onnx 1.15.0__cp311-cp311-win_amd64.whl → 1.16.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx might be problematic. Click here for more details.

Files changed (584) hide show
  1. onnx/__init__.py +10 -10
  2. onnx/backend/base.py +13 -14
  3. onnx/backend/sample/ops/abs.py +1 -1
  4. onnx/backend/test/case/model/__init__.py +0 -1
  5. onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +122 -0
  6. onnx/backend/test/case/node/averagepool.py +15 -30
  7. onnx/backend/test/case/node/cast.py +88 -11
  8. onnx/backend/test/case/node/dequantizelinear.py +155 -0
  9. onnx/backend/test/case/node/groupnormalization.py +13 -9
  10. onnx/backend/test/case/node/gru.py +2 -2
  11. onnx/backend/test/case/node/isinf.py +4 -4
  12. onnx/backend/test/case/node/isnan.py +2 -2
  13. onnx/backend/test/case/node/lppool.py +8 -16
  14. onnx/backend/test/case/node/lstm.py +1 -1
  15. onnx/backend/test/case/node/maxpool.py +40 -34
  16. onnx/backend/test/case/node/pow.py +1 -1
  17. onnx/backend/test/case/node/qlinearmatmul.py +143 -109
  18. onnx/backend/test/case/node/quantizelinear.py +298 -7
  19. onnx/backend/test/case/node/reducemax.py +26 -0
  20. onnx/backend/test/case/node/rnn.py +1 -1
  21. onnx/backend/test/case/node/scan.py +6 -2
  22. onnx/backend/test/case/node/scatterelements.py +1 -1
  23. onnx/backend/test/case/node/topk.py +1 -1
  24. onnx/backend/test/case/utils.py +1 -3
  25. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/model.onnx +0 -0
  26. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/input_0.pb +0 -0
  27. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/output_0.pb +0 -0
  28. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/model.onnx +0 -0
  29. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/input_0.pb +1 -0
  30. onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/output_0.pb +0 -0
  31. onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
  32. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
  33. onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
  34. onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
  35. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
  36. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  37. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
  38. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  39. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  40. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
  41. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  42. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  43. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
  44. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  45. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  46. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
  47. onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  48. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
  49. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/input_0.pb +0 -0
  50. onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -0
  51. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
  52. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/input_0.pb +0 -0
  53. onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/output_0.pb +0 -0
  54. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  55. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  56. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  57. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
  58. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  59. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  60. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  61. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  62. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  63. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
  64. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  65. onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  66. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  67. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  68. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  69. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
  70. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  71. onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  72. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  73. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  74. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  75. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
  76. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  77. onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  78. onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
  79. onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
  80. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
  81. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  82. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  83. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  84. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  85. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  86. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  87. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  88. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  89. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  90. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  91. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  92. onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  93. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
  94. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/input_0.pb +0 -0
  95. onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -0
  96. onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
  97. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
  98. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/input_0.pb +0 -0
  99. onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/output_0.pb +0 -0
  100. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
  101. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -0
  102. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  103. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
  104. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -0
  105. onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  106. onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
  107. onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -0
  108. onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/output_0.pb +0 -0
  109. onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
  110. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
  111. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/input_0.pb +0 -0
  112. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
  113. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
  114. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
  115. onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
  116. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
  117. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/input_0.pb +0 -0
  118. onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/output_0.pb +0 -0
  119. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
  120. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
  121. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  122. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  123. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
  124. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  125. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
  126. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
  127. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  128. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  129. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
  130. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  131. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  132. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
  133. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
  134. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  135. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
  136. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
  137. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  138. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
  139. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
  140. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  141. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
  142. onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
  143. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
  144. onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  145. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
  146. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
  147. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
  148. onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
  149. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
  150. onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
  151. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
  152. onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
  153. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
  154. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  155. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
  156. onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
  157. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
  158. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
  159. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
  160. onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
  161. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
  162. onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
  163. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
  164. onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
  165. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
  166. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
  167. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
  168. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
  169. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
  170. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
  171. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
  172. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
  173. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
  174. onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
  175. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
  176. onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
  177. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
  178. onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
  179. onnx/backend/test/data/node/test_constant/model.onnx +0 -0
  180. onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
  181. onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
  182. onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
  183. onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
  184. onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
  185. onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
  186. onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
  187. onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
  188. onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
  189. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_0.pb +1 -0
  190. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_1.pb +0 -0
  191. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_2.pb +0 -0
  192. onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/output_0.pb +0 -0
  193. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
  194. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
  195. onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
  196. onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
  197. onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
  198. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_0.pb +1 -0
  199. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_1.pb +0 -0
  200. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_2.pb +0 -0
  201. onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0.pb +0 -0
  202. onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
  203. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -0
  204. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb +0 -0
  205. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -0
  206. onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb +0 -0
  207. onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
  208. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
  209. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
  210. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
  211. onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
  212. onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
  213. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb +1 -0
  214. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
  215. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
  216. onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
  217. onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
  218. onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
  219. onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
  220. onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
  221. onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
  222. onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
  223. onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
  224. onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
  225. onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
  226. onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
  227. onnx/backend/test/data/node/test_group_normalization_epsilon/model.onnx +0 -0
  228. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_0.pb +1 -1
  229. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_1.pb +1 -1
  230. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_2.pb +1 -1
  231. onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/output_0.pb +0 -0
  232. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/model.onnx +0 -0
  233. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_0.pb +1 -1
  234. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_1.pb +1 -1
  235. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_2.pb +1 -1
  236. onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
  237. onnx/backend/test/data/node/test_group_normalization_example/model.onnx +0 -0
  238. onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_1.pb +1 -1
  239. onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_2.pb +1 -1
  240. onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/output_0.pb +0 -0
  241. onnx/backend/test/data/node/test_group_normalization_example_expanded/model.onnx +0 -0
  242. onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_1.pb +1 -1
  243. onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_2.pb +1 -1
  244. onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/output_0.pb +0 -0
  245. onnx/backend/test/data/node/test_identity/model.onnx +0 -0
  246. onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
  247. onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
  248. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
  249. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/input_0.pb +0 -0
  250. onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/output_0.pb +0 -0
  251. onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
  252. onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
  253. onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
  254. onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
  255. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/model.onnx +0 -0
  256. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_0.pb +1 -0
  257. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_1.pb +2 -0
  258. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_2.pb +1 -0
  259. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_3.pb +0 -0
  260. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_4.pb +2 -0
  261. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_5.pb +1 -0
  262. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_6.pb +2 -0
  263. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_7.pb +1 -0
  264. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/output_0.pb +1 -0
  265. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/model.onnx +0 -0
  266. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_0.pb +1 -0
  267. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_2.pb +1 -0
  268. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_3.pb +0 -0
  269. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_5.pb +1 -0
  270. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_7.pb +1 -0
  271. onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/output_0.pb +1 -0
  272. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/model.onnx +0 -0
  273. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_1.pb +2 -0
  274. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_4.pb +2 -0
  275. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_6.pb +2 -0
  276. onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float32}/model.onnx +0 -0
  277. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_0.pb +0 -0
  278. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_3.pb +0 -0
  279. onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/output_0.pb +1 -0
  280. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/model.onnx +0 -0
  281. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_0.pb +1 -0
  282. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_1.pb +2 -0
  283. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_2.pb +1 -0
  284. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_3.pb +0 -0
  285. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_4.pb +2 -0
  286. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_5.pb +1 -0
  287. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_6.pb +2 -0
  288. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_7.pb +1 -0
  289. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/output_0.pb +1 -0
  290. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/model.onnx +0 -0
  291. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_0.pb +1 -0
  292. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_1.pb +1 -0
  293. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_2.pb +1 -0
  294. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_3.pb +0 -0
  295. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_4.pb +1 -0
  296. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_5.pb +1 -0
  297. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_6.pb +1 -0
  298. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_7.pb +1 -0
  299. onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/output_0.pb +1 -0
  300. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/model.onnx +0 -0
  301. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_1.pb +2 -0
  302. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_2.pb +1 -0
  303. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_4.pb +2 -0
  304. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_5.pb +1 -0
  305. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_6.pb +2 -0
  306. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_7.pb +1 -0
  307. onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float32}/model.onnx +0 -0
  308. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_0.pb +0 -0
  309. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_1.pb +1 -0
  310. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_2.pb +1 -0
  311. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_3.pb +0 -0
  312. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_4.pb +1 -0
  313. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_5.pb +1 -0
  314. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_6.pb +1 -0
  315. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_7.pb +1 -0
  316. onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/output_0.pb +1 -0
  317. onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
  318. onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
  319. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
  320. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_0.pb +0 -0
  321. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_1.pb +0 -0
  322. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_2.pb +0 -0
  323. onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/output_0.pb +1 -0
  324. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
  325. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_0.pb +0 -0
  326. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_1.pb +0 -0
  327. onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/output_0.pb +0 -0
  328. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
  329. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
  330. onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
  331. onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
  332. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
  333. onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
  334. onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
  335. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb +0 -0
  336. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_1.pb +0 -0
  337. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_2.pb +0 -0
  338. onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.pb +0 -0
  339. onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
  340. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb +0 -0
  341. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb +0 -0
  342. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -0
  343. onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -0
  344. onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
  345. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
  346. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
  347. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
  348. onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
  349. onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
  350. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb +0 -0
  351. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
  352. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
  353. onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
  354. onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
  355. onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
  356. onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
  357. onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
  358. onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
  359. onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
  360. onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
  361. onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
  362. onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
  363. onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
  364. onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
  365. onnx/backend/test/data/node/test_shape/model.onnx +0 -0
  366. onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
  367. onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
  368. onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
  369. onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
  370. onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
  371. onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
  372. onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
  373. onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
  374. onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
  375. onnx/backend/test/data/node/test_size/model.onnx +0 -0
  376. onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
  377. onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
  378. onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
  379. onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
  380. onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
  381. onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
  382. onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
  383. onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
  384. onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
  385. onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
  386. onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
  387. onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
  388. onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
  389. onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
  390. onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
  391. onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
  392. onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
  393. onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
  394. onnx/backend/test/loader/__init__.py +0 -1
  395. onnx/backend/test/runner/__init__.py +43 -15
  396. onnx/checker.cc +104 -99
  397. onnx/checker.h +23 -3
  398. onnx/checker.py +56 -20
  399. onnx/common/assertions.cc +10 -5
  400. onnx/common/common.h +19 -0
  401. onnx/common/file_utils.h +3 -1
  402. onnx/common/interned_strings.h +7 -1
  403. onnx/common/ir.h +30 -7
  404. onnx/common/ir_pb_converter.cc +6 -0
  405. onnx/common/path.h +18 -2
  406. onnx/common/proto_util.h +43 -0
  407. onnx/common/version.h +1 -1
  408. onnx/cpp2py_export.cc +88 -56
  409. onnx/defs/__init__.py +29 -8
  410. onnx/defs/controlflow/defs.cc +16 -16
  411. onnx/defs/controlflow/old.cc +177 -0
  412. onnx/defs/data_propagators.h +2 -0
  413. onnx/defs/data_type_utils.cc +2 -0
  414. onnx/defs/generator/defs.cc +6 -4
  415. onnx/defs/generator/old.cc +115 -0
  416. onnx/defs/math/defs.cc +37 -142
  417. onnx/defs/math/old.cc +96 -12
  418. onnx/defs/math/utils.cc +127 -0
  419. onnx/defs/math/utils.h +8 -0
  420. onnx/defs/nn/defs.cc +72 -59
  421. onnx/defs/nn/old.cc +181 -2
  422. onnx/defs/object_detection/defs.cc +2 -2
  423. onnx/defs/object_detection/old.cc +2 -2
  424. onnx/defs/operator_sets.h +51 -0
  425. onnx/defs/operator_sets_ml.h +14 -0
  426. onnx/defs/parser.cc +112 -54
  427. onnx/defs/parser.h +14 -2
  428. onnx/defs/printer.cc +14 -7
  429. onnx/defs/quantization/defs.cc +111 -44
  430. onnx/defs/quantization/old.cc +130 -1
  431. onnx/defs/schema.cc +62 -18
  432. onnx/defs/schema.h +194 -48
  433. onnx/defs/shape_inference.cc +28 -19
  434. onnx/defs/shape_inference.h +2 -0
  435. onnx/defs/tensor/defs.cc +54 -96
  436. onnx/defs/tensor/old.cc +939 -34
  437. onnx/defs/tensor/utils.cc +6 -3
  438. onnx/defs/tensor/utils.h +5 -1
  439. onnx/defs/tensor_proto_util.cc +2 -0
  440. onnx/defs/tensor_util.cc +2 -0
  441. onnx/defs/traditionalml/defs.cc +273 -117
  442. onnx/defs/traditionalml/old.cc +329 -14
  443. onnx/defs/traditionalml/utils.h +27 -0
  444. onnx/external_data_helper.py +12 -26
  445. onnx/helper.py +242 -169
  446. onnx/hub.py +104 -70
  447. onnx/inliner/inliner.cc +89 -31
  448. onnx/inliner/inliner.h +5 -0
  449. onnx/inliner.py +2 -0
  450. onnx/mapping.py +9 -0
  451. onnx/model_container.py +346 -0
  452. onnx/numpy_helper.py +100 -38
  453. onnx/onnx-ml.proto +50 -13
  454. onnx/onnx.in.proto +50 -13
  455. onnx/onnx.proto +50 -13
  456. onnx/onnx_cpp2py_export/__init__.pyi +5 -0
  457. onnx/onnx_cpp2py_export/checker.pyi +21 -0
  458. onnx/onnx_cpp2py_export/defs.pyi +202 -0
  459. onnx/onnx_cpp2py_export/inliner.pyi +19 -0
  460. onnx/onnx_cpp2py_export/parser.pyi +32 -0
  461. onnx/onnx_cpp2py_export/printer.pyi +3 -0
  462. onnx/onnx_cpp2py_export/shape_inference.pyi +16 -0
  463. onnx/onnx_cpp2py_export/version_converter.pyi +4 -0
  464. onnx/onnx_cpp2py_export.cp311-win_amd64.pyd +0 -0
  465. onnx/onnx_data_pb2.pyi +146 -0
  466. onnx/onnx_ml_pb2.py +52 -52
  467. onnx/onnx_ml_pb2.pyi +663 -0
  468. onnx/onnx_operators_ml_pb2.pyi +67 -0
  469. onnx/reference/__init__.py +2 -0
  470. onnx/reference/custom_element_types.py +2 -0
  471. onnx/reference/op_run.py +166 -121
  472. onnx/reference/ops/_op.py +27 -50
  473. onnx/reference/ops/_op_list.py +36 -24
  474. onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -8
  475. onnx/reference/ops/aionnxml/_common_classifier.py +3 -5
  476. onnx/reference/ops/aionnxml/_op_list.py +16 -8
  477. onnx/reference/ops/aionnxml/op_array_feature_extractor.py +4 -6
  478. onnx/reference/ops/aionnxml/op_linear_classifier.py +1 -2
  479. onnx/reference/ops/aionnxml/op_normalizer.py +3 -3
  480. onnx/reference/ops/aionnxml/op_svm_helper.py +1 -3
  481. onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -3
  482. onnx/reference/ops/aionnxml/op_tree_ensemble.py +257 -0
  483. onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +2 -6
  484. onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +4 -4
  485. onnx/reference/ops/experimental/_op_list.py +15 -8
  486. onnx/reference/ops/op_blackman_window.py +5 -6
  487. onnx/reference/ops/op_cast.py +22 -0
  488. onnx/reference/ops/op_cast_like.py +6 -0
  489. onnx/reference/ops/op_clip.py +5 -8
  490. onnx/reference/ops/op_col2im.py +1 -3
  491. onnx/reference/ops/op_constant.py +7 -1
  492. onnx/reference/ops/op_dequantize_linear.py +43 -40
  493. onnx/reference/ops/op_det.py +1 -1
  494. onnx/reference/ops/op_dynamic_quantize_linear.py +2 -2
  495. onnx/reference/ops/op_grid_sample.py +2 -4
  496. onnx/reference/ops/op_hamming_window.py +3 -6
  497. onnx/reference/ops/op_hann_window.py +3 -6
  498. onnx/reference/ops/op_if.py +4 -3
  499. onnx/reference/ops/op_loop.py +7 -9
  500. onnx/reference/ops/op_matmul.py +1 -2
  501. onnx/reference/ops/op_max_pool.py +5 -0
  502. onnx/reference/ops/op_optional.py +1 -1
  503. onnx/reference/ops/op_pool_common.py +3 -6
  504. onnx/reference/ops/op_qlinear_matmul.py +2 -2
  505. onnx/reference/ops/op_quantize_linear.py +166 -71
  506. onnx/reference/ops/op_resize.py +25 -21
  507. onnx/reference/ops/op_rnn.py +20 -12
  508. onnx/reference/ops/op_scan.py +23 -15
  509. onnx/reference/ops/op_scatter_elements.py +7 -6
  510. onnx/reference/ops/op_stft.py +3 -5
  511. onnx/reference/ops/op_string_normalizer.py +7 -7
  512. onnx/reference/ops/op_tfidf_vectorizer.py +7 -8
  513. onnx/reference/ops/op_topk.py +9 -11
  514. onnx/reference/ops/op_unique.py +1 -1
  515. onnx/reference/reference_evaluator.py +119 -63
  516. onnx/shape_inference/implementation.cc +160 -127
  517. onnx/shape_inference.py +11 -10
  518. onnx/subbyte.py +72 -0
  519. onnx/test/__init__.pyi +6 -0
  520. onnx/test/checker_test.py +21 -1
  521. onnx/test/compose_test.py +26 -74
  522. onnx/test/cpp/inliner_test.cc +76 -1
  523. onnx/test/cpp/ir_test.cc +60 -0
  524. onnx/test/cpp/parser_test.cc +106 -0
  525. onnx/test/function_test.py +1 -3
  526. onnx/test/helper_test.py +64 -4
  527. onnx/test/model_container_refeval_test.py +139 -0
  528. onnx/test/model_container_test.py +136 -0
  529. onnx/test/model_inference_test.py +44 -0
  530. onnx/test/reference_evaluator_ml_test.py +448 -47
  531. onnx/test/reference_evaluator_model_test.py +130 -0
  532. onnx/test/reference_evaluator_test.py +901 -14
  533. onnx/test/schema_test.py +166 -1
  534. onnx/test/shape_inference_test.py +285 -6
  535. onnx/test/symbolic_shape_test.py +3 -8
  536. onnx/test/test_backend_onnxruntime.py +238 -224
  537. onnx/test/test_backend_reference.py +11 -0
  538. onnx/test/test_external_data.py +51 -2
  539. onnx/test/version_converter/automatic_conversion_test_base.py +2 -1
  540. onnx/test/version_converter/automatic_upgrade_test.py +12 -10
  541. onnx/test/version_converter_test.py +166 -0
  542. onnx/tools/replace_constants.py +23 -26
  543. onnx/tools/update_model_dims.py +1 -2
  544. onnx/version.py +2 -2
  545. onnx/version_converter/adapters/group_normalization_20_21.h +128 -0
  546. onnx/version_converter/adapters/q_dq_21_20.h +77 -0
  547. onnx/version_converter/convert.h +67 -2
  548. onnx/version_converter.py +6 -142
  549. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/METADATA +18 -15
  550. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/RECORD +572 -406
  551. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/WHEEL +1 -1
  552. onnx/examples/Protobufs.ipynb +0 -639
  553. onnx/examples/check_model.ipynb +0 -128
  554. onnx/examples/load_model.ipynb +0 -116
  555. onnx/examples/make_model.ipynb +0 -176
  556. onnx/examples/np_array_tensorproto.ipynb +0 -136
  557. onnx/examples/resources/single_relu.onnx +0 -12
  558. onnx/examples/resources/single_relu_new.onnx +0 -12
  559. onnx/examples/resources/tensor.pb +0 -0
  560. onnx/examples/resources/two_transposes.onnx +0 -0
  561. onnx/examples/save_model.ipynb +0 -56
  562. onnx/examples/shape_inference.ipynb +0 -111
  563. onnx/test/reference_evaluator_backend_test.py +0 -876
  564. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_1.pb +0 -0
  565. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_4.pb +0 -0
  566. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_6.pb +0 -0
  567. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
  568. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_2.pb +0 -0
  569. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
  570. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_5.pb +0 -0
  571. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_7.pb +0 -0
  572. /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
  573. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_1.pb +0 -0
  574. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_2.pb +0 -0
  575. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_4.pb +0 -0
  576. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_5.pb +0 -0
  577. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_6.pb +0 -0
  578. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_7.pb +0 -0
  579. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
  580. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
  581. /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
  582. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/LICENSE +0 -0
  583. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/entry_points.txt +0 -0
  584. {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/top_level.txt +0 -0
@@ -3,8 +3,7 @@
3
3
  # SPDX-License-Identifier: Apache-2.0
4
4
  # type: ignore
5
5
 
6
- """
7
- You can run a specific test by using the following syntax.
6
+ """You can run a specific test by using the following syntax.
8
7
 
9
8
  ::
10
9
 
@@ -27,7 +26,16 @@ import parameterized
27
26
  import version_utils
28
27
  from numpy.testing import assert_allclose
29
28
 
30
- from onnx import AttributeProto, FunctionProto, ModelProto, TensorProto, checker, parser
29
+ import onnx.reference.custom_element_types as custom
30
+ from onnx import (
31
+ AttributeProto,
32
+ FunctionProto,
33
+ ModelProto,
34
+ TensorProto,
35
+ checker,
36
+ parser,
37
+ subbyte,
38
+ )
31
39
  from onnx.backend.test.case.node.roialign import get_roi_align_input_values
32
40
  from onnx.checker import check_model
33
41
  from onnx.defs import onnx_opset_version
@@ -40,6 +48,7 @@ from onnx.helper import (
40
48
  make_model,
41
49
  make_model_gen_version,
42
50
  make_node,
51
+ make_operatorsetid,
43
52
  make_opsetid,
44
53
  make_sequence_type_proto,
45
54
  make_tensor,
@@ -141,15 +150,17 @@ def run_ort_inference(onnx_model):
141
150
 
142
151
 
143
152
  def im2col_naive_implementation(data, kernel_shape, dilations, pads, strides): # type: ignore
144
- """
145
- Naive implementation for `im2col`.
146
-
147
- :param image: image (float)
148
- :param kernel_shape: kernel shape
149
- :param dilations: dilations
150
- :param pads: pads
151
- :param strides: strides
152
- :return: result
153
+ """Naive implementation for `im2col`.
154
+
155
+ Args:
156
+ data: image (float)
157
+ kernel_shape: kernel shape
158
+ dilations: dilations
159
+ pads: pads
160
+ strides: strides
161
+
162
+ Returns:
163
+ result
153
164
  """
154
165
  if not isinstance(kernel_shape, tuple):
155
166
  raise TypeError(f"Unexpected type {type(kernel_shape)!r} for kernel_shape.")
@@ -223,8 +234,7 @@ class TestReferenceEvaluator(unittest.TestCase):
223
234
 
224
235
  @staticmethod
225
236
  def _load_model(m_def: str) -> ModelProto:
226
- """
227
- Parses a model from a string representation, including checking
237
+ """Parses a model from a string representation, including checking
228
238
  the model for correctness
229
239
  """
230
240
  m = parser.parse_model(m_def)
@@ -1186,6 +1196,85 @@ class TestReferenceEvaluator(unittest.TestCase):
1186
1196
  expected = 1 / (x + 0.5)
1187
1197
  assert_allclose(expected, got)
1188
1198
 
1199
+ def test_custom_no_output_tuple(self):
1200
+ class InvAlpha(OpRun):
1201
+ op_domain = "custom"
1202
+
1203
+ def _run(self, x, alpha=None): # type: ignore
1204
+ alpha = alpha or self.alpha # type: ignore
1205
+ return 1 / (x + alpha)
1206
+
1207
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None, None])
1208
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
1209
+ node1 = make_node("InvAlpha", ["X"], ["Y"], alpha=0.5, domain="custom")
1210
+ graph = make_graph([node1], "rs", [X], [Y])
1211
+ onnx_model = make_model(graph, opset_imports=[make_opsetid("custom", 1)])
1212
+ x = np.arange(60).reshape((3, 4, 5)).astype(np.float32) + 1
1213
+ ref = ReferenceEvaluator(onnx_model, new_ops=[InvAlpha])
1214
+ with self.assertRaises(TypeError):
1215
+ ref.run(None, {"X": x})
1216
+
1217
+ def test_custom_empty_output(self):
1218
+ class InvAlpha(OpRun):
1219
+ op_domain = "custom"
1220
+
1221
+ def _run(self, x, alpha=None): # type: ignore
1222
+ return tuple()
1223
+
1224
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None, None])
1225
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
1226
+ node1 = make_node("InvAlpha", ["X"], ["Y"], alpha=0.5, domain="custom")
1227
+ graph = make_graph([node1], "rs", [X], [Y])
1228
+ onnx_model = make_model(graph, opset_imports=[make_opsetid("custom", 1)])
1229
+ x = np.arange(60).reshape((3, 4, 5)).astype(np.float32) + 1
1230
+ ref = ReferenceEvaluator(onnx_model, new_ops=[InvAlpha])
1231
+ with self.assertRaises(ValueError):
1232
+ ref.run(None, {"X": x})
1233
+
1234
+ def test_custom_tuple_tuple(self):
1235
+ class InvAlpha(OpRun):
1236
+ op_domain = "custom"
1237
+
1238
+ def _run(self, x, alpha=None): # type: ignore
1239
+ alpha = alpha or self.alpha # type: ignore
1240
+ res = tuple([tuple([1 / (x + alpha)])]) # noqa: C409
1241
+ assert isinstance(res, tuple)
1242
+ assert isinstance(res[0], tuple)
1243
+ return res
1244
+
1245
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None, None])
1246
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
1247
+ node1 = make_node("InvAlpha", ["X"], ["Y"], alpha=0.5, domain="custom")
1248
+ graph = make_graph([node1], "rs", [X], [Y])
1249
+ onnx_model = make_model(graph, opset_imports=[make_opsetid("custom", 1)])
1250
+ x = np.arange(60).reshape((3, 4, 5)).astype(np.float32) + 1
1251
+ ref = ReferenceEvaluator(onnx_model, new_ops=[InvAlpha])
1252
+ with self.assertRaises(TypeError):
1253
+ ref.run(None, {"X": x})
1254
+
1255
+ def test_custom_tuple_unexpected_type(self):
1256
+ class CustomType:
1257
+ pass
1258
+
1259
+ class InvAlpha(OpRun):
1260
+ op_domain = "custom"
1261
+
1262
+ def _run(self, x, alpha=None): # type: ignore
1263
+ res = tuple([CustomType()]) # noqa: C409
1264
+ assert isinstance(res, tuple)
1265
+ assert isinstance(res[0], CustomType)
1266
+ return res
1267
+
1268
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None, None])
1269
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
1270
+ node1 = make_node("InvAlpha", ["X"], ["Y"], alpha=0.5, domain="custom")
1271
+ graph = make_graph([node1], "rs", [X], [Y])
1272
+ onnx_model = make_model(graph, opset_imports=[make_opsetid("custom", 1)])
1273
+ x = np.arange(60).reshape((3, 4, 5)).astype(np.float32) + 1
1274
+ ref = ReferenceEvaluator(onnx_model, new_ops=[InvAlpha])
1275
+ with self.assertRaises(TypeError):
1276
+ ref.run(None, {"X": x})
1277
+
1189
1278
  def test_loop(self):
1190
1279
  # Given a tensor x of values [x1, ..., xN],
1191
1280
  # Return a sequence of tensors of
@@ -3501,6 +3590,389 @@ class TestReferenceEvaluator(unittest.TestCase):
3501
3590
  got = ref.run(None, {"X": data})
3502
3591
  assert_allclose(expected, got[0])
3503
3592
 
3593
+ def test_quantize_linear_uint16(self):
3594
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None])
3595
+ Y = make_tensor_value_info("Y", TensorProto.UINT16, [None])
3596
+ model = make_model(
3597
+ make_graph(
3598
+ [
3599
+ make_node("QuantizeLinear", ["X", "scale", "zero"], ["Y"]),
3600
+ ],
3601
+ "g",
3602
+ [X],
3603
+ [Y],
3604
+ [
3605
+ make_tensor("scale", TensorProto.FLOAT, [1], [2.0]),
3606
+ make_tensor("zero", TensorProto.UINT16, [1], [32767]),
3607
+ ],
3608
+ )
3609
+ )
3610
+ ref = ReferenceEvaluator(model)
3611
+ data = np.array(
3612
+ [
3613
+ # rounding half to even
3614
+ 0.0,
3615
+ -128.0,
3616
+ 3.0,
3617
+ -3.0,
3618
+ # round < .5
3619
+ 2.9,
3620
+ -2.9,
3621
+ # round > .5
3622
+ 3.1,
3623
+ -3.1,
3624
+ # critical point
3625
+ 65536.0,
3626
+ -65534.0,
3627
+ # saturate case
3628
+ 70000.0,
3629
+ -70000.0,
3630
+ ],
3631
+ dtype=np.float32,
3632
+ )
3633
+ expected = np.array(
3634
+ [
3635
+ 32767,
3636
+ 32703,
3637
+ 32769,
3638
+ 32765,
3639
+ 32768,
3640
+ 32766,
3641
+ 32769,
3642
+ 32765,
3643
+ 65535,
3644
+ 0,
3645
+ 65535,
3646
+ 0,
3647
+ ],
3648
+ dtype=np.uint16,
3649
+ )
3650
+ got = ref.run(None, {"X": data})
3651
+ assert_allclose(expected, got[0])
3652
+
3653
+ def test_quantize_linear_int16(self):
3654
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None])
3655
+ Y = make_tensor_value_info("Y", TensorProto.INT16, [None])
3656
+ model = make_model(
3657
+ make_graph(
3658
+ [
3659
+ make_node("QuantizeLinear", ["X", "scale", "zero"], ["Y"]),
3660
+ ],
3661
+ "g",
3662
+ [X],
3663
+ [Y],
3664
+ [
3665
+ make_tensor("scale", TensorProto.FLOAT, [1], [2.0]),
3666
+ make_tensor("zero", TensorProto.INT16, [1], [256]),
3667
+ ],
3668
+ )
3669
+ )
3670
+ ref = ReferenceEvaluator(model)
3671
+ data = np.array(
3672
+ [
3673
+ # rounding half to even
3674
+ 0.0,
3675
+ -514.0,
3676
+ 3.0,
3677
+ -3.0,
3678
+ # round < .5
3679
+ 2.9,
3680
+ -2.9,
3681
+ # round > .5
3682
+ 3.1,
3683
+ -3.1,
3684
+ # critical point
3685
+ 65022.0,
3686
+ -66046.0,
3687
+ 65023.0,
3688
+ -66047.0,
3689
+ 65024.0,
3690
+ -66048.0,
3691
+ # saturate case
3692
+ 70000.0,
3693
+ -70000.0,
3694
+ ],
3695
+ dtype=np.float32,
3696
+ )
3697
+ expected = np.array(
3698
+ [
3699
+ 256,
3700
+ -1,
3701
+ 258,
3702
+ 254,
3703
+ 257,
3704
+ 255,
3705
+ 258,
3706
+ 254,
3707
+ 32767,
3708
+ -32767,
3709
+ 32767,
3710
+ -32768,
3711
+ 32767,
3712
+ -32768,
3713
+ 32767,
3714
+ -32768,
3715
+ ],
3716
+ dtype=np.int16,
3717
+ )
3718
+ got = ref.run(None, {"X": data})
3719
+ assert_allclose(expected, got[0])
3720
+
3721
+ def test_dequantize_linear_uint16(self):
3722
+ X = make_tensor_value_info("X", TensorProto.UINT16, [None])
3723
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
3724
+ model = make_model(
3725
+ make_graph(
3726
+ [
3727
+ make_node(
3728
+ "DequantizeLinear", ["X", "scale", "zero"], ["Y"], axis=0
3729
+ ),
3730
+ ],
3731
+ "g",
3732
+ [X],
3733
+ [Y],
3734
+ [
3735
+ make_tensor("scale", TensorProto.FLOAT, [1], [2.0]),
3736
+ make_tensor("zero", TensorProto.UINT16, [1], [32767]),
3737
+ ],
3738
+ )
3739
+ )
3740
+ ref = ReferenceEvaluator(model)
3741
+ data = np.array([30000, 31000, 32768, 33000], dtype=np.uint16)
3742
+ expected = np.array([-5534.0, -3534.0, 2.0, 466.0], dtype=np.float32)
3743
+ got = ref.run(None, {"X": data})
3744
+ assert_allclose(expected, got[0])
3745
+
3746
+ def test_dequantize_linear_int16(self):
3747
+ X = make_tensor_value_info("X", TensorProto.INT16, [None])
3748
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
3749
+ model = make_model(
3750
+ make_graph(
3751
+ [
3752
+ make_node(
3753
+ "DequantizeLinear", ["X", "scale", "zero"], ["Y"], axis=0
3754
+ ),
3755
+ ],
3756
+ "g",
3757
+ [X],
3758
+ [Y],
3759
+ [
3760
+ make_tensor("scale", TensorProto.FLOAT, [1], [2.0]),
3761
+ make_tensor("zero", TensorProto.INT16, [1], [-1024]),
3762
+ ],
3763
+ )
3764
+ )
3765
+ ref = ReferenceEvaluator(model)
3766
+ data = np.array([-300, -30, -1025, 1270], dtype=np.int16)
3767
+ expected = np.array([1448.0, 1988.0, -2.0, 4588.0], dtype=np.float32)
3768
+ got = ref.run(None, {"X": data})
3769
+ assert_allclose(expected, got[0])
3770
+
3771
+ @parameterized.parameterized.expand(
3772
+ [
3773
+ (
3774
+ 4 * np.arange(12).reshape(3, 4),
3775
+ np.arange(1, 7).reshape(3, 2),
3776
+ np.zeros((3, 2)),
3777
+ 1,
3778
+ 2,
3779
+ [[0, 4, 4, 6], [5, 7, 6, 7], [6, 7, 7, 7]],
3780
+ ),
3781
+ (
3782
+ 4 * np.arange(12).reshape(3, 4),
3783
+ np.arange(1, 7).reshape(3, 2),
3784
+ np.ones((3, 2)),
3785
+ 1,
3786
+ 2,
3787
+ [[1, 5, 5, 7], [6, 8, 7, 8], [7, 8, 8, 8]],
3788
+ ),
3789
+ (
3790
+ np.arange(24).reshape(3, 8),
3791
+ [[0.25, 0.5, 1], [0.25, 0.5, 1], [0.25, 0.5, 1]],
3792
+ np.zeros((3, 3)),
3793
+ 1,
3794
+ 3,
3795
+ [
3796
+ [0, 4, 8, 6, 8, 10, 6, 7],
3797
+ [32, 36, 40, 22, 24, 26, 14, 15],
3798
+ [64, 68, 72, 38, 40, 42, 22, 23],
3799
+ ],
3800
+ ),
3801
+ (
3802
+ np.arange(6),
3803
+ [0.25, 0.5],
3804
+ [-1, -2],
3805
+ 0,
3806
+ 3,
3807
+ [-1, 3, 7, 4, 6, 8],
3808
+ ),
3809
+ (
3810
+ np.ones((9, 12)),
3811
+ np.ones((3, 4)),
3812
+ np.zeros((3, 4)),
3813
+ 0,
3814
+ 3,
3815
+ None, # Blocked quantization is defined for 1-D blocks only
3816
+ ),
3817
+ (
3818
+ np.ones((3, 4, 5, 6)),
3819
+ np.ones((3, 4)),
3820
+ np.zeros((3, 4)),
3821
+ 2,
3822
+ 2,
3823
+ None, # Scale and ZP must have the same rank as the input
3824
+ ),
3825
+ ]
3826
+ )
3827
+ def test_blocked_quantize_linear(
3828
+ self, x, scale, zero_point, axis, block_size, expected
3829
+ ):
3830
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None])
3831
+ Y = make_tensor_value_info("Y", TensorProto.INT8, [None])
3832
+
3833
+ scale_data = np.array(scale, dtype=np.float32)
3834
+ zp_data = np.array(zero_point, dtype=np.int8)
3835
+ model = make_model(
3836
+ make_graph(
3837
+ [
3838
+ make_node(
3839
+ "QuantizeLinear",
3840
+ ["X", "scale", "zero"],
3841
+ ["Y"],
3842
+ axis=axis,
3843
+ block_size=block_size,
3844
+ ),
3845
+ ],
3846
+ "g",
3847
+ [X],
3848
+ [Y],
3849
+ [
3850
+ make_tensor(
3851
+ "scale", TensorProto.FLOAT, scale_data.shape, scale_data
3852
+ ),
3853
+ make_tensor("zero", TensorProto.INT8, scale_data.shape, zp_data),
3854
+ ],
3855
+ )
3856
+ )
3857
+ ref = ReferenceEvaluator(model)
3858
+
3859
+ data = np.array(x, dtype=np.float32)
3860
+
3861
+ if expected is not None:
3862
+ expected = np.array(expected, dtype=np.int8)
3863
+ got = ref.run(None, {"X": data})
3864
+ assert_allclose(expected, got[0])
3865
+ else:
3866
+ with self.assertRaises(ValueError):
3867
+ ref.run(None, {"X": data})
3868
+
3869
+ @parameterized.parameterized.expand(
3870
+ [
3871
+ (
3872
+ np.arange(12).reshape(3, 4),
3873
+ np.arange(1, 7).reshape(3, 2),
3874
+ np.zeros((3, 2)),
3875
+ 1,
3876
+ 2,
3877
+ [[0, 1, 4, 6], [12, 15, 24, 28], [40, 45, 60, 66]],
3878
+ ),
3879
+ (
3880
+ np.arange(12).reshape(3, 4),
3881
+ np.arange(1, 7).reshape(3, 2),
3882
+ np.ones((3, 2)),
3883
+ 1,
3884
+ 2,
3885
+ [[-1, 0, 2, 4], [9, 12, 20, 24], [35, 40, 54, 60]],
3886
+ ),
3887
+ (
3888
+ np.dstack([np.arange(4).reshape(2, 2)] * 4),
3889
+ np.dstack([np.array([[1, 1], [2, 3]]), np.array([[4, 5], [6, 7]])]),
3890
+ np.zeros((2, 2, 2)),
3891
+ 2,
3892
+ 2,
3893
+ [[[0, 0, 0, 0], [1, 1, 5, 5]], [[4, 4, 12, 12], [9, 9, 21, 21]]],
3894
+ ),
3895
+ (
3896
+ np.arange(24).reshape(3, 8),
3897
+ [[2, 1, 3], [2, 1, 3], [2, 1, 3]],
3898
+ np.zeros((3, 3)),
3899
+ 1,
3900
+ 3,
3901
+ [
3902
+ [0, 2, 4, 3, 4, 5, 18, 21],
3903
+ [16, 18, 20, 11, 12, 13, 42, 45],
3904
+ [32, 34, 36, 19, 20, 21, 66, 69],
3905
+ ],
3906
+ ),
3907
+ (
3908
+ np.arange(
3909
+ 6,
3910
+ ),
3911
+ [2, 3],
3912
+ [1, 2],
3913
+ 0,
3914
+ 3,
3915
+ [-2, 0, 2, 3, 6, 9],
3916
+ ),
3917
+ (
3918
+ np.ones((9, 12)),
3919
+ np.ones((3, 4)),
3920
+ np.zeros((3, 4)),
3921
+ 0,
3922
+ 3,
3923
+ None, # Blocked quantization is defined for 1-D blocks only
3924
+ ),
3925
+ (
3926
+ np.ones((3, 4, 5, 6)),
3927
+ np.ones((3, 4)),
3928
+ np.zeros((3, 4)),
3929
+ 2,
3930
+ 2,
3931
+ None, # Scale and ZP must have the same rank as the input
3932
+ ),
3933
+ ]
3934
+ )
3935
+ def test_blocked_dequantize_linear(
3936
+ self, x, scale, zero_point, axis, block_size, expected
3937
+ ):
3938
+ X = make_tensor_value_info("X", TensorProto.INT8, [None])
3939
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
3940
+
3941
+ scale_data = np.array(scale, dtype=np.float32)
3942
+ zp_data = np.array(zero_point, dtype=np.int8)
3943
+ model = make_model(
3944
+ make_graph(
3945
+ [
3946
+ make_node(
3947
+ "DequantizeLinear",
3948
+ ["X", "scale", "zero"],
3949
+ ["Y"],
3950
+ axis=axis,
3951
+ block_size=block_size,
3952
+ ),
3953
+ ],
3954
+ "g",
3955
+ [X],
3956
+ [Y],
3957
+ [
3958
+ make_tensor(
3959
+ "scale", TensorProto.FLOAT, scale_data.shape, scale_data
3960
+ ),
3961
+ make_tensor("zero", TensorProto.INT8, scale_data.shape, zp_data),
3962
+ ],
3963
+ )
3964
+ )
3965
+ ref = ReferenceEvaluator(model)
3966
+ data = np.array(x, dtype=np.int8)
3967
+
3968
+ if expected is not None:
3969
+ expected = np.array(expected, dtype=np.float32)
3970
+ got = ref.run(None, {"X": data})
3971
+ assert_allclose(expected, got[0])
3972
+ else:
3973
+ with self.assertRaises(ValueError):
3974
+ ref.run(None, {"X": data})
3975
+
3504
3976
  def test_lrn(self):
3505
3977
  def _expected(x, alpha, beta, bias, size):
3506
3978
  square_sum = np.zeros((5, 5, 5, 5)).astype(np.float32)
@@ -4959,6 +5431,76 @@ class TestReferenceEvaluator(unittest.TestCase):
4959
5431
  num_splits, np.array(expected_num_splits, dtype=np.int64)
4960
5432
  )
4961
5433
 
5434
+ def test_qlinearconv_int8(self):
5435
+ node = make_node(
5436
+ "QLinearMatMul",
5437
+ inputs=[
5438
+ "a",
5439
+ "a_scale",
5440
+ "a_zero_point",
5441
+ "b",
5442
+ "b_scale",
5443
+ "b_zero_point",
5444
+ "y_scale",
5445
+ "y_zero_point",
5446
+ ],
5447
+ outputs=["y"],
5448
+ )
5449
+ graph = make_graph(
5450
+ [node],
5451
+ "g",
5452
+ [
5453
+ make_tensor_value_info("a", TensorProto.FLOAT, [None, None]),
5454
+ make_tensor_value_info("a_scale", TensorProto.FLOAT, [1]),
5455
+ make_tensor_value_info("a_zero_point", TensorProto.INT8, [1]),
5456
+ make_tensor_value_info("b", TensorProto.FLOAT, [None, None]),
5457
+ make_tensor_value_info("b_scale", TensorProto.FLOAT, [1]),
5458
+ make_tensor_value_info("b_zero_point", TensorProto.INT8, [1]),
5459
+ make_tensor_value_info("y_scale", TensorProto.FLOAT, [1]),
5460
+ make_tensor_value_info("y_zero_point", TensorProto.INT8, [1]),
5461
+ ],
5462
+ [make_tensor_value_info("y", TensorProto.FLOAT, [None, None])],
5463
+ )
5464
+ onnx_model = make_model(
5465
+ graph, opset_imports=[make_opsetid("", 20)], ir_version=9
5466
+ )
5467
+ sess = ReferenceEvaluator(onnx_model)
5468
+
5469
+ a = np.array([[208, 236, 0, 238], [3, 214, 255, 29]])
5470
+ a -= 127
5471
+ a = a.astype(np.int8)
5472
+
5473
+ a_scale = np.array([0.0066], dtype=np.float32)
5474
+ a_zero_point = np.array([113 - 127], dtype=np.int8)
5475
+
5476
+ b = np.array([[152, 51, 244], [60, 26, 255], [0, 127, 246], [127, 254, 247]])
5477
+ b -= 127
5478
+ b = b.astype(np.int8)
5479
+
5480
+ b_scale = np.array([0.00705], dtype=np.float32)
5481
+ b_zero_point = np.array([114 - 127], dtype=np.int8)
5482
+
5483
+ y_scale = np.array([0.0107], dtype=np.float32)
5484
+ y_zero_point = np.array([118 - 127], dtype=np.int8)
5485
+
5486
+ got = sess.run(
5487
+ None,
5488
+ dict(
5489
+ a=a,
5490
+ a_scale=a_scale,
5491
+ a_zero_point=a_zero_point,
5492
+ b=b,
5493
+ b_scale=b_scale,
5494
+ b_zero_point=b_zero_point,
5495
+ y_scale=y_scale,
5496
+ y_zero_point=y_zero_point,
5497
+ ),
5498
+ )
5499
+
5500
+ np.testing.assert_array_equal(
5501
+ np.array([[41, -12, -9], [1, -75, 20]], dtype=np.int8), got[0]
5502
+ )
5503
+
4962
5504
  @parameterized.parameterized.expand(
4963
5505
  [
4964
5506
  (
@@ -5012,6 +5554,351 @@ class TestReferenceEvaluator(unittest.TestCase):
5012
5554
  with self.assertRaises(ValueError):
5013
5555
  ref.run(None, {"X": np.array(["x"])})
5014
5556
 
5557
+ @parameterized.parameterized.expand(
5558
+ [
5559
+ (
5560
+ TensorProto.UINT4,
5561
+ [-1, 0, 1.5, 2, 3.3, 10, 20, 40],
5562
+ [0, 0, 2, 2, 4, 10, 20, 30],
5563
+ ),
5564
+ (TensorProto.UINT4, [-1, 0, 1.5, 2, 3.3, 10, 40], [0, 0, 2, 2, 4, 10, 30]),
5565
+ (TensorProto.UINT4, [0], [0]),
5566
+ (
5567
+ TensorProto.INT4,
5568
+ [-20, -14.5, 0, 1.5, 2, 3.3, 10, 20],
5569
+ [-16, -14, 0, 2, 2, 4, 10, 14],
5570
+ ),
5571
+ (
5572
+ TensorProto.INT4,
5573
+ [-20, -14.5, 0, 1.5, 2, 3.3, 10],
5574
+ [-16, -14, 0, 2, 2, 4, 10],
5575
+ ),
5576
+ (TensorProto.INT4, [0], [0]),
5577
+ ]
5578
+ )
5579
+ @unittest.skipIf(
5580
+ version_utils.numpy_older_than("1.22.0"),
5581
+ "The test requires numpy 1.22.0 or later",
5582
+ )
5583
+ def test_quantize_linear_int4(self, qtype, data, expected):
5584
+ X = make_tensor_value_info("X", TensorProto.FLOAT, [None])
5585
+ Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None])
5586
+ model = make_model(
5587
+ make_graph(
5588
+ [
5589
+ make_node(
5590
+ "Constant",
5591
+ [],
5592
+ ["scale"],
5593
+ value=make_tensor("scale", TensorProto.FLOAT, [1], [2.0]),
5594
+ ),
5595
+ make_node(
5596
+ "Constant",
5597
+ [],
5598
+ ["zero"],
5599
+ value=make_tensor("zero", qtype, [1], [0]),
5600
+ ),
5601
+ make_node("QuantizeLinear", ["X", "scale", "zero"], ["T"]),
5602
+ make_node("DequantizeLinear", ["T", "scale"], ["Y"], axis=0),
5603
+ ],
5604
+ "g",
5605
+ [X],
5606
+ [Y],
5607
+ )
5608
+ )
5609
+ ref = ReferenceEvaluator(model)
5610
+ got = ref.run(None, {"X": np.asarray(data)})
5611
+ assert_allclose(expected, got[0])
5612
+
5613
+ @parameterized.parameterized.expand(
5614
+ itertools.product(
5615
+ (TensorProto.FLOAT, TensorProto.FLOAT16),
5616
+ (TensorProto.UINT4, TensorProto.INT4),
5617
+ )
5618
+ )
5619
+ def test_cast_int4_output(self, cast_from, cast_to):
5620
+ X = make_tensor_value_info("X", cast_from, [None])
5621
+ Y = make_tensor_value_info("Y", cast_to, [None])
5622
+ model = make_model(
5623
+ make_graph(
5624
+ [
5625
+ make_node("Cast", ["X"], ["Y"], to=cast_to),
5626
+ ],
5627
+ "g",
5628
+ [X],
5629
+ [Y],
5630
+ )
5631
+ )
5632
+ ref = ReferenceEvaluator(model)
5633
+ data = np.array([0, 1, 2.4, 2.6, 4, 10], dtype=np.float32)
5634
+ signed = cast_to == TensorProto.INT4
5635
+ expected1 = np.array(
5636
+ [subbyte.float32_to_4bit_unpacked(x, signed=signed) for x in data]
5637
+ )
5638
+ got = ref.run(None, {"X": data})
5639
+ self.assertEqual(expected1.tolist(), got[0].tolist())
5640
+
5641
+ @parameterized.parameterized.expand(
5642
+ itertools.product(
5643
+ (TensorProto.UINT4, TensorProto.INT4),
5644
+ (TensorProto.FLOAT, TensorProto.FLOAT16),
5645
+ )
5646
+ )
5647
+ def test_cast_int4_input(self, cast_from, cast_to):
5648
+ X = make_tensor_value_info("X", cast_from, [None])
5649
+ Y = make_tensor_value_info("Y", cast_to, [None])
5650
+ model = make_model(
5651
+ make_graph(
5652
+ [
5653
+ make_node("Cast", ["X"], ["Y"], to=TensorProto.FLOAT),
5654
+ ],
5655
+ "g",
5656
+ [X],
5657
+ [Y],
5658
+ )
5659
+ )
5660
+ ref = ReferenceEvaluator(model)
5661
+ data = np.array(range(0, 7), dtype=np.float32)
5662
+ cast_from_np = custom.uint4 if cast_from == TensorProto.UINT4 else custom.int4
5663
+ data = data.astype(cast_from_np)
5664
+ expected1 = np.array(
5665
+ [subbyte.float32_to_4bit_unpacked(x, cast_from_np) for x in data]
5666
+ )
5667
+ got = ref.run(None, {"X": data})
5668
+ self.assertEqual(expected1.tolist(), got[0].tolist())
5669
+
5670
+ def test_a_function_calling_a_function_once(self):
5671
+ X = make_tensor_value_info("X", TensorProto.FLOAT, ["N"])
5672
+ output = make_tensor_value_info("output", TensorProto.FLOAT, ["N"])
5673
+ Z = make_tensor_value_info("output", TensorProto.FLOAT, ["N"])
5674
+
5675
+ func_def_add = make_function(
5676
+ "this",
5677
+ "fctadd",
5678
+ ["input2"],
5679
+ ["output"],
5680
+ [
5681
+ make_node("Constant", [], ["one"], value_floats=[1.0], name="CC0"),
5682
+ make_node("Add", ["input2", "one"], ["output"], name="A1"),
5683
+ ],
5684
+ opset_imports=[make_operatorsetid("", 15)],
5685
+ )
5686
+
5687
+ func_def = make_function(
5688
+ "this",
5689
+ "fct",
5690
+ ["input"],
5691
+ ["output"],
5692
+ [
5693
+ make_node("Constant", [], ["one"], value_floats=[1.0], name="CC"),
5694
+ make_node("Greater", ["input", "one"], ["cond"]),
5695
+ make_node(
5696
+ "If",
5697
+ ["cond"],
5698
+ ["output"],
5699
+ then_branch=make_graph(
5700
+ [make_node("fctadd", ["input"], ["output"], domain="this")],
5701
+ "gthen",
5702
+ [],
5703
+ [output],
5704
+ ),
5705
+ else_branch=make_graph(
5706
+ [make_node("Add", ["input", "one"], ["output"], domain="")],
5707
+ "gelse",
5708
+ [],
5709
+ [output],
5710
+ ),
5711
+ name=":IF",
5712
+ ),
5713
+ ],
5714
+ opset_imports=[
5715
+ make_operatorsetid("", 15),
5716
+ make_operatorsetid("this", 1),
5717
+ ],
5718
+ )
5719
+
5720
+ model_def = make_model(
5721
+ make_graph(
5722
+ [
5723
+ make_node("fct", ["X"], ["output"], domain="this"),
5724
+ ],
5725
+ "test",
5726
+ [X],
5727
+ [Z],
5728
+ ),
5729
+ ir_version=7,
5730
+ opset_imports=[
5731
+ make_operatorsetid("", 15),
5732
+ make_operatorsetid("this", 1),
5733
+ ],
5734
+ functions=[func_def_add, func_def],
5735
+ )
5736
+
5737
+ feeds = {"X": np.array([-5], dtype=np.float32)}
5738
+ oinf = ReferenceEvaluator(model_def)
5739
+ expected = oinf.run(None, feeds)
5740
+
5741
+ # inlining does not work here
5742
+ # inlined = inline_local_functions(model_def)
5743
+ # oinf = ReferenceEvaluator(inlined)
5744
+ # goti = oinf.run(None, feeds)
5745
+ # self.assertEqual(expected[0].tolist(), goti[0].tolist())
5746
+ self.assertEqual(expected[0], np.array([-4], dtype=np.float32))
5747
+
5748
+ def test_a_function_calling_a_function_double(self):
5749
+ X = make_tensor_value_info("X", TensorProto.FLOAT, ["N"])
5750
+ output = make_tensor_value_info("output", TensorProto.FLOAT, ["N"])
5751
+ Z = make_tensor_value_info("output", TensorProto.FLOAT, ["N"])
5752
+
5753
+ func_def_add = make_function(
5754
+ "this",
5755
+ "fctadd",
5756
+ ["input2"],
5757
+ ["output"],
5758
+ [
5759
+ make_node("Constant", [], ["one"], value_floats=[1.0], name="CC0"),
5760
+ make_node("Add", ["input2", "one"], ["output"], name="A1"),
5761
+ ],
5762
+ opset_imports=[make_operatorsetid("", 15)],
5763
+ )
5764
+
5765
+ func_def = make_function(
5766
+ "this",
5767
+ "fct",
5768
+ ["input"],
5769
+ ["output"],
5770
+ [
5771
+ make_node("Constant", [], ["one"], value_floats=[1.0], name="CC"),
5772
+ make_node("Greater", ["input", "one"], ["cond"]),
5773
+ make_node(
5774
+ "If",
5775
+ ["cond"],
5776
+ ["output"],
5777
+ then_branch=make_graph(
5778
+ [make_node("fctadd", ["input"], ["output"], domain="this")],
5779
+ "gthen",
5780
+ [],
5781
+ [output],
5782
+ ),
5783
+ else_branch=make_graph(
5784
+ [make_node("Add", ["input", "one"], ["output"], domain="")],
5785
+ "gelse",
5786
+ [],
5787
+ [output],
5788
+ ),
5789
+ name=":IF",
5790
+ ),
5791
+ ],
5792
+ opset_imports=[
5793
+ make_operatorsetid("", 15),
5794
+ make_operatorsetid("this", 1),
5795
+ ],
5796
+ )
5797
+
5798
+ model_def = make_model(
5799
+ make_graph(
5800
+ [
5801
+ make_node("fct", ["X"], ["ztmp"], domain="this"),
5802
+ make_node("fct", ["ztmp"], ["output"], domain="this"),
5803
+ ],
5804
+ "test",
5805
+ [X],
5806
+ [Z],
5807
+ ),
5808
+ ir_version=7,
5809
+ opset_imports=[
5810
+ make_operatorsetid("", 15),
5811
+ make_operatorsetid("this", 1),
5812
+ ],
5813
+ functions=[func_def_add, func_def],
5814
+ )
5815
+
5816
+ feeds = {"X": np.array([-5], dtype=np.float32)}
5817
+ oinf = ReferenceEvaluator(model_def)
5818
+ expected = oinf.run(None, feeds)
5819
+
5820
+ # inlining does not work here
5821
+ # inlined = inline_local_functions(model_def)
5822
+ # oinf = ReferenceEvaluator(inlined)
5823
+ # goti = oinf.run(None, feeds)
5824
+ # self.assertEqual(expected[0].tolist(), goti[0].tolist())
5825
+ self.assertEqual(expected[0], np.array([-3], dtype=np.float32))
5826
+
5827
+ def test_overload_reference_implementation(self):
5828
+ X = make_tensor_value_info("X", TensorProto.FLOAT, ["N"])
5829
+ output = make_tensor_value_info("output", TensorProto.FLOAT, ["N"])
5830
+ Z = make_tensor_value_info("output", TensorProto.FLOAT, ["N"])
5831
+
5832
+ func_def_add = make_function(
5833
+ "this",
5834
+ "fctadd",
5835
+ ["input2"],
5836
+ ["output"],
5837
+ [
5838
+ make_node("Constant", [], ["one"], value_floats=[1.0], name="CC0"),
5839
+ make_node("Add", ["input2", "one"], ["output"], name="A1"),
5840
+ ],
5841
+ opset_imports=[make_operatorsetid("", 15)],
5842
+ )
5843
+
5844
+ func_def = make_function(
5845
+ "this",
5846
+ "fct",
5847
+ ["input"],
5848
+ ["output"],
5849
+ [
5850
+ make_node("Constant", [], ["one"], value_floats=[1.0], name="CC"),
5851
+ make_node("Greater", ["input", "one"], ["cond"]),
5852
+ make_node(
5853
+ "If",
5854
+ ["cond"],
5855
+ ["output"],
5856
+ then_branch=make_graph(
5857
+ [make_node("fctadd", ["input"], ["output"], domain="this")],
5858
+ "gthen",
5859
+ [],
5860
+ [output],
5861
+ ),
5862
+ else_branch=make_graph(
5863
+ [make_node("Add", ["input", "one"], ["output"], domain="")],
5864
+ "gelse",
5865
+ [],
5866
+ [output],
5867
+ ),
5868
+ name=":IF",
5869
+ ),
5870
+ ],
5871
+ opset_imports=[
5872
+ make_operatorsetid("", 15),
5873
+ make_operatorsetid("this", 1),
5874
+ ],
5875
+ )
5876
+
5877
+ model_def = make_model(
5878
+ make_graph(
5879
+ [
5880
+ make_node("fct", ["X"], ["ztmp"], domain="this"),
5881
+ make_node("fct", ["ztmp"], ["output"], domain="this"),
5882
+ ],
5883
+ "test",
5884
+ [X],
5885
+ [Z],
5886
+ ),
5887
+ ir_version=7,
5888
+ opset_imports=[
5889
+ make_operatorsetid("", 15),
5890
+ make_operatorsetid("this", 1),
5891
+ ],
5892
+ functions=[func_def_add, func_def],
5893
+ )
5894
+
5895
+ class MyReferenceEvaluator(ReferenceEvaluator):
5896
+ pass
5897
+
5898
+ oinf = MyReferenceEvaluator(model_def)
5899
+ for v in oinf.functions_.values():
5900
+ self.assertIsInstance(v, MyReferenceEvaluator)
5901
+
5015
5902
 
5016
5903
  if __name__ == "__main__":
5017
5904
  unittest.main(verbosity=2)