.resize(
|
763
|
-
gt_segm,
|
764
|
-
None,
|
765
|
-
None,
|
766
|
-
fx=im_scale_x,
|
767
|
-
fy=im_scale_y,
|
768
|
-
interpolation=cv2.INTER_NEAREST)
|
769
|
-
for gt_segm in sample['gt_segm']
|
770
|
-
]
|
771
|
-
sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
|
772
|
-
|
773
|
-
return sample
|
774
|
-
|
775
|
-
|
776
|
-
@register_op
|
777
|
-
class MultiscaleTestResize(BaseOperator):
|
778
|
-
def __init__(self,
|
779
|
-
origin_target_size=[800, 1333],
|
780
|
-
target_size=[],
|
781
|
-
interp=cv2.INTER_LINEAR,
|
782
|
-
use_flip=True):
|
783
|
-
"""
|
784
|
-
Rescale image to the each size in target size, and capped at max_size.
|
785
|
-
Args:
|
786
|
-
origin_target_size (list): origin target size of image
|
787
|
-
target_size (list): A list of target sizes of image.
|
788
|
-
interp (int): the interpolation method.
|
789
|
-
use_flip (bool): whether use flip augmentation.
|
790
|
-
"""
|
791
|
-
super(MultiscaleTestResize, self).__init__()
|
792
|
-
self.interp = interp
|
793
|
-
self.use_flip = use_flip
|
794
|
-
|
795
|
-
if not isinstance(target_size, Sequence):
|
796
|
-
raise TypeError(
|
797
|
-
"Type of target_size is invalid. Must be List or Tuple, now is {}".
|
798
|
-
format(type(target_size)))
|
799
|
-
self.target_size = target_size
|
800
|
-
|
801
|
-
if not isinstance(origin_target_size, Sequence):
|
802
|
-
raise TypeError(
|
803
|
-
"Type of origin_target_size is invalid. Must be List or Tuple, now is {}".
|
804
|
-
format(type(origin_target_size)))
|
805
|
-
|
806
|
-
self.origin_target_size = origin_target_size
|
807
|
-
|
808
|
-
def apply(self, sample, context=None):
|
809
|
-
""" Resize the image numpy for multi-scale test.
|
810
|
-
"""
|
811
|
-
samples = []
|
812
|
-
resizer = Resize(
|
813
|
-
self.origin_target_size, keep_ratio=True, interp=self.interp)
|
814
|
-
samples.append(resizer(sample.copy(), context))
|
815
|
-
if self.use_flip:
|
816
|
-
flipper = RandomFlip(1.1)
|
817
|
-
samples.append(flipper(sample.copy(), context=context))
|
818
|
-
|
819
|
-
for size in self.target_size:
|
820
|
-
resizer = Resize(size, keep_ratio=True, interp=self.interp)
|
821
|
-
samples.append(resizer(sample.copy(), context))
|
822
|
-
|
823
|
-
return samples
|
824
|
-
|
825
|
-
|
826
|
-
@register_op
|
827
|
-
class RandomResize(BaseOperator):
|
828
|
-
def __init__(self,
|
829
|
-
target_size,
|
830
|
-
keep_ratio=True,
|
831
|
-
interp=cv2.INTER_LINEAR,
|
832
|
-
random_size=True,
|
833
|
-
random_interp=False):
|
834
|
-
"""
|
835
|
-
Resize image to target size randomly. random target_size and interpolation method
|
836
|
-
Args:
|
837
|
-
target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
|
838
|
-
keep_ratio (bool): whether keep_raio or not, default true
|
839
|
-
interp (int): the interpolation method
|
840
|
-
random_size (bool): whether random select target size of image
|
841
|
-
random_interp (bool): whether random select interpolation method
|
842
|
-
"""
|
843
|
-
super(RandomResize, self).__init__()
|
844
|
-
self.keep_ratio = keep_ratio
|
845
|
-
self.interp = interp
|
846
|
-
self.interps = [
|
847
|
-
cv2.INTER_NEAREST,
|
848
|
-
cv2.INTER_LINEAR,
|
849
|
-
cv2.INTER_AREA,
|
850
|
-
cv2.INTER_CUBIC,
|
851
|
-
cv2.INTER_LANCZOS4,
|
852
|
-
]
|
853
|
-
assert isinstance(target_size, (
|
854
|
-
Integral, Sequence)), "target_size must be Integer, List or Tuple"
|
855
|
-
if random_size and not isinstance(target_size, Sequence):
|
856
|
-
raise TypeError(
|
857
|
-
"Type of target_size is invalid when random_size is True. Must be List or Tuple, now is {}".
|
858
|
-
format(type(target_size)))
|
859
|
-
self.target_size = target_size
|
860
|
-
self.random_size = random_size
|
861
|
-
self.random_interp = random_interp
|
862
|
-
|
863
|
-
def apply(self, sample, context=None):
|
864
|
-
""" Resize the image numpy.
|
865
|
-
"""
|
866
|
-
if self.random_size:
|
867
|
-
target_size = random.choice(self.target_size)
|
868
|
-
else:
|
869
|
-
target_size = self.target_size
|
870
|
-
|
871
|
-
if self.random_interp:
|
872
|
-
interp = random.choice(self.interps)
|
873
|
-
else:
|
874
|
-
interp = self.interp
|
875
|
-
|
876
|
-
resizer = Resize(target_size, self.keep_ratio, interp)
|
877
|
-
return resizer(sample, context=context)
|
878
|
-
|
879
|
-
|
880
|
-
@register_op
|
881
|
-
class RandomExpand(BaseOperator):
|
882
|
-
"""Random expand the canvas.
|
883
|
-
Args:
|
884
|
-
ratio (float): maximum expansion ratio.
|
885
|
-
prob (float): probability to expand.
|
886
|
-
fill_value (list): color value used to fill the canvas. in RGB order.
|
887
|
-
"""
|
888
|
-
|
889
|
-
def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)):
|
890
|
-
super(RandomExpand, self).__init__()
|
891
|
-
assert ratio > 1.01, "expand ratio must be larger than 1.01"
|
892
|
-
self.ratio = ratio
|
893
|
-
self.prob = prob
|
894
|
-
assert isinstance(fill_value, (Number, Sequence)), \
|
895
|
-
"fill value must be either float or sequence"
|
896
|
-
if isinstance(fill_value, Number):
|
897
|
-
fill_value = (fill_value, ) * 3
|
898
|
-
if not isinstance(fill_value, tuple):
|
899
|
-
fill_value = tuple(fill_value)
|
900
|
-
self.fill_value = fill_value
|
901
|
-
|
902
|
-
def apply(self, sample, context=None):
|
903
|
-
if np.random.uniform(0., 1.) < self.prob:
|
904
|
-
return sample
|
905
|
-
|
906
|
-
im = sample['image']
|
907
|
-
height, width = im.shape[:2]
|
908
|
-
ratio = np.random.uniform(1., self.ratio)
|
909
|
-
h = int(height * ratio)
|
910
|
-
w = int(width * ratio)
|
911
|
-
if not h > height or not w > width:
|
912
|
-
return sample
|
913
|
-
y = np.random.randint(0, h - height)
|
914
|
-
x = np.random.randint(0, w - width)
|
915
|
-
offsets, size = [x, y], [h, w]
|
916
|
-
|
917
|
-
pad = Pad(size,
|
918
|
-
pad_mode=-1,
|
919
|
-
offsets=offsets,
|
920
|
-
fill_value=self.fill_value)
|
921
|
-
|
922
|
-
return pad(sample, context=context)
|
923
|
-
|
924
|
-
|
925
|
-
@register_op
|
926
|
-
class CropWithSampling(BaseOperator):
|
927
|
-
def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
|
928
|
-
"""
|
929
|
-
Args:
|
930
|
-
batch_sampler (list): Multiple sets of different
|
931
|
-
parameters for cropping.
|
932
|
-
satisfy_all (bool): whether all boxes must satisfy.
|
933
|
-
e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
|
934
|
-
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
|
935
|
-
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
|
936
|
-
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
|
937
|
-
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
|
938
|
-
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
|
939
|
-
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
|
940
|
-
[max sample, max trial, min scale, max scale,
|
941
|
-
min aspect ratio, max aspect ratio,
|
942
|
-
min overlap, max overlap]
|
943
|
-
avoid_no_bbox (bool): whether to to avoid the
|
944
|
-
situation where the box does not appear.
|
945
|
-
"""
|
946
|
-
super(CropWithSampling, self).__init__()
|
947
|
-
self.batch_sampler = batch_sampler
|
948
|
-
self.satisfy_all = satisfy_all
|
949
|
-
self.avoid_no_bbox = avoid_no_bbox
|
950
|
-
|
951
|
-
def apply(self, sample, context):
|
952
|
-
"""
|
953
|
-
Crop the image and modify bounding box.
|
954
|
-
Operators:
|
955
|
-
1. Scale the image width and height.
|
956
|
-
2. Crop the image according to a radom sample.
|
957
|
-
3. Rescale the bounding box.
|
958
|
-
4. Determine if the new bbox is satisfied in the new image.
|
959
|
-
Returns:
|
960
|
-
sample: the image, bounding box are replaced.
|
961
|
-
"""
|
962
|
-
assert 'image' in sample, "image data not found"
|
963
|
-
im = sample['image']
|
964
|
-
gt_bbox = sample['gt_bbox']
|
965
|
-
gt_class = sample['gt_class']
|
966
|
-
im_height, im_width = im.shape[:2]
|
967
|
-
gt_score = None
|
968
|
-
if 'gt_score' in sample:
|
969
|
-
gt_score = sample['gt_score']
|
970
|
-
sampled_bbox = []
|
971
|
-
gt_bbox = gt_bbox.tolist()
|
972
|
-
for sampler in self.batch_sampler:
|
973
|
-
found = 0
|
974
|
-
for i in range(sampler[1]):
|
975
|
-
if found >= sampler[0]:
|
976
|
-
break
|
977
|
-
sample_bbox = generate_sample_bbox(sampler)
|
978
|
-
if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
|
979
|
-
self.satisfy_all):
|
980
|
-
sampled_bbox.append(sample_bbox)
|
981
|
-
found = found + 1
|
982
|
-
im = np.array(im)
|
983
|
-
while sampled_bbox:
|
984
|
-
idx = int(np.random.uniform(0, len(sampled_bbox)))
|
985
|
-
sample_bbox = sampled_bbox.pop(idx)
|
986
|
-
sample_bbox = clip_bbox(sample_bbox)
|
987
|
-
crop_bbox, crop_class, crop_score = \
|
988
|
-
filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score)
|
989
|
-
if self.avoid_no_bbox:
|
990
|
-
if len(crop_bbox) < 1:
|
991
|
-
continue
|
992
|
-
xmin = int(sample_bbox[0] * im_width)
|
993
|
-
xmax = int(sample_bbox[2] * im_width)
|
994
|
-
ymin = int(sample_bbox[1] * im_height)
|
995
|
-
ymax = int(sample_bbox[3] * im_height)
|
996
|
-
im = im[ymin:ymax, xmin:xmax]
|
997
|
-
sample['image'] = im
|
998
|
-
sample['gt_bbox'] = crop_bbox
|
999
|
-
sample['gt_class'] = crop_class
|
1000
|
-
sample['gt_score'] = crop_score
|
1001
|
-
return sample
|
1002
|
-
return sample
|
1003
|
-
|
1004
|
-
|
1005
|
-
@register_op
|
1006
|
-
class CropWithDataAchorSampling(BaseOperator):
|
1007
|
-
def __init__(self,
|
1008
|
-
batch_sampler,
|
1009
|
-
anchor_sampler=None,
|
1010
|
-
target_size=None,
|
1011
|
-
das_anchor_scales=[16, 32, 64, 128],
|
1012
|
-
sampling_prob=0.5,
|
1013
|
-
min_size=8.,
|
1014
|
-
avoid_no_bbox=True):
|
1015
|
-
"""
|
1016
|
-
Args:
|
1017
|
-
anchor_sampler (list): anchor_sampling sets of different
|
1018
|
-
parameters for cropping.
|
1019
|
-
batch_sampler (list): Multiple sets of different
|
1020
|
-
parameters for cropping.
|
1021
|
-
e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
|
1022
|
-
[[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
|
1023
|
-
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
|
1024
|
-
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
|
1025
|
-
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
|
1026
|
-
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
|
1027
|
-
[max sample, max trial, min scale, max scale,
|
1028
|
-
min aspect ratio, max aspect ratio,
|
1029
|
-
min overlap, max overlap, min coverage, max coverage]
|
1030
|
-
target_size (int): target image size.
|
1031
|
-
das_anchor_scales (list[float]): a list of anchor scales in data
|
1032
|
-
anchor smapling.
|
1033
|
-
min_size (float): minimum size of sampled bbox.
|
1034
|
-
avoid_no_bbox (bool): whether to to avoid the
|
1035
|
-
situation where the box does not appear.
|
1036
|
-
"""
|
1037
|
-
super(CropWithDataAchorSampling, self).__init__()
|
1038
|
-
self.anchor_sampler = anchor_sampler
|
1039
|
-
self.batch_sampler = batch_sampler
|
1040
|
-
self.target_size = target_size
|
1041
|
-
self.sampling_prob = sampling_prob
|
1042
|
-
self.min_size = min_size
|
1043
|
-
self.avoid_no_bbox = avoid_no_bbox
|
1044
|
-
self.das_anchor_scales = np.array(das_anchor_scales)
|
1045
|
-
|
1046
|
-
def apply(self, sample, context):
|
1047
|
-
"""
|
1048
|
-
Crop the image and modify bounding box.
|
1049
|
-
Operators:
|
1050
|
-
1. Scale the image width and height.
|
1051
|
-
2. Crop the image according to a radom sample.
|
1052
|
-
3. Rescale the bounding box.
|
1053
|
-
4. Determine if the new bbox is satisfied in the new image.
|
1054
|
-
Returns:
|
1055
|
-
sample: the image, bounding box are replaced.
|
1056
|
-
"""
|
1057
|
-
assert 'image' in sample, "image data not found"
|
1058
|
-
im = sample['image']
|
1059
|
-
gt_bbox = sample['gt_bbox']
|
1060
|
-
gt_class = sample['gt_class']
|
1061
|
-
image_height, image_width = im.shape[:2]
|
1062
|
-
gt_bbox[:, 0] /= image_width
|
1063
|
-
gt_bbox[:, 1] /= image_height
|
1064
|
-
gt_bbox[:, 2] /= image_width
|
1065
|
-
gt_bbox[:, 3] /= image_height
|
1066
|
-
gt_score = None
|
1067
|
-
if 'gt_score' in sample:
|
1068
|
-
gt_score = sample['gt_score']
|
1069
|
-
sampled_bbox = []
|
1070
|
-
gt_bbox = gt_bbox.tolist()
|
1071
|
-
|
1072
|
-
prob = np.random.uniform(0., 1.)
|
1073
|
-
if prob > self.sampling_prob: # anchor sampling
|
1074
|
-
assert self.anchor_sampler
|
1075
|
-
for sampler in self.anchor_sampler:
|
1076
|
-
found = 0
|
1077
|
-
for i in range(sampler[1]):
|
1078
|
-
if found >= sampler[0]:
|
1079
|
-
break
|
1080
|
-
sample_bbox = data_anchor_sampling(
|
1081
|
-
gt_bbox, image_width, image_height,
|
1082
|
-
self.das_anchor_scales, self.target_size)
|
1083
|
-
if sample_bbox == 0:
|
1084
|
-
break
|
1085
|
-
if satisfy_sample_constraint_coverage(sampler, sample_bbox,
|
1086
|
-
gt_bbox):
|
1087
|
-
sampled_bbox.append(sample_bbox)
|
1088
|
-
found = found + 1
|
1089
|
-
im = np.array(im)
|
1090
|
-
while sampled_bbox:
|
1091
|
-
idx = int(np.random.uniform(0, len(sampled_bbox)))
|
1092
|
-
sample_bbox = sampled_bbox.pop(idx)
|
1093
|
-
|
1094
|
-
if 'gt_keypoint' in sample.keys():
|
1095
|
-
keypoints = (sample['gt_keypoint'],
|
1096
|
-
sample['keypoint_ignore'])
|
1097
|
-
crop_bbox, crop_class, crop_score, gt_keypoints = \
|
1098
|
-
filter_and_process(sample_bbox, gt_bbox, gt_class,
|
1099
|
-
scores=gt_score,
|
1100
|
-
keypoints=keypoints)
|
1101
|
-
else:
|
1102
|
-
crop_bbox, crop_class, crop_score = filter_and_process(
|
1103
|
-
sample_bbox, gt_bbox, gt_class, scores=gt_score)
|
1104
|
-
crop_bbox, crop_class, crop_score = bbox_area_sampling(
|
1105
|
-
crop_bbox, crop_class, crop_score, self.target_size,
|
1106
|
-
self.min_size)
|
1107
|
-
|
1108
|
-
if self.avoid_no_bbox:
|
1109
|
-
if len(crop_bbox) < 1:
|
1110
|
-
continue
|
1111
|
-
im = crop_image_sampling(im, sample_bbox, image_width,
|
1112
|
-
image_height, self.target_size)
|
1113
|
-
height, width = im.shape[:2]
|
1114
|
-
crop_bbox[:, 0] *= width
|
1115
|
-
crop_bbox[:, 1] *= height
|
1116
|
-
crop_bbox[:, 2] *= width
|
1117
|
-
crop_bbox[:, 3] *= height
|
1118
|
-
sample['image'] = im
|
1119
|
-
sample['gt_bbox'] = crop_bbox
|
1120
|
-
sample['gt_class'] = crop_class
|
1121
|
-
if 'gt_score' in sample:
|
1122
|
-
sample['gt_score'] = crop_score
|
1123
|
-
if 'gt_keypoint' in sample.keys():
|
1124
|
-
sample['gt_keypoint'] = gt_keypoints[0]
|
1125
|
-
sample['keypoint_ignore'] = gt_keypoints[1]
|
1126
|
-
return sample
|
1127
|
-
return sample
|
1128
|
-
|
1129
|
-
else:
|
1130
|
-
for sampler in self.batch_sampler:
|
1131
|
-
found = 0
|
1132
|
-
for i in range(sampler[1]):
|
1133
|
-
if found >= sampler[0]:
|
1134
|
-
break
|
1135
|
-
sample_bbox = generate_sample_bbox_square(
|
1136
|
-
sampler, image_width, image_height)
|
1137
|
-
if satisfy_sample_constraint_coverage(sampler, sample_bbox,
|
1138
|
-
gt_bbox):
|
1139
|
-
sampled_bbox.append(sample_bbox)
|
1140
|
-
found = found + 1
|
1141
|
-
im = np.array(im)
|
1142
|
-
while sampled_bbox:
|
1143
|
-
idx = int(np.random.uniform(0, len(sampled_bbox)))
|
1144
|
-
sample_bbox = sampled_bbox.pop(idx)
|
1145
|
-
sample_bbox = clip_bbox(sample_bbox)
|
1146
|
-
|
1147
|
-
if 'gt_keypoint' in sample.keys():
|
1148
|
-
keypoints = (sample['gt_keypoint'],
|
1149
|
-
sample['keypoint_ignore'])
|
1150
|
-
crop_bbox, crop_class, crop_score, gt_keypoints = \
|
1151
|
-
filter_and_process(sample_bbox, gt_bbox, gt_class,
|
1152
|
-
scores=gt_score,
|
1153
|
-
keypoints=keypoints)
|
1154
|
-
else:
|
1155
|
-
crop_bbox, crop_class, crop_score = filter_and_process(
|
1156
|
-
sample_bbox, gt_bbox, gt_class, scores=gt_score)
|
1157
|
-
# sampling bbox according the bbox area
|
1158
|
-
crop_bbox, crop_class, crop_score = bbox_area_sampling(
|
1159
|
-
crop_bbox, crop_class, crop_score, self.target_size,
|
1160
|
-
self.min_size)
|
1161
|
-
|
1162
|
-
if self.avoid_no_bbox:
|
1163
|
-
if len(crop_bbox) < 1:
|
1164
|
-
continue
|
1165
|
-
xmin = int(sample_bbox[0] * image_width)
|
1166
|
-
xmax = int(sample_bbox[2] * image_width)
|
1167
|
-
ymin = int(sample_bbox[1] * image_height)
|
1168
|
-
ymax = int(sample_bbox[3] * image_height)
|
1169
|
-
im = im[ymin:ymax, xmin:xmax]
|
1170
|
-
height, width = im.shape[:2]
|
1171
|
-
crop_bbox[:, 0] *= width
|
1172
|
-
crop_bbox[:, 1] *= height
|
1173
|
-
crop_bbox[:, 2] *= width
|
1174
|
-
crop_bbox[:, 3] *= height
|
1175
|
-
sample['image'] = im
|
1176
|
-
sample['gt_bbox'] = crop_bbox
|
1177
|
-
sample['gt_class'] = crop_class
|
1178
|
-
if 'gt_score' in sample:
|
1179
|
-
sample['gt_score'] = crop_score
|
1180
|
-
if 'gt_keypoint' in sample.keys():
|
1181
|
-
sample['gt_keypoint'] = gt_keypoints[0]
|
1182
|
-
sample['keypoint_ignore'] = gt_keypoints[1]
|
1183
|
-
return sample
|
1184
|
-
return sample
|
1185
|
-
|
1186
|
-
|
1187
|
-
@register_op
|
1188
|
-
class RandomCrop(BaseOperator):
|
1189
|
-
"""Random crop image and bboxes.
|
1190
|
-
Args:
|
1191
|
-
aspect_ratio (list): aspect ratio of cropped region.
|
1192
|
-
in [min, max] format.
|
1193
|
-
thresholds (list): iou thresholds for decide a valid bbox crop.
|
1194
|
-
scaling (list): ratio between a cropped region and the original image.
|
1195
|
-
in [min, max] format.
|
1196
|
-
num_attempts (int): number of tries before giving up.
|
1197
|
-
allow_no_crop (bool): allow return without actually cropping them.
|
1198
|
-
cover_all_box (bool): ensure all bboxes are covered in the final crop.
|
1199
|
-
is_mask_crop(bool): whether crop the segmentation.
|
1200
|
-
"""
|
1201
|
-
|
1202
|
-
def __init__(self,
|
1203
|
-
aspect_ratio=[.5, 2.],
|
1204
|
-
thresholds=[.0, .1, .3, .5, .7, .9],
|
1205
|
-
scaling=[.3, 1.],
|
1206
|
-
num_attempts=50,
|
1207
|
-
allow_no_crop=True,
|
1208
|
-
cover_all_box=False,
|
1209
|
-
is_mask_crop=False):
|
1210
|
-
super(RandomCrop, self).__init__()
|
1211
|
-
self.aspect_ratio = aspect_ratio
|
1212
|
-
self.thresholds = thresholds
|
1213
|
-
self.scaling = scaling
|
1214
|
-
self.num_attempts = num_attempts
|
1215
|
-
self.allow_no_crop = allow_no_crop
|
1216
|
-
self.cover_all_box = cover_all_box
|
1217
|
-
self.is_mask_crop = is_mask_crop
|
1218
|
-
|
1219
|
-
def crop_segms(self, segms, valid_ids, crop, height, width):
|
1220
|
-
def _crop_poly(segm, crop):
|
1221
|
-
xmin, ymin, xmax, ymax = crop
|
1222
|
-
crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
|
1223
|
-
crop_p = np.array(crop_coord).reshape(4, 2)
|
1224
|
-
crop_p = Polygon(crop_p)
|
1225
|
-
|
1226
|
-
crop_segm = list()
|
1227
|
-
for poly in segm:
|
1228
|
-
poly = np.array(poly).reshape(len(poly) // 2, 2)
|
1229
|
-
polygon = Polygon(poly)
|
1230
|
-
if not polygon.is_valid:
|
1231
|
-
exterior = polygon.exterior
|
1232
|
-
multi_lines = exterior.intersection(exterior)
|
1233
|
-
polygons = shapely.ops.polygonize(multi_lines)
|
1234
|
-
polygon = MultiPolygon(polygons)
|
1235
|
-
multi_polygon = list()
|
1236
|
-
if isinstance(polygon, MultiPolygon):
|
1237
|
-
multi_polygon = copy.deepcopy(polygon)
|
1238
|
-
else:
|
1239
|
-
multi_polygon.append(copy.deepcopy(polygon))
|
1240
|
-
for per_polygon in multi_polygon:
|
1241
|
-
inter = per_polygon.intersection(crop_p)
|
1242
|
-
if not inter:
|
1243
|
-
continue
|
1244
|
-
if isinstance(inter, (MultiPolygon, GeometryCollection)):
|
1245
|
-
for part in inter:
|
1246
|
-
if not isinstance(part, Polygon):
|
1247
|
-
continue
|
1248
|
-
part = np.squeeze(
|
1249
|
-
np.array(part.exterior.coords[:-1]).reshape(
|
1250
|
-
1, -1))
|
1251
|
-
part[0::2] -= xmin
|
1252
|
-
part[1::2] -= ymin
|
1253
|
-
crop_segm.append(part.tolist())
|
1254
|
-
elif isinstance(inter, Polygon):
|
1255
|
-
crop_poly = np.squeeze(
|
1256
|
-
np.array(inter.exterior.coords[:-1]).reshape(1,
|
1257
|
-
-1))
|
1258
|
-
crop_poly[0::2] -= xmin
|
1259
|
-
crop_poly[1::2] -= ymin
|
1260
|
-
crop_segm.append(crop_poly.tolist())
|
1261
|
-
else:
|
1262
|
-
continue
|
1263
|
-
return crop_segm
|
1264
|
-
|
1265
|
-
def _crop_rle(rle, crop, height, width):
|
1266
|
-
if 'counts' in rle and type(rle['counts']) == list:
|
1267
|
-
rle = mask_util.frPyObjects(rle, height, width)
|
1268
|
-
mask = mask_util.decode(rle)
|
1269
|
-
mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
|
1270
|
-
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
|
1271
|
-
return rle
|
1272
|
-
|
1273
|
-
crop_segms = []
|
1274
|
-
for id in valid_ids:
|
1275
|
-
segm = segms[id]
|
1276
|
-
if is_poly(segm):
|
1277
|
-
import copy
|
1278
|
-
import shapely.ops
|
1279
|
-
from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
|
1280
|
-
logging.getLogger("shapely").setLevel(logging.WARNING)
|
1281
|
-
# Polygon format
|
1282
|
-
crop_segms.append(_crop_poly(segm, crop))
|
1283
|
-
else:
|
1284
|
-
# RLE format
|
1285
|
-
import pycocotools.mask as mask_util
|
1286
|
-
crop_segms.append(_crop_rle(segm, crop, height, width))
|
1287
|
-
return crop_segms
|
1288
|
-
|
1289
|
-
def apply(self, sample, context=None):
|
1290
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
|
1291
|
-
return sample
|
1292
|
-
|
1293
|
-
h, w = sample['image'].shape[:2]
|
1294
|
-
gt_bbox = sample['gt_bbox']
|
1295
|
-
|
1296
|
-
# NOTE Original method attempts to generate one candidate for each
|
1297
|
-
# threshold then randomly sample one from the resulting list.
|
1298
|
-
# Here a short circuit approach is taken, i.e., randomly choose a
|
1299
|
-
# threshold and attempt to find a valid crop, and simply return the
|
1300
|
-
# first one found.
|
1301
|
-
# The probability is not exactly the same, kinda resembling the
|
1302
|
-
# "Monty Hall" problem. Actually carrying out the attempts will affect
|
1303
|
-
# observability (just like opening doors in the "Monty Hall" game).
|
1304
|
-
thresholds = list(self.thresholds)
|
1305
|
-
if self.allow_no_crop:
|
1306
|
-
thresholds.append('no_crop')
|
1307
|
-
np.random.shuffle(thresholds)
|
1308
|
-
|
1309
|
-
for thresh in thresholds:
|
1310
|
-
if thresh == 'no_crop':
|
1311
|
-
return sample
|
1312
|
-
|
1313
|
-
found = False
|
1314
|
-
for i in range(self.num_attempts):
|
1315
|
-
scale = np.random.uniform(*self.scaling)
|
1316
|
-
if self.aspect_ratio is not None:
|
1317
|
-
min_ar, max_ar = self.aspect_ratio
|
1318
|
-
aspect_ratio = np.random.uniform(
|
1319
|
-
max(min_ar, scale**2), min(max_ar, scale**-2))
|
1320
|
-
h_scale = scale / np.sqrt(aspect_ratio)
|
1321
|
-
w_scale = scale * np.sqrt(aspect_ratio)
|
1322
|
-
else:
|
1323
|
-
h_scale = np.random.uniform(*self.scaling)
|
1324
|
-
w_scale = np.random.uniform(*self.scaling)
|
1325
|
-
crop_h = h * h_scale
|
1326
|
-
crop_w = w * w_scale
|
1327
|
-
if self.aspect_ratio is None:
|
1328
|
-
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
|
1329
|
-
continue
|
1330
|
-
|
1331
|
-
crop_h = int(crop_h)
|
1332
|
-
crop_w = int(crop_w)
|
1333
|
-
crop_y = np.random.randint(0, h - crop_h)
|
1334
|
-
crop_x = np.random.randint(0, w - crop_w)
|
1335
|
-
crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
|
1336
|
-
iou = self._iou_matrix(
|
1337
|
-
gt_bbox, np.array(
|
1338
|
-
[crop_box], dtype=np.float32))
|
1339
|
-
if iou.max() < thresh:
|
1340
|
-
continue
|
1341
|
-
|
1342
|
-
if self.cover_all_box and iou.min() < thresh:
|
1343
|
-
continue
|
1344
|
-
|
1345
|
-
cropped_box, valid_ids = self._crop_box_with_center_constraint(
|
1346
|
-
gt_bbox, np.array(
|
1347
|
-
crop_box, dtype=np.float32))
|
1348
|
-
if valid_ids.size > 0:
|
1349
|
-
found = True
|
1350
|
-
break
|
1351
|
-
|
1352
|
-
if found:
|
1353
|
-
if self.is_mask_crop and 'gt_poly' in sample and len(sample[
|
1354
|
-
'gt_poly']) > 0:
|
1355
|
-
crop_polys = self.crop_segms(
|
1356
|
-
sample['gt_poly'],
|
1357
|
-
valid_ids,
|
1358
|
-
np.array(
|
1359
|
-
crop_box, dtype=np.int64),
|
1360
|
-
h,
|
1361
|
-
w)
|
1362
|
-
if [] in crop_polys:
|
1363
|
-
delete_id = list()
|
1364
|
-
valid_polys = list()
|
1365
|
-
for id, crop_poly in enumerate(crop_polys):
|
1366
|
-
if crop_poly == []:
|
1367
|
-
delete_id.append(id)
|
1368
|
-
else:
|
1369
|
-
valid_polys.append(crop_poly)
|
1370
|
-
valid_ids = np.delete(valid_ids, delete_id)
|
1371
|
-
if len(valid_polys) == 0:
|
1372
|
-
return sample
|
1373
|
-
sample['gt_poly'] = valid_polys
|
1374
|
-
else:
|
1375
|
-
sample['gt_poly'] = crop_polys
|
1376
|
-
|
1377
|
-
if 'gt_segm' in sample:
|
1378
|
-
sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
|
1379
|
-
crop_box)
|
1380
|
-
sample['gt_segm'] = np.take(
|
1381
|
-
sample['gt_segm'], valid_ids, axis=0)
|
1382
|
-
|
1383
|
-
sample['image'] = self._crop_image(sample['image'], crop_box)
|
1384
|
-
sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
|
1385
|
-
sample['gt_class'] = np.take(
|
1386
|
-
sample['gt_class'], valid_ids, axis=0)
|
1387
|
-
if 'gt_score' in sample:
|
1388
|
-
sample['gt_score'] = np.take(
|
1389
|
-
sample['gt_score'], valid_ids, axis=0)
|
1390
|
-
|
1391
|
-
if 'is_crowd' in sample:
|
1392
|
-
sample['is_crowd'] = np.take(
|
1393
|
-
sample['is_crowd'], valid_ids, axis=0)
|
1394
|
-
return sample
|
1395
|
-
|
1396
|
-
return sample
|
1397
|
-
|
1398
|
-
def _iou_matrix(self, a, b):
|
1399
|
-
tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
1400
|
-
br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
1401
|
-
|
1402
|
-
area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
|
1403
|
-
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
1404
|
-
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
|
1405
|
-
area_o = (area_a[:, np.newaxis] + area_b - area_i)
|
1406
|
-
return area_i / (area_o + 1e-10)
|
1407
|
-
|
1408
|
-
def _crop_box_with_center_constraint(self, box, crop):
|
1409
|
-
cropped_box = box.copy()
|
1410
|
-
|
1411
|
-
cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
|
1412
|
-
cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
|
1413
|
-
cropped_box[:, :2] -= crop[:2]
|
1414
|
-
cropped_box[:, 2:] -= crop[:2]
|
1415
|
-
|
1416
|
-
centers = (box[:, :2] + box[:, 2:]) / 2
|
1417
|
-
valid = np.logical_and(crop[:2] <= centers,
|
1418
|
-
centers < crop[2:]).all(axis=1)
|
1419
|
-
valid = np.logical_and(
|
1420
|
-
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
|
1421
|
-
|
1422
|
-
return cropped_box, np.where(valid)[0]
|
1423
|
-
|
1424
|
-
def _crop_image(self, img, crop):
|
1425
|
-
x1, y1, x2, y2 = crop
|
1426
|
-
return img[y1:y2, x1:x2, :]
|
1427
|
-
|
1428
|
-
def _crop_segm(self, segm, crop):
|
1429
|
-
x1, y1, x2, y2 = crop
|
1430
|
-
return segm[:, y1:y2, x1:x2]
|
1431
|
-
|
1432
|
-
|
1433
|
-
@register_op
|
1434
|
-
class RandomScaledCrop(BaseOperator):
|
1435
|
-
"""Resize image and bbox based on long side (with optional random scaling),
|
1436
|
-
then crop or pad image to target size.
|
1437
|
-
Args:
|
1438
|
-
target_dim (int): target size.
|
1439
|
-
scale_range (list): random scale range.
|
1440
|
-
interp (int): interpolation method, default to `cv2.INTER_LINEAR`.
|
1441
|
-
"""
|
1442
|
-
|
1443
|
-
def __init__(self,
|
1444
|
-
target_dim=512,
|
1445
|
-
scale_range=[.1, 2.],
|
1446
|
-
interp=cv2.INTER_LINEAR):
|
1447
|
-
super(RandomScaledCrop, self).__init__()
|
1448
|
-
self.target_dim = target_dim
|
1449
|
-
self.scale_range = scale_range
|
1450
|
-
self.interp = interp
|
1451
|
-
|
1452
|
-
def apply(self, sample, context=None):
|
1453
|
-
img = sample['image']
|
1454
|
-
h, w = img.shape[:2]
|
1455
|
-
random_scale = np.random.uniform(*self.scale_range)
|
1456
|
-
dim = self.target_dim
|
1457
|
-
random_dim = int(dim * random_scale)
|
1458
|
-
dim_max = max(h, w)
|
1459
|
-
scale = random_dim / dim_max
|
1460
|
-
resize_w = w * scale
|
1461
|
-
resize_h = h * scale
|
1462
|
-
offset_x = int(max(0, np.random.uniform(0., resize_w - dim)))
|
1463
|
-
offset_y = int(max(0, np.random.uniform(0., resize_h - dim)))
|
1464
|
-
|
1465
|
-
img = cv2.resize(img, (resize_w, resize_h), interpolation=self.interp)
|
1466
|
-
img = np.array(img)
|
1467
|
-
canvas = np.zeros((dim, dim, 3), dtype=img.dtype)
|
1468
|
-
canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[
|
1469
|
-
offset_y:offset_y + dim, offset_x:offset_x + dim, :]
|
1470
|
-
sample['image'] = canvas
|
1471
|
-
sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
|
1472
|
-
scale_factor = sample['sacle_factor']
|
1473
|
-
sample['scale_factor'] = np.asarray(
|
1474
|
-
[scale_factor[0] * scale, scale_factor[1] * scale],
|
1475
|
-
dtype=np.float32)
|
1476
|
-
|
1477
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
1478
|
-
scale_array = np.array([scale, scale] * 2, dtype=np.float32)
|
1479
|
-
shift_array = np.array([offset_x, offset_y] * 2, dtype=np.float32)
|
1480
|
-
boxes = sample['gt_bbox'] * scale_array - shift_array
|
1481
|
-
boxes = np.clip(boxes, 0, dim - 1)
|
1482
|
-
# filter boxes with no area
|
1483
|
-
area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1)
|
1484
|
-
valid = (area > 1.).nonzero()[0]
|
1485
|
-
sample['gt_bbox'] = boxes[valid]
|
1486
|
-
sample['gt_class'] = sample['gt_class'][valid]
|
1487
|
-
|
1488
|
-
return sample
|
1489
|
-
|
1490
|
-
|
1491
|
-
@register_op
|
1492
|
-
class Cutmix(BaseOperator):
|
1493
|
-
def __init__(self, alpha=1.5, beta=1.5):
|
1494
|
-
"""
|
1495
|
-
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899
|
1496
|
-
Cutmix image and gt_bbbox/gt_score
|
1497
|
-
Args:
|
1498
|
-
alpha (float): alpha parameter of beta distribute
|
1499
|
-
beta (float): beta parameter of beta distribute
|
1500
|
-
"""
|
1501
|
-
super(Cutmix, self).__init__()
|
1502
|
-
self.alpha = alpha
|
1503
|
-
self.beta = beta
|
1504
|
-
if self.alpha <= 0.0:
|
1505
|
-
raise ValueError("alpha shold be positive in {}".format(self))
|
1506
|
-
if self.beta <= 0.0:
|
1507
|
-
raise ValueError("beta shold be positive in {}".format(self))
|
1508
|
-
|
1509
|
-
def apply_image(self, img1, img2, factor):
|
1510
|
-
""" _rand_bbox """
|
1511
|
-
h = max(img1.shape[0], img2.shape[0])
|
1512
|
-
w = max(img1.shape[1], img2.shape[1])
|
1513
|
-
cut_rat = np.sqrt(1. - factor)
|
1514
|
-
|
1515
|
-
cut_w = np.int(w * cut_rat)
|
1516
|
-
cut_h = np.int(h * cut_rat)
|
1517
|
-
|
1518
|
-
# uniform
|
1519
|
-
cx = np.random.randint(w)
|
1520
|
-
cy = np.random.randint(h)
|
1521
|
-
|
1522
|
-
bbx1 = np.clip(cx - cut_w // 2, 0, w - 1)
|
1523
|
-
bby1 = np.clip(cy - cut_h // 2, 0, h - 1)
|
1524
|
-
bbx2 = np.clip(cx + cut_w // 2, 0, w - 1)
|
1525
|
-
bby2 = np.clip(cy + cut_h // 2, 0, h - 1)
|
1526
|
-
|
1527
|
-
img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32')
|
1528
|
-
img_1_pad[:img1.shape[0], :img1.shape[1], :] = \
|
1529
|
-
img1.astype('float32')
|
1530
|
-
img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32')
|
1531
|
-
img_2_pad[:img2.shape[0], :img2.shape[1], :] = \
|
1532
|
-
img2.astype('float32')
|
1533
|
-
img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :]
|
1534
|
-
return img_1_pad
|
1535
|
-
|
1536
|
-
def __call__(self, sample, context=None):
|
1537
|
-
if not isinstance(sample, Sequence):
|
1538
|
-
return sample
|
1539
|
-
|
1540
|
-
assert len(sample) == 2, 'cutmix need two samples'
|
1541
|
-
|
1542
|
-
factor = np.random.beta(self.alpha, self.beta)
|
1543
|
-
factor = max(0.0, min(1.0, factor))
|
1544
|
-
if factor >= 1.0:
|
1545
|
-
return sample[0]
|
1546
|
-
if factor <= 0.0:
|
1547
|
-
return sample[1]
|
1548
|
-
img1 = sample[0]['image']
|
1549
|
-
img2 = sample[1]['image']
|
1550
|
-
img = self.apply_image(img1, img2, factor)
|
1551
|
-
gt_bbox1 = sample[0]['gt_bbox']
|
1552
|
-
gt_bbox2 = sample[1]['gt_bbox']
|
1553
|
-
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
|
1554
|
-
gt_class1 = sample[0]['gt_class']
|
1555
|
-
gt_class2 = sample[1]['gt_class']
|
1556
|
-
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
|
1557
|
-
gt_score1 = np.ones_like(sample[0]['gt_class'])
|
1558
|
-
gt_score2 = np.ones_like(sample[1]['gt_class'])
|
1559
|
-
gt_score = np.concatenate(
|
1560
|
-
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
|
1561
|
-
result = copy.deepcopy(sample[0])
|
1562
|
-
result['image'] = img
|
1563
|
-
result['gt_bbox'] = gt_bbox
|
1564
|
-
result['gt_score'] = gt_score
|
1565
|
-
result['gt_class'] = gt_class
|
1566
|
-
if 'is_crowd' in sample[0]:
|
1567
|
-
is_crowd1 = sample[0]['is_crowd']
|
1568
|
-
is_crowd2 = sample[1]['is_crowd']
|
1569
|
-
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
|
1570
|
-
result['is_crowd'] = is_crowd
|
1571
|
-
if 'difficult' in sample[0]:
|
1572
|
-
is_difficult1 = sample[0]['difficult']
|
1573
|
-
is_difficult2 = sample[1]['difficult']
|
1574
|
-
is_difficult = np.concatenate(
|
1575
|
-
(is_difficult1, is_difficult2), axis=0)
|
1576
|
-
result['difficult'] = is_difficult
|
1577
|
-
return result
|
1578
|
-
|
1579
|
-
|
1580
|
-
@register_op
|
1581
|
-
class Mixup(BaseOperator):
|
1582
|
-
def __init__(self, alpha=1.5, beta=1.5):
|
1583
|
-
""" Mixup image and gt_bbbox/gt_score
|
1584
|
-
Args:
|
1585
|
-
alpha (float): alpha parameter of beta distribute
|
1586
|
-
beta (float): beta parameter of beta distribute
|
1587
|
-
"""
|
1588
|
-
super(Mixup, self).__init__()
|
1589
|
-
self.alpha = alpha
|
1590
|
-
self.beta = beta
|
1591
|
-
if self.alpha <= 0.0:
|
1592
|
-
raise ValueError("alpha shold be positive in {}".format(self))
|
1593
|
-
if self.beta <= 0.0:
|
1594
|
-
raise ValueError("beta shold be positive in {}".format(self))
|
1595
|
-
|
1596
|
-
def apply_image(self, img1, img2, factor):
|
1597
|
-
h = max(img1.shape[0], img2.shape[0])
|
1598
|
-
w = max(img1.shape[1], img2.shape[1])
|
1599
|
-
img = np.zeros((h, w, img1.shape[2]), 'float32')
|
1600
|
-
img[:img1.shape[0], :img1.shape[1], :] = \
|
1601
|
-
img1.astype('float32') * factor
|
1602
|
-
img[:img2.shape[0], :img2.shape[1], :] += \
|
1603
|
-
img2.astype('float32') * (1.0 - factor)
|
1604
|
-
return img.astype('uint8')
|
1605
|
-
|
1606
|
-
def __call__(self, sample, context=None):
|
1607
|
-
if not isinstance(sample, Sequence):
|
1608
|
-
return sample
|
1609
|
-
|
1610
|
-
assert len(sample) == 2, 'mixup need two samples'
|
1611
|
-
|
1612
|
-
factor = np.random.beta(self.alpha, self.beta)
|
1613
|
-
factor = max(0.0, min(1.0, factor))
|
1614
|
-
if factor >= 1.0:
|
1615
|
-
return sample[0]
|
1616
|
-
if factor <= 0.0:
|
1617
|
-
return sample[1]
|
1618
|
-
im = self.apply_image(sample[0]['image'], sample[1]['image'], factor)
|
1619
|
-
result = copy.deepcopy(sample[0])
|
1620
|
-
result['image'] = im
|
1621
|
-
# apply bbox and score
|
1622
|
-
if 'gt_bbox' in sample[0]:
|
1623
|
-
gt_bbox1 = sample[0]['gt_bbox']
|
1624
|
-
gt_bbox2 = sample[1]['gt_bbox']
|
1625
|
-
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
|
1626
|
-
result['gt_bbox'] = gt_bbox
|
1627
|
-
if 'gt_class' in sample[0]:
|
1628
|
-
gt_class1 = sample[0]['gt_class']
|
1629
|
-
gt_class2 = sample[1]['gt_class']
|
1630
|
-
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
|
1631
|
-
result['gt_class'] = gt_class
|
1632
|
-
|
1633
|
-
gt_score1 = np.ones_like(sample[0]['gt_class'])
|
1634
|
-
gt_score2 = np.ones_like(sample[1]['gt_class'])
|
1635
|
-
gt_score = np.concatenate(
|
1636
|
-
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
|
1637
|
-
result['gt_score'] = gt_score
|
1638
|
-
if 'is_crowd' in sample[0]:
|
1639
|
-
is_crowd1 = sample[0]['is_crowd']
|
1640
|
-
is_crowd2 = sample[1]['is_crowd']
|
1641
|
-
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
|
1642
|
-
result['is_crowd'] = is_crowd
|
1643
|
-
if 'difficult' in sample[0]:
|
1644
|
-
is_difficult1 = sample[0]['difficult']
|
1645
|
-
is_difficult2 = sample[1]['difficult']
|
1646
|
-
is_difficult = np.concatenate(
|
1647
|
-
(is_difficult1, is_difficult2), axis=0)
|
1648
|
-
result['difficult'] = is_difficult
|
1649
|
-
|
1650
|
-
if 'gt_ide' in sample[0]:
|
1651
|
-
gt_ide1 = sample[0]['gt_ide']
|
1652
|
-
gt_ide2 = sample[1]['gt_ide']
|
1653
|
-
gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0)
|
1654
|
-
result['gt_ide'] = gt_ide
|
1655
|
-
return result
|
1656
|
-
|
1657
|
-
|
1658
|
-
@register_op
|
1659
|
-
class NormalizeBox(BaseOperator):
|
1660
|
-
"""Transform the bounding box's coornidates to [0,1]."""
|
1661
|
-
|
1662
|
-
def __init__(self):
|
1663
|
-
super(NormalizeBox, self).__init__()
|
1664
|
-
|
1665
|
-
def apply(self, sample, context):
|
1666
|
-
im = sample['image']
|
1667
|
-
gt_bbox = sample['gt_bbox']
|
1668
|
-
height, width, _ = im.shape
|
1669
|
-
for i in range(gt_bbox.shape[0]):
|
1670
|
-
gt_bbox[i][0] = gt_bbox[i][0] / width
|
1671
|
-
gt_bbox[i][1] = gt_bbox[i][1] / height
|
1672
|
-
gt_bbox[i][2] = gt_bbox[i][2] / width
|
1673
|
-
gt_bbox[i][3] = gt_bbox[i][3] / height
|
1674
|
-
sample['gt_bbox'] = gt_bbox
|
1675
|
-
|
1676
|
-
if 'gt_keypoint' in sample.keys():
|
1677
|
-
gt_keypoint = sample['gt_keypoint']
|
1678
|
-
|
1679
|
-
for i in range(gt_keypoint.shape[1]):
|
1680
|
-
if i % 2:
|
1681
|
-
gt_keypoint[:, i] = gt_keypoint[:, i] / height
|
1682
|
-
else:
|
1683
|
-
gt_keypoint[:, i] = gt_keypoint[:, i] / width
|
1684
|
-
sample['gt_keypoint'] = gt_keypoint
|
1685
|
-
|
1686
|
-
return sample
|
1687
|
-
|
1688
|
-
|
1689
|
-
@register_op
|
1690
|
-
class BboxXYXY2XYWH(BaseOperator):
|
1691
|
-
"""
|
1692
|
-
Convert bbox XYXY format to XYWH format.
|
1693
|
-
"""
|
1694
|
-
|
1695
|
-
def __init__(self):
|
1696
|
-
super(BboxXYXY2XYWH, self).__init__()
|
1697
|
-
|
1698
|
-
def apply(self, sample, context=None):
|
1699
|
-
assert 'gt_bbox' in sample
|
1700
|
-
bbox = sample['gt_bbox']
|
1701
|
-
bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
|
1702
|
-
bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
|
1703
|
-
sample['gt_bbox'] = bbox
|
1704
|
-
return sample
|
1705
|
-
|
1706
|
-
|
1707
|
-
@register_op
|
1708
|
-
class PadBox(BaseOperator):
|
1709
|
-
def __init__(self, num_max_boxes=50):
|
1710
|
-
"""
|
1711
|
-
Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
|
1712
|
-
Args:
|
1713
|
-
num_max_boxes (int): the max number of bboxes
|
1714
|
-
"""
|
1715
|
-
self.num_max_boxes = num_max_boxes
|
1716
|
-
super(PadBox, self).__init__()
|
1717
|
-
|
1718
|
-
def apply(self, sample, context=None):
|
1719
|
-
assert 'gt_bbox' in sample
|
1720
|
-
bbox = sample['gt_bbox']
|
1721
|
-
gt_num = min(self.num_max_boxes, len(bbox))
|
1722
|
-
num_max = self.num_max_boxes
|
1723
|
-
# fields = context['fields'] if context else []
|
1724
|
-
pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
|
1725
|
-
if gt_num > 0:
|
1726
|
-
pad_bbox[:gt_num, :] = bbox[:gt_num, :]
|
1727
|
-
sample['gt_bbox'] = pad_bbox
|
1728
|
-
if 'gt_class' in sample:
|
1729
|
-
pad_class = np.zeros((num_max, ), dtype=np.int32)
|
1730
|
-
if gt_num > 0:
|
1731
|
-
pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
|
1732
|
-
sample['gt_class'] = pad_class
|
1733
|
-
if 'gt_score' in sample:
|
1734
|
-
pad_score = np.zeros((num_max, ), dtype=np.float32)
|
1735
|
-
if gt_num > 0:
|
1736
|
-
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
|
1737
|
-
sample['gt_score'] = pad_score
|
1738
|
-
# in training, for example in op ExpandImage,
|
1739
|
-
# the bbox and gt_class is expandded, but the difficult is not,
|
1740
|
-
# so, judging by it's length
|
1741
|
-
if 'difficult' in sample:
|
1742
|
-
pad_diff = np.zeros((num_max, ), dtype=np.int32)
|
1743
|
-
if gt_num > 0:
|
1744
|
-
pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
|
1745
|
-
sample['difficult'] = pad_diff
|
1746
|
-
if 'is_crowd' in sample:
|
1747
|
-
pad_crowd = np.zeros((num_max, ), dtype=np.int32)
|
1748
|
-
if gt_num > 0:
|
1749
|
-
pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
|
1750
|
-
sample['is_crowd'] = pad_crowd
|
1751
|
-
if 'gt_ide' in sample:
|
1752
|
-
pad_ide = np.zeros((num_max, ), dtype=np.int32)
|
1753
|
-
if gt_num > 0:
|
1754
|
-
pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
|
1755
|
-
sample['gt_ide'] = pad_ide
|
1756
|
-
return sample
|
1757
|
-
|
1758
|
-
|
1759
|
-
@register_op
|
1760
|
-
class DebugVisibleImage(BaseOperator):
|
1761
|
-
"""
|
1762
|
-
In debug mode, visualize images according to `gt_box`.
|
1763
|
-
(Currently only supported when not cropping and flipping image.)
|
1764
|
-
"""
|
1765
|
-
|
1766
|
-
def __init__(self, output_dir='output/debug', is_normalized=False):
|
1767
|
-
super(DebugVisibleImage, self).__init__()
|
1768
|
-
self.is_normalized = is_normalized
|
1769
|
-
self.output_dir = output_dir
|
1770
|
-
if not os.path.isdir(output_dir):
|
1771
|
-
os.makedirs(output_dir)
|
1772
|
-
if not isinstance(self.is_normalized, bool):
|
1773
|
-
raise TypeError("{}: input type is invalid.".format(self))
|
1774
|
-
|
1775
|
-
def apply(self, sample, context=None):
|
1776
|
-
image = Image.open(sample['im_file']).convert('RGB')
|
1777
|
-
out_file_name = sample['im_file'].split('/')[-1]
|
1778
|
-
width = sample['w']
|
1779
|
-
height = sample['h']
|
1780
|
-
gt_bbox = sample['gt_bbox']
|
1781
|
-
gt_class = sample['gt_class']
|
1782
|
-
draw = ImageDraw.Draw(image)
|
1783
|
-
for i in range(gt_bbox.shape[0]):
|
1784
|
-
if self.is_normalized:
|
1785
|
-
gt_bbox[i][0] = gt_bbox[i][0] * width
|
1786
|
-
gt_bbox[i][1] = gt_bbox[i][1] * height
|
1787
|
-
gt_bbox[i][2] = gt_bbox[i][2] * width
|
1788
|
-
gt_bbox[i][3] = gt_bbox[i][3] * height
|
1789
|
-
|
1790
|
-
xmin, ymin, xmax, ymax = gt_bbox[i]
|
1791
|
-
draw.line(
|
1792
|
-
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
1793
|
-
(xmin, ymin)],
|
1794
|
-
width=2,
|
1795
|
-
fill='green')
|
1796
|
-
# draw label
|
1797
|
-
text = str(gt_class[i][0])
|
1798
|
-
tw, th = draw.textsize(text)
|
1799
|
-
draw.rectangle(
|
1800
|
-
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
|
1801
|
-
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
|
1802
|
-
|
1803
|
-
if 'gt_keypoint' in sample.keys():
|
1804
|
-
gt_keypoint = sample['gt_keypoint']
|
1805
|
-
if self.is_normalized:
|
1806
|
-
for i in range(gt_keypoint.shape[1]):
|
1807
|
-
if i % 2:
|
1808
|
-
gt_keypoint[:, i] = gt_keypoint[:, i] * height
|
1809
|
-
else:
|
1810
|
-
gt_keypoint[:, i] = gt_keypoint[:, i] * width
|
1811
|
-
for i in range(gt_keypoint.shape[0]):
|
1812
|
-
keypoint = gt_keypoint[i]
|
1813
|
-
for j in range(int(keypoint.shape[0] / 2)):
|
1814
|
-
x1 = round(keypoint[2 * j]).astype(np.int32)
|
1815
|
-
y1 = round(keypoint[2 * j + 1]).astype(np.int32)
|
1816
|
-
draw.ellipse(
|
1817
|
-
(x1, y1, x1 + 5, y1 + 5),
|
1818
|
-
fill='green',
|
1819
|
-
outline='green')
|
1820
|
-
save_path = os.path.join(self.output_dir, out_file_name)
|
1821
|
-
image.save(save_path, quality=95)
|
1822
|
-
return sample
|
1823
|
-
|
1824
|
-
|
1825
|
-
@register_op
|
1826
|
-
class Pad(BaseOperator):
|
1827
|
-
def __init__(self,
|
1828
|
-
size=None,
|
1829
|
-
size_divisor=32,
|
1830
|
-
pad_mode=0,
|
1831
|
-
offsets=None,
|
1832
|
-
fill_value=(127.5, 127.5, 127.5)):
|
1833
|
-
"""
|
1834
|
-
Pad image to a specified size or multiple of size_divisor.
|
1835
|
-
Args:
|
1836
|
-
size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
|
1837
|
-
size_divisor (int): size divisor, default 32
|
1838
|
-
pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
|
1839
|
-
if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
|
1840
|
-
offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
|
1841
|
-
fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
|
1842
|
-
"""
|
1843
|
-
super(Pad, self).__init__()
|
1844
|
-
|
1845
|
-
if not isinstance(size, (int, Sequence)):
|
1846
|
-
raise TypeError(
|
1847
|
-
"Type of target_size is invalid when random_size is True. \
|
1848
|
-
Must be List, now is {}".format(type(size)))
|
1849
|
-
|
1850
|
-
if isinstance(size, int):
|
1851
|
-
size = [size, size]
|
1852
|
-
|
1853
|
-
assert pad_mode in [
|
1854
|
-
-1, 0, 1, 2
|
1855
|
-
], 'currently only supports four modes [-1, 0, 1, 2]'
|
1856
|
-
assert pad_mode == -1 and offsets, 'if pad_mode is -1, offsets should not be None'
|
1857
|
-
|
1858
|
-
self.size = size
|
1859
|
-
self.size_divisor = size_divisor
|
1860
|
-
self.pad_mode = pad_mode
|
1861
|
-
self.fill_value = fill_value
|
1862
|
-
self.offsets = offsets
|
1863
|
-
|
1864
|
-
def apply_segm(self, segms, offsets, im_size, size):
|
1865
|
-
def _expand_poly(poly, x, y):
|
1866
|
-
expanded_poly = np.array(poly)
|
1867
|
-
expanded_poly[0::2] += x
|
1868
|
-
expanded_poly[1::2] += y
|
1869
|
-
return expanded_poly.tolist()
|
1870
|
-
|
1871
|
-
def _expand_rle(rle, x, y, height, width, h, w):
|
1872
|
-
if 'counts' in rle and type(rle['counts']) == list:
|
1873
|
-
rle = mask_util.frPyObjects(rle, height, width)
|
1874
|
-
mask = mask_util.decode(rle)
|
1875
|
-
expanded_mask = np.full((h, w), 0).astype(mask.dtype)
|
1876
|
-
expanded_mask[y:y + height, x:x + width] = mask
|
1877
|
-
rle = mask_util.encode(
|
1878
|
-
np.array(
|
1879
|
-
expanded_mask, order='F', dtype=np.uint8))
|
1880
|
-
return rle
|
1881
|
-
|
1882
|
-
x, y = offsets
|
1883
|
-
height, width = im_size
|
1884
|
-
h, w = size
|
1885
|
-
expanded_segms = []
|
1886
|
-
for segm in segms:
|
1887
|
-
if is_poly(segm):
|
1888
|
-
# Polygon format
|
1889
|
-
expanded_segms.append(
|
1890
|
-
[_expand_poly(poly, x, y) for poly in segm])
|
1891
|
-
else:
|
1892
|
-
# RLE format
|
1893
|
-
import pycocotools.mask as mask_util
|
1894
|
-
expanded_segms.append(
|
1895
|
-
_expand_rle(segm, x, y, height, width, h, w))
|
1896
|
-
return expanded_segms
|
1897
|
-
|
1898
|
-
def apply_bbox(self, bbox, offsets):
|
1899
|
-
return bbox + np.array(offsets * 2, dtype=np.float32)
|
1900
|
-
|
1901
|
-
def apply_keypoint(self, keypoints, offsets):
|
1902
|
-
n = len(keypoints[0]) // 2
|
1903
|
-
return keypoints + np.array(offsets * n, dtype=np.float32)
|
1904
|
-
|
1905
|
-
def apply_image(self, image, offsets, im_size, size):
|
1906
|
-
x, y = offsets
|
1907
|
-
im_h, im_w = im_size
|
1908
|
-
h, w = size
|
1909
|
-
canvas = np.ones((h, w, 3), dtype=np.float32)
|
1910
|
-
canvas *= np.array(self.fill_value, dtype=np.float32)
|
1911
|
-
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
|
1912
|
-
return canvas
|
1913
|
-
|
1914
|
-
def apply(self, sample, context=None):
|
1915
|
-
im = sample['image']
|
1916
|
-
im_h, im_w = im.shape[:2]
|
1917
|
-
if self.size:
|
1918
|
-
h, w = self.size
|
1919
|
-
assert (
|
1920
|
-
im_h < h and im_w < w
|
1921
|
-
), '(h, w) of target size should be greater than (im_h, im_w)'
|
1922
|
-
else:
|
1923
|
-
h = np.ceil(im_h // self.size_divisor) * self.size_divisor
|
1924
|
-
w = np.ceil(im_w / self.size_divisor) * self.size_divisor
|
1925
|
-
|
1926
|
-
if h == im_h and w == im_w:
|
1927
|
-
return sample
|
1928
|
-
|
1929
|
-
if self.pad_mode == -1:
|
1930
|
-
offset_x, offset_y = self.offsets
|
1931
|
-
elif self.pad_mode == 0:
|
1932
|
-
offset_y, offset_x = 0, 0
|
1933
|
-
elif self.pad_mode == 1:
|
1934
|
-
offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
|
1935
|
-
else:
|
1936
|
-
offset_y, offset_x = h - im_h, w - im_w
|
1937
|
-
|
1938
|
-
offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
|
1939
|
-
|
1940
|
-
sample['image'] = self.apply_image(im, offsets, im_size, size)
|
1941
|
-
|
1942
|
-
if self.pad_mode == 0:
|
1943
|
-
return sample
|
1944
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
1945
|
-
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
|
1946
|
-
|
1947
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
1948
|
-
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets,
|
1949
|
-
im_size, size)
|
1950
|
-
|
1951
|
-
if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
|
1952
|
-
sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'],
|
1953
|
-
offsets)
|
1954
|
-
|
1955
|
-
return sample
|
1956
|
-
|
1957
|
-
|
1958
|
-
@register_op
|
1959
|
-
class Poly2Mask(BaseOperator):
|
1960
|
-
"""
|
1961
|
-
gt poly to mask annotations
|
1962
|
-
"""
|
1963
|
-
|
1964
|
-
def __init__(self):
|
1965
|
-
super(Poly2Mask, self).__init__()
|
1966
|
-
import pycocotools.mask as maskUtils
|
1967
|
-
self.maskutils = maskUtils
|
1968
|
-
|
1969
|
-
def _poly2mask(self, mask_ann, img_h, img_w):
|
1970
|
-
if isinstance(mask_ann, list):
|
1971
|
-
# polygon -- a single object might consist of multiple parts
|
1972
|
-
# we merge all parts into one mask rle code
|
1973
|
-
rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
|
1974
|
-
rle = self.maskutils.merge(rles)
|
1975
|
-
elif isinstance(mask_ann['counts'], list):
|
1976
|
-
# uncompressed RLE
|
1977
|
-
rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
|
1978
|
-
else:
|
1979
|
-
# rle
|
1980
|
-
rle = mask_ann
|
1981
|
-
mask = self.maskutils.decode(rle)
|
1982
|
-
return mask
|
1983
|
-
|
1984
|
-
def apply(self, sample, context=None):
|
1985
|
-
assert 'gt_poly' in sample
|
1986
|
-
im_h = sample['h']
|
1987
|
-
im_w = sample['w']
|
1988
|
-
masks = [
|
1989
|
-
self._poly2mask(gt_poly, im_h, im_w)
|
1990
|
-
for gt_poly in sample['gt_poly']
|
1991
|
-
]
|
1992
|
-
sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
|
1993
|
-
return sample
|
1994
|
-
|
1995
|
-
|
1996
|
-
@register_op
|
1997
|
-
class Rbox2Poly(BaseOperator):
|
1998
|
-
"""
|
1999
|
-
Convert rbbox format to poly format.
|
2000
|
-
"""
|
2001
|
-
|
2002
|
-
def __init__(self):
|
2003
|
-
super(Rbox2Poly, self).__init__()
|
2004
|
-
|
2005
|
-
def apply(self, sample, context=None):
|
2006
|
-
assert 'gt_rbox' in sample
|
2007
|
-
assert sample['gt_rbox'].shape[1] == 5
|
2008
|
-
rrects = sample['gt_rbox']
|
2009
|
-
x_ctr = rrects[:, 0]
|
2010
|
-
y_ctr = rrects[:, 1]
|
2011
|
-
width = rrects[:, 2]
|
2012
|
-
height = rrects[:, 3]
|
2013
|
-
x1 = x_ctr - width / 2.0
|
2014
|
-
y1 = y_ctr - height / 2.0
|
2015
|
-
x2 = x_ctr + width / 2.0
|
2016
|
-
y2 = y_ctr + height / 2.0
|
2017
|
-
sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1)
|
2018
|
-
polys = bbox_utils.rbox2poly_np(rrects)
|
2019
|
-
sample['gt_rbox2poly'] = polys
|
2020
|
-
return sample
|
2021
|
-
|
2022
|
-
|
2023
|
-
@register_op
|
2024
|
-
class AugmentHSV(BaseOperator):
|
2025
|
-
def __init__(self, fraction=0.50, is_bgr=False):
|
2026
|
-
"""
|
2027
|
-
Augment the SV channel of image data.
|
2028
|
-
Args:
|
2029
|
-
fraction (float): the fraction for augment
|
2030
|
-
is_bgr (bool): whether the image is BGR mode
|
2031
|
-
"""
|
2032
|
-
super(AugmentHSV, self).__init__()
|
2033
|
-
self.fraction = fraction
|
2034
|
-
self.is_bgr = is_bgr
|
2035
|
-
|
2036
|
-
def apply(self, sample, context=None):
|
2037
|
-
img = sample['image']
|
2038
|
-
if self.is_bgr:
|
2039
|
-
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
2040
|
-
else:
|
2041
|
-
img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
|
2042
|
-
S = img_hsv[:, :, 1].astype(np.float32)
|
2043
|
-
V = img_hsv[:, :, 2].astype(np.float32)
|
2044
|
-
|
2045
|
-
a = (random.random() * 2 - 1) * self.fraction + 1
|
2046
|
-
S *= a
|
2047
|
-
if a > 1:
|
2048
|
-
np.clip(S, a_min=0, a_max=255, out=S)
|
2049
|
-
|
2050
|
-
a = (random.random() * 2 - 1) * self.fraction + 1
|
2051
|
-
V *= a
|
2052
|
-
if a > 1:
|
2053
|
-
np.clip(V, a_min=0, a_max=255, out=V)
|
2054
|
-
|
2055
|
-
img_hsv[:, :, 1] = S.astype(np.uint8)
|
2056
|
-
img_hsv[:, :, 2] = V.astype(np.uint8)
|
2057
|
-
if self.is_bgr:
|
2058
|
-
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
|
2059
|
-
else:
|
2060
|
-
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img)
|
2061
|
-
|
2062
|
-
sample['image'] = img
|
2063
|
-
return sample
|
2064
|
-
|
2065
|
-
|
2066
|
-
@register_op
|
2067
|
-
class Norm2PixelBbox(BaseOperator):
|
2068
|
-
"""
|
2069
|
-
Transform the bounding box's coornidates which is in [0,1] to pixels.
|
2070
|
-
"""
|
2071
|
-
|
2072
|
-
def __init__(self):
|
2073
|
-
super(Norm2PixelBbox, self).__init__()
|
2074
|
-
|
2075
|
-
def apply(self, sample, context=None):
|
2076
|
-
assert 'gt_bbox' in sample
|
2077
|
-
bbox = sample['gt_bbox']
|
2078
|
-
height, width = sample['image'].shape[:2]
|
2079
|
-
bbox[:, 0::2] = bbox[:, 0::2] * width
|
2080
|
-
bbox[:, 1::2] = bbox[:, 1::2] * height
|
2081
|
-
sample['gt_bbox'] = bbox
|
2082
|
-
return sample
|
2083
|
-
|
2084
|
-
|
2085
|
-
@register_op
|
2086
|
-
class BboxCXCYWH2XYXY(BaseOperator):
|
2087
|
-
"""
|
2088
|
-
Convert bbox CXCYWH format to XYXY format.
|
2089
|
-
[center_x, center_y, width, height] -> [x0, y0, x1, y1]
|
2090
|
-
"""
|
2091
|
-
|
2092
|
-
def __init__(self):
|
2093
|
-
super(BboxCXCYWH2XYXY, self).__init__()
|
2094
|
-
|
2095
|
-
def apply(self, sample, context=None):
|
2096
|
-
assert 'gt_bbox' in sample
|
2097
|
-
bbox0 = sample['gt_bbox']
|
2098
|
-
bbox = bbox0.copy()
|
2099
|
-
|
2100
|
-
bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2.
|
2101
|
-
bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2.
|
2102
|
-
sample['gt_bbox'] = bbox
|
2103
|
-
return sample
|