paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1533) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +35 -18
  3. paddlex/__main__.py +39 -0
  4. paddlex/configs/modules/3d_bev_detection/BEVFusion.yaml +38 -0
  5. paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
  6. paddlex/configs/modules/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  7. paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
  8. paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
  9. paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
  10. paddlex/configs/modules/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  11. paddlex/configs/modules/face_detection/BlazeFace.yaml +40 -0
  12. paddlex/configs/modules/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  13. paddlex/configs/modules/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  14. paddlex/configs/modules/face_feature/MobileFaceNet.yaml +41 -0
  15. paddlex/configs/modules/face_feature/ResNet50_face.yaml +41 -0
  16. paddlex/configs/modules/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  17. paddlex/configs/modules/formula_recognition/PP-FormulaNet-L.yaml +40 -0
  18. paddlex/configs/modules/formula_recognition/PP-FormulaNet-S.yaml +40 -0
  19. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
  20. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
  21. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
  22. paddlex/configs/modules/formula_recognition/UniMERNet.yaml +40 -0
  23. paddlex/configs/modules/human_detection/PP-YOLOE-L_human.yaml +42 -0
  24. paddlex/configs/modules/human_detection/PP-YOLOE-S_human.yaml +42 -0
  25. paddlex/configs/modules/image_anomaly_detection/STFPM.yaml +41 -0
  26. paddlex/configs/modules/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  27. paddlex/configs/modules/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  28. paddlex/configs/modules/image_classification/ConvNeXt_base_224.yaml +41 -0
  29. paddlex/configs/modules/image_classification/ConvNeXt_base_384.yaml +41 -0
  30. paddlex/configs/modules/image_classification/ConvNeXt_large_224.yaml +41 -0
  31. paddlex/configs/modules/image_classification/ConvNeXt_large_384.yaml +41 -0
  32. paddlex/configs/modules/image_classification/ConvNeXt_small.yaml +41 -0
  33. paddlex/configs/modules/image_classification/ConvNeXt_tiny.yaml +41 -0
  34. paddlex/configs/modules/image_classification/FasterNet-L.yaml +40 -0
  35. paddlex/configs/modules/image_classification/FasterNet-M.yaml +40 -0
  36. paddlex/configs/modules/image_classification/FasterNet-S.yaml +40 -0
  37. paddlex/configs/modules/image_classification/FasterNet-T0.yaml +40 -0
  38. paddlex/configs/modules/image_classification/FasterNet-T1.yaml +40 -0
  39. paddlex/configs/modules/image_classification/FasterNet-T2.yaml +40 -0
  40. paddlex/configs/modules/image_classification/MobileNetV1_x0_25.yaml +41 -0
  41. paddlex/configs/modules/image_classification/MobileNetV1_x0_5.yaml +41 -0
  42. paddlex/configs/modules/image_classification/MobileNetV1_x0_75.yaml +41 -0
  43. paddlex/configs/modules/image_classification/MobileNetV1_x1_0.yaml +41 -0
  44. paddlex/configs/modules/image_classification/MobileNetV2_x0_25.yaml +41 -0
  45. paddlex/configs/modules/image_classification/MobileNetV2_x0_5.yaml +41 -0
  46. paddlex/configs/modules/image_classification/MobileNetV2_x1_0.yaml +41 -0
  47. paddlex/configs/modules/image_classification/MobileNetV2_x1_5.yaml +41 -0
  48. paddlex/configs/modules/image_classification/MobileNetV2_x2_0.yaml +41 -0
  49. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  50. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  51. paddlex/configs/modules/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  52. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  53. paddlex/configs/modules/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  54. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  55. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  56. paddlex/configs/modules/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  57. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  58. paddlex/configs/modules/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  59. paddlex/configs/modules/image_classification/MobileNetV4_conv_large.yaml +41 -0
  60. paddlex/configs/modules/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  61. paddlex/configs/modules/image_classification/MobileNetV4_conv_small.yaml +41 -0
  62. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  63. paddlex/configs/modules/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  64. paddlex/configs/modules/image_classification/PP-HGNetV2-B0.yaml +41 -0
  65. paddlex/configs/modules/image_classification/PP-HGNetV2-B1.yaml +41 -0
  66. paddlex/configs/modules/image_classification/PP-HGNetV2-B2.yaml +41 -0
  67. paddlex/configs/modules/image_classification/PP-HGNetV2-B3.yaml +41 -0
  68. paddlex/configs/modules/image_classification/PP-HGNetV2-B4.yaml +41 -0
  69. paddlex/configs/modules/image_classification/PP-HGNetV2-B5.yaml +41 -0
  70. paddlex/configs/modules/image_classification/PP-HGNetV2-B6.yaml +41 -0
  71. paddlex/configs/modules/image_classification/PP-HGNet_base.yaml +41 -0
  72. paddlex/configs/modules/image_classification/PP-HGNet_small.yaml +41 -0
  73. paddlex/configs/modules/image_classification/PP-HGNet_tiny.yaml +41 -0
  74. paddlex/configs/modules/image_classification/PP-LCNetV2_base.yaml +41 -0
  75. paddlex/configs/modules/image_classification/PP-LCNetV2_large.yaml +41 -0
  76. paddlex/configs/modules/image_classification/PP-LCNetV2_small.yaml +41 -0
  77. paddlex/configs/modules/image_classification/PP-LCNet_x0_25.yaml +41 -0
  78. paddlex/configs/modules/image_classification/PP-LCNet_x0_35.yaml +41 -0
  79. paddlex/configs/modules/image_classification/PP-LCNet_x0_5.yaml +41 -0
  80. paddlex/configs/modules/image_classification/PP-LCNet_x0_75.yaml +41 -0
  81. paddlex/configs/modules/image_classification/PP-LCNet_x1_0.yaml +41 -0
  82. paddlex/configs/modules/image_classification/PP-LCNet_x1_5.yaml +41 -0
  83. paddlex/configs/modules/image_classification/PP-LCNet_x2_0.yaml +41 -0
  84. paddlex/configs/modules/image_classification/PP-LCNet_x2_5.yaml +41 -0
  85. paddlex/configs/modules/image_classification/ResNet101.yaml +41 -0
  86. paddlex/configs/modules/image_classification/ResNet101_vd.yaml +41 -0
  87. paddlex/configs/modules/image_classification/ResNet152.yaml +41 -0
  88. paddlex/configs/modules/image_classification/ResNet152_vd.yaml +41 -0
  89. paddlex/configs/modules/image_classification/ResNet18.yaml +41 -0
  90. paddlex/configs/modules/image_classification/ResNet18_vd.yaml +41 -0
  91. paddlex/configs/modules/image_classification/ResNet200_vd.yaml +41 -0
  92. paddlex/configs/modules/image_classification/ResNet34.yaml +41 -0
  93. paddlex/configs/modules/image_classification/ResNet34_vd.yaml +41 -0
  94. paddlex/configs/modules/image_classification/ResNet50.yaml +41 -0
  95. paddlex/configs/modules/image_classification/ResNet50_vd.yaml +41 -0
  96. paddlex/configs/modules/image_classification/StarNet-S1.yaml +41 -0
  97. paddlex/configs/modules/image_classification/StarNet-S2.yaml +41 -0
  98. paddlex/configs/modules/image_classification/StarNet-S3.yaml +41 -0
  99. paddlex/configs/modules/image_classification/StarNet-S4.yaml +41 -0
  100. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  101. paddlex/configs/modules/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  102. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  103. paddlex/configs/modules/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  104. paddlex/configs/modules/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  105. paddlex/configs/modules/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  106. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec.yaml +42 -0
  107. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  108. paddlex/configs/modules/image_feature/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  109. paddlex/configs/modules/image_multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  110. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  111. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  112. paddlex/configs/modules/image_multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  113. paddlex/configs/modules/image_multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  114. paddlex/configs/modules/image_multilabel_classification/ResNet50_ML.yaml +41 -0
  115. paddlex/configs/modules/image_unwarping/UVDoc.yaml +12 -0
  116. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  117. paddlex/configs/modules/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  118. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  119. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  120. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  121. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  122. paddlex/configs/modules/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  123. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  124. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  125. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  126. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  127. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  128. paddlex/configs/modules/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  129. paddlex/configs/modules/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  130. paddlex/configs/modules/instance_segmentation/SOLOv2.yaml +40 -0
  131. paddlex/configs/modules/keypoint_detection/PP-TinyPose_128x96.yaml +40 -0
  132. paddlex/configs/modules/keypoint_detection/PP-TinyPose_256x192.yaml +40 -0
  133. paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
  134. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +40 -0
  135. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +40 -0
  136. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +40 -0
  137. paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
  138. paddlex/configs/modules/layout_detection/PicoDet-L_layout_17cls.yaml +40 -0
  139. paddlex/configs/modules/layout_detection/PicoDet-L_layout_3cls.yaml +40 -0
  140. paddlex/configs/modules/layout_detection/PicoDet-S_layout_17cls.yaml +40 -0
  141. paddlex/configs/modules/layout_detection/PicoDet-S_layout_3cls.yaml +40 -0
  142. paddlex/configs/modules/layout_detection/PicoDet_layout_1x.yaml +40 -0
  143. paddlex/configs/modules/layout_detection/PicoDet_layout_1x_table.yaml +40 -0
  144. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_17cls.yaml +40 -0
  145. paddlex/configs/modules/layout_detection/RT-DETR-H_layout_3cls.yaml +40 -0
  146. paddlex/configs/modules/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  147. paddlex/configs/modules/multilingual_speech_recognition/whisper_base.yaml +12 -0
  148. paddlex/configs/modules/multilingual_speech_recognition/whisper_large.yaml +12 -0
  149. paddlex/configs/modules/multilingual_speech_recognition/whisper_medium.yaml +12 -0
  150. paddlex/configs/modules/multilingual_speech_recognition/whisper_small.yaml +12 -0
  151. paddlex/configs/modules/multilingual_speech_recognition/whisper_tiny.yaml +12 -0
  152. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  153. paddlex/configs/modules/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  154. paddlex/configs/modules/object_detection/CenterNet-DLA-34.yaml +41 -0
  155. paddlex/configs/modules/object_detection/CenterNet-ResNet50.yaml +41 -0
  156. paddlex/configs/modules/object_detection/Co-DINO-R50.yaml +40 -0
  157. paddlex/configs/modules/object_detection/Co-DINO-Swin-L.yaml +40 -0
  158. paddlex/configs/modules/object_detection/Co-Deformable-DETR-R50.yaml +40 -0
  159. paddlex/configs/modules/object_detection/Co-Deformable-DETR-Swin-T.yaml +40 -0
  160. paddlex/configs/modules/object_detection/DETR-R50.yaml +42 -0
  161. paddlex/configs/modules/object_detection/FCOS-ResNet50.yaml +41 -0
  162. paddlex/configs/modules/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  163. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  164. paddlex/configs/modules/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  165. paddlex/configs/modules/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  166. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  167. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  168. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  169. paddlex/configs/modules/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  170. paddlex/configs/modules/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  171. paddlex/configs/modules/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  172. paddlex/configs/modules/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  173. paddlex/configs/modules/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  174. paddlex/configs/modules/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  175. paddlex/configs/modules/object_detection/PicoDet-L.yaml +40 -0
  176. paddlex/configs/modules/object_detection/PicoDet-M.yaml +42 -0
  177. paddlex/configs/modules/object_detection/PicoDet-S.yaml +40 -0
  178. paddlex/configs/modules/object_detection/PicoDet-XS.yaml +42 -0
  179. paddlex/configs/modules/object_detection/RT-DETR-H.yaml +40 -0
  180. paddlex/configs/modules/object_detection/RT-DETR-L.yaml +40 -0
  181. paddlex/configs/modules/object_detection/RT-DETR-R18.yaml +40 -0
  182. paddlex/configs/modules/object_detection/RT-DETR-R50.yaml +40 -0
  183. paddlex/configs/modules/object_detection/RT-DETR-X.yaml +40 -0
  184. paddlex/configs/modules/object_detection/YOLOX-L.yaml +40 -0
  185. paddlex/configs/modules/object_detection/YOLOX-M.yaml +40 -0
  186. paddlex/configs/modules/object_detection/YOLOX-N.yaml +40 -0
  187. paddlex/configs/modules/object_detection/YOLOX-S.yaml +40 -0
  188. paddlex/configs/modules/object_detection/YOLOX-T.yaml +40 -0
  189. paddlex/configs/modules/object_detection/YOLOX-X.yaml +40 -0
  190. paddlex/configs/modules/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  191. paddlex/configs/modules/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  192. paddlex/configs/modules/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  193. paddlex/configs/modules/open_vocabulary_detection/GroundingDINO-T.yaml +13 -0
  194. paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
  195. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_box.yaml +17 -0
  196. paddlex/configs/modules/open_vocabulary_segmentation/SAM-H_point.yaml +15 -0
  197. paddlex/configs/modules/pedestrian_attribute_recognition/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  198. paddlex/configs/modules/rotated_object_detection/PP-YOLOE-R-L.yaml +40 -0
  199. paddlex/configs/modules/seal_text_detection/PP-OCRv4_mobile_seal_det.yaml +40 -0
  200. paddlex/configs/modules/seal_text_detection/PP-OCRv4_server_seal_det.yaml +40 -0
  201. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  202. paddlex/configs/modules/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  203. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  204. paddlex/configs/modules/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  205. paddlex/configs/modules/semantic_segmentation/MaskFormer_small.yaml +42 -0
  206. paddlex/configs/modules/semantic_segmentation/MaskFormer_tiny.yaml +42 -0
  207. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  208. paddlex/configs/modules/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  209. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  210. paddlex/configs/modules/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  211. paddlex/configs/modules/semantic_segmentation/SeaFormer_base.yaml +40 -0
  212. paddlex/configs/modules/semantic_segmentation/SeaFormer_large.yaml +40 -0
  213. paddlex/configs/modules/semantic_segmentation/SeaFormer_small.yaml +40 -0
  214. paddlex/configs/modules/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  215. paddlex/configs/modules/semantic_segmentation/SegFormer-B0.yaml +40 -0
  216. paddlex/configs/modules/semantic_segmentation/SegFormer-B1.yaml +40 -0
  217. paddlex/configs/modules/semantic_segmentation/SegFormer-B2.yaml +40 -0
  218. paddlex/configs/modules/semantic_segmentation/SegFormer-B3.yaml +40 -0
  219. paddlex/configs/modules/semantic_segmentation/SegFormer-B4.yaml +40 -0
  220. paddlex/configs/modules/semantic_segmentation/SegFormer-B5.yaml +40 -0
  221. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  222. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  223. paddlex/configs/modules/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  224. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wired_table_cell_det.yaml +40 -0
  225. paddlex/configs/modules/table_cells_detection/RT-DETR-L_wireless_table_cell_det.yaml +40 -0
  226. paddlex/configs/modules/table_classification/PP-LCNet_x1_0_table_cls.yaml +41 -0
  227. paddlex/configs/modules/table_structure_recognition/SLANeXt_wired.yaml +39 -0
  228. paddlex/configs/modules/table_structure_recognition/SLANeXt_wireless.yaml +39 -0
  229. paddlex/configs/modules/table_structure_recognition/SLANet.yaml +39 -0
  230. paddlex/configs/modules/table_structure_recognition/SLANet_plus.yaml +39 -0
  231. paddlex/configs/modules/text_detection/PP-OCRv3_mobile_det.yaml +40 -0
  232. paddlex/configs/modules/text_detection/PP-OCRv3_server_det.yaml +40 -0
  233. paddlex/configs/modules/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  234. paddlex/configs/modules/text_detection/PP-OCRv4_server_det.yaml +40 -0
  235. paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
  236. paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
  237. paddlex/configs/modules/text_recognition/PP-OCRv3_mobile_rec.yaml +39 -0
  238. paddlex/configs/modules/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  239. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  240. paddlex/configs/modules/text_recognition/PP-OCRv4_server_rec_doc.yaml +39 -0
  241. paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
  242. paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
  243. paddlex/configs/modules/text_recognition/arabic_PP-OCRv3_mobile_rec.yaml +39 -0
  244. paddlex/configs/modules/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  245. paddlex/configs/modules/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  246. paddlex/configs/modules/text_recognition/chinese_cht_PP-OCRv3_mobile_rec.yaml +39 -0
  247. paddlex/configs/modules/text_recognition/cyrillic_PP-OCRv3_mobile_rec.yaml +39 -0
  248. paddlex/configs/modules/text_recognition/devanagari_PP-OCRv3_mobile_rec.yaml +39 -0
  249. paddlex/configs/modules/text_recognition/en_PP-OCRv3_mobile_rec.yaml +39 -0
  250. paddlex/configs/modules/text_recognition/en_PP-OCRv4_mobile_rec.yaml +39 -0
  251. paddlex/configs/modules/text_recognition/japan_PP-OCRv3_mobile_rec.yaml +39 -0
  252. paddlex/configs/modules/text_recognition/ka_PP-OCRv3_mobile_rec.yaml +39 -0
  253. paddlex/configs/modules/text_recognition/korean_PP-OCRv3_mobile_rec.yaml +39 -0
  254. paddlex/configs/modules/text_recognition/latin_PP-OCRv3_mobile_rec.yaml +39 -0
  255. paddlex/configs/modules/text_recognition/ta_PP-OCRv3_mobile_rec.yaml +39 -0
  256. paddlex/configs/modules/text_recognition/te_PP-OCRv3_mobile_rec.yaml +39 -0
  257. paddlex/configs/modules/textline_orientation/PP-LCNet_x0_25_textline_ori.yaml +41 -0
  258. paddlex/configs/modules/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  259. paddlex/configs/modules/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  260. paddlex/configs/modules/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  261. paddlex/configs/modules/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  262. paddlex/configs/modules/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  263. paddlex/configs/modules/ts_classification/TimesNet_cls.yaml +37 -0
  264. paddlex/configs/modules/ts_forecast/DLinear.yaml +38 -0
  265. paddlex/configs/modules/ts_forecast/NLinear.yaml +38 -0
  266. paddlex/configs/modules/ts_forecast/Nonstationary.yaml +38 -0
  267. paddlex/configs/modules/ts_forecast/PatchTST.yaml +38 -0
  268. paddlex/configs/modules/ts_forecast/RLinear.yaml +38 -0
  269. paddlex/configs/modules/ts_forecast/TiDE.yaml +38 -0
  270. paddlex/configs/modules/ts_forecast/TimesNet.yaml +38 -0
  271. paddlex/configs/modules/vehicle_attribute_recognition/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  272. paddlex/configs/modules/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  273. paddlex/configs/modules/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  274. paddlex/configs/modules/video_classification/PP-TSM-R50_8frames_uniform.yaml +42 -0
  275. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_16frames_uniform.yaml +42 -0
  276. paddlex/configs/modules/video_classification/PP-TSMv2-LCNetV2_8frames_uniform.yaml +42 -0
  277. paddlex/configs/modules/video_detection/YOWO.yaml +40 -0
  278. paddlex/configs/pipelines/3d_bev_detection.yaml +9 -0
  279. paddlex/configs/pipelines/OCR.yaml +45 -0
  280. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +151 -0
  281. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +237 -0
  282. paddlex/configs/pipelines/PP-ShiTuV2.yaml +18 -0
  283. paddlex/configs/pipelines/PP-StructureV3.yaml +226 -0
  284. paddlex/configs/pipelines/anomaly_detection.yaml +8 -0
  285. paddlex/configs/pipelines/doc_preprocessor.yaml +15 -0
  286. paddlex/configs/pipelines/doc_understanding.yaml +9 -0
  287. paddlex/configs/pipelines/face_recognition.yaml +18 -0
  288. paddlex/configs/pipelines/formula_recognition.yaml +39 -0
  289. paddlex/configs/pipelines/human_keypoint_detection.yaml +17 -0
  290. paddlex/configs/pipelines/image_classification.yaml +10 -0
  291. paddlex/configs/pipelines/image_multilabel_classification.yaml +9 -0
  292. paddlex/configs/pipelines/instance_segmentation.yaml +10 -0
  293. paddlex/configs/pipelines/layout_parsing.yaml +102 -0
  294. paddlex/configs/pipelines/multilingual_speech_recognition.yaml +9 -0
  295. paddlex/configs/pipelines/object_detection.yaml +10 -0
  296. paddlex/configs/pipelines/open_vocabulary_detection.yaml +12 -0
  297. paddlex/configs/pipelines/open_vocabulary_segmentation.yaml +13 -0
  298. paddlex/configs/pipelines/pedestrian_attribute_recognition.yaml +15 -0
  299. paddlex/configs/pipelines/rotated_object_detection.yaml +10 -0
  300. paddlex/configs/pipelines/seal_recognition.yaml +52 -0
  301. paddlex/configs/pipelines/semantic_segmentation.yaml +10 -0
  302. paddlex/configs/pipelines/small_object_detection.yaml +10 -0
  303. paddlex/configs/pipelines/table_recognition.yaml +57 -0
  304. paddlex/configs/pipelines/table_recognition_v2.yaml +82 -0
  305. paddlex/configs/pipelines/ts_anomaly_detection.yaml +8 -0
  306. paddlex/configs/pipelines/ts_classification.yaml +8 -0
  307. paddlex/configs/pipelines/ts_forecast.yaml +8 -0
  308. paddlex/configs/pipelines/vehicle_attribute_recognition.yaml +15 -0
  309. paddlex/configs/pipelines/video_classification.yaml +9 -0
  310. paddlex/configs/pipelines/video_detection.yaml +10 -0
  311. paddlex/constants.py +17 -0
  312. paddlex/engine.py +56 -0
  313. paddlex/hpip_links.html +31 -0
  314. paddlex/inference/__init__.py +19 -0
  315. paddlex/inference/common/__init__.py +13 -0
  316. paddlex/inference/common/batch_sampler/__init__.py +21 -0
  317. paddlex/inference/common/batch_sampler/audio_batch_sampler.py +83 -0
  318. paddlex/inference/common/batch_sampler/base_batch_sampler.py +94 -0
  319. paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +144 -0
  320. paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
  321. paddlex/inference/common/batch_sampler/image_batch_sampler.py +121 -0
  322. paddlex/inference/common/batch_sampler/ts_batch_sampler.py +109 -0
  323. paddlex/inference/common/batch_sampler/video_batch_sampler.py +74 -0
  324. paddlex/inference/common/reader/__init__.py +19 -0
  325. paddlex/inference/common/reader/audio_reader.py +46 -0
  326. paddlex/inference/common/reader/det_3d_reader.py +241 -0
  327. paddlex/inference/common/reader/image_reader.py +73 -0
  328. paddlex/inference/common/reader/ts_reader.py +46 -0
  329. paddlex/inference/common/reader/video_reader.py +42 -0
  330. paddlex/inference/common/result/__init__.py +29 -0
  331. paddlex/inference/common/result/base_cv_result.py +41 -0
  332. paddlex/inference/common/result/base_result.py +72 -0
  333. paddlex/inference/common/result/base_ts_result.py +41 -0
  334. paddlex/inference/common/result/base_video_result.py +36 -0
  335. paddlex/inference/common/result/mixin.py +709 -0
  336. paddlex/inference/models/__init__.py +86 -0
  337. paddlex/inference/models/anomaly_detection/__init__.py +15 -0
  338. paddlex/inference/models/anomaly_detection/predictor.py +135 -0
  339. paddlex/inference/models/anomaly_detection/processors.py +53 -0
  340. paddlex/inference/models/anomaly_detection/result.py +71 -0
  341. paddlex/inference/models/base/__init__.py +15 -0
  342. paddlex/inference/models/base/predictor/__init__.py +15 -0
  343. paddlex/inference/models/base/predictor/base_predictor.py +414 -0
  344. paddlex/inference/models/common/__init__.py +26 -0
  345. paddlex/inference/models/common/static_infer.py +801 -0
  346. paddlex/inference/models/common/tokenizer/__init__.py +21 -0
  347. paddlex/inference/models/common/tokenizer/bert_tokenizer.py +655 -0
  348. paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
  349. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +453 -0
  350. paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
  351. paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
  352. paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
  353. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +2149 -0
  354. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3720 -0
  355. paddlex/inference/models/common/tokenizer/utils.py +66 -0
  356. paddlex/inference/models/common/tokenizer/vocab.py +647 -0
  357. paddlex/inference/models/common/ts/__init__.py +15 -0
  358. paddlex/inference/models/common/ts/funcs.py +540 -0
  359. paddlex/inference/models/common/ts/processors.py +322 -0
  360. paddlex/inference/models/common/vision/__init__.py +23 -0
  361. paddlex/inference/models/common/vision/funcs.py +98 -0
  362. paddlex/inference/models/common/vision/processors.py +285 -0
  363. paddlex/inference/models/common/vlm/__init__.py +13 -0
  364. paddlex/inference/models/common/vlm/activations.py +189 -0
  365. paddlex/inference/models/common/vlm/bert_padding.py +127 -0
  366. paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
  367. paddlex/inference/models/common/vlm/distributed.py +229 -0
  368. paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
  369. paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
  370. paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
  371. paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
  372. paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
  373. paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
  374. paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
  375. paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
  376. paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
  377. paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
  378. paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
  379. paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
  380. paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
  381. paddlex/inference/models/common/vlm/utils.py +109 -0
  382. paddlex/inference/models/doc_vlm/__init__.py +15 -0
  383. paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
  384. paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
  385. paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
  386. paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
  387. paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
  388. paddlex/inference/models/doc_vlm/predictor.py +253 -0
  389. paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
  390. paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
  391. paddlex/inference/models/doc_vlm/processors/common.py +561 -0
  392. paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
  393. paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
  394. paddlex/inference/models/doc_vlm/result.py +21 -0
  395. paddlex/inference/models/face_feature/__init__.py +15 -0
  396. paddlex/inference/models/face_feature/predictor.py +66 -0
  397. paddlex/inference/models/formula_recognition/__init__.py +15 -0
  398. paddlex/inference/models/formula_recognition/predictor.py +193 -0
  399. paddlex/inference/models/formula_recognition/processors.py +1015 -0
  400. paddlex/inference/models/formula_recognition/result.py +411 -0
  401. paddlex/inference/models/image_classification/__init__.py +15 -0
  402. paddlex/inference/models/image_classification/predictor.py +172 -0
  403. paddlex/inference/models/image_classification/processors.py +89 -0
  404. paddlex/inference/models/image_classification/result.py +93 -0
  405. paddlex/inference/models/image_feature/__init__.py +15 -0
  406. paddlex/inference/models/image_feature/predictor.py +146 -0
  407. paddlex/inference/models/image_feature/processors.py +31 -0
  408. paddlex/inference/models/image_feature/result.py +32 -0
  409. paddlex/inference/models/image_multilabel_classification/__init__.py +15 -0
  410. paddlex/inference/models/image_multilabel_classification/predictor.py +95 -0
  411. paddlex/inference/models/image_multilabel_classification/processors.py +89 -0
  412. paddlex/inference/models/image_multilabel_classification/result.py +96 -0
  413. paddlex/inference/models/image_unwarping/__init__.py +15 -0
  414. paddlex/inference/models/image_unwarping/predictor.py +97 -0
  415. paddlex/inference/models/image_unwarping/processors.py +92 -0
  416. paddlex/inference/models/image_unwarping/result.py +47 -0
  417. paddlex/inference/models/instance_segmentation/__init__.py +15 -0
  418. paddlex/inference/models/instance_segmentation/predictor.py +202 -0
  419. paddlex/inference/models/instance_segmentation/processors.py +102 -0
  420. paddlex/inference/models/instance_segmentation/result.py +162 -0
  421. paddlex/inference/models/keypoint_detection/__init__.py +15 -0
  422. paddlex/inference/models/keypoint_detection/predictor.py +190 -0
  423. paddlex/inference/models/keypoint_detection/processors.py +367 -0
  424. paddlex/inference/models/keypoint_detection/result.py +197 -0
  425. paddlex/inference/models/m_3d_bev_detection/__init__.py +15 -0
  426. paddlex/inference/models/m_3d_bev_detection/predictor.py +303 -0
  427. paddlex/inference/models/m_3d_bev_detection/processors.py +990 -0
  428. paddlex/inference/models/m_3d_bev_detection/result.py +68 -0
  429. paddlex/inference/models/m_3d_bev_detection/visualizer_3d.py +169 -0
  430. paddlex/inference/models/multilingual_speech_recognition/__init__.py +15 -0
  431. paddlex/inference/models/multilingual_speech_recognition/predictor.py +137 -0
  432. paddlex/inference/models/multilingual_speech_recognition/processors.py +1933 -0
  433. paddlex/inference/models/multilingual_speech_recognition/result.py +21 -0
  434. paddlex/inference/models/object_detection/__init__.py +15 -0
  435. paddlex/inference/models/object_detection/predictor.py +344 -0
  436. paddlex/inference/models/object_detection/processors.py +885 -0
  437. paddlex/inference/models/object_detection/result.py +114 -0
  438. paddlex/inference/models/object_detection/utils.py +70 -0
  439. paddlex/inference/models/open_vocabulary_detection/__init__.py +15 -0
  440. paddlex/inference/models/open_vocabulary_detection/predictor.py +172 -0
  441. paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +16 -0
  442. paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
  443. paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +496 -0
  444. paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
  445. paddlex/inference/models/open_vocabulary_segmentation/__init__.py +15 -0
  446. paddlex/inference/models/open_vocabulary_segmentation/predictor.py +113 -0
  447. paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +15 -0
  448. paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +249 -0
  449. paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +15 -0
  450. paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +149 -0
  451. paddlex/inference/models/semantic_segmentation/__init__.py +15 -0
  452. paddlex/inference/models/semantic_segmentation/predictor.py +158 -0
  453. paddlex/inference/models/semantic_segmentation/processors.py +117 -0
  454. paddlex/inference/models/semantic_segmentation/result.py +73 -0
  455. paddlex/inference/models/table_structure_recognition/__init__.py +15 -0
  456. paddlex/inference/models/table_structure_recognition/predictor.py +161 -0
  457. paddlex/inference/models/table_structure_recognition/processors.py +229 -0
  458. paddlex/inference/models/table_structure_recognition/result.py +63 -0
  459. paddlex/inference/models/text_detection/__init__.py +15 -0
  460. paddlex/inference/models/text_detection/predictor.py +191 -0
  461. paddlex/inference/models/text_detection/processors.py +538 -0
  462. paddlex/inference/models/text_detection/result.py +46 -0
  463. paddlex/inference/models/text_recognition/__init__.py +15 -0
  464. paddlex/inference/models/text_recognition/predictor.py +98 -0
  465. paddlex/inference/models/text_recognition/processors.py +245 -0
  466. paddlex/inference/models/text_recognition/result.py +76 -0
  467. paddlex/inference/models/ts_anomaly_detection/__init__.py +15 -0
  468. paddlex/inference/models/ts_anomaly_detection/predictor.py +141 -0
  469. paddlex/inference/models/ts_anomaly_detection/processors.py +98 -0
  470. paddlex/inference/models/ts_anomaly_detection/result.py +83 -0
  471. paddlex/inference/models/ts_classification/__init__.py +15 -0
  472. paddlex/inference/models/ts_classification/predictor.py +122 -0
  473. paddlex/inference/models/ts_classification/processors.py +122 -0
  474. paddlex/inference/models/ts_classification/result.py +87 -0
  475. paddlex/inference/models/ts_forecasting/__init__.py +15 -0
  476. paddlex/inference/models/ts_forecasting/predictor.py +154 -0
  477. paddlex/inference/models/ts_forecasting/processors.py +158 -0
  478. paddlex/inference/models/ts_forecasting/result.py +96 -0
  479. paddlex/inference/models/video_classification/__init__.py +15 -0
  480. paddlex/inference/models/video_classification/predictor.py +141 -0
  481. paddlex/inference/models/video_classification/processors.py +409 -0
  482. paddlex/inference/models/video_classification/result.py +96 -0
  483. paddlex/inference/models/video_detection/__init__.py +15 -0
  484. paddlex/inference/models/video_detection/predictor.py +129 -0
  485. paddlex/inference/models/video_detection/processors.py +463 -0
  486. paddlex/inference/models/video_detection/result.py +109 -0
  487. paddlex/inference/pipelines/__init__.py +239 -0
  488. paddlex/inference/pipelines/_parallel.py +172 -0
  489. paddlex/inference/pipelines/anomaly_detection/__init__.py +15 -0
  490. paddlex/inference/pipelines/anomaly_detection/pipeline.py +82 -0
  491. paddlex/inference/pipelines/attribute_recognition/__init__.py +15 -0
  492. paddlex/inference/pipelines/attribute_recognition/pipeline.py +120 -0
  493. paddlex/inference/pipelines/attribute_recognition/result.py +102 -0
  494. paddlex/inference/pipelines/base.py +156 -0
  495. paddlex/inference/pipelines/components/__init__.py +29 -0
  496. paddlex/inference/pipelines/components/chat_server/__init__.py +16 -0
  497. paddlex/inference/pipelines/components/chat_server/base.py +39 -0
  498. paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +236 -0
  499. paddlex/inference/pipelines/components/common/__init__.py +19 -0
  500. paddlex/inference/pipelines/components/common/base_operator.py +37 -0
  501. paddlex/inference/pipelines/components/common/base_result.py +66 -0
  502. paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +45 -0
  503. paddlex/inference/pipelines/components/common/crop_image_regions.py +556 -0
  504. paddlex/inference/pipelines/components/common/seal_det_warp.py +972 -0
  505. paddlex/inference/pipelines/components/common/sort_boxes.py +85 -0
  506. paddlex/inference/pipelines/components/common/warp_image.py +50 -0
  507. paddlex/inference/pipelines/components/faisser.py +357 -0
  508. paddlex/inference/pipelines/components/prompt_engineering/__init__.py +16 -0
  509. paddlex/inference/pipelines/components/prompt_engineering/base.py +35 -0
  510. paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +128 -0
  511. paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +148 -0
  512. paddlex/inference/pipelines/components/retriever/__init__.py +16 -0
  513. paddlex/inference/pipelines/components/retriever/base.py +228 -0
  514. paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +70 -0
  515. paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +166 -0
  516. paddlex/inference/pipelines/components/utils/__init__.py +13 -0
  517. paddlex/inference/pipelines/components/utils/mixin.py +206 -0
  518. paddlex/inference/pipelines/doc_preprocessor/__init__.py +15 -0
  519. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +209 -0
  520. paddlex/inference/pipelines/doc_preprocessor/result.py +98 -0
  521. paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
  522. paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
  523. paddlex/inference/pipelines/face_recognition/__init__.py +15 -0
  524. paddlex/inference/pipelines/face_recognition/pipeline.py +63 -0
  525. paddlex/inference/pipelines/face_recognition/result.py +44 -0
  526. paddlex/inference/pipelines/formula_recognition/__init__.py +15 -0
  527. paddlex/inference/pipelines/formula_recognition/pipeline.py +347 -0
  528. paddlex/inference/pipelines/formula_recognition/result.py +282 -0
  529. paddlex/inference/pipelines/image_classification/__init__.py +15 -0
  530. paddlex/inference/pipelines/image_classification/pipeline.py +90 -0
  531. paddlex/inference/pipelines/image_multilabel_classification/__init__.py +15 -0
  532. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +97 -0
  533. paddlex/inference/pipelines/instance_segmentation/__init__.py +15 -0
  534. paddlex/inference/pipelines/instance_segmentation/pipeline.py +91 -0
  535. paddlex/inference/pipelines/keypoint_detection/__init__.py +15 -0
  536. paddlex/inference/pipelines/keypoint_detection/pipeline.py +158 -0
  537. paddlex/inference/pipelines/layout_parsing/__init__.py +16 -0
  538. paddlex/inference/pipelines/layout_parsing/pipeline.py +568 -0
  539. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +1382 -0
  540. paddlex/inference/pipelines/layout_parsing/result.py +191 -0
  541. paddlex/inference/pipelines/layout_parsing/result_v2.py +745 -0
  542. paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
  543. paddlex/inference/pipelines/layout_parsing/utils.py +951 -0
  544. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
  545. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1143 -0
  546. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +562 -0
  547. paddlex/inference/pipelines/m_3d_bev_detection/__init__.py +15 -0
  548. paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +74 -0
  549. paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +15 -0
  550. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +78 -0
  551. paddlex/inference/pipelines/object_detection/__init__.py +15 -0
  552. paddlex/inference/pipelines/object_detection/pipeline.py +115 -0
  553. paddlex/inference/pipelines/ocr/__init__.py +15 -0
  554. paddlex/inference/pipelines/ocr/pipeline.py +463 -0
  555. paddlex/inference/pipelines/ocr/result.py +255 -0
  556. paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +15 -0
  557. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +86 -0
  558. paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +15 -0
  559. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +100 -0
  560. paddlex/inference/pipelines/pp_chatocr/__init__.py +16 -0
  561. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +111 -0
  562. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +781 -0
  563. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +992 -0
  564. paddlex/inference/pipelines/pp_shitu_v2/__init__.py +15 -0
  565. paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +156 -0
  566. paddlex/inference/pipelines/pp_shitu_v2/result.py +126 -0
  567. paddlex/inference/pipelines/rotated_object_detection/__init__.py +15 -0
  568. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +95 -0
  569. paddlex/inference/pipelines/seal_recognition/__init__.py +15 -0
  570. paddlex/inference/pipelines/seal_recognition/pipeline.py +335 -0
  571. paddlex/inference/pipelines/seal_recognition/result.py +89 -0
  572. paddlex/inference/pipelines/semantic_segmentation/__init__.py +15 -0
  573. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +95 -0
  574. paddlex/inference/pipelines/small_object_detection/__init__.py +15 -0
  575. paddlex/inference/pipelines/small_object_detection/pipeline.py +95 -0
  576. paddlex/inference/pipelines/table_recognition/__init__.py +16 -0
  577. paddlex/inference/pipelines/table_recognition/pipeline.py +486 -0
  578. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +1395 -0
  579. paddlex/inference/pipelines/table_recognition/result.py +218 -0
  580. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +366 -0
  581. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +488 -0
  582. paddlex/inference/pipelines/table_recognition/utils.py +44 -0
  583. paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +15 -0
  584. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +72 -0
  585. paddlex/inference/pipelines/ts_classification/__init__.py +15 -0
  586. paddlex/inference/pipelines/ts_classification/pipeline.py +72 -0
  587. paddlex/inference/pipelines/ts_forecasting/__init__.py +15 -0
  588. paddlex/inference/pipelines/ts_forecasting/pipeline.py +72 -0
  589. paddlex/inference/pipelines/video_classification/__init__.py +15 -0
  590. paddlex/inference/pipelines/video_classification/pipeline.py +79 -0
  591. paddlex/inference/pipelines/video_detection/__init__.py +15 -0
  592. paddlex/inference/pipelines/video_detection/pipeline.py +86 -0
  593. paddlex/inference/serving/__init__.py +17 -0
  594. paddlex/inference/serving/basic_serving/__init__.py +18 -0
  595. paddlex/inference/serving/basic_serving/_app.py +221 -0
  596. paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +44 -0
  597. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +13 -0
  598. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +104 -0
  599. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +36 -0
  600. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +95 -0
  601. paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +67 -0
  602. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +100 -0
  603. paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
  604. paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +226 -0
  605. paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +100 -0
  606. paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +81 -0
  607. paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +69 -0
  608. paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +73 -0
  609. paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +87 -0
  610. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +117 -0
  611. paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +79 -0
  612. paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +92 -0
  613. paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +77 -0
  614. paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +102 -0
  615. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +81 -0
  616. paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +91 -0
  617. paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +84 -0
  618. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +193 -0
  619. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +223 -0
  620. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +221 -0
  621. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +143 -0
  622. paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +81 -0
  623. paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +106 -0
  624. paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +67 -0
  625. paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +72 -0
  626. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +108 -0
  627. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +113 -0
  628. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +65 -0
  629. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +64 -0
  630. paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +65 -0
  631. paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +84 -0
  632. paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +76 -0
  633. paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +92 -0
  634. paddlex/inference/serving/basic_serving/_server.py +40 -0
  635. paddlex/inference/serving/infra/__init__.py +13 -0
  636. paddlex/inference/serving/infra/config.py +36 -0
  637. paddlex/inference/serving/infra/models.py +79 -0
  638. paddlex/inference/serving/infra/storage.py +180 -0
  639. paddlex/inference/serving/infra/utils.py +285 -0
  640. paddlex/inference/serving/schemas/__init__.py +13 -0
  641. paddlex/inference/serving/schemas/anomaly_detection.py +39 -0
  642. paddlex/inference/serving/schemas/doc_preprocessor.py +54 -0
  643. paddlex/inference/serving/schemas/doc_understanding.py +78 -0
  644. paddlex/inference/serving/schemas/face_recognition.py +124 -0
  645. paddlex/inference/serving/schemas/formula_recognition.py +56 -0
  646. paddlex/inference/serving/schemas/human_keypoint_detection.py +55 -0
  647. paddlex/inference/serving/schemas/image_classification.py +45 -0
  648. paddlex/inference/serving/schemas/image_multilabel_classification.py +47 -0
  649. paddlex/inference/serving/schemas/instance_segmentation.py +53 -0
  650. paddlex/inference/serving/schemas/layout_parsing.py +71 -0
  651. paddlex/inference/serving/schemas/m_3d_bev_detection.py +48 -0
  652. paddlex/inference/serving/schemas/multilingual_speech_recognition.py +57 -0
  653. paddlex/inference/serving/schemas/object_detection.py +52 -0
  654. paddlex/inference/serving/schemas/ocr.py +60 -0
  655. paddlex/inference/serving/schemas/open_vocabulary_detection.py +52 -0
  656. paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +52 -0
  657. paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +61 -0
  658. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +133 -0
  659. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +150 -0
  660. paddlex/inference/serving/schemas/pp_shituv2.py +124 -0
  661. paddlex/inference/serving/schemas/pp_structurev3.py +88 -0
  662. paddlex/inference/serving/schemas/rotated_object_detection.py +52 -0
  663. paddlex/inference/serving/schemas/seal_recognition.py +62 -0
  664. paddlex/inference/serving/schemas/semantic_segmentation.py +45 -0
  665. paddlex/inference/serving/schemas/shared/__init__.py +13 -0
  666. paddlex/inference/serving/schemas/shared/classification.py +23 -0
  667. paddlex/inference/serving/schemas/shared/image_segmentation.py +28 -0
  668. paddlex/inference/serving/schemas/shared/object_detection.py +24 -0
  669. paddlex/inference/serving/schemas/shared/ocr.py +25 -0
  670. paddlex/inference/serving/schemas/small_object_detection.py +52 -0
  671. paddlex/inference/serving/schemas/table_recognition.py +64 -0
  672. paddlex/inference/serving/schemas/table_recognition_v2.py +69 -0
  673. paddlex/inference/serving/schemas/ts_anomaly_detection.py +37 -0
  674. paddlex/inference/serving/schemas/ts_classification.py +38 -0
  675. paddlex/inference/serving/schemas/ts_forecast.py +37 -0
  676. paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +61 -0
  677. paddlex/inference/serving/schemas/video_classification.py +44 -0
  678. paddlex/inference/serving/schemas/video_detection.py +56 -0
  679. paddlex/inference/utils/__init__.py +13 -0
  680. paddlex/inference/utils/benchmark.py +379 -0
  681. paddlex/inference/utils/color_map.py +123 -0
  682. paddlex/inference/utils/get_pipeline_path.py +27 -0
  683. paddlex/inference/utils/hpi.py +254 -0
  684. paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
  685. paddlex/inference/utils/io/__init__.py +36 -0
  686. paddlex/inference/utils/io/readers.py +504 -0
  687. paddlex/inference/utils/io/style.py +381 -0
  688. paddlex/inference/utils/io/tablepyxl.py +157 -0
  689. paddlex/inference/utils/io/writers.py +458 -0
  690. paddlex/inference/utils/model_paths.py +48 -0
  691. paddlex/inference/utils/new_ir_blocklist.py +27 -0
  692. paddlex/inference/utils/official_models.py +367 -0
  693. paddlex/inference/utils/pp_option.py +339 -0
  694. paddlex/inference/utils/trt_blocklist.py +43 -0
  695. paddlex/inference/utils/trt_config.py +420 -0
  696. paddlex/model.py +131 -0
  697. paddlex/modules/__init__.py +115 -0
  698. paddlex/modules/anomaly_detection/__init__.py +18 -0
  699. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +94 -0
  700. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  701. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  702. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  703. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +233 -0
  704. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  705. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  706. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +76 -0
  707. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  708. paddlex/modules/anomaly_detection/exportor.py +22 -0
  709. paddlex/modules/anomaly_detection/model_list.py +16 -0
  710. paddlex/modules/anomaly_detection/trainer.py +70 -0
  711. paddlex/modules/base/__init__.py +18 -0
  712. paddlex/modules/base/build_model.py +33 -0
  713. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  714. paddlex/modules/base/dataset_checker/dataset_checker.py +169 -0
  715. paddlex/modules/base/dataset_checker/utils.py +108 -0
  716. paddlex/modules/base/evaluator.py +170 -0
  717. paddlex/modules/base/exportor.py +145 -0
  718. paddlex/modules/base/trainer.py +144 -0
  719. paddlex/modules/base/utils/__init__.py +13 -0
  720. paddlex/modules/base/utils/cinn_setting.py +89 -0
  721. paddlex/modules/base/utils/coco_eval.py +94 -0
  722. paddlex/modules/base/utils/topk_eval.py +118 -0
  723. paddlex/modules/doc_vlm/__init__.py +18 -0
  724. paddlex/modules/doc_vlm/dataset_checker.py +29 -0
  725. paddlex/modules/doc_vlm/evaluator.py +29 -0
  726. paddlex/modules/doc_vlm/exportor.py +29 -0
  727. paddlex/modules/doc_vlm/model_list.py +16 -0
  728. paddlex/modules/doc_vlm/trainer.py +41 -0
  729. paddlex/modules/face_recognition/__init__.py +18 -0
  730. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  731. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  732. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +172 -0
  733. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  734. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  735. paddlex/modules/face_recognition/evaluator.py +52 -0
  736. paddlex/modules/face_recognition/exportor.py +22 -0
  737. paddlex/modules/face_recognition/model_list.py +15 -0
  738. paddlex/modules/face_recognition/trainer.py +75 -0
  739. paddlex/modules/formula_recognition/__init__.py +18 -0
  740. paddlex/modules/formula_recognition/dataset_checker/__init__.py +113 -0
  741. paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  742. paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +158 -0
  743. paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +76 -0
  744. paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  745. paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  746. paddlex/modules/formula_recognition/evaluator.py +80 -0
  747. paddlex/modules/formula_recognition/exportor.py +22 -0
  748. paddlex/modules/formula_recognition/model_list.py +23 -0
  749. paddlex/modules/formula_recognition/trainer.py +123 -0
  750. paddlex/modules/general_recognition/__init__.py +18 -0
  751. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  752. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  753. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +96 -0
  754. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +99 -0
  755. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +100 -0
  756. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  757. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  758. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +147 -0
  759. paddlex/modules/general_recognition/evaluator.py +31 -0
  760. paddlex/modules/general_recognition/exportor.py +22 -0
  761. paddlex/modules/general_recognition/model_list.py +19 -0
  762. paddlex/modules/general_recognition/trainer.py +52 -0
  763. paddlex/modules/image_classification/__init__.py +18 -0
  764. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  765. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  766. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +92 -0
  767. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  768. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  769. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  770. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  771. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  772. paddlex/modules/image_classification/evaluator.py +43 -0
  773. paddlex/modules/image_classification/exportor.py +22 -0
  774. paddlex/modules/image_classification/model_list.py +99 -0
  775. paddlex/modules/image_classification/trainer.py +82 -0
  776. paddlex/modules/image_unwarping/__init__.py +13 -0
  777. paddlex/modules/image_unwarping/model_list.py +17 -0
  778. paddlex/modules/instance_segmentation/__init__.py +18 -0
  779. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +107 -0
  780. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  781. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  782. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +95 -0
  783. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  784. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +122 -0
  785. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  786. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +223 -0
  787. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  788. paddlex/modules/instance_segmentation/exportor.py +22 -0
  789. paddlex/modules/instance_segmentation/model_list.py +33 -0
  790. paddlex/modules/instance_segmentation/trainer.py +31 -0
  791. paddlex/modules/keypoint_detection/__init__.py +18 -0
  792. paddlex/modules/keypoint_detection/dataset_checker/__init__.py +56 -0
  793. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +15 -0
  794. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  795. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  796. paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +124 -0
  797. paddlex/modules/keypoint_detection/evaluator.py +41 -0
  798. paddlex/modules/keypoint_detection/exportor.py +22 -0
  799. paddlex/modules/keypoint_detection/model_list.py +16 -0
  800. paddlex/modules/keypoint_detection/trainer.py +39 -0
  801. paddlex/modules/m_3d_bev_detection/__init__.py +18 -0
  802. paddlex/modules/m_3d_bev_detection/dataset_checker/__init__.py +95 -0
  803. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/__init__.py +17 -0
  804. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/analyse_dataset.py +106 -0
  805. paddlex/modules/m_3d_bev_detection/dataset_checker/dataset_src/check_dataset.py +101 -0
  806. paddlex/modules/m_3d_bev_detection/evaluator.py +46 -0
  807. paddlex/modules/m_3d_bev_detection/exportor.py +22 -0
  808. paddlex/modules/m_3d_bev_detection/model_list.py +18 -0
  809. paddlex/modules/m_3d_bev_detection/trainer.py +68 -0
  810. paddlex/modules/multilabel_classification/__init__.py +18 -0
  811. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  812. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  813. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +94 -0
  814. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +132 -0
  815. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +120 -0
  816. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  817. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  818. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +149 -0
  819. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  820. paddlex/modules/multilabel_classification/exportor.py +22 -0
  821. paddlex/modules/multilabel_classification/model_list.py +24 -0
  822. paddlex/modules/multilabel_classification/trainer.py +85 -0
  823. paddlex/modules/multilingual_speech_recognition/__init__.py +18 -0
  824. paddlex/modules/multilingual_speech_recognition/dataset_checker.py +27 -0
  825. paddlex/modules/multilingual_speech_recognition/evaluator.py +27 -0
  826. paddlex/modules/multilingual_speech_recognition/exportor.py +27 -0
  827. paddlex/modules/multilingual_speech_recognition/model_list.py +22 -0
  828. paddlex/modules/multilingual_speech_recognition/trainer.py +42 -0
  829. paddlex/modules/object_detection/__init__.py +18 -0
  830. paddlex/modules/object_detection/dataset_checker/__init__.py +106 -0
  831. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  832. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +82 -0
  833. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +91 -0
  834. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +438 -0
  835. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +123 -0
  836. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  837. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +193 -0
  838. paddlex/modules/object_detection/evaluator.py +57 -0
  839. paddlex/modules/object_detection/exportor.py +22 -0
  840. paddlex/modules/object_detection/model_list.py +86 -0
  841. paddlex/modules/object_detection/trainer.py +98 -0
  842. paddlex/modules/open_vocabulary_detection/__init__.py +18 -0
  843. paddlex/modules/open_vocabulary_detection/dataset_checker.py +29 -0
  844. paddlex/modules/open_vocabulary_detection/evaluator.py +29 -0
  845. paddlex/modules/open_vocabulary_detection/exportor.py +29 -0
  846. paddlex/modules/open_vocabulary_detection/model_list.py +16 -0
  847. paddlex/modules/open_vocabulary_detection/trainer.py +44 -0
  848. paddlex/modules/open_vocabulary_segmentation/__init__.py +18 -0
  849. paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +29 -0
  850. paddlex/modules/open_vocabulary_segmentation/evaluator.py +29 -0
  851. paddlex/modules/open_vocabulary_segmentation/exportor.py +29 -0
  852. paddlex/modules/open_vocabulary_segmentation/model_list.py +19 -0
  853. paddlex/modules/open_vocabulary_segmentation/trainer.py +44 -0
  854. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  855. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +109 -0
  856. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  857. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +76 -0
  858. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  859. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +165 -0
  860. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  861. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  862. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +75 -0
  863. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  864. paddlex/modules/semantic_segmentation/exportor.py +31 -0
  865. paddlex/modules/semantic_segmentation/model_list.py +37 -0
  866. paddlex/modules/semantic_segmentation/trainer.py +72 -0
  867. paddlex/modules/table_recognition/__init__.py +18 -0
  868. paddlex/modules/table_recognition/dataset_checker/__init__.py +98 -0
  869. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  870. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +59 -0
  871. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  872. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  873. paddlex/modules/table_recognition/evaluator.py +43 -0
  874. paddlex/modules/table_recognition/exportor.py +22 -0
  875. paddlex/modules/table_recognition/model_list.py +21 -0
  876. paddlex/modules/table_recognition/trainer.py +67 -0
  877. paddlex/modules/text_detection/__init__.py +18 -0
  878. paddlex/modules/text_detection/dataset_checker/__init__.py +107 -0
  879. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  880. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +220 -0
  881. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +106 -0
  882. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  883. paddlex/modules/text_detection/evaluator.py +41 -0
  884. paddlex/modules/text_detection/exportor.py +22 -0
  885. paddlex/modules/text_detection/model_list.py +26 -0
  886. paddlex/modules/text_detection/trainer.py +65 -0
  887. paddlex/modules/text_recognition/__init__.py +18 -0
  888. paddlex/modules/text_recognition/dataset_checker/__init__.py +125 -0
  889. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  890. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +162 -0
  891. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +104 -0
  892. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +95 -0
  893. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +80 -0
  894. paddlex/modules/text_recognition/evaluator.py +64 -0
  895. paddlex/modules/text_recognition/exportor.py +22 -0
  896. paddlex/modules/text_recognition/model_list.py +36 -0
  897. paddlex/modules/text_recognition/trainer.py +105 -0
  898. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  899. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +111 -0
  900. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  901. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  902. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  903. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +74 -0
  904. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  905. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  906. paddlex/modules/ts_anomaly_detection/exportor.py +44 -0
  907. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  908. paddlex/modules/ts_anomaly_detection/trainer.py +113 -0
  909. paddlex/modules/ts_classification/__init__.py +19 -0
  910. paddlex/modules/ts_classification/dataset_checker/__init__.py +111 -0
  911. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  912. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +77 -0
  913. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  914. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +74 -0
  915. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  916. paddlex/modules/ts_classification/evaluator.py +66 -0
  917. paddlex/modules/ts_classification/exportor.py +44 -0
  918. paddlex/modules/ts_classification/model_list.py +18 -0
  919. paddlex/modules/ts_classification/trainer.py +108 -0
  920. paddlex/modules/ts_forecast/__init__.py +19 -0
  921. paddlex/modules/ts_forecast/dataset_checker/__init__.py +111 -0
  922. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  923. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +19 -0
  924. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  925. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +73 -0
  926. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  927. paddlex/modules/ts_forecast/evaluator.py +66 -0
  928. paddlex/modules/ts_forecast/exportor.py +44 -0
  929. paddlex/modules/ts_forecast/model_list.py +24 -0
  930. paddlex/modules/ts_forecast/trainer.py +108 -0
  931. paddlex/modules/video_classification/__init__.py +18 -0
  932. paddlex/modules/video_classification/dataset_checker/__init__.py +93 -0
  933. paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +18 -0
  934. paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  935. paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +120 -0
  936. paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +82 -0
  937. paddlex/modules/video_classification/evaluator.py +44 -0
  938. paddlex/modules/video_classification/exportor.py +22 -0
  939. paddlex/modules/video_classification/model_list.py +19 -0
  940. paddlex/modules/video_classification/trainer.py +88 -0
  941. paddlex/modules/video_detection/__init__.py +18 -0
  942. paddlex/modules/video_detection/dataset_checker/__init__.py +86 -0
  943. paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +17 -0
  944. paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +100 -0
  945. paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +132 -0
  946. paddlex/modules/video_detection/evaluator.py +42 -0
  947. paddlex/modules/video_detection/exportor.py +22 -0
  948. paddlex/modules/video_detection/model_list.py +15 -0
  949. paddlex/modules/video_detection/trainer.py +82 -0
  950. paddlex/ops/__init__.py +152 -0
  951. paddlex/ops/iou3d_nms/iou3d_cpu.cpp +266 -0
  952. paddlex/ops/iou3d_nms/iou3d_cpu.h +28 -0
  953. paddlex/ops/iou3d_nms/iou3d_nms.cpp +206 -0
  954. paddlex/ops/iou3d_nms/iou3d_nms.h +35 -0
  955. paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +114 -0
  956. paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +484 -0
  957. paddlex/ops/setup.py +37 -0
  958. paddlex/ops/voxel/voxelize_op.cc +194 -0
  959. paddlex/ops/voxel/voxelize_op.cu +346 -0
  960. paddlex/paddlex_cli.py +476 -0
  961. paddlex/repo_apis/Paddle3D_api/__init__.py +17 -0
  962. paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +18 -0
  963. paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +118 -0
  964. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +238 -0
  965. paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +55 -0
  966. paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +104 -0
  967. paddlex/repo_apis/Paddle3D_api/pp3d_config.py +145 -0
  968. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  969. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  970. paddlex/repo_apis/PaddleClas_api/cls/config.py +595 -0
  971. paddlex/repo_apis/PaddleClas_api/cls/model.py +355 -0
  972. paddlex/repo_apis/PaddleClas_api/cls/register.py +907 -0
  973. paddlex/repo_apis/PaddleClas_api/cls/runner.py +218 -0
  974. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  975. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  976. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +20 -0
  977. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  978. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +50 -0
  979. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  980. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  981. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  982. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +457 -0
  983. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +403 -0
  984. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +262 -0
  985. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +225 -0
  986. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  987. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +540 -0
  988. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +429 -0
  989. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +245 -0
  990. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +1135 -0
  991. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +225 -0
  992. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  993. paddlex/repo_apis/PaddleOCR_api/__init__.py +22 -0
  994. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  995. paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +16 -0
  996. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +571 -0
  997. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +398 -0
  998. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +99 -0
  999. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +239 -0
  1000. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  1001. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  1002. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  1003. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +70 -0
  1004. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  1005. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  1006. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  1007. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  1008. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +107 -0
  1009. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  1010. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  1011. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +564 -0
  1012. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +398 -0
  1013. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +216 -0
  1014. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +239 -0
  1015. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  1016. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  1017. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  1018. paddlex/repo_apis/PaddleSeg_api/seg/config.py +183 -0
  1019. paddlex/repo_apis/PaddleSeg_api/seg/model.py +491 -0
  1020. paddlex/repo_apis/PaddleSeg_api/seg/register.py +272 -0
  1021. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +261 -0
  1022. paddlex/repo_apis/PaddleTS_api/__init__.py +20 -0
  1023. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  1024. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +88 -0
  1025. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  1026. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  1027. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  1028. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +244 -0
  1029. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +276 -0
  1030. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  1031. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  1032. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +72 -0
  1033. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  1034. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  1035. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  1036. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +136 -0
  1037. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  1038. paddlex/repo_apis/PaddleVideo_api/__init__.py +17 -0
  1039. paddlex/repo_apis/PaddleVideo_api/config_utils.py +51 -0
  1040. paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +19 -0
  1041. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +548 -0
  1042. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +346 -0
  1043. paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +70 -0
  1044. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +204 -0
  1045. paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +19 -0
  1046. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +549 -0
  1047. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +298 -0
  1048. paddlex/repo_apis/PaddleVideo_api/video_det/register.py +44 -0
  1049. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +199 -0
  1050. paddlex/repo_apis/__init__.py +13 -0
  1051. paddlex/repo_apis/base/__init__.py +22 -0
  1052. paddlex/repo_apis/base/config.py +237 -0
  1053. paddlex/repo_apis/base/model.py +563 -0
  1054. paddlex/repo_apis/base/register.py +135 -0
  1055. paddlex/repo_apis/base/runner.py +390 -0
  1056. paddlex/repo_apis/base/utils/__init__.py +13 -0
  1057. paddlex/repo_apis/base/utils/arg.py +64 -0
  1058. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  1059. paddlex/repo_manager/__init__.py +17 -0
  1060. paddlex/repo_manager/core.py +253 -0
  1061. paddlex/repo_manager/meta.py +180 -0
  1062. paddlex/repo_manager/repo.py +425 -0
  1063. paddlex/repo_manager/utils.py +148 -0
  1064. paddlex/utils/__init__.py +1 -12
  1065. paddlex/utils/cache.py +146 -0
  1066. paddlex/utils/config.py +216 -0
  1067. paddlex/utils/custom_device_list.py +311 -0
  1068. paddlex/utils/deps.py +249 -0
  1069. paddlex/utils/device.py +195 -0
  1070. paddlex/utils/download.py +168 -182
  1071. paddlex/utils/env.py +31 -48
  1072. paddlex/utils/errors/__init__.py +17 -0
  1073. paddlex/utils/errors/dataset_checker.py +78 -0
  1074. paddlex/utils/errors/others.py +138 -0
  1075. paddlex/utils/file_interface.py +211 -0
  1076. paddlex/utils/flags.py +70 -0
  1077. paddlex/utils/fonts/__init__.py +97 -0
  1078. paddlex/utils/func_register.py +41 -0
  1079. paddlex/utils/install.py +87 -0
  1080. paddlex/utils/interactive_get_pipeline.py +55 -0
  1081. paddlex/utils/lazy_loader.py +68 -0
  1082. paddlex/utils/logging.py +140 -33
  1083. paddlex/utils/misc.py +201 -0
  1084. paddlex/utils/pipeline_arguments.py +719 -0
  1085. paddlex/utils/result_saver.py +58 -0
  1086. paddlex/utils/subclass_register.py +99 -0
  1087. paddlex/version.py +55 -0
  1088. paddlex-3.0.0.dist-info/METADATA +1168 -0
  1089. paddlex-3.0.0.dist-info/RECORD +1093 -0
  1090. paddlex-3.0.0.dist-info/WHEEL +5 -0
  1091. paddlex-3.0.0.dist-info/entry_points.txt +2 -0
  1092. paddlex-3.0.0.dist-info/licenses/LICENSE +169 -0
  1093. paddlex-3.0.0.dist-info/top_level.txt +1 -0
  1094. PaddleClas/__init__.py +0 -16
  1095. PaddleClas/paddleclas.py +0 -375
  1096. PaddleClas/ppcls/__init__.py +0 -20
  1097. PaddleClas/ppcls/data/__init__.py +0 -15
  1098. PaddleClas/ppcls/data/imaug/__init__.py +0 -94
  1099. PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
  1100. PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
  1101. PaddleClas/ppcls/data/imaug/cutout.py +0 -41
  1102. PaddleClas/ppcls/data/imaug/fmix.py +0 -217
  1103. PaddleClas/ppcls/data/imaug/grid.py +0 -89
  1104. PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
  1105. PaddleClas/ppcls/data/imaug/operators.py +0 -244
  1106. PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
  1107. PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
  1108. PaddleClas/ppcls/data/reader.py +0 -318
  1109. PaddleClas/ppcls/modeling/__init__.py +0 -20
  1110. PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
  1111. PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
  1112. PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
  1113. PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
  1114. PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
  1115. PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  1116. PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
  1117. PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
  1118. PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
  1119. PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
  1120. PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
  1121. PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
  1122. PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
  1123. PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
  1124. PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  1125. PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  1126. PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  1127. PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
  1128. PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
  1129. PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
  1130. PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
  1131. PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
  1132. PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
  1133. PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
  1134. PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
  1135. PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
  1136. PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  1137. PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
  1138. PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
  1139. PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  1140. PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
  1141. PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  1142. PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  1143. PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
  1144. PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
  1145. PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
  1146. PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
  1147. PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  1148. PaddleClas/ppcls/modeling/loss.py +0 -154
  1149. PaddleClas/ppcls/modeling/utils.py +0 -53
  1150. PaddleClas/ppcls/optimizer/__init__.py +0 -19
  1151. PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
  1152. PaddleClas/ppcls/optimizer/optimizer.py +0 -165
  1153. PaddleClas/ppcls/utils/__init__.py +0 -27
  1154. PaddleClas/ppcls/utils/check.py +0 -151
  1155. PaddleClas/ppcls/utils/config.py +0 -201
  1156. PaddleClas/ppcls/utils/logger.py +0 -120
  1157. PaddleClas/ppcls/utils/metrics.py +0 -107
  1158. PaddleClas/ppcls/utils/misc.py +0 -62
  1159. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  1160. PaddleClas/ppcls/utils/save_load.py +0 -163
  1161. PaddleClas/setup.py +0 -55
  1162. PaddleClas/tools/__init__.py +0 -15
  1163. PaddleClas/tools/download.py +0 -50
  1164. PaddleClas/tools/ema.py +0 -58
  1165. PaddleClas/tools/eval.py +0 -112
  1166. PaddleClas/tools/export_model.py +0 -85
  1167. PaddleClas/tools/export_serving_model.py +0 -76
  1168. PaddleClas/tools/infer/__init__.py +0 -16
  1169. PaddleClas/tools/infer/infer.py +0 -94
  1170. PaddleClas/tools/infer/predict.py +0 -117
  1171. PaddleClas/tools/infer/utils.py +0 -233
  1172. PaddleClas/tools/program.py +0 -444
  1173. PaddleClas/tools/test_hubserving.py +0 -113
  1174. PaddleClas/tools/train.py +0 -141
  1175. paddlex/cls.py +0 -76
  1176. paddlex/command.py +0 -215
  1177. paddlex/cv/__init__.py +0 -17
  1178. paddlex/cv/datasets/__init__.py +0 -18
  1179. paddlex/cv/datasets/coco.py +0 -169
  1180. paddlex/cv/datasets/imagenet.py +0 -88
  1181. paddlex/cv/datasets/seg_dataset.py +0 -91
  1182. paddlex/cv/datasets/voc.py +0 -301
  1183. paddlex/cv/models/__init__.py +0 -18
  1184. paddlex/cv/models/base.py +0 -623
  1185. paddlex/cv/models/classifier.py +0 -814
  1186. paddlex/cv/models/detector.py +0 -1747
  1187. paddlex/cv/models/load_model.py +0 -126
  1188. paddlex/cv/models/segmenter.py +0 -673
  1189. paddlex/cv/models/slim/__init__.py +0 -13
  1190. paddlex/cv/models/slim/prune.py +0 -55
  1191. paddlex/cv/models/utils/__init__.py +0 -13
  1192. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  1193. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
  1194. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  1195. paddlex/cv/models/utils/ema.py +0 -48
  1196. paddlex/cv/models/utils/seg_metrics.py +0 -62
  1197. paddlex/cv/models/utils/visualize.py +0 -394
  1198. paddlex/cv/transforms/__init__.py +0 -46
  1199. paddlex/cv/transforms/batch_operators.py +0 -286
  1200. paddlex/cv/transforms/box_utils.py +0 -41
  1201. paddlex/cv/transforms/functions.py +0 -193
  1202. paddlex/cv/transforms/operators.py +0 -1402
  1203. paddlex/det.py +0 -43
  1204. paddlex/paddleseg/__init__.py +0 -17
  1205. paddlex/paddleseg/core/__init__.py +0 -20
  1206. paddlex/paddleseg/core/infer.py +0 -289
  1207. paddlex/paddleseg/core/predict.py +0 -145
  1208. paddlex/paddleseg/core/train.py +0 -258
  1209. paddlex/paddleseg/core/val.py +0 -172
  1210. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  1211. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  1212. paddlex/paddleseg/cvlibs/config.py +0 -359
  1213. paddlex/paddleseg/cvlibs/manager.py +0 -142
  1214. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  1215. paddlex/paddleseg/datasets/__init__.py +0 -21
  1216. paddlex/paddleseg/datasets/ade.py +0 -112
  1217. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  1218. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  1219. paddlex/paddleseg/datasets/dataset.py +0 -164
  1220. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  1221. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  1222. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  1223. paddlex/paddleseg/datasets/voc.py +0 -113
  1224. paddlex/paddleseg/models/__init__.py +0 -39
  1225. paddlex/paddleseg/models/ann.py +0 -436
  1226. paddlex/paddleseg/models/attention_unet.py +0 -189
  1227. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  1228. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  1229. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  1230. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  1231. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  1232. paddlex/paddleseg/models/bisenet.py +0 -311
  1233. paddlex/paddleseg/models/danet.py +0 -220
  1234. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  1235. paddlex/paddleseg/models/deeplab.py +0 -258
  1236. paddlex/paddleseg/models/dnlnet.py +0 -231
  1237. paddlex/paddleseg/models/emanet.py +0 -219
  1238. paddlex/paddleseg/models/fast_scnn.py +0 -318
  1239. paddlex/paddleseg/models/fcn.py +0 -135
  1240. paddlex/paddleseg/models/gcnet.py +0 -223
  1241. paddlex/paddleseg/models/gscnn.py +0 -357
  1242. paddlex/paddleseg/models/hardnet.py +0 -309
  1243. paddlex/paddleseg/models/isanet.py +0 -202
  1244. paddlex/paddleseg/models/layers/__init__.py +0 -19
  1245. paddlex/paddleseg/models/layers/activation.py +0 -73
  1246. paddlex/paddleseg/models/layers/attention.py +0 -146
  1247. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  1248. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  1249. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  1250. paddlex/paddleseg/models/losses/__init__.py +0 -27
  1251. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  1252. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  1253. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  1254. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  1255. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  1256. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  1257. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  1258. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  1259. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  1260. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  1261. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  1262. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  1263. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  1264. paddlex/paddleseg/models/ocrnet.py +0 -248
  1265. paddlex/paddleseg/models/pspnet.py +0 -147
  1266. paddlex/paddleseg/models/sfnet.py +0 -236
  1267. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  1268. paddlex/paddleseg/models/u2net.py +0 -574
  1269. paddlex/paddleseg/models/unet.py +0 -155
  1270. paddlex/paddleseg/models/unet_3plus.py +0 -316
  1271. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  1272. paddlex/paddleseg/transforms/__init__.py +0 -16
  1273. paddlex/paddleseg/transforms/functional.py +0 -161
  1274. paddlex/paddleseg/transforms/transforms.py +0 -937
  1275. paddlex/paddleseg/utils/__init__.py +0 -22
  1276. paddlex/paddleseg/utils/config_check.py +0 -60
  1277. paddlex/paddleseg/utils/download.py +0 -163
  1278. paddlex/paddleseg/utils/env/__init__.py +0 -16
  1279. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  1280. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  1281. paddlex/paddleseg/utils/logger.py +0 -48
  1282. paddlex/paddleseg/utils/metrics.py +0 -146
  1283. paddlex/paddleseg/utils/progbar.py +0 -212
  1284. paddlex/paddleseg/utils/timer.py +0 -53
  1285. paddlex/paddleseg/utils/utils.py +0 -120
  1286. paddlex/paddleseg/utils/visualize.py +0 -90
  1287. paddlex/ppcls/__init__.py +0 -20
  1288. paddlex/ppcls/data/__init__.py +0 -15
  1289. paddlex/ppcls/data/imaug/__init__.py +0 -94
  1290. paddlex/ppcls/data/imaug/autoaugment.py +0 -264
  1291. paddlex/ppcls/data/imaug/batch_operators.py +0 -117
  1292. paddlex/ppcls/data/imaug/cutout.py +0 -41
  1293. paddlex/ppcls/data/imaug/fmix.py +0 -217
  1294. paddlex/ppcls/data/imaug/grid.py +0 -89
  1295. paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
  1296. paddlex/ppcls/data/imaug/operators.py +0 -256
  1297. paddlex/ppcls/data/imaug/randaugment.py +0 -106
  1298. paddlex/ppcls/data/imaug/random_erasing.py +0 -55
  1299. paddlex/ppcls/data/reader.py +0 -318
  1300. paddlex/ppcls/modeling/__init__.py +0 -20
  1301. paddlex/ppcls/modeling/architectures/__init__.py +0 -51
  1302. paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
  1303. paddlex/ppcls/modeling/architectures/darknet.py +0 -161
  1304. paddlex/ppcls/modeling/architectures/densenet.py +0 -308
  1305. paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
  1306. paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  1307. paddlex/ppcls/modeling/architectures/dpn.py +0 -425
  1308. paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
  1309. paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
  1310. paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
  1311. paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
  1312. paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
  1313. paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
  1314. paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
  1315. paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  1316. paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  1317. paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  1318. paddlex/ppcls/modeling/architectures/regnet.py +0 -383
  1319. paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
  1320. paddlex/ppcls/modeling/architectures/res2net.py +0 -272
  1321. paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
  1322. paddlex/ppcls/modeling/architectures/resnest.py +0 -705
  1323. paddlex/ppcls/modeling/architectures/resnet.py +0 -317
  1324. paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
  1325. paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
  1326. paddlex/ppcls/modeling/architectures/resnext.py +0 -259
  1327. paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  1328. paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
  1329. paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
  1330. paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  1331. paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
  1332. paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  1333. paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  1334. paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
  1335. paddlex/ppcls/modeling/architectures/vgg.py +0 -152
  1336. paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
  1337. paddlex/ppcls/modeling/architectures/xception.py +0 -345
  1338. paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  1339. paddlex/ppcls/modeling/loss.py +0 -158
  1340. paddlex/ppcls/modeling/utils.py +0 -53
  1341. paddlex/ppcls/optimizer/__init__.py +0 -19
  1342. paddlex/ppcls/optimizer/learning_rate.py +0 -159
  1343. paddlex/ppcls/optimizer/optimizer.py +0 -165
  1344. paddlex/ppcls/utils/__init__.py +0 -27
  1345. paddlex/ppcls/utils/check.py +0 -151
  1346. paddlex/ppcls/utils/config.py +0 -201
  1347. paddlex/ppcls/utils/logger.py +0 -120
  1348. paddlex/ppcls/utils/metrics.py +0 -112
  1349. paddlex/ppcls/utils/misc.py +0 -62
  1350. paddlex/ppcls/utils/model_zoo.py +0 -213
  1351. paddlex/ppcls/utils/save_load.py +0 -163
  1352. paddlex/ppdet/__init__.py +0 -16
  1353. paddlex/ppdet/core/__init__.py +0 -15
  1354. paddlex/ppdet/core/config/__init__.py +0 -13
  1355. paddlex/ppdet/core/config/schema.py +0 -248
  1356. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  1357. paddlex/ppdet/core/workspace.py +0 -279
  1358. paddlex/ppdet/data/__init__.py +0 -21
  1359. paddlex/ppdet/data/reader.py +0 -304
  1360. paddlex/ppdet/data/shm_utils.py +0 -67
  1361. paddlex/ppdet/data/source/__init__.py +0 -27
  1362. paddlex/ppdet/data/source/category.py +0 -823
  1363. paddlex/ppdet/data/source/coco.py +0 -243
  1364. paddlex/ppdet/data/source/dataset.py +0 -192
  1365. paddlex/ppdet/data/source/keypoint_coco.py +0 -656
  1366. paddlex/ppdet/data/source/mot.py +0 -360
  1367. paddlex/ppdet/data/source/voc.py +0 -204
  1368. paddlex/ppdet/data/source/widerface.py +0 -180
  1369. paddlex/ppdet/data/transform/__init__.py +0 -28
  1370. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
  1371. paddlex/ppdet/data/transform/batch_operators.py +0 -758
  1372. paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
  1373. paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
  1374. paddlex/ppdet/data/transform/mot_operators.py +0 -636
  1375. paddlex/ppdet/data/transform/op_helper.py +0 -468
  1376. paddlex/ppdet/data/transform/operators.py +0 -2103
  1377. paddlex/ppdet/engine/__init__.py +0 -29
  1378. paddlex/ppdet/engine/callbacks.py +0 -262
  1379. paddlex/ppdet/engine/env.py +0 -47
  1380. paddlex/ppdet/engine/export_utils.py +0 -118
  1381. paddlex/ppdet/engine/tracker.py +0 -425
  1382. paddlex/ppdet/engine/trainer.py +0 -535
  1383. paddlex/ppdet/metrics/__init__.py +0 -23
  1384. paddlex/ppdet/metrics/coco_utils.py +0 -184
  1385. paddlex/ppdet/metrics/json_results.py +0 -151
  1386. paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
  1387. paddlex/ppdet/metrics/map_utils.py +0 -396
  1388. paddlex/ppdet/metrics/metrics.py +0 -300
  1389. paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
  1390. paddlex/ppdet/metrics/mot_metrics.py +0 -184
  1391. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  1392. paddlex/ppdet/model_zoo/__init__.py +0 -18
  1393. paddlex/ppdet/model_zoo/model_zoo.py +0 -86
  1394. paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
  1395. paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
  1396. paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
  1397. paddlex/ppdet/modeling/__init__.py +0 -41
  1398. paddlex/ppdet/modeling/architectures/__init__.py +0 -40
  1399. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  1400. paddlex/ppdet/modeling/architectures/centernet.py +0 -103
  1401. paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
  1402. paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
  1403. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  1404. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  1405. paddlex/ppdet/modeling/architectures/jde.py +0 -125
  1406. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
  1407. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
  1408. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  1409. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
  1410. paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
  1411. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  1412. paddlex/ppdet/modeling/architectures/ssd.py +0 -84
  1413. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  1414. paddlex/ppdet/modeling/architectures/yolo.py +0 -104
  1415. paddlex/ppdet/modeling/backbones/__init__.py +0 -37
  1416. paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
  1417. paddlex/ppdet/modeling/backbones/darknet.py +0 -341
  1418. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  1419. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
  1420. paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
  1421. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
  1422. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
  1423. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  1424. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  1425. paddlex/ppdet/modeling/backbones/resnet.py +0 -606
  1426. paddlex/ppdet/modeling/backbones/senet.py +0 -140
  1427. paddlex/ppdet/modeling/backbones/vgg.py +0 -216
  1428. paddlex/ppdet/modeling/bbox_utils.py +0 -464
  1429. paddlex/ppdet/modeling/heads/__init__.py +0 -41
  1430. paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
  1431. paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
  1432. paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
  1433. paddlex/ppdet/modeling/heads/face_head.py +0 -113
  1434. paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
  1435. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  1436. paddlex/ppdet/modeling/heads/mask_head.py +0 -253
  1437. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  1438. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
  1439. paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
  1440. paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
  1441. paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
  1442. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  1443. paddlex/ppdet/modeling/keypoint_utils.py +0 -302
  1444. paddlex/ppdet/modeling/layers.py +0 -1142
  1445. paddlex/ppdet/modeling/losses/__init__.py +0 -35
  1446. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
  1447. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1448. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1449. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
  1450. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1451. paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
  1452. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
  1453. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1454. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
  1455. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1456. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1457. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1458. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1459. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
  1460. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1461. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1462. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1463. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
  1464. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
  1465. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
  1466. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
  1467. paddlex/ppdet/modeling/mot/utils.py +0 -181
  1468. paddlex/ppdet/modeling/mot/visualization.py +0 -130
  1469. paddlex/ppdet/modeling/necks/__init__.py +0 -25
  1470. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
  1471. paddlex/ppdet/modeling/necks/fpn.py +0 -233
  1472. paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
  1473. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
  1474. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
  1475. paddlex/ppdet/modeling/ops.py +0 -1599
  1476. paddlex/ppdet/modeling/post_process.py +0 -449
  1477. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1478. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1479. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
  1480. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
  1481. paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
  1482. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
  1483. paddlex/ppdet/modeling/reid/__init__.py +0 -23
  1484. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
  1485. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
  1486. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
  1487. paddlex/ppdet/modeling/reid/resnet.py +0 -320
  1488. paddlex/ppdet/modeling/shape_spec.py +0 -33
  1489. paddlex/ppdet/modeling/tests/__init__.py +0 -13
  1490. paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
  1491. paddlex/ppdet/modeling/tests/test_base.py +0 -75
  1492. paddlex/ppdet/modeling/tests/test_ops.py +0 -839
  1493. paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
  1494. paddlex/ppdet/optimizer.py +0 -285
  1495. paddlex/ppdet/slim/__init__.py +0 -62
  1496. paddlex/ppdet/slim/distill.py +0 -111
  1497. paddlex/ppdet/slim/prune.py +0 -85
  1498. paddlex/ppdet/slim/quant.py +0 -52
  1499. paddlex/ppdet/utils/__init__.py +0 -13
  1500. paddlex/ppdet/utils/check.py +0 -93
  1501. paddlex/ppdet/utils/checkpoint.py +0 -216
  1502. paddlex/ppdet/utils/cli.py +0 -151
  1503. paddlex/ppdet/utils/colormap.py +0 -56
  1504. paddlex/ppdet/utils/download.py +0 -477
  1505. paddlex/ppdet/utils/logger.py +0 -71
  1506. paddlex/ppdet/utils/stats.py +0 -95
  1507. paddlex/ppdet/utils/visualizer.py +0 -292
  1508. paddlex/ppdet/utils/voc_utils.py +0 -87
  1509. paddlex/seg.py +0 -38
  1510. paddlex/tools/__init__.py +0 -16
  1511. paddlex/tools/convert.py +0 -52
  1512. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1513. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1514. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1515. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1516. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1517. paddlex/tools/dataset_split/__init__.py +0 -23
  1518. paddlex/tools/dataset_split/coco_split.py +0 -69
  1519. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1520. paddlex/tools/dataset_split/seg_split.py +0 -96
  1521. paddlex/tools/dataset_split/utils.py +0 -75
  1522. paddlex/tools/dataset_split/voc_split.py +0 -91
  1523. paddlex/tools/split.py +0 -41
  1524. paddlex/utils/checkpoint.py +0 -439
  1525. paddlex/utils/shm.py +0 -67
  1526. paddlex/utils/stats.py +0 -68
  1527. paddlex/utils/utils.py +0 -140
  1528. paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
  1529. paddlex-2.0.0rc4.dist-info/METADATA +0 -29
  1530. paddlex-2.0.0rc4.dist-info/RECORD +0 -445
  1531. paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
  1532. paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
  1533. paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,1402 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import numpy as np
16
- import cv2
17
- import copy
18
- import random
19
- from PIL import Image
20
- import paddlex
21
-
22
- try:
23
- from collections.abc import Sequence
24
- except Exception:
25
- from collections import Sequence
26
- from numbers import Number
27
- from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
28
- horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
29
- crop_rle, expand_poly, expand_rle, resize_poly, resize_rle
30
-
31
- __all__ = [
32
- "Compose", "Decode", "Resize", "RandomResize", "ResizeByShort",
33
- "RandomResizeByShort", "ResizeByLong", "RandomHorizontalFlip",
34
- "RandomVerticalFlip", "Normalize", "CenterCrop", "RandomCrop",
35
- "RandomScaleAspect", "RandomExpand", "Padding", "MixupImage",
36
- "RandomDistort", "RandomBlur", "ArrangeSegmenter", "ArrangeClassifier",
37
- "ArrangeDetector"
38
- ]
39
-
40
- interp_dict = {
41
- 'NEAREST': cv2.INTER_NEAREST,
42
- 'LINEAR': cv2.INTER_LINEAR,
43
- 'CUBIC': cv2.INTER_CUBIC,
44
- 'AREA': cv2.INTER_AREA,
45
- 'LANCZOS4': cv2.INTER_LANCZOS4
46
- }
47
-
48
-
49
- class Transform(object):
50
- """
51
- Parent class of all data augmentation operations
52
- """
53
-
54
- def __init__(self):
55
- pass
56
-
57
- def apply_im(self, image):
58
- pass
59
-
60
- def apply_mask(self, mask):
61
- pass
62
-
63
- def apply_bbox(self, bbox):
64
- pass
65
-
66
- def apply_segm(self, segms):
67
- pass
68
-
69
- def apply(self, sample):
70
- sample['image'] = self.apply_im(sample['image'])
71
- if 'mask' in sample:
72
- sample['mask'] = self.apply_mask(sample['mask'])
73
- if 'gt_bbox' in sample:
74
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
75
-
76
- return sample
77
-
78
- def __call__(self, sample):
79
- if isinstance(sample, Sequence):
80
- sample = [self.apply(s) for s in sample]
81
- else:
82
- sample = self.apply(sample)
83
-
84
- return sample
85
-
86
-
87
- class Compose(Transform):
88
- """
89
- Apply a series of data augmentation to the input.
90
- All input images are in Height-Width-Channel ([H, W, C]) format.
91
-
92
- Args:
93
- transforms (List[paddlex.transforms.Transform]): List of data preprocess or augmentations.
94
- Raises:
95
- TypeError: Invalid type of transforms.
96
- ValueError: Invalid length of transforms.
97
- """
98
-
99
- def __init__(self, transforms):
100
- super(Compose, self).__init__()
101
- if not isinstance(transforms, list):
102
- raise TypeError(
103
- 'Type of transforms is invalid. Must be List, but received is {}'
104
- .format(type(transforms)))
105
- if len(transforms) < 1:
106
- raise ValueError(
107
- 'Length of transforms must not be less than 1, but received is {}'
108
- .format(len(transforms)))
109
- self.transforms = transforms
110
- self.decode_image = Decode()
111
- self.arrange_outputs = None
112
- self.apply_im_only = False
113
-
114
- def __call__(self, sample):
115
- if self.apply_im_only and 'mask' in sample:
116
- mask_backup = copy.deepcopy(sample['mask'])
117
- del sample['mask']
118
-
119
- sample = self.decode_image(sample)
120
-
121
- for op in self.transforms:
122
- # skip batch transforms amd mixup
123
- if isinstance(op, (paddlex.transforms.BatchRandomResize,
124
- paddlex.transforms.BatchRandomResizeByShort,
125
- MixupImage)):
126
- continue
127
- sample = op(sample)
128
-
129
- if self.arrange_outputs is not None:
130
- if self.apply_im_only:
131
- sample['mask'] = mask_backup
132
- sample = self.arrange_outputs(sample)
133
-
134
- return sample
135
-
136
-
137
- class Decode(Transform):
138
- """
139
- Decode image(s) in input.
140
-
141
- Args:
142
- to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True.
143
- """
144
-
145
- def __init__(self, to_rgb=True):
146
- super(Decode, self).__init__()
147
- self.to_rgb = to_rgb
148
-
149
- def read_img(self, img_path):
150
- return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR |
151
- cv2.IMREAD_COLOR)
152
-
153
- def apply_im(self, im_path):
154
- if isinstance(im_path, str):
155
- try:
156
- image = self.read_img(im_path)
157
- except:
158
- raise ValueError('Cannot read the image file {}!'.format(
159
- im_path))
160
- else:
161
- image = im_path
162
-
163
- if self.to_rgb:
164
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
165
-
166
- return image
167
-
168
- def apply_mask(self, mask):
169
- try:
170
- mask = np.asarray(Image.open(mask))
171
- except:
172
- raise ValueError("Cannot read the mask file {}!".format(mask))
173
- if len(mask.shape) != 2:
174
- raise Exception(
175
- "Mask should be a 1-channel image, but recevied is a {}-channel image.".
176
- format(mask.shape[2]))
177
- return mask
178
-
179
- def apply(self, sample):
180
- """
181
-
182
- Args:
183
- sample (dict): Input sample, containing 'image' at least.
184
-
185
- Returns:
186
- dict: Decoded sample.
187
-
188
- """
189
- sample['image'] = self.apply_im(sample['image'])
190
- if 'mask' in sample:
191
- sample['mask'] = self.apply_mask(sample['mask'])
192
- im_height, im_width, _ = sample['image'].shape
193
- se_height, se_width = sample['mask'].shape
194
- if im_height != se_height or im_width != se_width:
195
- raise Exception(
196
- "The height or width of the im is not same as the mask")
197
- sample['im_shape'] = np.array(
198
- sample['image'].shape[:2], dtype=np.float32)
199
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
200
- return sample
201
-
202
-
203
- class Resize(Transform):
204
- """
205
- Resize input.
206
-
207
- - If target_size is an int,resize the image(s) to (target_size, target_size).
208
- - If target_size is a list or tuple, resize the image(s) to target_size.
209
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
210
-
211
- Args:
212
- target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
213
- Otherwise, target_size represents [target height, target width].
214
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
215
- Interpolation method of resize. Defaults to 'LINEAR'.
216
- keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater
217
- than target width/height. Defaults to False.
218
-
219
- Raises:
220
- TypeError: Invalid type of target_size.
221
- ValueError: Invalid interpolation method.
222
- """
223
-
224
- def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
225
- super(Resize, self).__init__()
226
- if not (interp == "RANDOM" or interp in interp_dict):
227
- raise ValueError("interp should be one of {}".format(
228
- interp_dict.keys()))
229
- if isinstance(target_size, int):
230
- target_size = (target_size, target_size)
231
- else:
232
- if not (isinstance(target_size,
233
- (list, tuple)) and len(target_size) == 2):
234
- raise TypeError(
235
- "target_size should be an int or a list of length 2, but received {}".
236
- format(target_size))
237
- # (height, width)
238
- self.target_size = target_size
239
- self.interp = interp
240
- self.keep_ratio = keep_ratio
241
-
242
- def apply_im(self, image, interp, target_size):
243
- image = cv2.resize(image, target_size, interpolation=interp)
244
- return image
245
-
246
- def apply_mask(self, mask, target_size):
247
- mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
248
- return mask
249
-
250
- def apply_bbox(self, bbox, scale, target_size):
251
- im_scale_x, im_scale_y = scale
252
- bbox[:, 0::2] *= im_scale_x
253
- bbox[:, 1::2] *= im_scale_y
254
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0])
255
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1])
256
- return bbox
257
-
258
- def apply_segm(self, segms, im_size, scale):
259
- im_h, im_w = im_size
260
- im_scale_x, im_scale_y = scale
261
- resized_segms = []
262
- for segm in segms:
263
- if is_poly(segm):
264
- # Polygon format
265
- resized_segms.append([
266
- resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
267
- ])
268
- else:
269
- # RLE format
270
- resized_segms.append(
271
- resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
272
-
273
- return resized_segms
274
-
275
- def apply(self, sample):
276
- if self.interp == "RANDOM":
277
- interp = random.choice(list(interp_dict.values()))
278
- else:
279
- interp = interp_dict[self.interp]
280
- im_h, im_w = sample['image'].shape[:2]
281
-
282
- im_scale_y = self.target_size[0] / im_h
283
- im_scale_x = self.target_size[1] / im_w
284
- target_size = (self.target_size[1], self.target_size[0])
285
- if self.keep_ratio:
286
- scale = min(im_scale_y, im_scale_x)
287
- target_w = int(round(im_w * scale))
288
- target_h = int(round(im_h * scale))
289
- target_size = (target_w, target_h)
290
- im_scale_y = target_h / im_h
291
- im_scale_x = target_w / im_w
292
-
293
- sample['image'] = self.apply_im(sample['image'], interp, target_size)
294
-
295
- if 'mask' in sample:
296
- sample['mask'] = self.apply_mask(sample['mask'], target_size)
297
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
298
- sample['gt_bbox'] = self.apply_bbox(
299
- sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
300
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
301
- sample['gt_poly'] = self.apply_segm(
302
- sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
303
- sample['im_shape'] = np.asarray(
304
- sample['image'].shape[:2], dtype=np.float32)
305
- if 'scale_factor' in sample:
306
- scale_factor = sample['scale_factor']
307
- sample['scale_factor'] = np.asarray(
308
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
309
- dtype=np.float32)
310
-
311
- return sample
312
-
313
-
314
- class RandomResize(Transform):
315
- """
316
- Resize input to random sizes.
317
-
318
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
319
-
320
- Args:
321
- target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
322
- Multiple target sizes, each target size is an int or list/tuple.
323
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
324
- Interpolation method of resize. Defaults to 'LINEAR'.
325
-
326
- Raises:
327
- TypeError: Invalid type of target_size.
328
- ValueError: Invalid interpolation method.
329
-
330
- See Also:
331
- Resize input to a specific size.
332
- """
333
-
334
- def __init__(self, target_sizes, interp='LINEAR'):
335
- super(RandomResize, self).__init__()
336
- if not (interp == "RANDOM" or interp in interp_dict):
337
- raise ValueError("interp should be one of {}".format(
338
- interp_dict.keys()))
339
- self.interp = interp
340
- assert isinstance(target_sizes, list), \
341
- "target_size must be List"
342
- for i, item in enumerate(target_sizes):
343
- if isinstance(item, int):
344
- target_sizes[i] = (item, item)
345
- self.target_size = target_sizes
346
-
347
- def apply(self, sample):
348
- height, width = random.choice(self.target_size)
349
- resizer = Resize((height, width), interp=self.interp)
350
- sample = resizer(sample)
351
-
352
- return sample
353
-
354
-
355
- class ResizeByShort(Transform):
356
- """
357
- Resize input with keeping the aspect ratio.
358
-
359
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
360
-
361
- Args:
362
- short_size (int): Target size of the shorter side of the image(s).
363
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
364
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
365
-
366
- Raises:
367
- ValueError: Invalid interpolation method.
368
- """
369
-
370
- def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
371
- if not (interp == "RANDOM" or interp in interp_dict):
372
- raise ValueError("interp should be one of {}".format(
373
- interp_dict.keys()))
374
- super(ResizeByShort, self).__init__()
375
- self.short_size = short_size
376
- self.max_size = max_size
377
- self.interp = interp
378
-
379
- def apply(self, sample):
380
- im_h, im_w = sample['image'].shape[:2]
381
- im_short_size = min(im_h, im_w)
382
- im_long_size = max(im_h, im_w)
383
- scale = float(self.short_size) / float(im_short_size)
384
- if 0 < self.max_size < np.round(scale * im_long_size):
385
- scale = float(self.max_size) / float(im_long_size)
386
- target_w = int(round(im_w * scale))
387
- target_h = int(round(im_h * scale))
388
- sample = Resize(
389
- target_size=(target_h, target_w), interp=self.interp)(sample)
390
-
391
- return sample
392
-
393
-
394
- class RandomResizeByShort(Transform):
395
- """
396
- Resize input to random sizes with keeping the aspect ratio.
397
-
398
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
399
-
400
- Args:
401
- short_sizes (List[int]): Target size of the shorter side of the image(s).
402
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
403
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
404
-
405
- Raises:
406
- TypeError: Invalid type of target_size.
407
- ValueError: Invalid interpolation method.
408
-
409
- See Also:
410
- ResizeByShort: Resize image(s) in input with keeping the aspect ratio.
411
- """
412
-
413
- def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
414
- super(RandomResizeByShort, self).__init__()
415
- if not (interp == "RANDOM" or interp in interp_dict):
416
- raise ValueError("interp should be one of {}".format(
417
- interp_dict.keys()))
418
- self.interp = interp
419
- assert isinstance(short_sizes, list), \
420
- "short_sizes must be List"
421
-
422
- self.short_sizes = short_sizes
423
- self.max_size = max_size
424
-
425
- def apply(self, sample):
426
- short_size = random.choice(self.short_sizes)
427
- resizer = ResizeByShort(
428
- short_size=short_size, max_size=self.max_size, interp=self.interp)
429
- sample = resizer(sample)
430
- return sample
431
-
432
-
433
- class ResizeByLong(Transform):
434
- def __init__(self, long_size=256, interp='LINEAR'):
435
- super(ResizeByLong, self).__init__()
436
- self.long_size = long_size
437
- self.interp = interp
438
-
439
- def apply(self, sample):
440
- im_h, im_w = sample['image'].shape[:2]
441
- im_long_size = max(im_h, im_w)
442
- scale = float(self.long_size) / float(im_long_size)
443
- target_h = int(round(im_h * scale))
444
- target_w = int(round(im_w * scale))
445
- sample = Resize(
446
- target_size=(target_h, target_w), interp=self.interp)(sample)
447
-
448
- return sample
449
-
450
-
451
- class RandomHorizontalFlip(Transform):
452
- """
453
- Randomly flip the input horizontally.
454
-
455
- Args:
456
- prob(float, optional): Probability of flipping the input. Defaults to .5.
457
- """
458
-
459
- def __init__(self, prob=0.5):
460
- super(RandomHorizontalFlip, self).__init__()
461
- self.prob = prob
462
-
463
- def apply_im(self, image):
464
- image = horizontal_flip(image)
465
- return image
466
-
467
- def apply_mask(self, mask):
468
- mask = horizontal_flip(mask)
469
- return mask
470
-
471
- def apply_bbox(self, bbox, width):
472
- oldx1 = bbox[:, 0].copy()
473
- oldx2 = bbox[:, 2].copy()
474
- bbox[:, 0] = width - oldx2
475
- bbox[:, 2] = width - oldx1
476
- return bbox
477
-
478
- def apply_segm(self, segms, height, width):
479
- flipped_segms = []
480
- for segm in segms:
481
- if is_poly(segm):
482
- # Polygon format
483
- flipped_segms.append(
484
- [horizontal_flip_poly(poly, width) for poly in segm])
485
- else:
486
- # RLE format
487
- flipped_segms.append(horizontal_flip_rle(segm, height, width))
488
- return flipped_segms
489
-
490
- def apply(self, sample):
491
- if random.random() < self.prob:
492
- im_h, im_w = sample['image'].shape[:2]
493
- sample['image'] = self.apply_im(sample['image'])
494
- if 'mask' in sample:
495
- sample['mask'] = self.apply_mask(sample['mask'])
496
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
497
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
498
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
499
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
500
- im_w)
501
- return sample
502
-
503
-
504
- class RandomVerticalFlip(Transform):
505
- """
506
- Randomly flip the input vertically.
507
-
508
- Args:
509
- prob(float, optional): Probability of flipping the input. Defaults to .5.
510
- """
511
-
512
- def __init__(self, prob=0.5):
513
- super(RandomVerticalFlip, self).__init__()
514
- self.prob = prob
515
-
516
- def apply_im(self, image):
517
- image = vertical_flip(image)
518
- return image
519
-
520
- def apply_mask(self, mask):
521
- mask = vertical_flip(mask)
522
- return mask
523
-
524
- def apply_bbox(self, bbox, height):
525
- oldy1 = bbox[:, 1].copy()
526
- oldy2 = bbox[:, 3].copy()
527
- bbox[:, 0] = height - oldy2
528
- bbox[:, 2] = height - oldy1
529
- return bbox
530
-
531
- def apply_segm(self, segms, height, width):
532
- flipped_segms = []
533
- for segm in segms:
534
- if is_poly(segm):
535
- # Polygon format
536
- flipped_segms.append(
537
- [vertical_flip_poly(poly, height) for poly in segm])
538
- else:
539
- # RLE format
540
- flipped_segms.append(vertical_flip_rle(segm, height, width))
541
- return flipped_segms
542
-
543
- def apply(self, sample):
544
- if random.random() < self.prob:
545
- im_h, im_w = sample['image'].shape[:2]
546
- sample['image'] = self.apply_im(sample['image'])
547
- if 'mask' in sample:
548
- sample['mask'] = self.apply_mask(sample['mask'])
549
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
550
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
551
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
552
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
553
- im_w)
554
- return sample
555
-
556
-
557
- class Normalize(Transform):
558
- """
559
- Apply min-max normalization to the image(s) in input.
560
- 1. im = (im - min_value) * 1 / (max_value - min_value)
561
- 2. im = im - mean
562
- 3. im = im / std
563
-
564
- Args:
565
- mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
566
- std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
567
- min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
568
- max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
569
- is_scale(bool, optional): If True, the image pixel values will be divided by 255.
570
- """
571
-
572
- def __init__(self,
573
- mean=[0.485, 0.456, 0.406],
574
- std=[0.229, 0.224, 0.225],
575
- min_val=[0, 0, 0],
576
- max_val=[255., 255., 255.],
577
- is_scale=True):
578
- super(Normalize, self).__init__()
579
- from functools import reduce
580
- if reduce(lambda x, y: x * y, std) == 0:
581
- raise ValueError(
582
- 'Std should not have 0, but received is {}'.format(std))
583
- if is_scale:
584
- if reduce(lambda x, y: x * y,
585
- [a - b for a, b in zip(max_val, min_val)]) == 0:
586
- raise ValueError(
587
- '(max_val - min_val) should not have 0, but received is {}'.
588
- format((np.asarray(max_val) - np.asarray(min_val)).tolist(
589
- )))
590
-
591
- self.mean = mean
592
- self.std = std
593
- self.min_val = min_val
594
- self.max_val = max_val
595
- self.is_scale = is_scale
596
-
597
- def apply_im(self, image):
598
- image = image.astype(np.float32)
599
- mean = np.asarray(
600
- self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
601
- std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
602
- image = normalize(image, mean, std, self.min_val, self.max_val)
603
- return image
604
-
605
- def apply(self, sample):
606
- sample['image'] = self.apply_im(sample['image'])
607
-
608
- return sample
609
-
610
-
611
- class CenterCrop(Transform):
612
- """
613
- Crop the input at the center.
614
- 1. Locate the center of the image.
615
- 2. Crop the sample.
616
-
617
- Args:
618
- crop_size(int, optional): target size of the cropped image(s). Defaults to 224.
619
- """
620
-
621
- def __init__(self, crop_size=224):
622
- super(CenterCrop, self).__init__()
623
- self.crop_size = crop_size
624
-
625
- def apply_im(self, image):
626
- image = center_crop(image, self.crop_size)
627
-
628
- return image
629
-
630
- def apply_mask(self, mask):
631
- mask = center_crop(mask)
632
- return mask
633
-
634
- def apply(self, sample):
635
- sample['image'] = self.apply_im(sample['image'])
636
- if 'mask' in sample:
637
- sample['mask'] = self.apply_mask(sample['mask'])
638
- return sample
639
-
640
-
641
- class RandomCrop(Transform):
642
- """
643
- Randomly crop the input.
644
- 1. Compute the height and width of cropped area according to aspect_ratio and scaling.
645
- 2. Locate the upper left corner of cropped area randomly.
646
- 3. Crop the image(s).
647
- 4. Resize the cropped area to crop_size by crop_size.
648
-
649
- Args:
650
- crop_size(int, List[int] or Tuple[int]): Target size of the cropped area. If None, the cropped area will not be
651
- resized. Defaults to None.
652
- aspect_ratio (List[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.].
653
- thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop.
654
- Defaults to [.0, .1, .3, .5, .7, .9].
655
- scaling (List[float], optional): Ratio between the cropped region and the original image in [min, max] format.
656
- Defaults to [.3, 1.].
657
- num_attempts (int, optional): The number of tries before giving up. Defaults to 50.
658
- allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True.
659
- cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False.
660
- """
661
-
662
- def __init__(self,
663
- crop_size=None,
664
- aspect_ratio=[.5, 2.],
665
- thresholds=[.0, .1, .3, .5, .7, .9],
666
- scaling=[.3, 1.],
667
- num_attempts=50,
668
- allow_no_crop=True,
669
- cover_all_box=False):
670
- super(RandomCrop, self).__init__()
671
- self.crop_size = crop_size
672
- self.aspect_ratio = aspect_ratio
673
- self.thresholds = thresholds
674
- self.scaling = scaling
675
- self.num_attempts = num_attempts
676
- self.allow_no_crop = allow_no_crop
677
- self.cover_all_box = cover_all_box
678
-
679
- def _generate_crop_info(self, sample):
680
- im_h, im_w = sample['image'].shape[:2]
681
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
682
- thresholds = self.thresholds
683
- if self.allow_no_crop:
684
- thresholds.append('no_crop')
685
- np.random.shuffle(thresholds)
686
- for thresh in thresholds:
687
- if thresh == 'no_crop':
688
- return None
689
- for i in range(self.num_attempts):
690
- crop_box = self._get_crop_box(im_h, im_w)
691
- if crop_box is None:
692
- continue
693
- iou = self._iou_matrix(
694
- sample['gt_bbox'],
695
- np.array(
696
- [crop_box], dtype=np.float32))
697
- if iou.max() < thresh:
698
- continue
699
- if self.cover_all_box and iou.min() < thresh:
700
- continue
701
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
702
- sample['gt_bbox'],
703
- np.array(
704
- crop_box, dtype=np.float32))
705
- if valid_ids.size > 0:
706
- return crop_box, cropped_box, valid_ids
707
- else:
708
- for i in range(self.num_attempts):
709
- crop_box = self._get_crop_box(im_h, im_w)
710
- if crop_box is None:
711
- continue
712
- return crop_box, None, None
713
- return None
714
-
715
- def _get_crop_box(self, im_h, im_w):
716
- scale = np.random.uniform(*self.scaling)
717
- if self.aspect_ratio is not None:
718
- min_ar, max_ar = self.aspect_ratio
719
- aspect_ratio = np.random.uniform(
720
- max(min_ar, scale**2), min(max_ar, scale**-2))
721
- h_scale = scale / np.sqrt(aspect_ratio)
722
- w_scale = scale * np.sqrt(aspect_ratio)
723
- else:
724
- h_scale = np.random.uniform(*self.scaling)
725
- w_scale = np.random.uniform(*self.scaling)
726
- crop_h = im_h * h_scale
727
- crop_w = im_w * w_scale
728
- if self.aspect_ratio is None:
729
- if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
730
- return None
731
- crop_h = int(crop_h)
732
- crop_w = int(crop_w)
733
- crop_y = np.random.randint(0, im_h - crop_h)
734
- crop_x = np.random.randint(0, im_w - crop_w)
735
- return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
736
-
737
- def _iou_matrix(self, a, b):
738
- tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
739
- br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
740
-
741
- area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
742
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
743
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
744
- area_o = (area_a[:, np.newaxis] + area_b - area_i)
745
- return area_i / (area_o + 1e-10)
746
-
747
- def _crop_box_with_center_constraint(self, box, crop):
748
- cropped_box = box.copy()
749
-
750
- cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
751
- cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
752
- cropped_box[:, :2] -= crop[:2]
753
- cropped_box[:, 2:] -= crop[:2]
754
-
755
- centers = (box[:, :2] + box[:, 2:]) / 2
756
- valid = np.logical_and(crop[:2] <= centers,
757
- centers < crop[2:]).all(axis=1)
758
- valid = np.logical_and(
759
- valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
760
-
761
- return cropped_box, np.where(valid)[0]
762
-
763
- def _crop_segm(self, segms, valid_ids, crop, height, width):
764
- crop_segms = []
765
- for id in valid_ids:
766
- segm = segms[id]
767
- if is_poly(segm):
768
- # Polygon format
769
- crop_segms.append(crop_poly(segm, crop))
770
- else:
771
- # RLE format
772
- crop_segms.append(crop_rle(segm, crop, height, width))
773
-
774
- return crop_segms
775
-
776
- def apply_im(self, image, crop):
777
- x1, y1, x2, y2 = crop
778
- return image[y1:y2, x1:x2, :]
779
-
780
- def apply_mask(self, mask, crop):
781
- x1, y1, x2, y2 = crop
782
- return mask[y1:y2, x1:x2, ...]
783
-
784
- def apply(self, sample):
785
- crop_info = self._generate_crop_info(sample)
786
- if crop_info is not None:
787
- crop_box, cropped_box, valid_ids = crop_info
788
- im_h, im_w = sample['image'].shape[:2]
789
- sample['image'] = self.apply_im(sample['image'], crop_box)
790
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
791
- crop_polys = self._crop_segm(
792
- sample['gt_poly'],
793
- valid_ids,
794
- np.array(
795
- crop_box, dtype=np.int64),
796
- im_h,
797
- im_w)
798
- if [] in crop_polys:
799
- delete_id = list()
800
- valid_polys = list()
801
- for idx, poly in enumerate(crop_polys):
802
- if not crop_poly:
803
- delete_id.append(idx)
804
- else:
805
- valid_polys.append(poly)
806
- valid_ids = np.delete(valid_ids, delete_id)
807
- if not valid_polys:
808
- return sample
809
- sample['gt_poly'] = valid_polys
810
- else:
811
- sample['gt_poly'] = crop_polys
812
-
813
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
814
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
815
- sample['gt_class'] = np.take(
816
- sample['gt_class'], valid_ids, axis=0)
817
- if 'gt_score' in sample:
818
- sample['gt_score'] = np.take(
819
- sample['gt_score'], valid_ids, axis=0)
820
- if 'is_crowd' in sample:
821
- sample['is_crowd'] = np.take(
822
- sample['is_crowd'], valid_ids, axis=0)
823
-
824
- if 'mask' in sample:
825
- sample['mask'] = self.apply_mask(sample['mask'], crop_box)
826
-
827
- if self.crop_size is not None:
828
- sample = Resize(self.crop_size)(sample)
829
-
830
- return sample
831
-
832
-
833
- class RandomScaleAspect(Transform):
834
- """
835
- Crop input image(s) and resize back to original sizes.
836
- Args:
837
- min_scale (float):Minimum ratio between the cropped region and the original image.
838
- If 0, image(s) will not be cropped. Defaults to .5.
839
- aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
840
- """
841
-
842
- def __init__(self, min_scale=0.5, aspect_ratio=0.33):
843
- super(RandomScaleAspect, self).__init__()
844
- self.min_scale = min_scale
845
- self.aspect_ratio = aspect_ratio
846
-
847
- def apply(self, sample):
848
- if self.min_scale != 0 and self.aspect_ratio != 0:
849
- img_height, img_width = sample['image'].shape[:2]
850
- sample = RandomCrop(
851
- crop_size=(img_height, img_width),
852
- aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio],
853
- scaling=[self.min_scale, 1.],
854
- num_attempts=10,
855
- allow_no_crop=False)(sample)
856
- return sample
857
-
858
-
859
- class RandomExpand(Transform):
860
- """
861
- Randomly expand the input by padding according to random offsets.
862
-
863
- Args:
864
- upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4..
865
- prob(float, optional): The probability of apply expanding. Defaults to .5.
866
- im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
867
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
868
-
869
- See Also:
870
- paddlex.transforms.Padding
871
- """
872
-
873
- def __init__(self,
874
- upper_ratio=4.,
875
- prob=.5,
876
- im_padding_value=(127.5, 127.5, 127.5),
877
- label_padding_value=255):
878
- super(RandomExpand, self).__init__()
879
- assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
880
- self.upper_ratio = upper_ratio
881
- self.prob = prob
882
- assert isinstance(im_padding_value, (Number, Sequence)), \
883
- "fill value must be either float or sequence"
884
- if isinstance(im_padding_value, Number):
885
- im_padding_value = (im_padding_value, ) * 3
886
- if not isinstance(im_padding_value, tuple):
887
- im_padding_value = tuple(im_padding_value)
888
- self.im_padding_value = im_padding_value
889
- self.label_padding_value = label_padding_value
890
-
891
- def apply(self, sample):
892
- if random.random() < self.prob:
893
- im_h, im_w = sample['image'].shape[:2]
894
- ratio = np.random.uniform(1., self.upper_ratio)
895
- h = int(im_h * ratio)
896
- w = int(im_w * ratio)
897
- if h > im_h and w > im_w:
898
- y = np.random.randint(0, h - im_h)
899
- x = np.random.randint(0, w - im_w)
900
- target_size = (h, w)
901
- offsets = (x, y)
902
- sample = Padding(
903
- target_size=target_size,
904
- pad_mode=-1,
905
- offsets=offsets,
906
- im_padding_value=self.im_padding_value,
907
- label_padding_value=self.label_padding_value)(sample)
908
- return sample
909
-
910
-
911
- class Padding(Transform):
912
- def __init__(self,
913
- target_size=None,
914
- pad_mode=0,
915
- offsets=None,
916
- im_padding_value=(127.5, 127.5, 127.5),
917
- label_padding_value=255,
918
- size_divisor=32):
919
- """
920
- Pad image to a specified size or multiple of size_divisor.
921
-
922
- Args:
923
- target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None.
924
- pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
925
- if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
926
- im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5).
927
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
928
- size_divisor(int): Image width and height after padding is a multiple of coarsest_stride.
929
- """
930
- super(Padding, self).__init__()
931
- if isinstance(target_size, (list, tuple)):
932
- if len(target_size) != 2:
933
- raise ValueError(
934
- '`target_size` should include 2 elements, but it is {}'.
935
- format(target_size))
936
- if isinstance(target_size, int):
937
- target_size = [target_size] * 2
938
-
939
- assert pad_mode in [
940
- -1, 0, 1, 2
941
- ], 'currently only supports four modes [-1, 0, 1, 2]'
942
- if pad_mode == -1:
943
- assert offsets, 'if pad_mode is -1, offsets should not be None'
944
-
945
- self.target_size = target_size
946
- self.size_divisor = size_divisor
947
- self.pad_mode = pad_mode
948
- self.offsets = offsets
949
- self.im_padding_value = im_padding_value
950
- self.label_padding_value = label_padding_value
951
-
952
- def apply_im(self, image, offsets, target_size):
953
- x, y = offsets
954
- im_h, im_w = image.shape[:2]
955
- h, w = target_size
956
- canvas = np.ones((h, w, 3), dtype=np.float32)
957
- canvas *= np.array(self.im_padding_value, dtype=np.float32)
958
- canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
959
- return canvas
960
-
961
- def apply_mask(self, mask, offsets, target_size):
962
- x, y = offsets
963
- im_h, im_w = mask.shape[:2]
964
- h, w = target_size
965
- canvas = np.ones((h, w), dtype=np.float32)
966
- canvas *= np.array(self.label_padding_value, dtype=np.float32)
967
- canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
968
- return canvas
969
-
970
- def apply_bbox(self, bbox, offsets):
971
- return bbox + np.array(offsets * 2, dtype=np.float32)
972
-
973
- def apply_segm(self, segms, offsets, im_size, size):
974
- x, y = offsets
975
- height, width = im_size
976
- h, w = size
977
- expanded_segms = []
978
- for segm in segms:
979
- if is_poly(segm):
980
- # Polygon format
981
- expanded_segms.append(
982
- [expand_poly(poly, x, y) for poly in segm])
983
- else:
984
- # RLE format
985
- expanded_segms.append(
986
- expand_rle(segm, x, y, height, width, h, w))
987
- return expanded_segms
988
-
989
- def apply(self, sample):
990
- im_h, im_w = sample['image'].shape[:2]
991
- if self.target_size:
992
- h, w = self.target_size
993
- assert (
994
- im_h <= h and im_w <= w
995
- ), 'target size ({}, {}) cannot be less than image size ({}, {})'\
996
- .format(h, w, im_h, im_w)
997
- else:
998
- h = (np.ceil(im_h / self.size_divisor) *
999
- self.size_divisor).astype(int)
1000
- w = (np.ceil(im_w / self.size_divisor) *
1001
- self.size_divisor).astype(int)
1002
-
1003
- if h == im_h and w == im_w:
1004
- return sample
1005
-
1006
- if self.pad_mode == -1:
1007
- offsets = self.offsets
1008
- elif self.pad_mode == 0:
1009
- offsets = [0, 0]
1010
- elif self.pad_mode == 1:
1011
- offsets = [(w - im_w) // 2, (h - im_h) // 2]
1012
- else:
1013
- offsets = [w - im_w, h - im_h]
1014
-
1015
- sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
1016
- if 'mask' in sample:
1017
- sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
1018
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
1019
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
1020
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
1021
- sample['gt_poly'] = self.apply_segm(
1022
- sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
1023
- return sample
1024
-
1025
-
1026
- class MixupImage(Transform):
1027
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
1028
- """
1029
- Mixup two images and their gt_bbbox/gt_score.
1030
-
1031
- Args:
1032
- alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5.
1033
- beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5.
1034
- """
1035
- super(MixupImage, self).__init__()
1036
- if alpha <= 0.0:
1037
- raise ValueError("alpha should be positive in {}".format(self))
1038
- if beta <= 0.0:
1039
- raise ValueError("beta should be positive in {}".format(self))
1040
- self.alpha = alpha
1041
- self.beta = beta
1042
- self.mixup_epoch = mixup_epoch
1043
-
1044
- def apply_im(self, image1, image2, factor):
1045
- h = max(image1.shape[0], image2.shape[0])
1046
- w = max(image1.shape[1], image2.shape[1])
1047
- img = np.zeros((h, w, image1.shape[2]), 'float32')
1048
- img[:image1.shape[0], :image1.shape[1], :] = \
1049
- image1.astype('float32') * factor
1050
- img[:image2.shape[0], :image2.shape[1], :] += \
1051
- image2.astype('float32') * (1.0 - factor)
1052
- return img.astype('uint8')
1053
-
1054
- def __call__(self, sample):
1055
- if not isinstance(sample, Sequence):
1056
- return sample
1057
-
1058
- assert len(sample) == 2, 'mixup need two samples'
1059
-
1060
- factor = np.random.beta(self.alpha, self.beta)
1061
- factor = max(0.0, min(1.0, factor))
1062
- if factor >= 1.0:
1063
- return sample[0]
1064
- if factor <= 0.0:
1065
- return sample[1]
1066
- image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
1067
- result = copy.deepcopy(sample[0])
1068
- result['image'] = image
1069
- # apply bbox and score
1070
- if 'gt_bbox' in sample[0]:
1071
- gt_bbox1 = sample[0]['gt_bbox']
1072
- gt_bbox2 = sample[1]['gt_bbox']
1073
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
1074
- result['gt_bbox'] = gt_bbox
1075
- if 'gt_poly' in sample[0]:
1076
- gt_poly1 = sample[0]['gt_poly']
1077
- gt_poly2 = sample[1]['gt_poly']
1078
- gt_poly = gt_poly1 + gt_poly2
1079
- result['gt_poly'] = gt_poly
1080
- if 'gt_class' in sample[0]:
1081
- gt_class1 = sample[0]['gt_class']
1082
- gt_class2 = sample[1]['gt_class']
1083
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
1084
- result['gt_class'] = gt_class
1085
-
1086
- gt_score1 = np.ones_like(sample[0]['gt_class'])
1087
- gt_score2 = np.ones_like(sample[1]['gt_class'])
1088
- gt_score = np.concatenate(
1089
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
1090
- result['gt_score'] = gt_score
1091
- if 'is_crowd' in sample[0]:
1092
- is_crowd1 = sample[0]['is_crowd']
1093
- is_crowd2 = sample[1]['is_crowd']
1094
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
1095
- result['is_crowd'] = is_crowd
1096
- if 'difficult' in sample[0]:
1097
- is_difficult1 = sample[0]['difficult']
1098
- is_difficult2 = sample[1]['difficult']
1099
- is_difficult = np.concatenate(
1100
- (is_difficult1, is_difficult2), axis=0)
1101
- result['difficult'] = is_difficult
1102
-
1103
- return result
1104
-
1105
-
1106
- class RandomDistort(Transform):
1107
- """
1108
- Random color distortion.
1109
-
1110
- Args:
1111
- brightness_range(float, optional): Range of brightness distortion. Defaults to .5.
1112
- brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5.
1113
- contrast_range(float, optional): Range of contrast distortion. Defaults to .5.
1114
- contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5.
1115
- saturation_range(float, optional): Range of saturation distortion. Defaults to .5.
1116
- saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5.
1117
- hue_range(float, optional): Range of hue distortion. Defaults to .5.
1118
- hue_prob(float, optional): Probability of hue distortion. Defaults to .5.
1119
- random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD)
1120
- order. Defaults to True.
1121
- count (int, optional): the number of doing distortion. Defaults to 4.
1122
- shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False.
1123
- """
1124
-
1125
- def __init__(self,
1126
- brightness_range=0.5,
1127
- brightness_prob=0.5,
1128
- contrast_range=0.5,
1129
- contrast_prob=0.5,
1130
- saturation_range=0.5,
1131
- saturation_prob=0.5,
1132
- hue_range=18,
1133
- hue_prob=0.5,
1134
- random_apply=True,
1135
- count=4,
1136
- shuffle_channel=False):
1137
- super(RandomDistort, self).__init__()
1138
- self.brightness_range = [1 - brightness_range, 1 + brightness_range]
1139
- self.brightness_prob = brightness_prob
1140
- self.contrast_range = [1 - contrast_range, 1 + contrast_range]
1141
- self.contrast_prob = contrast_prob
1142
- self.saturation_range = [1 - saturation_range, 1 + saturation_range]
1143
- self.saturation_prob = saturation_prob
1144
- self.hue_range = [1 - hue_range, 1 + hue_range]
1145
- self.hue_prob = hue_prob
1146
- self.random_apply = random_apply
1147
- self.count = count
1148
- self.shuffle_channel = shuffle_channel
1149
-
1150
- def apply_hue(self, image):
1151
- low, high = self.hue_range
1152
- if np.random.uniform(0., 1.) < self.hue_prob:
1153
- return image
1154
-
1155
- image = image.astype(np.float32)
1156
- # it works, but result differ from HSV version
1157
- delta = np.random.uniform(low, high)
1158
- u = np.cos(delta * np.pi)
1159
- w = np.sin(delta * np.pi)
1160
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
1161
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
1162
- [0.211, -0.523, 0.311]])
1163
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
1164
- [1.0, -1.107, 1.705]])
1165
- t = np.dot(np.dot(ityiq, bt), tyiq).T
1166
- image = np.dot(image, t)
1167
- return image
1168
-
1169
- def apply_saturation(self, image):
1170
- low, high = self.saturation_range
1171
- if np.random.uniform(0., 1.) < self.saturation_prob:
1172
- return image
1173
- delta = np.random.uniform(low, high)
1174
- image = image.astype(np.float32)
1175
- # it works, but result differ from HSV version
1176
- gray = image * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
1177
- gray = gray.sum(axis=2, keepdims=True)
1178
- gray *= (1.0 - delta)
1179
- image *= delta
1180
- image += gray
1181
- return image
1182
-
1183
- def apply_contrast(self, image):
1184
- low, high = self.contrast_range
1185
- if np.random.uniform(0., 1.) < self.contrast_prob:
1186
- return image
1187
- delta = np.random.uniform(low, high)
1188
- image = image.astype(np.float32)
1189
- image *= delta
1190
- return image
1191
-
1192
- def apply_brightness(self, image):
1193
- low, high = self.brightness_range
1194
- if np.random.uniform(0., 1.) < self.brightness_prob:
1195
- return image
1196
- delta = np.random.uniform(low, high)
1197
- image = image.astype(np.float32)
1198
- image += delta
1199
- return image
1200
-
1201
- def apply(self, sample):
1202
- if self.random_apply:
1203
- functions = [
1204
- self.apply_brightness, self.apply_contrast,
1205
- self.apply_saturation, self.apply_hue
1206
- ]
1207
- distortions = np.random.permutation(functions)[:self.count]
1208
- for func in distortions:
1209
- sample['image'] = func(sample['image'])
1210
- return sample
1211
-
1212
- sample['image'] = self.apply_brightness(sample['image'])
1213
- mode = np.random.randint(0, 2)
1214
- if mode:
1215
- sample['image'] = self.apply_contrast(sample['image'])
1216
- sample['image'] = self.apply_saturation(sample['image'])
1217
- sample['image'] = self.apply_hue(sample['image'])
1218
- if not mode:
1219
- sample['image'] = self.apply_contrast(sample['image'])
1220
-
1221
- if self.shuffle_channel:
1222
- if np.random.randint(0, 2):
1223
- sample['image'] = sample['image'][..., np.random.permutation(
1224
- 3)]
1225
-
1226
- return sample
1227
-
1228
-
1229
- class RandomBlur(Transform):
1230
- """
1231
- Randomly blur input image(s).
1232
-
1233
- Args:
1234
- prob (float): Probability of blurring.
1235
- """
1236
-
1237
- def __init__(self, prob=0.1):
1238
- super(RandomBlur, self).__init__()
1239
- self.prob = prob
1240
-
1241
- def apply_im(self, image, radius):
1242
- image = cv2.GaussianBlur(image, (radius, radius), 0, 0)
1243
- return image
1244
-
1245
- def apply(self, sample):
1246
- if self.prob <= 0:
1247
- n = 0
1248
- elif self.prob >= 1:
1249
- n = 1
1250
- else:
1251
- n = int(1.0 / self.prob)
1252
- if n > 0:
1253
- if np.random.randint(0, n) == 0:
1254
- radius = np.random.randint(3, 10)
1255
- if radius % 2 != 1:
1256
- radius = radius + 1
1257
- if radius > 9:
1258
- radius = 9
1259
- sample['image'] = self.apply_im(sample['image'], radius)
1260
-
1261
- return sample
1262
-
1263
-
1264
- class _PadBox(Transform):
1265
- def __init__(self, num_max_boxes=50):
1266
- """
1267
- Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
1268
-
1269
- Args:
1270
- num_max_boxes (int, optional): the max number of bboxes. Defaults to 50.
1271
- """
1272
- self.num_max_boxes = num_max_boxes
1273
- super(_PadBox, self).__init__()
1274
-
1275
- def apply(self, sample):
1276
- gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
1277
- num_max = self.num_max_boxes
1278
- pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
1279
- if gt_num > 0:
1280
- pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
1281
- sample['gt_bbox'] = pad_bbox
1282
- if 'gt_class' in sample:
1283
- pad_class = np.zeros((num_max, ), dtype=np.int32)
1284
- if gt_num > 0:
1285
- pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
1286
- sample['gt_class'] = pad_class
1287
- if 'gt_score' in sample:
1288
- pad_score = np.zeros((num_max, ), dtype=np.float32)
1289
- if gt_num > 0:
1290
- pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
1291
- sample['gt_score'] = pad_score
1292
- # in training, for example in op ExpandImage,
1293
- # the bbox and gt_class is expanded, but the difficult is not,
1294
- # so, judging by it's length
1295
- if 'difficult' in sample:
1296
- pad_diff = np.zeros((num_max, ), dtype=np.int32)
1297
- if gt_num > 0:
1298
- pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
1299
- sample['difficult'] = pad_diff
1300
- if 'is_crowd' in sample:
1301
- pad_crowd = np.zeros((num_max, ), dtype=np.int32)
1302
- if gt_num > 0:
1303
- pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
1304
- sample['is_crowd'] = pad_crowd
1305
- return sample
1306
-
1307
-
1308
- class _NormalizeBox(Transform):
1309
- def __init__(self):
1310
- super(_NormalizeBox, self).__init__()
1311
-
1312
- def apply(self, sample):
1313
- height, width = sample['image'].shape[:2]
1314
- for i in range(sample['gt_bbox'].shape[0]):
1315
- sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
1316
- sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
1317
- sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
1318
- sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
1319
-
1320
- return sample
1321
-
1322
-
1323
- class _BboxXYXY2XYWH(Transform):
1324
- """
1325
- Convert bbox XYXY format to XYWH format.
1326
- """
1327
-
1328
- def __init__(self):
1329
- super(_BboxXYXY2XYWH, self).__init__()
1330
-
1331
- def apply(self, sample):
1332
- bbox = sample['gt_bbox']
1333
- bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
1334
- bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
1335
- sample['gt_bbox'] = bbox
1336
- return sample
1337
-
1338
-
1339
- class _Permute(Transform):
1340
- def __init__(self):
1341
- super(_Permute, self).__init__()
1342
-
1343
- def apply(self, sample):
1344
- sample['image'] = permute(sample['image'], False)
1345
- return sample
1346
-
1347
-
1348
- class ArrangeSegmenter(Transform):
1349
- def __init__(self, mode):
1350
- super(ArrangeSegmenter, self).__init__()
1351
- if mode not in ['train', 'eval', 'test', 'quant']:
1352
- raise ValueError(
1353
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1354
- )
1355
- self.mode = mode
1356
-
1357
- def apply(self, sample):
1358
- if 'mask' in sample:
1359
- mask = sample['mask']
1360
-
1361
- image = permute(sample['image'], False)
1362
- if self.mode == 'train':
1363
- mask = mask.astype('int64')
1364
- return image, mask
1365
- if self.mode == 'eval':
1366
- mask = np.asarray(Image.open(mask))
1367
- mask = mask[np.newaxis, :, :].astype('int64')
1368
- return image, mask
1369
- if self.mode == 'test':
1370
- return image,
1371
-
1372
-
1373
- class ArrangeClassifier(Transform):
1374
- def __init__(self, mode):
1375
- super(ArrangeClassifier, self).__init__()
1376
- if mode not in ['train', 'eval', 'test', 'quant']:
1377
- raise ValueError(
1378
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1379
- )
1380
- self.mode = mode
1381
-
1382
- def apply(self, sample):
1383
- image = permute(sample['image'], False)
1384
- if self.mode in ['train', 'eval']:
1385
- return image, sample['label']
1386
- else:
1387
- return image
1388
-
1389
-
1390
- class ArrangeDetector(Transform):
1391
- def __init__(self, mode):
1392
- super(ArrangeDetector, self).__init__()
1393
- if mode not in ['train', 'eval', 'test', 'quant']:
1394
- raise ValueError(
1395
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1396
- )
1397
- self.mode = mode
1398
-
1399
- def apply(self, sample):
1400
- if self.mode == 'eval' and 'gt_poly' in sample:
1401
- del sample['gt_poly']
1402
- return sample