onnx 1.15.0__cp311-cp311-win_amd64.whl → 1.16.1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx might be problematic. Click here for more details.
- onnx/__init__.py +10 -10
- onnx/backend/base.py +13 -14
- onnx/backend/sample/ops/abs.py +1 -1
- onnx/backend/test/case/model/__init__.py +0 -1
- onnx/backend/test/case/node/ai_onnx_ml/tree_ensemble.py +122 -0
- onnx/backend/test/case/node/averagepool.py +15 -30
- onnx/backend/test/case/node/cast.py +88 -11
- onnx/backend/test/case/node/dequantizelinear.py +155 -0
- onnx/backend/test/case/node/groupnormalization.py +13 -9
- onnx/backend/test/case/node/gru.py +2 -2
- onnx/backend/test/case/node/isinf.py +4 -4
- onnx/backend/test/case/node/isnan.py +2 -2
- onnx/backend/test/case/node/lppool.py +8 -16
- onnx/backend/test/case/node/lstm.py +1 -1
- onnx/backend/test/case/node/maxpool.py +40 -34
- onnx/backend/test/case/node/pow.py +1 -1
- onnx/backend/test/case/node/qlinearmatmul.py +143 -109
- onnx/backend/test/case/node/quantizelinear.py +298 -7
- onnx/backend/test/case/node/reducemax.py +26 -0
- onnx/backend/test/case/node/rnn.py +1 -1
- onnx/backend/test/case/node/scan.py +6 -2
- onnx/backend/test/case/node/scatterelements.py +1 -1
- onnx/backend/test/case/node/topk.py +1 -1
- onnx/backend/test/case/utils.py +1 -3
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_set_membership/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/model.onnx +0 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_ai_onnx_ml_tree_ensemble_single_tree/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT16_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E4M3FN_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2FNUZ_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT8E5M2_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_INT4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_FLOAT_to_UINT4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_cast_INT4_to_INT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_FLOAT16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_UINT4_to_UINT8/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +2 -2
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_BFLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_DOUBLE_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT16_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT8E5M2_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_BFLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_DOUBLE_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT16_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_FLOAT8E5M2_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_FLOAT_to_STRING_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT/model.onnx +0 -0
- onnx/backend/test/data/node/test_castlike_STRING_to_FLOAT_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constant_pad_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_float_ones/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_shape_zero/model.onnx +0 -0
- onnx/backend/test/data/node/test_constantofshape_int_zeros/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_blocked/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e4m3fn_zero_point/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_int4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_dequantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_edge_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis0/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_default_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis1/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis2/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis3/model.onnx +0 -0
- onnx/backend/test/data/node/test_flatten_negative_axis4/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_0.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_epsilon_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/model.onnx +0 -0
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_1.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/input_2.pb +1 -1
- onnx/backend/test/data/node/test_group_normalization_example_expanded/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_identity/model.onnx +0 -0
- onnx/backend/test/data/node/test_identity_sequence/model.onnx +0 -0
- onnx/backend/test/data/node/test_lrn_default/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/model.onnx +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_maxpool_2d_ceil_output_size_reduce_by_one/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_mvn/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_mvn_expanded_ver18/test_data_set_0/output_0.pb +1 -1
- onnx/backend/test/data/node/test_pow/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_2D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float16/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_int8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_1.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_4.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_6.pb +2 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float16/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float32}/model.onnx +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_1.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_3.pb +0 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_4.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_5.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_6.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/input_7.pb +1 -0
- onnx/backend/test/data/node/test_qlinearmatmul_3D_uint8_float32/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_axis/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_asymmetric/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_blocked_symmetric/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e4m3fn/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_e5m2/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/input_2.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_int4/test_data_set_0/output_0.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint16/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/model.onnx +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_0.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_1.pb +0 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/input_2.pb +1 -0
- onnx/backend/test/data/node/test_quantizelinear_uint4/test_data_set_0/output_0.pb +0 -0
- onnx/backend/test/data/node/test_reflect_pad/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_allowzero_reordered/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_negative_extended_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_one_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reduced_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_all_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_reordered_last_dims/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_and_negative_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_reshape_zero_dim/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_end/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_clip_start/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_1_end_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_shape_start_negative_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_size/model.onnx +0 -0
- onnx/backend/test/data/node/test_size_example/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze/model.onnx +0 -0
- onnx/backend/test/data/node/test_squeeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_3/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_4/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_all_permutations_5/model.onnx +0 -0
- onnx/backend/test/data/node/test_transpose_default/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_0/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_1/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_axis_2/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_negative_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_three_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_two_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_unsqueeze_unsorted_axes/model.onnx +0 -0
- onnx/backend/test/data/node/test_wrap_pad/model.onnx +0 -0
- onnx/backend/test/loader/__init__.py +0 -1
- onnx/backend/test/runner/__init__.py +43 -15
- onnx/checker.cc +104 -99
- onnx/checker.h +23 -3
- onnx/checker.py +56 -20
- onnx/common/assertions.cc +10 -5
- onnx/common/common.h +19 -0
- onnx/common/file_utils.h +3 -1
- onnx/common/interned_strings.h +7 -1
- onnx/common/ir.h +30 -7
- onnx/common/ir_pb_converter.cc +6 -0
- onnx/common/path.h +18 -2
- onnx/common/proto_util.h +43 -0
- onnx/common/version.h +1 -1
- onnx/cpp2py_export.cc +88 -56
- onnx/defs/__init__.py +29 -8
- onnx/defs/controlflow/defs.cc +16 -16
- onnx/defs/controlflow/old.cc +177 -0
- onnx/defs/data_propagators.h +2 -0
- onnx/defs/data_type_utils.cc +2 -0
- onnx/defs/generator/defs.cc +6 -4
- onnx/defs/generator/old.cc +115 -0
- onnx/defs/math/defs.cc +37 -142
- onnx/defs/math/old.cc +96 -12
- onnx/defs/math/utils.cc +127 -0
- onnx/defs/math/utils.h +8 -0
- onnx/defs/nn/defs.cc +72 -59
- onnx/defs/nn/old.cc +181 -2
- onnx/defs/object_detection/defs.cc +2 -2
- onnx/defs/object_detection/old.cc +2 -2
- onnx/defs/operator_sets.h +51 -0
- onnx/defs/operator_sets_ml.h +14 -0
- onnx/defs/parser.cc +112 -54
- onnx/defs/parser.h +14 -2
- onnx/defs/printer.cc +14 -7
- onnx/defs/quantization/defs.cc +111 -44
- onnx/defs/quantization/old.cc +130 -1
- onnx/defs/schema.cc +62 -18
- onnx/defs/schema.h +194 -48
- onnx/defs/shape_inference.cc +28 -19
- onnx/defs/shape_inference.h +2 -0
- onnx/defs/tensor/defs.cc +54 -96
- onnx/defs/tensor/old.cc +939 -34
- onnx/defs/tensor/utils.cc +6 -3
- onnx/defs/tensor/utils.h +5 -1
- onnx/defs/tensor_proto_util.cc +2 -0
- onnx/defs/tensor_util.cc +2 -0
- onnx/defs/traditionalml/defs.cc +273 -117
- onnx/defs/traditionalml/old.cc +329 -14
- onnx/defs/traditionalml/utils.h +27 -0
- onnx/external_data_helper.py +12 -26
- onnx/helper.py +242 -169
- onnx/hub.py +104 -70
- onnx/inliner/inliner.cc +89 -31
- onnx/inliner/inliner.h +5 -0
- onnx/inliner.py +2 -0
- onnx/mapping.py +9 -0
- onnx/model_container.py +346 -0
- onnx/numpy_helper.py +100 -38
- onnx/onnx-ml.proto +50 -13
- onnx/onnx.in.proto +50 -13
- onnx/onnx.proto +50 -13
- onnx/onnx_cpp2py_export/__init__.pyi +5 -0
- onnx/onnx_cpp2py_export/checker.pyi +21 -0
- onnx/onnx_cpp2py_export/defs.pyi +202 -0
- onnx/onnx_cpp2py_export/inliner.pyi +19 -0
- onnx/onnx_cpp2py_export/parser.pyi +32 -0
- onnx/onnx_cpp2py_export/printer.pyi +3 -0
- onnx/onnx_cpp2py_export/shape_inference.pyi +16 -0
- onnx/onnx_cpp2py_export/version_converter.pyi +4 -0
- onnx/onnx_cpp2py_export.cp311-win_amd64.pyd +0 -0
- onnx/onnx_data_pb2.pyi +146 -0
- onnx/onnx_ml_pb2.py +52 -52
- onnx/onnx_ml_pb2.pyi +663 -0
- onnx/onnx_operators_ml_pb2.pyi +67 -0
- onnx/reference/__init__.py +2 -0
- onnx/reference/custom_element_types.py +2 -0
- onnx/reference/op_run.py +166 -121
- onnx/reference/ops/_op.py +27 -50
- onnx/reference/ops/_op_list.py +36 -24
- onnx/reference/ops/aionnx_preview_training/_op_list.py +15 -8
- onnx/reference/ops/aionnxml/_common_classifier.py +3 -5
- onnx/reference/ops/aionnxml/_op_list.py +16 -8
- onnx/reference/ops/aionnxml/op_array_feature_extractor.py +4 -6
- onnx/reference/ops/aionnxml/op_linear_classifier.py +1 -2
- onnx/reference/ops/aionnxml/op_normalizer.py +3 -3
- onnx/reference/ops/aionnxml/op_svm_helper.py +1 -3
- onnx/reference/ops/aionnxml/op_svm_regressor.py +1 -3
- onnx/reference/ops/aionnxml/op_tree_ensemble.py +257 -0
- onnx/reference/ops/aionnxml/op_tree_ensemble_helper.py +2 -6
- onnx/reference/ops/aionnxml/op_tree_ensemble_regressor.py +4 -4
- onnx/reference/ops/experimental/_op_list.py +15 -8
- onnx/reference/ops/op_blackman_window.py +5 -6
- onnx/reference/ops/op_cast.py +22 -0
- onnx/reference/ops/op_cast_like.py +6 -0
- onnx/reference/ops/op_clip.py +5 -8
- onnx/reference/ops/op_col2im.py +1 -3
- onnx/reference/ops/op_constant.py +7 -1
- onnx/reference/ops/op_dequantize_linear.py +43 -40
- onnx/reference/ops/op_det.py +1 -1
- onnx/reference/ops/op_dynamic_quantize_linear.py +2 -2
- onnx/reference/ops/op_grid_sample.py +2 -4
- onnx/reference/ops/op_hamming_window.py +3 -6
- onnx/reference/ops/op_hann_window.py +3 -6
- onnx/reference/ops/op_if.py +4 -3
- onnx/reference/ops/op_loop.py +7 -9
- onnx/reference/ops/op_matmul.py +1 -2
- onnx/reference/ops/op_max_pool.py +5 -0
- onnx/reference/ops/op_optional.py +1 -1
- onnx/reference/ops/op_pool_common.py +3 -6
- onnx/reference/ops/op_qlinear_matmul.py +2 -2
- onnx/reference/ops/op_quantize_linear.py +166 -71
- onnx/reference/ops/op_resize.py +25 -21
- onnx/reference/ops/op_rnn.py +20 -12
- onnx/reference/ops/op_scan.py +23 -15
- onnx/reference/ops/op_scatter_elements.py +7 -6
- onnx/reference/ops/op_stft.py +3 -5
- onnx/reference/ops/op_string_normalizer.py +7 -7
- onnx/reference/ops/op_tfidf_vectorizer.py +7 -8
- onnx/reference/ops/op_topk.py +9 -11
- onnx/reference/ops/op_unique.py +1 -1
- onnx/reference/reference_evaluator.py +119 -63
- onnx/shape_inference/implementation.cc +160 -127
- onnx/shape_inference.py +11 -10
- onnx/subbyte.py +72 -0
- onnx/test/__init__.pyi +6 -0
- onnx/test/checker_test.py +21 -1
- onnx/test/compose_test.py +26 -74
- onnx/test/cpp/inliner_test.cc +76 -1
- onnx/test/cpp/ir_test.cc +60 -0
- onnx/test/cpp/parser_test.cc +106 -0
- onnx/test/function_test.py +1 -3
- onnx/test/helper_test.py +64 -4
- onnx/test/model_container_refeval_test.py +139 -0
- onnx/test/model_container_test.py +136 -0
- onnx/test/model_inference_test.py +44 -0
- onnx/test/reference_evaluator_ml_test.py +448 -47
- onnx/test/reference_evaluator_model_test.py +130 -0
- onnx/test/reference_evaluator_test.py +901 -14
- onnx/test/schema_test.py +166 -1
- onnx/test/shape_inference_test.py +285 -6
- onnx/test/symbolic_shape_test.py +3 -8
- onnx/test/test_backend_onnxruntime.py +238 -224
- onnx/test/test_backend_reference.py +11 -0
- onnx/test/test_external_data.py +51 -2
- onnx/test/version_converter/automatic_conversion_test_base.py +2 -1
- onnx/test/version_converter/automatic_upgrade_test.py +12 -10
- onnx/test/version_converter_test.py +166 -0
- onnx/tools/replace_constants.py +23 -26
- onnx/tools/update_model_dims.py +1 -2
- onnx/version.py +2 -2
- onnx/version_converter/adapters/group_normalization_20_21.h +128 -0
- onnx/version_converter/adapters/q_dq_21_20.h +77 -0
- onnx/version_converter/convert.h +67 -2
- onnx/version_converter.py +6 -142
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/METADATA +18 -15
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/RECORD +572 -406
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/WHEEL +1 -1
- onnx/examples/Protobufs.ipynb +0 -639
- onnx/examples/check_model.ipynb +0 -128
- onnx/examples/load_model.ipynb +0 -116
- onnx/examples/make_model.ipynb +0 -176
- onnx/examples/np_array_tensorproto.ipynb +0 -136
- onnx/examples/resources/single_relu.onnx +0 -12
- onnx/examples/resources/single_relu_new.onnx +0 -12
- onnx/examples/resources/tensor.pb +0 -0
- onnx/examples/resources/two_transposes.onnx +0 -0
- onnx/examples/save_model.ipynb +0 -56
- onnx/examples/shape_inference.ipynb +0 -111
- onnx/test/reference_evaluator_backend_test.py +0 -876
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_int8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_2D → test_qlinearmatmul_2D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_1.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_2.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_4.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_5.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_6.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_2D_uint8_float32}/test_data_set_0/input_7.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_0.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/input_3.pb +0 -0
- /onnx/backend/test/data/node/{test_qlinearmatmul_3D → test_qlinearmatmul_3D_uint8_float16}/test_data_set_0/output_0.pb +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/LICENSE +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/entry_points.txt +0 -0
- {onnx-1.15.0.dist-info → onnx-1.16.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,257 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from enum import IntEnum
|
|
4
|
+
from typing import Callable
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
from onnx.reference.ops.aionnxml._op_run_aionnxml import OpRunAiOnnxMl
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class AggregationFunction(IntEnum):
|
|
12
|
+
AVERAGE = 0
|
|
13
|
+
SUM = 1
|
|
14
|
+
MIN = 2
|
|
15
|
+
MAX = 3
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class PostTransform(IntEnum):
|
|
19
|
+
NONE = 0
|
|
20
|
+
SOFTMAX = 1
|
|
21
|
+
LOGISTIC = 2
|
|
22
|
+
SOFTMAX_ZERO = 3
|
|
23
|
+
PROBIT = 4
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class Mode(IntEnum):
|
|
27
|
+
LEQ = 0
|
|
28
|
+
LT = 1
|
|
29
|
+
GTE = 2
|
|
30
|
+
GT = 3
|
|
31
|
+
EQ = 4
|
|
32
|
+
NEQ = 5
|
|
33
|
+
MEMBER = 6
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class Leaf:
|
|
37
|
+
def __init__(self, weight: float, target_id: int) -> None:
|
|
38
|
+
self.weight = weight
|
|
39
|
+
self.target_id = target_id
|
|
40
|
+
|
|
41
|
+
# Produce the weight and target index
|
|
42
|
+
def predict(self, x: np.ndarray) -> np.ndarray:
|
|
43
|
+
return np.array([self.weight, self.target_id])
|
|
44
|
+
|
|
45
|
+
def _print(self, prefix: list, indent: int = 0) -> None:
|
|
46
|
+
prefix.append(
|
|
47
|
+
" " * indent + f"Leaf WEIGHT: {self.weight}, TARGET: {self.target_id}\n"
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
def __repr__(self) -> str:
|
|
51
|
+
prefix = []
|
|
52
|
+
self._print(prefix)
|
|
53
|
+
return "".join(prefix)
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
class Node:
|
|
57
|
+
compare: Callable[[float, float | set[float]], bool]
|
|
58
|
+
true_branch: Node | Leaf
|
|
59
|
+
false_branch: Node | Leaf
|
|
60
|
+
feature: int
|
|
61
|
+
|
|
62
|
+
def __init__(
|
|
63
|
+
self,
|
|
64
|
+
mode: Mode,
|
|
65
|
+
value: float | set[float],
|
|
66
|
+
feature: int,
|
|
67
|
+
missing_tracks_true: bool,
|
|
68
|
+
) -> None:
|
|
69
|
+
if mode == Mode.LEQ:
|
|
70
|
+
self.compare = lambda x: x[feature].item() <= value or (
|
|
71
|
+
missing_tracks_true and np.isnan(x[feature].item())
|
|
72
|
+
)
|
|
73
|
+
elif mode == Mode.LT:
|
|
74
|
+
self.compare = lambda x: x[feature].item() < value or (
|
|
75
|
+
missing_tracks_true and np.isnan(x[feature].item())
|
|
76
|
+
)
|
|
77
|
+
elif mode == Mode.GTE:
|
|
78
|
+
self.compare = lambda x: x[feature].item() >= value or (
|
|
79
|
+
missing_tracks_true and np.isnan(x[feature].item())
|
|
80
|
+
)
|
|
81
|
+
elif mode == Mode.GT:
|
|
82
|
+
self.compare = lambda x: x[feature].item() > value or (
|
|
83
|
+
missing_tracks_true and np.isnan(x[feature].item())
|
|
84
|
+
)
|
|
85
|
+
elif mode == Mode.EQ:
|
|
86
|
+
self.compare = lambda x: x[feature].item() == value or (
|
|
87
|
+
missing_tracks_true and np.isnan(x[feature].item())
|
|
88
|
+
)
|
|
89
|
+
elif mode == Mode.NEQ:
|
|
90
|
+
self.compare = lambda x: x[feature].item() != value or (
|
|
91
|
+
missing_tracks_true and np.isnan(x[feature].item())
|
|
92
|
+
)
|
|
93
|
+
elif mode == Mode.MEMBER:
|
|
94
|
+
self.compare = lambda x: x[feature].item() in value or (
|
|
95
|
+
missing_tracks_true and np.isnan(x[feature].item())
|
|
96
|
+
)
|
|
97
|
+
self.mode = mode
|
|
98
|
+
self.value = value
|
|
99
|
+
self.feature = feature
|
|
100
|
+
|
|
101
|
+
def predict(self, x: np.ndarray) -> float:
|
|
102
|
+
if self.compare(x):
|
|
103
|
+
return self.true_branch.predict(x)
|
|
104
|
+
else:
|
|
105
|
+
return self.false_branch.predict(x)
|
|
106
|
+
|
|
107
|
+
def _print(self, prefix: list, indent: int = 0) -> None:
|
|
108
|
+
prefix.append(
|
|
109
|
+
" " * indent
|
|
110
|
+
+ f"Node CMP: {self.mode}, SPLIT: {self.value}, FEATURE: {self.feature}\n"
|
|
111
|
+
)
|
|
112
|
+
self.true_branch._print(prefix, indent + 1)
|
|
113
|
+
self.false_branch._print(prefix, indent + 1)
|
|
114
|
+
|
|
115
|
+
def __repr__(self) -> str:
|
|
116
|
+
prefix = []
|
|
117
|
+
self._print(prefix)
|
|
118
|
+
return "".join(prefix)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
class TreeEnsemble(OpRunAiOnnxMl):
|
|
122
|
+
def _run(
|
|
123
|
+
self,
|
|
124
|
+
X,
|
|
125
|
+
nodes_splits,
|
|
126
|
+
nodes_featureids,
|
|
127
|
+
nodes_modes,
|
|
128
|
+
nodes_truenodeids,
|
|
129
|
+
nodes_falsenodeids,
|
|
130
|
+
nodes_trueleafs,
|
|
131
|
+
nodes_falseleafs,
|
|
132
|
+
leaf_targetids,
|
|
133
|
+
leaf_weights,
|
|
134
|
+
tree_roots,
|
|
135
|
+
post_transform=PostTransform.NONE,
|
|
136
|
+
aggregate_function=AggregationFunction.SUM,
|
|
137
|
+
nodes_hitrates=None,
|
|
138
|
+
nodes_missing_value_tracks_true=None,
|
|
139
|
+
membership_values=None,
|
|
140
|
+
n_targets=None,
|
|
141
|
+
):
|
|
142
|
+
if membership_values is None:
|
|
143
|
+
# assert that no set membership ever appears
|
|
144
|
+
if any(mode == Mode.MEMBER for mode in nodes_modes):
|
|
145
|
+
raise ValueError(
|
|
146
|
+
"Cannot have set membership node without specifying set members"
|
|
147
|
+
)
|
|
148
|
+
elif np.isnan(membership_values).sum() != sum(
|
|
149
|
+
int(mode == Mode.MEMBER) for mode in nodes_modes
|
|
150
|
+
):
|
|
151
|
+
raise ValueError(
|
|
152
|
+
"Must specify membership values for all set membership nodes"
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
# Build each tree in the ensemble. Note that the tree structure is implicitly defined by following the true and false indices in
|
|
156
|
+
# `nodes_truenodeids` and `nodes_falsenodeids` to the leaves of each tree.
|
|
157
|
+
set_membership_iter = (
|
|
158
|
+
iter(membership_values) if membership_values is not None else None
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
def build_node(current_node_index, is_leaf) -> Node | Leaf:
|
|
162
|
+
if is_leaf:
|
|
163
|
+
return Leaf(
|
|
164
|
+
leaf_weights[current_node_index], leaf_targetids[current_node_index]
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
if nodes_modes[current_node_index] == Mode.MEMBER:
|
|
168
|
+
# parse next sequence of set members
|
|
169
|
+
set_members = set()
|
|
170
|
+
while (set_member := next(set_membership_iter)) and not np.isnan(
|
|
171
|
+
set_member
|
|
172
|
+
):
|
|
173
|
+
set_members.add(set_member)
|
|
174
|
+
node = Node(
|
|
175
|
+
nodes_modes[current_node_index],
|
|
176
|
+
set_members,
|
|
177
|
+
nodes_featureids[current_node_index],
|
|
178
|
+
(
|
|
179
|
+
nodes_missing_value_tracks_true[current_node_index]
|
|
180
|
+
if nodes_missing_value_tracks_true is not None
|
|
181
|
+
else False
|
|
182
|
+
),
|
|
183
|
+
)
|
|
184
|
+
else:
|
|
185
|
+
node = Node(
|
|
186
|
+
nodes_modes[current_node_index],
|
|
187
|
+
nodes_splits[current_node_index],
|
|
188
|
+
nodes_featureids[current_node_index],
|
|
189
|
+
(
|
|
190
|
+
nodes_missing_value_tracks_true[current_node_index]
|
|
191
|
+
if nodes_missing_value_tracks_true is not None
|
|
192
|
+
else False
|
|
193
|
+
),
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
# recurse true and false branches
|
|
197
|
+
node.true_branch = build_node(
|
|
198
|
+
nodes_truenodeids[current_node_index],
|
|
199
|
+
nodes_trueleafs[current_node_index],
|
|
200
|
+
)
|
|
201
|
+
node.false_branch = build_node(
|
|
202
|
+
nodes_falsenodeids[current_node_index],
|
|
203
|
+
nodes_falseleafs[current_node_index],
|
|
204
|
+
)
|
|
205
|
+
return node
|
|
206
|
+
|
|
207
|
+
trees = []
|
|
208
|
+
for root_index in tree_roots:
|
|
209
|
+
# degenerate case (tree == leaf)
|
|
210
|
+
is_leaf = (
|
|
211
|
+
nodes_trueleafs[root_index]
|
|
212
|
+
and nodes_falseleafs[root_index]
|
|
213
|
+
and nodes_truenodeids[root_index] == nodes_falsenodeids[root_index]
|
|
214
|
+
)
|
|
215
|
+
trees.append(build_node(root_index, is_leaf))
|
|
216
|
+
|
|
217
|
+
# predict each sample through tree
|
|
218
|
+
raw_values = [
|
|
219
|
+
np.apply_along_axis(tree.predict, axis=1, arr=X) for tree in trees
|
|
220
|
+
]
|
|
221
|
+
weights, target_ids = zip(*[np.split(x, 2, axis=1) for x in raw_values])
|
|
222
|
+
weights = np.concatenate(weights, axis=1)
|
|
223
|
+
target_ids = np.concatenate(target_ids, axis=1).astype(np.int64)
|
|
224
|
+
if aggregate_function in (
|
|
225
|
+
AggregationFunction.SUM,
|
|
226
|
+
AggregationFunction.AVERAGE,
|
|
227
|
+
):
|
|
228
|
+
result = np.zeros((len(X), n_targets), dtype=X.dtype)
|
|
229
|
+
elif aggregate_function == AggregationFunction.MIN:
|
|
230
|
+
result = np.full((len(X), n_targets), np.finfo(X.dtype).max)
|
|
231
|
+
elif aggregate_function == AggregationFunction.MAX:
|
|
232
|
+
result = np.full((len(X), n_targets), np.finfo(X.dtype).min)
|
|
233
|
+
else:
|
|
234
|
+
raise NotImplementedError(
|
|
235
|
+
f"aggregate_transform={aggregate_function!r} not supported yet."
|
|
236
|
+
)
|
|
237
|
+
for batch_num, (w, t) in enumerate(zip(weights, target_ids)):
|
|
238
|
+
weight = w.reshape(-1)
|
|
239
|
+
target_id = t.reshape(-1)
|
|
240
|
+
if aggregate_function == AggregationFunction.SUM:
|
|
241
|
+
for value, tid in zip(weight, target_id):
|
|
242
|
+
result[batch_num, tid] += value
|
|
243
|
+
elif aggregate_function == AggregationFunction.AVERAGE:
|
|
244
|
+
for value, tid in zip(weight, target_id):
|
|
245
|
+
result[batch_num, tid] += value / len(trees)
|
|
246
|
+
elif aggregate_function == AggregationFunction.MIN:
|
|
247
|
+
for value, tid in zip(weight, target_id):
|
|
248
|
+
result[batch_num, tid] = min(result[batch_num, tid], value)
|
|
249
|
+
elif aggregate_function == AggregationFunction.MAX:
|
|
250
|
+
for value, tid in zip(weight, target_id):
|
|
251
|
+
result[batch_num, tid] = max(result[batch_num, tid], value)
|
|
252
|
+
else:
|
|
253
|
+
raise NotImplementedError(
|
|
254
|
+
f"aggregate_transform={aggregate_function!r} not supported yet."
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
return (result,)
|
|
@@ -59,9 +59,7 @@ class TreeEnsemble:
|
|
|
59
59
|
return "\n".join(rows)
|
|
60
60
|
|
|
61
61
|
def leaf_index_tree(self, X: np.ndarray, tree_id: int) -> int:
|
|
62
|
-
"""
|
|
63
|
-
Computes the leaf index for one tree.
|
|
64
|
-
"""
|
|
62
|
+
"""Computes the leaf index for one tree."""
|
|
65
63
|
index = self.root_index[tree_id]
|
|
66
64
|
while self.atts.nodes_modes[index] != "LEAF": # type: ignore
|
|
67
65
|
x = X[self.atts.nodes_featureids[index]] # type: ignore
|
|
@@ -95,9 +93,7 @@ class TreeEnsemble:
|
|
|
95
93
|
return index
|
|
96
94
|
|
|
97
95
|
def leave_index_tree(self, X: np.ndarray) -> np.ndarray:
|
|
98
|
-
"""
|
|
99
|
-
Computes the leave index for all trees.
|
|
100
|
-
"""
|
|
96
|
+
"""Computes the leave index for all trees."""
|
|
101
97
|
if len(X.shape) == 1:
|
|
102
98
|
X = X.reshape((1, -1))
|
|
103
99
|
outputs = []
|
|
@@ -10,9 +10,7 @@ from onnx.reference.ops.aionnxml.op_tree_ensemble_helper import TreeEnsemble
|
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
class TreeEnsembleRegressor(OpRunAiOnnxMl):
|
|
13
|
-
"""
|
|
14
|
-
`nodes_hitrates` and `nodes_hitrates_as_tensor` are not used.
|
|
15
|
-
"""
|
|
13
|
+
"""`nodes_hitrates` and `nodes_hitrates_as_tensor` are not used."""
|
|
16
14
|
|
|
17
15
|
def _run( # type: ignore
|
|
18
16
|
self,
|
|
@@ -97,8 +95,10 @@ class TreeEnsembleRegressor(OpRunAiOnnxMl):
|
|
|
97
95
|
)
|
|
98
96
|
if aggregate_function == "AVERAGE":
|
|
99
97
|
res /= n_trees
|
|
98
|
+
|
|
99
|
+
# Convention is to add base_values after aggregate function
|
|
100
100
|
if base_values is not None:
|
|
101
|
-
res[:, :]
|
|
101
|
+
res[:, :] += np.array(base_values).reshape((1, -1))
|
|
102
102
|
|
|
103
103
|
if post_transform in (None, "NONE"):
|
|
104
104
|
return (res,)
|
|
@@ -21,16 +21,23 @@ def _build_registered_operators() -> (
|
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
def load_op(
|
|
24
|
-
domain: str,
|
|
24
|
+
domain: str,
|
|
25
|
+
op_type: str,
|
|
26
|
+
version: Union[None, int],
|
|
27
|
+
custom: Any = None,
|
|
28
|
+
evaluator_cls: TOptional[type] = None,
|
|
25
29
|
) -> Any:
|
|
26
|
-
"""
|
|
27
|
-
|
|
30
|
+
"""Loads the implemented for a specified operator.
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
domain: domain
|
|
34
|
+
op_type: oprator type
|
|
35
|
+
version: requested version
|
|
36
|
+
custom: custom implementation (like a function)
|
|
37
|
+
evaluator_cls: unused
|
|
28
38
|
|
|
29
|
-
:
|
|
30
|
-
|
|
31
|
-
:param version: requested version
|
|
32
|
-
:param custom: custom implementation (like a function)
|
|
33
|
-
:return: class
|
|
39
|
+
Returns:
|
|
40
|
+
class
|
|
34
41
|
"""
|
|
35
42
|
global _registered_operators # noqa: PLW0603
|
|
36
43
|
if _registered_operators is None:
|
|
@@ -9,13 +9,12 @@ from onnx.reference.ops._op_common_window import _CommonWindow
|
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class BlackmanWindow(_CommonWindow):
|
|
12
|
-
"""
|
|
13
|
-
|
|
14
|
-
:math:`\\omega_n = 0.42 - 0.5 \\cos \\left( \\frac{2\\pi n}{N-1} \\right) +
|
|
15
|
-
0.08 \\cos \\left( \\frac{4\\pi n}{N-1} \\right)`
|
|
12
|
+
r"""Blankman windowing function.
|
|
13
|
+
|
|
14
|
+
Returns :math:`\\omega_n = 0.42 - 0.5 \\cos \\left( \\frac{2\\pi n}{N-1} \\right) + 0.08 \\cos \\left( \\frac{4\\pi n}{N-1} \\right)`
|
|
16
15
|
where *N* is the window length.
|
|
17
|
-
|
|
18
|
-
<https://pytorch.org/docs/stable/generated/torch.blackman_window.html>`_
|
|
16
|
+
|
|
17
|
+
See `blackman_window <https://pytorch.org/docs/stable/generated/torch.blackman_window.html>`_
|
|
19
18
|
"""
|
|
20
19
|
|
|
21
20
|
def _run(self, size, output_datatype=None, periodic=None): # type: ignore
|
onnx/reference/ops/op_cast.py
CHANGED
|
@@ -5,6 +5,7 @@
|
|
|
5
5
|
|
|
6
6
|
import numpy as np
|
|
7
7
|
|
|
8
|
+
from onnx import subbyte
|
|
8
9
|
from onnx.helper import (
|
|
9
10
|
float32_to_bfloat16,
|
|
10
11
|
float32_to_float8e4m3,
|
|
@@ -23,6 +24,8 @@ from onnx.reference.custom_element_types import (
|
|
|
23
24
|
float8e4m3fnuz,
|
|
24
25
|
float8e5m2,
|
|
25
26
|
float8e5m2fnuz,
|
|
27
|
+
int4,
|
|
28
|
+
uint4,
|
|
26
29
|
)
|
|
27
30
|
from onnx.reference.op_run import OpRun
|
|
28
31
|
|
|
@@ -74,6 +77,25 @@ def cast_to(x, to, saturate): # noqa: PLR0911
|
|
|
74
77
|
y[i] = el
|
|
75
78
|
return y.reshape(x.shape)
|
|
76
79
|
|
|
80
|
+
i4 = [
|
|
81
|
+
(uint4, "uint4", TensorProto.UINT4, False),
|
|
82
|
+
(int4, "int4", TensorProto.INT4, True),
|
|
83
|
+
]
|
|
84
|
+
for np_type, np_desc, tensor_type, signed in i4:
|
|
85
|
+
if x.dtype == np_type and x.dtype.descr[0][0] == np_desc:
|
|
86
|
+
if to == tensor_type:
|
|
87
|
+
return x
|
|
88
|
+
to_type = tensor_dtype_to_np_dtype(to)
|
|
89
|
+
return x.astype(to_type)
|
|
90
|
+
|
|
91
|
+
if to == tensor_type:
|
|
92
|
+
xf = x.astype(np.float32).ravel()
|
|
93
|
+
y = np.empty(xf.shape, dtype=np_type).ravel()
|
|
94
|
+
for i in range(y.shape[0]):
|
|
95
|
+
el = subbyte.float32_to_4bit_unpacked(xf[i], signed=signed)
|
|
96
|
+
y[i] = el
|
|
97
|
+
return y.reshape(x.shape)
|
|
98
|
+
|
|
77
99
|
f8back = {
|
|
78
100
|
TensorProto.FLOAT8E4M3FN: (
|
|
79
101
|
float8e4m3fn,
|
|
@@ -13,6 +13,8 @@ from onnx.reference.ops.op_cast import (
|
|
|
13
13
|
float8e4m3fnuz,
|
|
14
14
|
float8e5m2,
|
|
15
15
|
float8e5m2fnuz,
|
|
16
|
+
int4,
|
|
17
|
+
uint4,
|
|
16
18
|
)
|
|
17
19
|
|
|
18
20
|
|
|
@@ -28,6 +30,10 @@ def _cast_like(x, y, saturate):
|
|
|
28
30
|
to = TensorProto.FLOAT8E5M2
|
|
29
31
|
elif y.dtype == float8e5m2fnuz and y.dtype.descr[0][0] == "e5m2fnuz":
|
|
30
32
|
to = TensorProto.FLOAT8E5M2FNUZ
|
|
33
|
+
elif y.dtype == uint4 and y.dtype.descr[0][0] == "uint4":
|
|
34
|
+
to = TensorProto.UINT4
|
|
35
|
+
elif y.dtype == int4 and y.dtype.descr[0][0] == "int4":
|
|
36
|
+
to = TensorProto.INT4
|
|
31
37
|
else:
|
|
32
38
|
to = np_dtype_to_tensor_dtype(y.dtype) # type: ignore
|
|
33
39
|
return (cast_to(x, to, saturate),)
|
onnx/reference/ops/op_clip.py
CHANGED
|
@@ -9,12 +9,10 @@ from onnx.reference.op_run import OpRun
|
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class Clip_6(OpRun):
|
|
12
|
-
def _run(self, data, min=None, max=None): # type: ignore
|
|
12
|
+
def _run(self, data, min=None, max=None): # type: ignore # noqa: A002
|
|
13
13
|
amin = min
|
|
14
14
|
amax = max
|
|
15
|
-
if amin is amax is None:
|
|
16
|
-
return (data,)
|
|
17
|
-
res = np.clip(data, amin, amax) # type: ignore
|
|
15
|
+
res = data if amin is amax is None else np.clip(data, amin, amax) # type: ignore
|
|
18
16
|
return (res,) if res.dtype == data.dtype else (res.astype(data.dtype),)
|
|
19
17
|
|
|
20
18
|
|
|
@@ -23,7 +21,6 @@ class Clip_11(OpRun):
|
|
|
23
21
|
le = len(minmax)
|
|
24
22
|
amin = minmax[0] if le > 0 else None
|
|
25
23
|
amax = minmax[1] if le > 1 else None
|
|
26
|
-
if amin is amax is None
|
|
27
|
-
|
|
28
|
-
res
|
|
29
|
-
return (res,) if res.dtype == data.dtype else (res.astype(data.dtype),)
|
|
24
|
+
res = data if amin is amax is None else np.clip(data, amin, amax)
|
|
25
|
+
res = (res,) if res.dtype == data.dtype else (res.astype(data.dtype),)
|
|
26
|
+
return res
|
onnx/reference/ops/op_col2im.py
CHANGED
|
@@ -143,9 +143,7 @@ def _col2im_shape_check(X, output_shape, kernel_shape, dilations, pads, strides)
|
|
|
143
143
|
|
|
144
144
|
|
|
145
145
|
def col2im_naive_implementation(data, image_shape, kernel_shape, dilations, pads, strides): # type: ignore
|
|
146
|
-
"""
|
|
147
|
-
Naive implementation for `col2im`.
|
|
148
|
-
"""
|
|
146
|
+
"""Naive implementation for `col2im`."""
|
|
149
147
|
n_dims = len(pads) // 2
|
|
150
148
|
new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)])
|
|
151
149
|
_col2im_shape_check(data, image_shape, kernel_shape, dilations, new_pads, strides)
|
|
@@ -11,6 +11,8 @@ from onnx.reference.custom_element_types import (
|
|
|
11
11
|
float8e4m3fnuz,
|
|
12
12
|
float8e5m2,
|
|
13
13
|
float8e5m2fnuz,
|
|
14
|
+
int4,
|
|
15
|
+
uint4,
|
|
14
16
|
)
|
|
15
17
|
from onnx.reference.op_run import OpRun, RefAttrName
|
|
16
18
|
|
|
@@ -23,6 +25,8 @@ def _check_dtype(val): # type: ignore
|
|
|
23
25
|
float8e4m3fnuz,
|
|
24
26
|
float8e5m2,
|
|
25
27
|
float8e5m2fnuz,
|
|
28
|
+
uint4,
|
|
29
|
+
int4,
|
|
26
30
|
np.int8,
|
|
27
31
|
np.uint8,
|
|
28
32
|
np.float16,
|
|
@@ -128,7 +132,9 @@ class Constant_12(ConstantCommon):
|
|
|
128
132
|
)
|
|
129
133
|
break
|
|
130
134
|
if not hasattr(self, "cst_name"):
|
|
131
|
-
raise AttributeError(
|
|
135
|
+
raise AttributeError(
|
|
136
|
+
f"No constant is defined for operator 'Constant', outputs are {onnx_node.output}."
|
|
137
|
+
)
|
|
132
138
|
|
|
133
139
|
def _run(self, **overridden_attributes): # type: ignore
|
|
134
140
|
if self.has_linked_attribute:
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
4
|
|
|
5
5
|
|
|
6
|
-
from typing import Optional
|
|
6
|
+
from typing import Optional
|
|
7
7
|
|
|
8
8
|
import numpy as np
|
|
9
9
|
|
|
@@ -15,39 +15,31 @@ from onnx.reference.custom_element_types import (
|
|
|
15
15
|
float8e4m3fnuz,
|
|
16
16
|
float8e5m2,
|
|
17
17
|
float8e5m2fnuz,
|
|
18
|
+
int4,
|
|
19
|
+
uint4,
|
|
18
20
|
)
|
|
19
21
|
from onnx.reference.op_run import OpRun
|
|
22
|
+
from onnx.reference.ops.op_quantize_linear import reshape_input
|
|
20
23
|
|
|
21
24
|
|
|
22
|
-
class
|
|
25
|
+
class _CommonDequantizeLinear(OpRun):
|
|
23
26
|
def get_x_type(self, x: np.ndarray) -> int:
|
|
27
|
+
tensor_dtype = None
|
|
24
28
|
if x.dtype == float8e4m3fn and x.dtype.descr[0][0] == "e4m3fn":
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
raise ValueError("axis cannot be None.")
|
|
40
|
-
if len(value.shape) == 0:
|
|
41
|
-
return value
|
|
42
|
-
dims = [1] * len(shape)
|
|
43
|
-
try:
|
|
44
|
-
dims[axis] = value.size
|
|
45
|
-
except IndexError as e:
|
|
46
|
-
raise IndexError(
|
|
47
|
-
f"axis is out of boundary, axis={axis}, "
|
|
48
|
-
f"value.shape={value.shape}, shape={shape}."
|
|
49
|
-
) from e
|
|
50
|
-
return value.reshape(tuple(dims))
|
|
29
|
+
tensor_dtype = TensorProto.FLOAT8E4M3FN
|
|
30
|
+
elif x.dtype == float8e4m3fnuz and x.dtype.descr[0][0] == "e4m3fnuz":
|
|
31
|
+
tensor_dtype = TensorProto.FLOAT8E4M3FNUZ
|
|
32
|
+
elif x.dtype == float8e5m2 and x.dtype.descr[0][0] == "e5m2":
|
|
33
|
+
tensor_dtype = TensorProto.FLOAT8E5M2
|
|
34
|
+
elif x.dtype == float8e5m2fnuz and x.dtype.descr[0][0] == "e5m2fnuz":
|
|
35
|
+
tensor_dtype = TensorProto.FLOAT8E5M2FNUZ
|
|
36
|
+
elif x.dtype == uint4 and x.dtype.descr[0][0] == "uint4":
|
|
37
|
+
tensor_dtype = TensorProto.UINT4
|
|
38
|
+
elif x.dtype == int4 and x.dtype.descr[0][0] == "int4":
|
|
39
|
+
tensor_dtype = TensorProto.INT4
|
|
40
|
+
else:
|
|
41
|
+
tensor_dtype = np_dtype_to_tensor_dtype(x.dtype)
|
|
42
|
+
return tensor_dtype
|
|
51
43
|
|
|
52
44
|
def _run(
|
|
53
45
|
self,
|
|
@@ -55,35 +47,33 @@ class DequantizeLinear(OpRun):
|
|
|
55
47
|
x_scale: np.ndarray,
|
|
56
48
|
x_zero_point: Optional[np.ndarray] = None,
|
|
57
49
|
axis: Optional[int] = None,
|
|
50
|
+
block_size: Optional[int] = None,
|
|
58
51
|
): # type: ignore
|
|
59
|
-
if len(x_scale.shape) > 1:
|
|
60
|
-
raise RuntimeError("Input 2 must be a vector or a number.")
|
|
61
|
-
|
|
62
52
|
x_type = self.get_x_type(x)
|
|
63
|
-
|
|
53
|
+
fp8_type = x_type in {
|
|
64
54
|
TensorProto.FLOAT8E4M3FN,
|
|
65
55
|
TensorProto.FLOAT8E4M3FNUZ,
|
|
66
56
|
TensorProto.FLOAT8E5M2,
|
|
67
57
|
TensorProto.FLOAT8E5M2FNUZ,
|
|
68
58
|
}
|
|
69
|
-
if x_zero_point is not None and not
|
|
59
|
+
if x_zero_point is not None and not fp8_type:
|
|
70
60
|
zero_type = self.get_x_type(x_zero_point)
|
|
71
61
|
if x_type != zero_type:
|
|
72
|
-
raise
|
|
62
|
+
raise ValueError(
|
|
73
63
|
f"Type mismatch {x_type} != {zero_type} in DequantizeLinear."
|
|
74
64
|
)
|
|
75
65
|
|
|
76
|
-
dx = x.astype(np.float32) -
|
|
77
|
-
x_zero_point, x.shape, axis
|
|
66
|
+
dx = x.astype(np.float32) - reshape_input(
|
|
67
|
+
x_zero_point, x.shape, axis, block_size
|
|
78
68
|
)
|
|
79
69
|
else:
|
|
80
|
-
if
|
|
70
|
+
if fp8_type and x_zero_point is not None:
|
|
81
71
|
u_x_zero_point = x_zero_point.astype(np.uint8)
|
|
82
72
|
umi = u_x_zero_point.min()
|
|
83
73
|
uma = u_x_zero_point.max()
|
|
84
74
|
if umi != uma or umi != np.uint8(0):
|
|
85
|
-
raise
|
|
86
|
-
"x_zero_point is not null but should be zero for
|
|
75
|
+
raise ValueError(
|
|
76
|
+
"x_zero_point is not null but should be zero for float8 types."
|
|
87
77
|
)
|
|
88
78
|
if x_type == TensorProto.FLOAT8E4M3FN:
|
|
89
79
|
dx = float8e4m3_to_float32(x)
|
|
@@ -95,5 +85,18 @@ class DequantizeLinear(OpRun):
|
|
|
95
85
|
dx = float8e5m2_to_float32(x, fn=True, uz=True)
|
|
96
86
|
else:
|
|
97
87
|
dx = x.astype(np.float32)
|
|
98
|
-
y = dx *
|
|
88
|
+
y = dx * reshape_input(x_scale, x.shape, axis, block_size)
|
|
99
89
|
return (y.astype(x_scale.dtype),)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class DequantizeLinear_19(_CommonDequantizeLinear):
|
|
93
|
+
def _run(self, x, x_scale, x_zero_point=None, axis=None):
|
|
94
|
+
if len(x_scale.shape) > 1:
|
|
95
|
+
raise ValueError("Input 2 must be a vector or a number.")
|
|
96
|
+
return super()._run(x, x_scale, x_zero_point, axis)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
class DequantizeLinear_21(_CommonDequantizeLinear):
|
|
100
|
+
def _run(self, *args, axis=None, block_size=None): # type: ignore
|
|
101
|
+
# args: x, y_scale, zero_point
|
|
102
|
+
return super()._run(*args, axis=axis, block_size=block_size) # type: ignore
|
onnx/reference/ops/op_det.py
CHANGED
|
@@ -51,8 +51,7 @@ class GridSample(OpRun):
|
|
|
51
51
|
return x
|
|
52
52
|
|
|
53
53
|
def _gs_reflect(self, x, x_min, x_max): # type: ignore
|
|
54
|
-
"""
|
|
55
|
-
Reflect by the near border till within the borders
|
|
54
|
+
"""Reflect by the near border till within the borders
|
|
56
55
|
Use float for borders to avoid potential issues with integer T
|
|
57
56
|
"""
|
|
58
57
|
fx = x
|
|
@@ -76,8 +75,7 @@ class GridSample(OpRun):
|
|
|
76
75
|
return fx
|
|
77
76
|
|
|
78
77
|
def _gs_get_cubic_coeffs(self, x, coeffs): # type: ignore
|
|
79
|
-
"""
|
|
80
|
-
Calculate cubic convolution interpolation coefficients
|
|
78
|
+
"""Calculate cubic convolution interpolation coefficients
|
|
81
79
|
ROBERT G. KEYS https://ieeexplore.ieee.org/document/1163711
|
|
82
80
|
Use float to avoid potential issues with integer.
|
|
83
81
|
"""
|
|
@@ -9,12 +9,9 @@ from onnx.reference.ops._op_common_window import _CommonWindow
|
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class HammingWindow(_CommonWindow):
|
|
12
|
-
"""
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
where *N* is the window length.
|
|
16
|
-
See `hamming_window
|
|
17
|
-
<https://pytorch.org/docs/stable/generated/torch.hamming_window.html>`_.
|
|
12
|
+
r"""Returns :math:`\\omega_n = \\alpha - \\beta \\cos \\left( \\frac{\\pi n}{N-1} \\right)` where *N* is the window length.
|
|
13
|
+
|
|
14
|
+
See `hamming_window <https://pytorch.org/docs/stable/generated/torch.hamming_window.html>`_.
|
|
18
15
|
`alpha=0.54, beta=0.46`
|
|
19
16
|
"""
|
|
20
17
|
|